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Abstract

Background: Third-generation single molecule sequencing technologies can sequence long reads, which is

advancing the frontiers of genomics research. However, their high error rates prohibit accurate and efficient

downstream analysis. This difficulty has motivated the development of many long read error correction tools, which

tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same biological

samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently comprehensive in the

range of software covered or diversity of evaluation measures used.

Results: In this paper, we present a categorization and review of long read error correction methods, and provide a

comprehensive evaluation of the corresponding long read error correction tools. Leveraging recent real sequencing

data, we establish benchmark data sets and set up evaluation criteria for a comparative assessment which includes

quality of error correction as well as run-time and memory usage. We study how trimming and long read sequencing

depth affect error correction in terms of length distribution and genome coverage post-correction, and the impact of

error correction performance on an important application of long reads, genome assembly. We provide guidelines for

practitioners for choosing among the available error correction tools and identify directions for future research.

Conclusions: Despite the high error rate of long reads, the state-of-the-art correction tools can achieve high

correction quality. When short reads are available, the best hybrid methods outperform non-hybrid methods in terms

of correction quality and computing resource usage. When choosing tools for use, practitioners are suggested to be

careful with a few correction tools that discard reads, and check the effect of error correction tools on downstream

analysis. Our evaluation code is available as open-source at https://github.com/haowenz/LRECE.
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Background
Third-generation sequencing technologies produce long

reads with average length of 10 Kbp or more that are

orders of magnitudes longer than the short reads avail-

able through second-generation sequencing technologies

(typically a few hundred bp). In fact, the longest read
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length reported to date is > 1 million bp [1]. Longer

lengths are attractive because they enable disambiguation

of repetitive regions in a genome or a set of genomes.

The impact of this valuable long-range information has

already been demonstrated for de novo genome assembly

[2–4], novel variant detection [5, 6], RNA-seq analysis [7],

metagenomics [8], and epigenetics [9, 10].

The benefit of longer read lengths, however, comes

with the major challenge of handling high error rates.

Currently, there are two widely used third-generation sin-

gle molecule sequencing platforms – Pacific Biosciences
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(PacBio) and Oxford Nanopore Technologies (ONT).

Both sequencing platforms are similar in terms of their

high error rates (ranging from 10-20%) with most errors

occurring due to insertions or deletions (indels); how-

ever the error distribution varies [4, 11, 12]. Pacbio

sequencing errors appear to be randomly distributed

over the sequence [13]. For ONT on the other hand,

the error profile has been reported to be biased. For

example, A to T and T to A substitutions are less fre-

quent than other substitutions, and indels tend to occur

in homopolymer regions [12, 14]. These error charac-

teristics pose a challenge for long read data analyses,

particularly for detecting correct read overlaps during

genome assembly and variants at single base pair resolu-

tion, thus motivating the development of error correction

methods.

Error correction algorithms are designed to identify and

fix or remove sequencing errors, thereby benefiting rese-

quencing or de novo sequencing analysis. In addition, the

algorithms should be computationally efficient to han-

dle increasing volumes of sequencing data, particularly

in the case of large, complex genomes. Numerous error

correction methodologies and software have been devel-

oped for short reads; we refer readers to [15] and [16] for

a thorough review. Given the distinct characteristics of

long reads, i.e., significantly higher error rates and lengths,

specialized algorithms are needed to correct them. Till

date, several error correction tools for long reads have

been developed including PacBioToCA [17], LSC [18],

ECTools [19], LoRDEC [20], proovread [21], NaS [22],

Nanocorr [23], Jabba [24], CoLoRMap [25], LoRMA [26],

HALC [27], FLAS [28], FMLRC [29], HG-CoLoR [30] and

Hercules [31].

In addition, error correction modules have been devel-

oped as part of long read de novo assembly pipelines, such

as Canu [32] and HGAP [33]. In the assembly pipeline,

correction helps by increasing alignment identities of

overlapping reads, which facilitates overlap detection and

improves assembly. Many long read error correction tools

require and make use of highly accurate short reads to

correct long reads (accordingly referred to as hybridmeth-

ods). Others, referred to as non-hybrid methods, perform

self-correction of long reads using overlap information

among them.

A few review studies have showcased comparisons

among rapidly evolving error correction algorithms to

assess state-of-the-art. Laehnemann et al. [34] provide an

introduction to error rates/profiles and a methodology

overview of a few correction tools for various short and

long read sequencing platforms, although no benchmark

is included. A review and benchmark for hybrid methods

is also available [35]. However, the study only used sim-

ulated reads and focused more on speed rather than cor-

rection accuracy. Besides, it does not include non-hybrid

methods in the assessment. More recently, LRCstats [36]

was developed for evaluation of long read error correction

software; however, it is restricted to benchmarking with

simulated reads.

While benchmarking with simulated reads is useful,

it fails to convey performance in real-world scenarios.

Besides the base-level errors (i.e., indels and substitu-

tions), real sequencing data sets also contain larger

structural errors, e.g., chimeras [37]. However, state-of-

the-art simulators (e.g., SimLoRD [38]) only generate

reads with base-level errors rather than structural errors.

Furthermore, Miclotte et al. [24] consistently observed

worse performance when using real reads instead of

simulated reads, suggesting that simulation may fail

to match the characteristics of actual error distribu-

tion. Therefore, benchmarking with real data sets is

important.

A more recent study by Fu et al. [39] was published dur-

ing the final stage of our work, which like our survey is

also aimed to characterize long read error correction per-

formance using real data. In contrast to their review, we

include both hybrid and non-hybrid methods rather than

just the former. Our benchmark data includes data from

the latest generation of long read sequencers (e.g., ONT

R9 instead of ONT R7.3). We also shed light on the effect

of long read sequencing depth to the overall performance,

which is important to evaluate expected sequencing cov-

erage and cost requirements to achieve good correction

performance.

In this study, we establish benchmark data sets, present

an evaluation methodology suitable to long reads, and

carry out comprehensive evaluation of the quality and

computational resource requirements of state-of-the-art

long read correction software. We also study the effect

of trimming and different sequencing depths on correc-

tion quality. To understand impact of error correction

on downstream analysis, we perform assembly using cor-

rected reads generated by various tools and assess quality

of the resulting assemblies.

Overview of long read error correctionmethods
Hybrid methods

Hybrid methods take advantage of high accuracy of short

reads (error rates often < 1%) for correcting errors in

long reads. An obvious requirement is that the same bio-

logical sample must be sequenced using both short read

and long read technologies. Based on how these meth-

ods make use of short reads, we further divide them into

two categories: alignment-based and assembly-based. The

first category includes Hercules, CoLoRMap, Nanocorr,

Nas, proovread, LSC and PacBioToCA, whereas HG-

CoLoR, HALC, Jabba, LoRDEC, and ECTools are in the

latter. The ideas underlying the methods are summarized

below.
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Short-read-alignment-basedmethods

As a first step, these methods align short reads to long

readsusing a variety of aligners, e.g. BLAST [40], Novoalign

(http://www.novocraft.com/products/novoalign/). As long

reads are usually error-prone, some alignments can be

missed or biased. Thus, most of the tools in this category

utilize various approaches to increase accuracy of align-

ments. Drawing upon the alignments, these methods use

distinct approaches to generate corrected reads.

PacBioToCA: Consensus sequences for long reads are

generated by multiple sequence alignment of short reads

using AMOS consensus module [41].

LSC: Short reads and long reads are compressed using

homopolymer compression (HC) transformation prior to

alignment. Then error correction is performed at HC

points, mismatches and indels by temporarily decom-

pressing the aligned short reads and then generating con-

sensus sequences. Finally, the corrected sequences are

decompressed.

proovread: Similar to PacBioToCA and LSC, short reads

are mapped to long reads, and the resulting alignments

are used to call consensus. But its alignment parameters

are carefully selected and adapted to the PacBio sequenc-

ing error profile. To further improve correction, the phred

quality score and Shannon entropy value are calculated at

each nucleotide for quality control and chimera detection,

respectively. To reduce run time, an iterative correction

strategy is employed. Three pre-correction steps are per-

formed using increasing subsamples of short reads. In

each step, the long read regions are masked to reduce

alignment search space once they are corrected and cov-

ered by a sufficient number of short read alignments. In

the final step, all short reads are mapped to the unmasked

regions to make corrections.

NaS: Like the other tools in this category, it first aligns

short reads with long reads. However, only the stringently

aligned short reads are found and kept as seed-reads.

Then instead of calling consensus, similar short reads

are retrieved with these seed-reads. Micro-assemblies of

these short reads are performed to generate contigs, which

are regarded as corrected reads. In other words, the long

reads are only used as template to select seed-reads.

Nanocorr: It follows the same general approach as

PacBioToCA and LSC, by aligning short reads to long

reads and then calling consensus. But before the consen-

sus step, a dynamic programming algorithm is utilized to

select an optimal set of short read alignments that span

each long read.

CoLoRMap: CoLoRMap does not directly call consen-

sus. Instead, for each long read region, it runs a shortest

path algorithm to construct a sequence of overlapping

short reads aligned to that region with minimum edit

distance. Subsequently, the region is corrected by the con-

structed sequence. In addition, for each uncovered region

(called gap) on long reads, any unmapped reads with cor-

responding mapped mates are retrieved and assembled

locally to fill the gap.

Hercules: It first aligns short reads to long reads. Then

unlike other tools, Hercules uses a machine learning-

based algorithm. It creates a profile Hidden Markov

Model (pHMM) template for each long read and then

learns posterior transition and emission probabilities.

Finally, the pHMM is decoded to get the corrected reads.

Short-read-assembly-basedmethods

These methods first perform assembly with short reads,

e.g., generate contigs using an existent assembler, or only

build the de Bruijn graph (DBG) based on them. Then

the long reads are aligned to the assemblies, i.e., con-

tigs/unitigs or a path in the DBG, and corrected. Algo-

rithms for different tools in this category are summarized

below.

ECTools: First, unitigs are generated from short reads

using any available assembler and aligned to long reads.

Afterwards, the alignments are filtered to select a set of

unitigs which provide the best cover for each long read.

Finally, differences in bases between each long read and its

corresponding unitigs are identified and corrected.

LoRDEC: Unlike ECTools which generates assemblies,

LoRDEC only builds a DBG of short reads. Subsequently,

it traverses paths in the DBG to correct erroneous regions

within each long read. The regions are replaced by the

respective optimal paths which are regarded as the cor-

rected sequence.

Jabba: It adopts a similar strategy as in LoRDEC, and

builds a DBG of short reads followed by aligning long

reads to the graph to correct them. The improvement is

that Jabba employs a seed-and-extend strategy using max-

imal exact matches (MEMs) as seeds to accelerate the

alignment.

HALC: Similar to ECTools, short reads are used to gen-

erate contigs as the first step. Unlike other methods which

try to avoid ambiguous alignments [17, 42], HALC aligns

long reads to the contigs with a relatively low identity

requirement, thus allowing long reads to align with their

similar repeats which might not be their true genomic ori-

gin. Then long reads and contigs are split according to

the alignments so that every aligned region on read has

its corresponding aligned contig region. A contig graph

is constructed with the aligned contig regions as vertices.

A weighted edge is added between two vertices if there

http://www.novocraft.com/products/novoalign/
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are adjacent aligned long read regions supporting it. The

more regions support the edge, the lower is the weight

assigned to it. Each long read is corrected by the path with

minimum total weight in the graph. Furthermore, the cor-

rected long read regions are refined by running LoRDEC,

if they are aligned to similar repeats.

FMLRC: This software uses a DBG-based correction

strategy similar to LoRDEC. However, the key difference

in the algorithm is that it makes two passes of correction

using DBGs with different k-mer sizes. The first pass does

the majority of correction, while the second pass with a

longer k-mer size corrects repetitive regions in the long

reads. Note that a straightforward implementation of a

DBG does not support dynamic adjustment of k-mer size.

As a result, FMLRC uses FM-index to implicitly represent

DBGs of arbitrary length k-mers.

HG-CoLoR: Similar to FMLRC, it avoids using a fixed

k-mer size for the de Bruijn graph. Accordingly, it relies

on a variable-order de Bruijn graph structure [43]. It also

uses a seed-and-extend approach to align long reads to

the graph. However, the seeds are found by aligning short

reads to long reads rather than directly selecting them

from the long reads.

Non-hybrid methods

These methods perform self-correction with long reads

alone. They all contain a step to generate consen-

sus sequences using overlap information. However, the

respective methods vary in how they find the overlaps and

generate consensus sequences. The details are as follows.

FLAS: It takes all-to-all long read overlaps computed

usingMECAT [44] as input, and clusters the reads that are

aligned with each other. In case of ambiguous instances,

i.e., the clusters that share the same reads, FLAS evalu-

ates the overlaps by computing alignments using sensitive

alignment parameters either to augment the clusters or

discard the incorrect overlaps. The refined alignments are

then used to correct the reads. To achieve better accu-

racy, it also corrects errors in the uncorrected regions of

the long reads. Accordingly, it constructs a string graph

using the corrected regions of long reads, and aligns the

uncorrected ones to the graph for further correction.

LoRMA: By gradually increasing the k-mer size, LoRMA

iteratively constructs DBGs using k-mers from long reads

exceeding a specified frequency threshold, and runs

LoRDEC to correct errors based on the respective DBGs.

After that, a set of reads similar to each read termed

friends are selected using the final DBG, which should

be more accurate due to several rounds of corrections.

Then, each read is corrected by the consensus sequence

generated by its friends.

Canu error correction module: As a first step during

the correction process, Canu computes all-versus-all over-

lap information among the reads using a modified version

of MHAP [45]. It uses a filtering mechanism during the

correction to favor true overlaps over the false ones that

occur due to repetitive segments in genomes. The filtering

heuristic ensures that each read contributes to correction

of no more than D other reads, where D is the expected

sequencing depth. Finally, a consensus sequence is gen-

erated for each read using its best set of overlaps by

leveraging “falcon_sense" consensus module [3].

Results and discussion
Experimental setup

All tests were run on the Swarm cluster located at Georgia

Institute of Technology. Each compute node in the cluster

has dual Intel Xeon CPU E5-2680 v4 (2.40 GHz) proces-

sors equipped with a total of 28 cores and 256GB main

memory.

Evaluated software

We evaluated 14 long read error correction programs in

this study: Hercules, HG-CoLoR, FMLRC, HALC, CoL-

oRMap, Jabba, Nanocorr, proovread, LoRDEC, ECTools,

LSC, FLAS, LoRMA and the error correction module in

Canu. NaS was not included in the evaluation because it

requires Newbler assembler which is no longer available

from 454. PacBioToCAwas also excluded since it is depre-

cated and no longer being maintained. The command line

parameters were chosen based on user documentations of

each software (Additional file 1 section “Versions and con-

figurations”). The tools were configured to run exclusively

on a single compute node and allowed to leverage all the

28 cores if multi-threading is supported. A cutoff on wall

time was set to three days.

Performance on benchmark data sets

We evaluated the quality and computational resource

requirements of each software on our benchmark data

sets (“Methods” section). Results for the different data

sets are shown in Tables 1, 2, 3, 4, 5 and 6. Because

multiple factors are at play when considering accu-

racy, it is important to consider their collective influ-

ence in assessing quality of error correction. In what

follows, we present a detailed and comparative dis-

cussion on correction accuracy, runtime and memory-

usage. In addition, to guide error correction software

users and future developers, we provide further insights

into the strengths and limitations of various approaches

that underpin the software. This includes evaluating

their resilience to handle various sequencing depths,

studying the effect of discarding or trimming input

reads to gain higher accuracy, and impact on genome

assembly.
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Table 1 Experimental results for E. coli PacBio data set D1-P

Method # Reads # Bases # Aligned # Aligned Maximum N50 Genome Alignment CPU time Wall time Memory

(Mbp) reads bases (Mbp) length (bp) (bp) fraction (%) identity(%) (hh:mm:ss) (hh:mm:ss) usage (GB)

Original 85460 748.0 82886 688.0 44113 13990 100.000 86.8763 - - -

Non-hybrid methods

FLAS 69327 632.3 68786 621.2 40117 13212 100.000 99.5959 09:47:50 00:56:45 4.9

LoRMA 330811 623.3 330715 623.0 22499 2441 100.000 99.6814 45:24:49 02:10:36 67.2

Canu 9283 168.1 9193 166.7 39693 20391 100.000 99.6970 07:47:33 00:27:14 6.0

Short-read-assembly-basedmethods

HG-CoLoR - - - - - - - - - - -

FMLRC 85260 706.5 83320 669.9 44084 13364 100.000 99.6983 03:05:06 00:30:07 9.8

HALC 85256 711.1 84030 661.7 44117 13399 100.000 99.4374 60:41:59 16:02:32 30.2

Jabba 77508 620.2 77508 619.7 41342 12557 99.258 99.9624 02:05:09 00:12:01 37.0

LoRDEC 85324 716.9 83507 665.9 44311 13491 100.000 98.4149 15:03:42 00:40:05 2.0

ECTools 55687 577.4 55687 575.7 39772 13583 100.000 99.8592 11:25:22 00:29:49 8.2

Short-read-alignment-basedmethods

Hercules - - - - - - - - - >72:00:00 -

CoLoRMap 85674 730.7 83765 678.6 44113 13641 100.000 95.2930 31:35:16 02:53:33 34.9

Nanocorr 73368 504.9 73316 493.1 41079 10796 100.000 98.3257 1862:59:19 70:57:19 15.1

proovread 85367 720.2 83142 665.7 44113 13524 100.000 96.7250 71:17:14 12:21:53 53.9

LSC - - - - - - - - - >72:00:00 -

Note: HG-CoLoR reported an error when correcting this dataset

Table 2 Experimental results for E. coli ONT data set D1-O

Method # Reads # Bases # Aligned # Aligned Maximum N50 Genome Alignment CPU time Wall time Memory

(Mbp) reads bases (Mbp) length (bp) (bp) fraction (%) identity (%) (hh:mm:ss) (hh:mm:ss) usage (GB)

Original 163747 1481.5 163386 1454.4 131969 14895 100.000 81.3559 - - -

Non-hybrid methods

FLAS 138472 1401.3 138458 1392.9 130497 14748 99.997 93.0176 20:27:50 01:56:52 8.0

LoRMA 595072 1433.5 595051 1432.5 31743 3333 99.924 96.6525 182:14:17 07:30:30 77.8

Canu 19335 226.2 19326 225.0 133168 38034 99.953 94.5969 17:14:11 00:50:04 6.7

Short-read-assembly-basedmethods

HG-CoLoR 159856 1540.7 159854 1518.1 138002 15744 100.000 98.1308 231:20:30 44:41:19 13.8

FMLRC 163749 1555.4 163593 1546.3 137960 15687 100.000 99.6423 05:50:54 00:32:27 3.3

HALC - - - - - - - - - >72:00:00 -

Jabba 162970 1287.0 162970 1286.1 93923 12795 99.515 99.9557 02:51:05 00:10:33 37.1

LoRDEC 163838 1555.5 163722 1530.1 137887 15664 100.000 98.9920 32:35:27 01:12:37 2.2

ECTools 116868 1431.7 116868 1428.2 137863 16354 100.000 99.8116 19:44:40 00:46:51 8.1

Short-read-alignment-basedmethods

Hercules - - - - - - - - - >72:00:00 -

CoLoRMap 164072 1518.3 163782 1495.7 134302 15180 100.000 89.2049 32:55:26 04:01:18 35.5

Nanocorr - - - - - - - - - >72:00:00 -

proovread 163815 1514.0 163481 1489.1 135798 15222 100.000 89.2071 104:33:09 18:35:46 47.8

LSC - - - - - - - - - >72:00:00 -
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Table 3 Experimental results for yeast PacBio data set D2-P

Method # Reads # Bases # Aligned # Aligned Maximum N50 Genome Alignment CPU time Wall time Memory

(Mbp) reads bases (Mbp) length (bp) (bp) fraction (%) identity (%) (hh:mm:ss) (hh:mm:ss) usage (GB)

Original 239408 1462.7 235620 1332.6 35196 8656 99.976 87.2637 - - -

Non-hybrid methods

FLAS 173187 1093.2 173046 1078.8 30046 8132 99.976 99.5777 11:46:31 01:15:40 7.9

LoRMA 650467 1142.0 650333 1141.4 18127 2323 99.951 99.7583 172:24:38 07:03:03 72.9

Canu 38228 453.2 38172 446.7 28748 12021 99.975 99.5864 15:18:34 00:50:12 6.5

Short-read-assembly-basedmethods

HG-CoLoR - - - - - - - - - - -

FMLRC 238706 1380.8 236883 1311.0 33658 8185 99.977 99.3889 07:52:17 00:28:55 5.5

HALC 238787 1395.4 238097 1287.6 34785 8270 99.976 99.0796 52:12:11 09:45:10 29.0

Jabba 202980 1087.2 202879 1086.6 30141 7847 95.627 99.9832 00:38:30 00:04:57 21.4

LoRDEC 238847 1405.0 237278 1297.1 34896 8326 99.978 97.9568 01:10:03 00:57:17 1.9

ECTools 130863 946.9 130832 943.1 28749 8412 99.810 99.7712 938:25:28 58:25:00 4.3

Short-read-alignment-basedmethods

Hercules 239389 1460.3 235630 1330.4 35196 8644 99.976 87.6711 87:53:55 03:18:41 247.8

CoLoRMap 239309 1429.6 237135 1321.3 34850 8409 99.976 96.3912 18:44:48 03:07:34 37.3

Nanocorr - - - - - - - - - >72:00:00 -

proovread 238992 1412.4 236519 1298.0 35122 8369 99.978 97.9568 184:02:07 23:45:37 47.9

LSC - - - - - - - - - >72:00:00 -

Note: HG-CoLoR reported an error when correcting this dataset

Table 4 Experimental results for yeast ONT data set D2-O

Method # Reads # Bases # Aligned # Aligned Maximum N50 Genome Alignment CPU time Wall time Memory

(Mbp) reads bases (Mbp) length (bp) (bp) fraction (%) identity (%) (hh:mm:ss) (hh:mm:ss) usage (GB)

Original 118723 715.7 108463 638.1 55374 7003 99.976 86.1986 - - -

Non-hybrid methods

FLAS 95606 585.6 95290 581.5 26592 6893 99.940 97.1699 07:42:10 07:42:10 4.4

LoRMA 398863 497.0 398350 495.2 16027 1439 99.485 98.4024 68:02:36 02:55:05 68.8

Canu 64829 475.1 64649 475.1 26895 7518 99.914 97.7710 12:31:04 00:37:53 9.0

Short-read-assembly-basedmethods

HG-CoLoR - - - - - - - - - - -

FMLRC 118701 713.7 111869 666.4 55374 6990 99.975 99.2529 03:35:44 00:17:21 2.2

HALC 118707 718.2 114071 647.9 55379 7025 99.976 98.8884 50:11:58 04:03:18 3.6

Jabba 99044 536.9 98631 535.9 28194 6730 95.400 99.9809 00:55:32 00:04:20 21.5

LoRDEC 118727 720.8 110606 647.8 55375 7049 99.976 96.9369 11:22:09 00:26:13 2.1

ECTools 81105 531.9 80843 529.3 26810 7071 99.314 99.7697 09:31:32 20:17:33 5.6

Short-read-alignment-basedmethods

Hercules 118721 716.3 108467 638.9 55374 7008 99.976 87.2912 125:22:19 04:37:01 246.6

CoLoRMap 118774 722.0 108969 649.4 55374 7049 99.976 95.5851 11:01:38 01:34:52 27.8

Nanocorr - - - - - - - - - >72:00:00 -

proovread 118729 716.7 109057 643.4 55374 7007 99.976 96.3689 66:14:09 07:20:18 28.1

LSC - - - - - - - - - >72:00:00 -

Note: HG-CoLoR reported an error when correcting this dataset
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Table 5 Experimental results for fruit fly PacBio data set D3-P

Method # Reads # Bases # Aligned # Aligned Maximum N50 Genome Alignment CPU time Wall time Memory

(Mbp) reads bases (Mbp) length (bp) (bp) fraction (%) identity (%) (hh:mm:ss) (hh:mm:ss) usage (GB)

Original 5366088 28797.8 1839681 16543.5 74735 15374 99.191 85.2734 - - -

Non-hybrid methods

FLAS 1435682 14585.2 1428018 13574.1 43556 13550 98.915 98.8363 271:44:27 36:30:42 53.1

LoRMA - - - - - - - - - - -

Canu - - - - - - - - - >72:00:00 -

Short-read-assembly-basedmethods

HG-CoLoR - - - - - - - - - - -

FMLRC 5246485 27354.6 2477890 16543.5 74735 14554 99.191 96.5284 327:37:22 13:49:04 31.2

HALC 4451474 21997.5 3434779 12793.3 74735 14349 99.178 96.8863 770:35:46 55:58:24 73.0

Jabba 35549 239.8 35505 239.1 37729 10461 65.616 99.9615 656:05:15 24:33:41 175.8

LoRDEC 5363998 28354.1 2056812 15636.9 74719 15078 99.200 92.2954 1011:52:27 36:19:18 5.9

ECTools - - - - - - - - - >72:00:00 -

Short-read-alignment-basedmethods

Hercules - - - - - - - - - - -

CoLoRMap 5366107 28891.6 1841822 14976.8 74735 15442 99.189 83.2580 495:11:17 64:52:25 189.4

Nanocorr - - - - - - - - - >72:00:00 -

proovread - - - - - - - - - >72:00:00 -

LSC - - - - - - - - - >72:00:00 -

Note: LoRMA, HG-CoLoR and Hercules reported errors when correcting this dataset

Table 6 Experimental results for fruit fly ONT data set D3-O

Method # Reads # Bases # Aligned # Aligned Maximum N50 Genome Alignment CPU time Wall time Memory

(Mbp) reads bases (Mbp) length (bp) (bp) fraction (%) identity (%) (hh:mm:ss) (hh:mm:ss) usage (GB)

Original 642255 4609.5 554083 3857.9 446050 11956 98.719 83.5921 - - -

Non-hybrid methods

FLAS 423097 3507.6 422206 3402.6 64365 11517 97.588 95.3301 23:04:50 03:12:50 10.8

LoRMA 703097 615.5 682288 592.3 32644 865 30.338 98.1230 666:37:35 25:52:14 92.8

Canu 430082 3415.6 421475 3220.2 254967 12090 97.592 96.3739 88:51:10 04:36:20 20.2

Short-read-assembly-basedmethods

HG-CoLoR - - - - - - - - - - -

FMLRC 641945 4647.2 578290 3978.2 444605 12088 98.592 97.6010 47:45:17 03:06:05 31.2

HALC 643002 4668.5 611191 3955.7 451284 12115 98.616 97.6634 126:30:01 05:43:37 42.4

Jabba 494546 2878.2 494430 2876.3 72501 9305 83.166 99.9745 175:19:34 06:56:29 136.8

LoRDEC 642882 4655.9 567878 3921.1 447726 12079 98.691 94.0382 152:05:32 05:38:05 5.7

ECTools - - - - - - - - - >72:00:00 -

Short-read-alignment-basedmethods

Hercules 642287 4612.8 554630 3859.4 449799 11966 98.713 83.9340 398:10:17 17:32:36 247.7

CoLoRMap 649041 4692.1 565881 3963.8 442948 12050 98.715 94.3361 160:00:22 16:07:18 57.3

Nanocorr - - - - - - - - - >72:00:00 -

proovread - - - - - - - - - >72:00:00 -

LSC - - - - - - - - - >72:00:00 -

Note: HG-CoLoR reported an error when correcting this dataset
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Correction quality

We measure quality using the number of reads and total

bases output in comparison with the input, the result-

ing alignment identity, fraction of the genome covered

and read length distribution including maximum size

and N50 length. From Tables 1, 2, 3, 4, 5 and 6, we

gather that the best performing hybrid methods (e.g.,

FMLRC) are capable of correcting reads to achieve base-

level accuracy in the high 90’s. For the E. coli and yeast

data sets, many of these programs achieve alignment

identity > 99%. A crucial aspect to consider here is

whether the high accuracy is achieved while preserv-

ing input read depth and N50. Few tools (e.g. Jabba)

seem to attain high alignment identity at the cost of pro-

ducing shorter reads and reduced depths because they

choose to either discard uncorrected reads or trim the

uncorrected regions. This may have a negative impact on

downstream analyses. This trade-off is further discussed

later in “Effect of discarding reads during correction”

section.

Among the hybrid methods, a key observation is that

short-read-assembly-based methods tend to show bet-

ter performance than short-read-alignment-based meth-

ods. We provide the following explanation. Given that

long reads are error-prone, short read alignment to long

reads is more likely to be wrong (or ambiguous) than

long read alignment to graph structures built using short

reads. Errors in long reads can cause false positives in

identifying the true positions where the respective short

reads should align, which causes false correction later.

For example, during the correction of D3-P, the align-

ment identity of corrected reads generated by CoLoRMap

in fact decreased when compared to the uncorrected

reads. The reason is that CoLoRMap uses BWA-mem

[46] to map short reads, which is designed to report best

mapping. However, due to the high error rates, the best

mapping is not necessarily the true mapping. Large vol-

ume of erroneous long reads in D3-P can lead to many

false alignments, which affected the correction process.

On the other hand, long read lengths make it possible

to have higher confidence when aligning them to paths

in the graph. Therefore, in most of the experiments,

assembly-based methods were able to produce reasonable

correction.

Non-hybrid correction is more challenging as it relies

solely on overlaps between erroneous long reads, yet

the tools in this category yield competitive accuracy in

many cases. However, non-hybrid methods may achieve

lower alignment identity when the long reads are more

erroneous. For example, the alignment identity of cor-

rected reads generated by FLAS, LoRMA and Canu is

lower than almost all hybrid methods for D1-O where the

average alignment identity of uncorrected reads is only

81.36%.

Runtime andmemory usage

Scalability of the correction tools is an important aspect to

consider in their evaluation. Slow speed or high memory

usage makes it difficult to apply them to correct large

data sets. Our results show that hybrid methods, in par-

ticular assembly-based methods, are much faster than

the rest. For instance, Hercules and LSC failed to gen-

erate corrected reads in three days for D1-P, while most

of the assembly-based tools finished the same job in

less than one hour. Hercules, Nanocorr and LSC were

unable to finish the correction of D2-O in three days,

which was finished by FMLRC or LoRDEC in hours.

Although proovread can complete the corrections of D2-

P and D2-O, the run-time was 49.3 and 34.4 times longer,

respectively, than run-time needed by FMLRC. Moreover,

assembly-based methods, e.g., LoRDEC and FMLRC,

used less memory in most of the experiments. There-

fore, in terms of computational performance, users should

give priority to short-read assembly-based methods over

short-read alignment-based methods.

Among the non-hybrid methods, LoRMA’s memory

usage was generally the highest among all the tools, and

was slower than assembly-basedmethods. However, Canu

showed superior scalability. Owing to a fast long read

overlap detection algorithm using MinHash [45], Canu

was able to compute long read overlaps and used them to

correct the reads in reasonable time, which is compara-

ble to most of the hybrid methods. The memory footprint

of Canu was also lower than many hybrid-methods. How-

ever, Canu did not finish the correction of D3-P in three

days probably because this data set is too large to compute

pairwise overlaps. FLAS showed performance comparable

to Canu as FLAS also leverages the fast overlap computa-

tion method in MECAT [44].

Effect of long read sequencing depth on error correction

Requiring high sequencing coverage for effective error

correction can impact both cost and time consumed dur-

ing sequencing and analysis. The relative cost per base

pair using third-generation sequencing is still several folds

higher when compared to the latest Illumina sequencers

[1]. Accordingly, we study how varying long read sequenc-

ing depth affects correction quality, while keeping the

short read data set fixed. We conducted this experiment

using data sets D2-P and D2-O with various depth levels

obtained using random sub-sampling. The details of the

subsamples are summarized in Additional file 1 Table S1.

The output behavior of the correction tools is shown in

Additional file 1 Tables S2-S9.

Figure 1 shows the correction performance of four

tools– CoLoRMap, LoRMA, Canu and FLAS that were

significantly affected by the long read sequencing depth.

For corrected reads generated by hybrid methods, no

significant change on the metrics was observed except
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Fig. 1 Correction performance with respect to different long read sequencing depths The alignment identity and genome fraction of yeast PacBio

and ONT corrected subsamples generated by CoLoRMap, FLAS, LoRMA and Canu are shown in the figure

those generated by CoLoRMap. The alignment identity of

its corrected reads increased with decreased sequencing

depth. This observation is consistent with the experimen-

tal results reported by its authors. Similarly, CoLoRMap

did not perform well on large data sets such as D3-P as

large data sets increase the risk of false positive align-

ments.

On the other hand, the performance of non-hybrid

methods deteriorated significantly when sequencing

depth was decreased. As non-hybrid methods leverage

overlap information to correct errors, they require suf-

ficient long read coverage to make true correction. The

genome fraction covered by corrected reads produced

by LoRMA with subsamples of D2-P decreased from

99.59% to 82.97% when sequencing depth dropped from

90x to 60x, and further decreased to 9.61%, 5.39% and

3.78% for 30x, 20x and 10x respectively, implying loss of

many long reads after correction. The alignment iden-

tities were still greater than 99% using all subsamples

because LoRMA trimmed the uncorrected regions. For

corrected reads generate by Canu, no significant change

on genome fraction was observed. But the alignment iden-

tity dropped from above 99% to 97.03% and 95.63% for 20x

and 10x sequencing depths, respectively. FLAS showed

similar performance but genome fraction for 10x sequenc-

ing depth was only 90.20% lower than the 99.92% achieved

by Canu, which indicates FLAS drops some reads when

sequencing depth is low.

Effect of discarding reads during correction

Many correction tools opt for discarding input reads or

regions within reads that they fail to correct. As a result,

the reported alignment identity is high (> 99%), but

much fewer number of bases survive after correction. This

effect is more pronounced in corrected reads generated

by Jabba, ECTools, and LoRMA. They either trim uncor-

rected regions at sequence ends, or even in the middle,

to avoid errors in the final output which eventually yields

high alignment identity. However, aggressive trimming

also makes the correction lossy and may influence down-

stream analysis because long range information is lost if

the reads are shortened or broken into smaller pieces.

Therefore, users should be conservative in trimming and

turn it off when necessary. One good practice is to keep

the uncorrected regions and let downstream analysis tools

perform the trimming, e.g. overlap-based trimming after

read correction in Canu.

A direct implication of discarding or trimming reads is

the change of read length distribution. Figure 2 shows the

original and corrected read length distributions. Among

all the tools, HG-CoLoR, FMLRC, HALC, CoLoRMAP,

LoRDEC and proovread can maintain a similar read
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Fig. 2 E. coli corrected read length distribution Corrected read length distribution is shown in violinplots for E. coli PacBio and ONT sequencing data

in a and b respectively. Note that ECTools only corrects reads longer than 1000 bp and drops the reads shorter than that

length distribution after correction whereas Nanocorr,

Jabba and ECTools lost many long reads after correction

due to their trimming step. Nanocorr drops a long read

when there is no short read aligning to it. This procedure

can remove many error-prone long reads, which leads to

a higher alignment identity after correction. However, the

fraction of discarded reads in many cases is found to be

significant. For example, a mere 376.3 million bp cumu-

lative length of sequences survived out of 1462.7 million

bp data set, after correction of D2-P. ECTools also gener-

ated only 946.9 million corrected bases using this data set.

Canu changed the read length distribution significantly

after correction although due to a different reason. Canu

estimates the read length after correction and tries to keep

the longest 40x reads for subsequent assembly. FLAS kept

most of the reads with short length while losing many

reads with long length.

Effect of error correction on genome assembly

Error correction of long reads remains a useful pre-

processing stage for reliable construction of overlap

graphs during genome assembly. We examined how well

the accuracy of error correction correlates with the quality

of genome assembly performed using corrected reads. To

do so, we conducted an experiment to compute genome

assembly using corrected PacBio and ONT reads of E.

coli, i.e., corrected reads for D1-P and D1-O. Assembly

was computed using Canu with its error correction mod-

ule turned off, and assembly quality was assessed using

QUAST [47]; the results are shown in Tables 7 and 8.

Considering the assemblies generated using corrected

PacBio reads (Table 7), NGA50 of about 3 Mbp was

obtained when using reads generated by FLAS, Canu,

FMLRC, HALC, Nanocorr, LoRDEC or ECTools. When

using corrected ONT reads (Table 8), assemblies gener-

ated using reads corrected by Canu, HG-CoLoR, FMLRC,

LoRDEC and ECTools have NGA50 near 3 Mbp. In con-

trast, assemblies generated using reads corrected by Jabba

and LoRMA showed lower NGA50 in both cases. Their

trimming procedure possibly led to the loss of some long

range information, thereby causing lower continuity in

assembly. Post error correction, alignment identity of cor-

rected reads needs to be sufficiently high to identify true

overlaps during assembly. We observe that NGA50 of

assemblies generated using reads corrected by CoLoRMap

and proovread is low, as the corrected reads generated by

these two tools have low alignment identity (e.g., < 90%

for D1-O, Table 2).

We also examined the frequency of mismatches and

indels in the assemblies. For data set D1-P, corrected

reads generated by HALC and ECTools produced assem-

blies with > 500 mismatches, significantly higher than

the other tools. However, alignment identity of their

corrected reads was either competitive with, or supe-

rior to, what is produced by other tools. Notably, both

HALC and ECTools use assembled contigs from short

reads to do error correction. Mis-assemblies of short

reads, especially in repetitive and low-complexity regions,

may cause false corrections, which leads to errors dur-

ing assembly [29]. Corrected reads produced by FMLRC

achieved the least number of errors in assembly. Mean-

while, its alignment identity was also the highest among

the methods which avoid trimming. Therefore, higher

alignment identity of corrected reads is an important but

not a sufficient criteria to minimize errors in genome

assemblies.
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Table 7 Results of genome assembly computed using corrected reads of D1-P

Method # contigs NGA50 Largest Total Genome # # # indels # indels Indel

(bp) contigs (bp) length (bp) fraction (%) misassemblies mismatches (<=5bp) (>5bp) length (bp)

Non-hybrid methods

FLAS 2 3996362 4681650 4689583 99.998 4 4 162 0 167

LoRMA 14 696878 2501146 4663900 99.938 4 75 4181 6 4295

Canu 1 3976437 4670120 4670120 99.998 4 7 92 0 95

Short-read-assembly-basedmethods

FMLRC 9 3821409 4657352 4831908 99.998 8 1 4 0 5

HALC 25 2947777 4682714 5388722 99.983 8 541 35 8 257

Jabba 58 138874 398327 4623296 97.273 1 172 32 3 167

LoRDEC 2 3996441 4681757 4703690 99.998 4 66 18 2 55

ECTools 19 3548731 4657296 5154324 99.974 4 592 80 2 188

Short-read-alignment-basedmethods

CoLoRMap 86 1217587 1448649 5700143 99.998 4 42 3 7 478

Nanocorr 18 3095077 4646253 4931697 99.998 5 65 34 2 157

proovread 2 1686030 4626702 4666724 99.656 4 76 97 1 176

Non-hybrid methods such as LoRMA, Canu and FLAS

produced more indels than mismatches in their assem-

blies while most of the hybrid methods showed the oppo-

site behavior. These observations suggest that existing

self-correction methods are not good at handling indels

when compared to hybrid methods. Consequently, de

novo long read assemblers that use self-correction meth-

ods typically rely on post-processing ‘polishing’ stages,

using signal-level data from long read instruments [2, 33]

or alternate sequencing technologies [48].

Conclusions and future directions
In this work, we established benchmark data sets and

evaluationmethods for comprehensive assessment of long

read error correction software. Our results suggest that

hybrid methods aided by short accurate reads can achieve

better correction quality, especially when handling low

coverage-depth long reads, compared with non-hybrid

methods. Within the hybrid methods, assembly-based

methods are superior to alignment-based methods in

terms of scalability to large data sets. Besides, better

Table 8 Results of genome assembly computed using corrected reads of D1-O

Method # contigs NGA50 Largest Total Genome # # # indels # indels Indel

(bp) contigs (bp) length (bp) fraction (%) misassemblies mismatches (<=5bp) (>5bp) length (bp)

Non-hybrid methods

FLAS 1 1283465 4561925 4561925 99.834 4 4785 70062 1310 122264

LoRMA 14 726649 1239048 4583602 99.650 3 23275 57650 37 73578

Canu 1 3335496 4601279 4601279 99.914 2 14810 56511 283 78931

Short-read-assembly-basedmethods

HG-CoLoR 32 3924167 4634988 5555776 99.845 28 393 82 8 246

FMLRC 9 4325756 4718452 4974808 99.874 6 6 7 4 242

Jabba 57 105474 311624 4460218 95.838 0 117 22 5 179

LoRDEC 57 3492326 4044623 5389657 99.800 10 402 162 18 448

ECTools 2 2891718 4733248 4797686 99.885 3 632 267 16 682

Short-read-alignment-basedmethods

CoLoRMap 55 206971 501963 6007440 94.790 4 11074 14392 206 24183

proovread 99 75162 225568 4613429 98.737 14 276 41 1 75
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performance on correction such as preserving higher pro-

portion of input bases and high alignment identity often

leads to better performance in downstream applications

such as genome assembly. But the tools with superior

correction performance should be further tested in the

context of applications of interest.

Users can also select tools according to our experimen-

tal results for their specific expectations. When speed is

a concern, assembly-based hybrid methods are preferred

whenever short reads are available. Besides, hybrid meth-

ods are more immune to low long read sequencing depth

than non-hybrid methods. Thus, users are recommended

to choose hybrid methods when long read sequencing

depth is relatively low. In cases where indel errors may

cause a serious negative impact on downstream analyses,

hybrid methods should be preferred over non-hybrid ones

if short reads are available.

FMLRC outperformed other hybrid methods in almost

all the experiments. For non-hybrid methods, Canu and

FLAS showed better performance over LoRMA. Hence,

these three are recommended as default when users want

to avoid laborious tests on all the error correction tools.

For future work, better self-correction algorithms are

expected to avoid hybrid sequencing, thus reducing exper-

imental labor on short read sequencing preparation. In

addition, most of the correction algorithms run for days

to correct errors in the sequencing of even moderately

large and complex genomes like the fruit fly. These algo-

rithms will spend much more time on correcting larger

sequencing data sets of human, and become a bottleneck

in sequencing data analysis. Therefore, more efficient or

parallel correction algorithms should be developed to

ease the computational burden. Furthermore, none of the

hybrid tools makes use of paired-end information in their

correction, except CoLoRMap. But the use of paired-end

reads in CoLoRMap did not improve correction perfor-

mance significantly according to previous studies. Paired-

end reads have already been used to resolve repeats and

remove entanglements in de Bruijn graphs [49]. Since

many error correction tools build de Bruijn graphs to cor-

rect long reads, the paired-end information may also be

able to improve error correction.

Most of the published error correction tools focus on

correction of long DNA reads sequenced from a sin-

gle genome, which also served as the motivation for our

review. Long read sequencing is increasingly gaining trac-

tion in transcriptomics and metagenomics applications. It

is not clear whether the existing tools can be leveraged or

extended to work effectively in such scenarios, and is an

active area of research [50].

Methods
We selected data sets from recent publicly accessi-

ble genome sequencing experiments. For benchmarking

the different programs, our experiments used genome

sequences from multiple species and different sequenc-

ing platforms with recent chemistry, e.g., R9 for ONT or

P6-C4/P5-C3 for PacBio. We describe our evaluation cri-

teria and use it for a comprehensive assessment of the

correction methods/software.

Benchmark data sets

Our benchmark includes resequencing data from three

reference genomes – Escherichia coli K-12 MG1655

(E. coli), Saccharomyces cerevisiae S288C (yeast), and

Drosophila melanogaster ISO1 (fruit fly). The biggest hur-

dle when benchmarking with real data is the absence of

ground truth (i.e., perfectly corrected reads). However, the

availability of reference genomes of these strains enables

us to evaluate the output of correction software in a reli-

able manner using the reference. Essentially, differences

in a corrected read with respect to the reference imply

uncorrected errors. A summary of the selected read data

sets is listed in Table 9. We leveraged publicly available

high coverage read data sets of the selected genomes avail-

able from all three platforms – Illumina (for short reads),

Pacbio, and ONT. In addition, some of these samples

were sequenced usingmultiple protocols, yielding reads of

varying quality. This enabled us to do a thorough compar-

ison among error correction software across various error

rates and error profiles.

To conduct performance evaluation under different

sequencing depths, yeast sequencing reads (D2-P and

D2-O) were subsampled randomly using Seqtk (https://

github.com/lh3/seqtk). Subsamples with average depth of

10x, 20x and 30x were generated for ONT reads. In addi-

tion, 10x, 20x, 30x, 60x and 90x PacBio read subsamples

were generated fromD2-P. Details of these subsamples are

available in Additional file 1 Table S1.

Evaluation methodology

Our evaluation method takes corrected reads and a refer-

ence genome as input. The corrected reads were filtered

using a user defined length (default 500). Reads which

were too short to include in downstream analysis were

dropped during the filtration. Filtered reads were aligned

to the reference genome using Minimap2 [51] (using “-

ax map-pb” and “-ax map-ont” parameters for PacBio and

ONT reads respectively). The primary alignment for each

read was used in the evaluation.

In an ideal scenario, an error correction software should

take each erroneous long read and produce the error-

free version of it, preserving each read and its full length.

To assess how close to the ideal one can get, measures

such as error rate post-correction or percentage of errors

removed (termed gain; see [15]) can be utilized. How-

ever, long read error correction programs do not operate

in this fashion. They may completely discard some reads

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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Table 9 Details of the benchmark data sets

Data Sequencing Sequencing Sequencing Read length Number of Reference Genome Reference

set specification NCBI accession deptha (bp)b reads genome length (Mbp) NCBI accession

D1-I Illumina Miseq -c 373x 2×151 2×5 729 470

E. coli K-12 MG1655 NC_000913.3D1-P Pacbio P6C4 -d 161x 13 982 87 217 4.6

D1-O MinION R9 1D -e 319x 14 891 164 472

D2-I Illumina Miseq ERR1938683 81x 2×150 2×3 318 467

S. cerevisiae S288c GCF_000146045.2D2-P Pacbio P6C4 PRJEB7245 120x 8 656 239 408 12.2

D2-O MinION R9 2D ERP016443 59x 7 001 119 955

D3-I Illumina Nextseq SRX3676782 44x 2×151 2×20 619 401

D. melanogaster ISO1 GCF_000001215.4D3-P Pacbio P5C3 SRX499318 204x 15 132 6 864 972 143.7

D3-O MinION R9.5 1D SRX3676783 32x 11 934 663 784

aSequencing depth is estimated using the sequencing data and reference genome size
bN50 is reported for PacBio or ONT reads, since their lengths vary
cDownloaded from Illumina at https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz and

https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
dDownloaded from PacBio at https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
eDownloaded from Loman Labs at https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta

or choose to split an input read into multiple reads when

the high error rate cannot be reckoned with. In addition,

short read assembly based error correction programs use

long read alignments to de Bruijn graphs, and produce

sequences corresponding to the aligned de Bruijn graph

paths as output reads instead. Though original reads may

not be fully preserved, all that matters for effective use

of error correction software is that its output consists of

sufficient number of high quality long reads that reflect

adequate read lengths, sequencing depth, and coverage

of the genome. Accordingly, our evaluation methodology

reflects such assessment.

We measure the number of reads and total bases output

by each error correction software, along with the num-

ber of aligned reads and total number of aligned bases

extracted from alignment statistics, because they together

reveal the effectiveness of correction. Besides, statistics

which convey read length distribution such as maximum

length and N50 were calculated to assess effect of the

correction process on read lengths. Fraction of bases on

the genome covered by output reads is also reported to

assess if there are regions of the genome that lost cov-

erage or suffered significant deterioration in coverage

depth post-correction. Any significant drop on these met-

rics can be a potential sign of information loss during

the correction. Finally, alignment identity is calculated

by the number of total matched bases divided by the

total alignment length. Tools which achieve maximum

alignment identity with minimum loss of information are

desirable.

As part of this study, we provide an evaluation tool

to automatically generate the evaluation statistics of

corrected reads mentioned above (https://github.com/

haowenz/LRECE). We include a wrapper script which can

run state-of-the-art error correction software on a grid

engine given any input data from user. Using the script,

two types of evaluations can be conducted; users can

either evaluate the performance on a list of tools with their

own data to find a suitable tool for their studies, or they

can run any correction tool with the benchmark data and

compare it with other state-of-the-art tools.

Supplementary Information
The online version contains supplementary material available at

https://doi.org/10.1186/s12864-020-07227-0.

Additional file 1: Settings of the error correction tools and correction

results on subsamples of yeast PacBio and ONT sequencing data.

Abbreviations

PacBio: Pacific bioscience; ONT: Oxford Nanopore technologies; pHMM: Profile

Hidden Markov Model; DBG: de Bruijn graph; MEM: Maximal exact matches

Acknowledgements

Not applicable.

About this supplement

This article has been published as part of BMC Genomics Volume 21

Supplement 6, 2020: Selected articles from the 8th IEEE International

Conference on Computational Advances in Bio and medical Sciences (ICCABS

2018): genomics. The full contents of the supplement are available online at

https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-

supplement-6.

Authors’ contributions

HZ, CJ and SA designed the study. HZ performed the experiments and wrote

the paper. CJ and SA revised the paper. All authors read and approved the

final manuscript.

Funding

This work was supported in part by the National Science Foundation under

CCF-1718479. Publication costs are funded by the National Science

Foundation under CCF-1718479. The funding body played no role in the

design of the study and collection, analysis, interpretation of data or in writing

the manuscript.

https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta
https://github.com/haowenz/LRECE
https://github.com/haowenz/LRECE
https://doi.org/10.1186/s12864-020-07227-0
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-6
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-6


Zhang et al. BMC Genomics 2020, 21(Suppl 6):889 Page 14 of 15

Availability of data andmaterials

E. coli Illumina reads are available at https://ftp://webdata:webdata@ussd-ftp.

illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_

PF_R1.fastq.gz and https://ftp://webdata:webdata@ussd-ftp.illumina.com/

Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.

gz. E. coli PacBio reads are available at https://github.com/PacificBiosciences/

DevNet/wiki/E.-coli-Bacterial-Assembly. E. coli ONT reads are available at

https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta. E.

coli reference genome is available with NCBI accession number NC_000913.3.

Yeast reference genome and sequencing data are available with NCBI

accession number GCF_000146045.2, ERR1938683, PRJEB7245 and ERP016443.

Fruit fly reference genome and sequencing data are available with NCBI

accession number GCF_000001215.4, SRX3676782, SRX499318 and

SRX3676783.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 8 November 2020 Accepted: 12 November 2020

Published: 21 December 2020

References

1. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter:

bioinformatics of long-range sequencing and mapping. Nat Rev Genet.

20181. https://doi.org/10.1038/s41576-018-0003-4.

2. Loman NJ, Quick J, Simpson JT. A complete bacterial genome

assembled de novo using only nanopore sequencing data. Nat Methods.

2015;12(8):733.

3. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A,

et al. Phased diploid genome assembly with single-molecule real-time

sequencing. Nat Methods. 2016;13(12):1050.

4. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore

sequencing and assembly of a human genome with ultra-long reads. Nat

Biotechnol. 2018;36(4):338.

5. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Von

Haeseler A, Schatz MC. Accurate detection of complex structural

variations using single-molecule sequencing. Nat Methods. 2018;15(6):

461–468. Nature Publishing Group.

6. Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M,

Hormozdiari F, et al. Resolving the complexity of the human genome

using single-molecule sequencing. Nature. 2015;517(7536):608.

7. Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, et al.

Widespread polycistronic transcripts in fungi revealed by single-molecule

mRNA sequencing. PLoS ONE. 2015;10(7):e0132628.

8. Dilthey A, Jain C, Koren S, Phillippy A. MetaMaps-Strain-level

metagenomic assignment and compositional estimation for long reads.

bioRxiv. 2018372474. https://doi.org/10.1101/372474.

9. Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson

M, et al. Mapping DNA methylation with high-throughput nanopore

sequencing. Nat Methods. 2017;14(4):411.

10. Simpson JT, Workman RE, Zuzarte P, David M, Dursi L, Timp W.

Detecting DNA cytosine methylation using nanopore sequencing. Nat

Methods. 2017;14(4):407.

11. Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA.

Pacific biosciences sequencing technology for genotyping and variation

discovery in human data. BMC Genomics. 2012;13(1):375.

12. Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. Improved data

analysis for the MinION nanopore sequencer. Nat Methods. 2015;12(4):

351.

13. Korlach J, Biosciences P. Understanding accuracy in SMRT sequencing.

Technical report. 2013. www.pacb.com.

14. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, et al.

MinION nanopore sequencing identifies the position and structure of a

bacterial antibiotic resistance island. Nat Biotechnol. 2015;33(3):296.

15. Yang X, Chockalingam SP, Aluru S. A survey of error-correction methods

for next-generation sequencing. Brief Bioinforma. 2012;14(1):56–66.

16. Alic AS, Ruzafa D, Dopazo J, Blanquer I. Objective review of de novo

stand-alone error correction methods for NGS data. Wiley Interdiscip Rev

Comput Mol Sci. 2016;6(2):111–46.

17. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al.

Hybrid error correction and de novo assembly of single-molecule

sequencing reads. Nat Biotechnol. 2012;30(7):693.

18. Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio long read

accuracy by short read alignment. PLoS ONE. 2012;7(10):e46679.

19. Lee H, Gurtowski J, Yoo S, Marcus S, McCombie WR, Schatz M. Error

correction and assembly complexity of single molecule sequencing

reads. BioRxiv. 2014006395. https://doi.org/10.1101/006395.

20. Salmela L, Rivals E. LoRDEC: accurate and efficient long read error

correction. Bioinformatics. 2014;30(24):3506–14.

21. Hackl T, Hedrich R, Schultz J, Förster F. proovread: large-scale

high-accuracy PacBio correction through iterative short read consensus.

Bioinformatics. 2014;30(21):3004–11.

22. Madoui MA, Engelen S, Cruaud C, Belser C, Bertrand L, Alberti A, et al.

Genome assembly using Nanopore-guided long and error-free DNA

reads. BMC Genomics. 2015;16(1):327.

23. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC,

McCombie WR. Oxford Nanopore sequencing, hybrid error correction,

and de novo assembly of a eukaryotic genome. Genome Res. 2015;25(11):

1750–6.

24. Miclotte G, Heydari M, Demeester P, Rombauts S, Van de Peer Y,

Audenaert P, et al. Jabba: hybrid error correction for long sequencing

reads. Algoritm Mol Biol. 2016;11(1):10.

25. Haghshenas E, Hach F, Sahinalp SC, Chauve C. Colormap: Correcting

long reads by mapping short reads. Bioinformatics. 2016;32(17):i545–51.

26. Salmela L, Walve R, Rivals E, Ukkonen E. Accurate self-correction of errors

in long reads using de Bruijn graphs. Bioinformatics. 2016;33(6):799–806.

27. Bao E, Lan L. HALC: High throughput algorithm for long read error

correction. BMC Bioinformatics. 2017;18(1):204.

28. Bao E, Xie F, Song C, Dandan S. FLAS: fast and high-throughput

algorithm for PacBio long-read self-correction. Bioinformatics.

2019;35(20):3953–60. Oxford University Press.

29. Wang JR, Holt J, McMillan L, Jones CD. FMLRC: Hybrid long read error

correction using an FM-index. BMC Bioinformatics. 2018;19(1):50.

30. Morisse P, Lecroq T, Lefebvre A, Berger B. Hybrid correction of highly

noisy long reads using a variable-order de Bruijn graph. Bioinformatics.

2018. https://doi.org/10.1093/bioinformatics/bty521.

31. Firtina C, Bar-Joseph Z, Alkan C, Cicek AE. Hercules: a profile HMM-based

hybrid error correction algorithm for long reads. Nucleic Acids Res.

2018;46(21):e125-.

32. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:

scalable and accurate long-read assembly via adaptive k-mer weighting

and repeat separation. Genome Res. 2017;27(5):722–36.

33. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al.

Nonhybrid, finished microbial genome assemblies from long-read SMRT

sequencing data. Nat Methods. 2013;10(6):563.

34. Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA deep

sequencing data high-throughput sequencing errors and their

correction. Brief Bioinforma. 2015;17(1):154–79.

35. Mahmoud M, Zywicki M, Twardowski T, Karlowski WM. Efficiency of

PacBio long read correction by 2nd generation Illumina sequencing.

Genomics. 2017. https://doi.org/10.1016/j.ygeno.2017.12.011.

36. La S, Haghshenas E, Chauve C. LRCstats, a tool for evaluating long reads

correction methods. Bioinformatics. 2017;33(22):3652–4.

37. Fichot EB, Norman RS. Microbial phylogenetic profiling with the Pacific

Biosciences sequencing platform. Microbiome. 2013;1(1):10.
38. Stöcker BK, Köster J, Rahmann S. SimLoRD: simulation of long read data.

Bioinformatics. 2016;32(17):2704–6.
39. Fu S, Wang A, Au KF. A comparative evaluation of hybrid error correction

methods for error-prone long reads. Genome Biol. 2019;20(1):26.
40. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local

alignment search tool. J Mol Biol. 1990;215(3):403–10.
41. Pop M, Phillippy A, Delcher AL, Salzberg SL. Comparative genome

assembly. Brief Bioinforma. 2004;5(3):237–48.
42. Yang X, Dorman KS, Aluru S. Reptile: representative tiling for short read

error correction. Bioinformatics. 2010;26(20):2526–33.

https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
https://ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
https://s3.climb.ac.uk/nanopore/E_coli_K12_1D_R9.2_SpotON_2.pass.fasta
https://doi.org/10.1038/s41576-018-0003-4
https://doi.org/10.1101/372474
www.pacb.com
https://doi.org/10.1101/006395
https://doi.org/10.1093/bioinformatics/bty521
https://doi.org/10.1016/j.ygeno.2017.12.011


Zhang et al. BMC Genomics 2020, 21(Suppl 6):889 Page 15 of 15

43. Kowalski T, Grabowski S, Deorowicz S. Indexing arbitrary-length k-mers

in sequencing reads. PLoS ONE. 2015;10(7):e0133198.

44. Xiao CL, Chen Y, Xie SQ, Chen KN, Wang Y, Han Y, et al. MECAT: fast

mapping, error correction, and de novo assembly for single-molecule

sequencing reads. nature methods. 2017;14(11):1072.

45. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM.

Assembling large genomes with single-molecule sequencing and

locality-sensitive hashing. Nat Biotechnol. 2015;33(6):623.

46. Li H. Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. arXiv preprint arXiv. 201313033997.

47. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment

tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5.

48. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al.

Pilon: an integrated tool for comprehensive microbial variant detection

and genome assembly improvement. PLoS ONE. 2014;9(11):e112963.

49. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et

al. SPAdes: a new genome assembly algorithm and its applications to

single-cell sequencing. J Comput Biol. 2012;19(5):455–77.

50. de Lima LIS, Marchet C, Caboche S, Da Silva C, Istace B, Aury JM, et al.

Comparative assessment of long-read error-correction software applied

to RNA-sequencing data. bioRxiv. 2018476622.

51. Li H. Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics. 2018;1:7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Overview of long read error correction methods
	Hybrid methods*3pt
	Short-read-alignment-based methods
	PacBioToCA:
	LSC:
	proovread:
	NaS:
	Nanocorr:
	CoLoRMap:
	Hercules:

	Short-read-assembly-based methods
	ECTools:
	LoRDEC:
	Jabba:
	HALC:
	FMLRC:
	HG-CoLoR:


	Non-hybrid methods
	FLAS:
	LoRMA:
	Canu error correction module:



	Results and discussion
	Experimental setup
	Evaluated software
	Performance on benchmark data sets
	Correction quality
	Runtime and memory usage
	Effect of long read sequencing depth on error correction
	Effect of discarding reads during correction
	Effect of error correction on genome assembly


	Conclusions and future directions
	Methods
	Benchmark data sets
	Evaluation methodology

	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s12864-020-07227-0.
	Additional file 1

	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

