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Abstract Genome-wide association studies have contrib-
uted significantly to the genetic dissection of complex

diseases. In order to increase the power of existing marker

sets even further, methods have been proposed to predict
individual genotypes at un-typed loci from other marker sets

by imputation, usually employing HapMap data as a refer-

ence. Although various imputation algorithms have been
used in practice already, a comprehensive evaluation and

comparison of these approaches, using genome-wide SNP

data from one and the same population is still lacking. We
therefore investigated four publicly available programs for

genotype imputation (BEAGLE, IMPUTE, MACH, and

PLINK) using data from 449 German individuals genotyped
in our laboratory for three genome-wide SNP sets

[Affymetrix 5.0 (500 k), Affymetrix 6.0 (1,000 k), and

Illumina 550 k].Weobserved thatHapMap-based imputation

in a northern European population is powerful and reliable,
even in highly variable genomic regions such as the extended

MHC on chromosome 6p21. However, while genotype

predictions were found to be highly accurate with all four
programs, the number of SNPs for which imputation was

actually carried out (‘imputation efficacy’) varied substan-

tially. BEAGLE, IMPUTE, and MACH yielded nearly
identical trade-offs between imputation accuracy and effi-

cacy whereas PLINK performed consistently poorer. We

nevertheless recommend either MACH or BEAGLE for
practical use because these two programs are more user-

friendly and generally require less memory than IMPUTE.

Introduction

Imputation of single nucleotide polymorphism (SNP)

genotypes has been proposed as a powerful means to
include genetic markers into large-scale disease association

studies without a need to actually genotype them (Marchini
et al. 2007; Servin and Stephens 2007). In fact, multi-locus

analyses using a combination of imputed and observed

genotypes appear to facilitate the detection of rare causative
variants (population frequency\5%) that would otherwise

be overlooked (Browning and Browning 2008). The

underlying computations are usually based upon those
90–120 SNP haplotypes that are provided for each of four

exemplary populations by the International HapMap project

(The International HapMap Consortium 2003, 2005).
Although imputed genotypes have already been used in

practice (Wellcome Trust Case Control Consortium 2007),

an independent genome-wide validation of the approach and
a comprehensive comparison of the available algorithms are

still lacking. For example, Marchini et al. (2007) based the
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benchmarking of their algorithm, implemented in the

computer program IMPUTE, on only 10,180 coding SNPs,
and a recent genome-wide investigation of imputation per-

formance (Anderson et al. 2008) exclusively used IMPUTE.

Pei et al. (2008) compared five programs using both simu-
lated and HapMap CEU phasing data, but only small

exemplary regions were analyzed and only imputation

accuracy (and not efficacy) was studied. We therefore
assessed systematically and at a genome-wide level how

well HapMap-based imputation with one of four publicly
available programs, namely BEAGLE (Browning and

Browning 2007), IMPUTE (Marchini et al. 2007), MACH

(Li and Abecasis 2006), and PLINK (Purcell et al. 2007),
would have performed in our own collection of composite

genotypes, for three genome-wide SNP sets, of 449 healthy

blood donors of German descent.
Our analysis was based upon genotypes generated by

means of Affymetrix 5.0 (500 k), Affymetrix 6.0 (1,000 k)

and Illumina 550 k SNP arrays, respectively. Since the same
DNA samples were genotyped with all three arrays, and

since the arrays contained only partially overlapping marker

sets, extensive genome-wide benchmarking became possi-
ble through a comparison of the imputed and observed

genotypes derived with the different arrays. Prior to inclu-

sion, individual samples and SNPs were subjected to
rigorous quality control to minimize the effects of geno-

typing errors on imputation accuracy. Since genotype

imputation requires similar patterns of linkage disequilib-
rium (LD) in both the study and the reference population, we

also tested whether the haplotype frequencies in HapMap

were representative of those observed in our own sample.

Materials and methods

Samples and reference population

DNA samples of 241 male and 208 female unrelated

individuals were obtained from the PopGen biobank

(Krawczak et al. 2006). The blood donors, their parents,
and grandparents were all born in Germany. Written,

informed consent was obtained from all study participants

and all protocols were approved by the institutional ethics
committee. We used the HapMap CEU samples (Frazer

et al. 2007; The International HapMap Consortium 2003),

comprising CEPH Utah residents of northern and western
European ancestry, as a reference population for

imputation.

Genotyping and quality control

Genotypes were generated with Affymetrix Genome-Wide
Human SNP Arrays 5.0 (500 k) and 6.0 (1,000 k) and with

the Illumina HumanHap550 Bead array (550 k), respec-

tively. Genotyping was performed by Affymetrix (Santa
Clara, CA, USA) and Illumina (San Diego, CA, USA),

respectively, as a commercial service. Further genotyping

details are given in the Supplementary material. Prior to
inclusion, individual samples and SNPs were subjected to

rigorous quality control. All sample-wise call rates were

found to be[95% for the three array types. The average
call rate per sample was 99.8% for Affymetrix 5.0, 99.4%

for Affymetrix 6.0, and 99.9% for Illumina 550 k. Indi-
vidual SNPs were required to have a call rate[95% in the

German samples, a minor allele frequency[1%, and had to

be in Hardy–Weinberg equilibrium (p[ 0.01). Annotation
files from the Affymetrix and Illumina arrays were used to

code SNPs on the forward strand in order to match the

release 22 CEU phasing data from HapMap (Frazer et al.
2007). Strand orientation was checked automatically by all

imputation programs, except for SNPs with A/T and C/G

alleles, and no errors were reported. All pairs of individuals
had average identity-by-state (IBS) values within the

threefold inter-quartile range of the array-wide IBS distri-

bution (Tukey’s outlier criterion), thus minimizing the
likelihood that any individual included in our study rep-

resented a close relative of another individual, or was of

different ethnic origin. Data were quality-controlled using
PLINK v1.02 (Purcell et al. 2007); the total SNP numbers

before and after quality control are given in Table 1. The

genotype concordance rate in the overlapping marker sets
exceeded 99.7% for all array pairs (Table 1) and the cor-

responding allele frequency distributions were found to be

virtually identical in Q–Q plots (data not shown), rendering
platform-specific genotyping errors negligible. Data from

the three array types could be matched unambiguously as

belonging to the same individual by IBS values[0.985 for
the overlapping markers.

Representativeness of HapMap data

Estimates of the two linkage disequilibrium (LD) measures

r2 and |D0| and of the marker allele frequencies in HapMap
were obtained from the HapMap web site (http://www.

hapmap.org/downloads/ld_data/2006-06/) (NCBI build

36). HaploView 4.0 (Barrett et al. 2005) was employed
with default options to assess LD in the German samples.

Imputation protocols

The imputation performance of four publicly available

computer programs was assessed using the release 22 CEU
phasing data from HapMap as a reference. All analyses

were confined to those autosomal SNPs that were present

in HapMap and that passed quality control in the German
samples. Using genotypes from one array type (‘imputation
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basis’), the genotypes of those SNPs that were unique to

the other array type (‘imputation target’) and that had
phasing information available in HapMap CEU (‘imput-

able SNPs’) were imputed using either BEAGLE v3.0.1

(Browning and Browning 2007), IMPUTE v0.3.2 (Mar-
chini et al. 2007), MACH v1.0.15 (Li and Abecasis 2006),

or PLINK v1.02 (Purcell et al. 2007). BEAGLE was run

with default settings and ten iterations of the Markov
sampler (java --Xmx2048 --jar phased=phase-
d.input.bgl unphased=unphased.input.bgl
markers=marker.ids missing=0 nitera-
tions=10 out=out_file). IMPUTE was run using the

default parameters for CEPH populations (impute --h
phased_file --l legend_file --g geno_file --m
genetic_map_chr*_CEU_b36.txt --call_-
thresh 0.0 --Ne 11418 --i info_file --o
out_file), formatted haplotypes and legend files (release

22 CEU phasing data from HapMap), and recombination

rates as provided on the IMPUTEwebsite (http://www.stats.
ox.ac.uk/*marchini/software/gwas/impute.html). MACH

was run with default settings (mach1 --s leg-
end.txt.gz --h phase.gz ---hapmapFormat
--rounds 50 ---dosage ---quality ---
greedy --geno --d dat_file --p ped_file --
prefix out_file) and 50 iterations of the Markov sam-
pler, using the haplotypes and the legend files downloaded

directly from HapMap. PLINK was run with default set-

tings (plink ---bfile in_file ---all ---proxy-
impute all ---proxy-genotypic-concor-
dance --proxy-show-proxies ---proxy-
dosage --proxy-impute-threshold 0.0 ---
make-bed --out out_file), using PLINK binary file

sets of the HapMap genotype data (release 22) as offered

for download on the PLINKwebsite (http://pngu.mgh.havars.
edu/purcell/plink/res.shtml). The same HapMap CEU ref-

erence data (2,543,887 SNPs) were used for all

imputations. All SNPs were coded on the forward strand.

The call rate and minor allele frequencies distributions of

the overlapping and of the unique marker sets were highly
similar for all array pairs (Figures SF1–2).

Imputation performance

Observed and imputed genotypes were deemed concordant

if they matched perfectly, and the average concordance rate
was calculated over all imputed SNPs in a given marker

set. Each of the four programs uses some sort of ‘confi-
dence threshold’ (CT) for genotype calling. However, their

meaning and interpretation differ greatly between pro-

grams, rendering CT values impossible to compare
between programs. Anyhow, for benchmarking purposes,

we defined imputation efficacy as the proportion of

imputable SNPs for which the program-specific confidence
in an imputed genotype equaled or exceeded a given CT,

whereas imputation accuracy was quantified as the con-

cordance rate between the imputed and observed genotypes
of these SNPs. We also varied the CT values in order to

assess the impact of this parameter upon both imputation

accuracy and efficacy.

Computation

All computations were carried out on a Linux cluster

(rzcluster, Christian-Albrechts University, Kiel, Germany)

comprising 74 nodes with 322 cores and providing a maxi-
mum of 32 GB shared RAM, using the AMD64-variant of

CentOS-5 (Linux distribution based on Red Hat Enterprise

Linux) and the batch processing system PBSPro (Altair
Engineering). Genotype concordance was calculated using

PLINK’s ---merge-mode 7 command. Statistics and

graphs were generated using R 2.6.2 (R Development Core
Team 2008). Scripts and data are available at the authors’

website (http://www.ikmb.uni-kiel.de/imputation/) to allow

Table 1 SNP sets used for imputation benchmarking

Array type No. SNPs Array type

Affymetrix 5.0 Affymetrix 6.0 Illumina 550 k

Affymetrix 5.0 358,391 (80.8% of 443,816) 331,176 (99.8%) 70,716 (99.9%)

Affymetrix 6.0 656,391 (73.1% of 934,968) 24,185 (95.9% of 25,215)

260,448 (80.5% of 323,215)

135,395 (99.7%)

Illumina 550 k 514,883 (91.7% of 561,474) 279,869 (97. 3% of 287,675)

435,759 (98.1% of 444,167)

452,227 (86.8% of 520,996)

371,854 (98.0% of 379,488)

No. SNPs number of autosomal SNPs that passed quality control and had a minor allele frequency (MAF) C1% in the German samples. The total
number of SNPs on each array and the percentage included in the study are given in parentheses. Upper right half: number of overlapping SNPs
and, in parentheses, average genotype concordance rate between array types. Lower left half: number of SNPs that were unique to an array type
and had phasing information available in HapMap CEU (‘imputable SNPs’); top line: imputable SNPs unique to column array type; bottom line:
imputable SNPs unique to row array type. The total number of SNPs unique to each array type and the percentage included in the study are given
in parentheses
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others to optimize existing imputation algorithms or to

benchmark new ones in relation to our results.

Results

Representativeness of HapMap

Since genotype imputation requires similar patterns of

linkage disequilibrium (LD) in both the study and the
reference population, we first compared the LD structure in

the German and HapMap data for those SNPs on the

Affymetrix 6.0 and Illumina 550 k arrays for which LD
information was available in HapMap (Supplementary

methods). Estimates of r2 from the German and HapMap

CEU genotype data were found to be in strong agreement
(Pearson correlation q C 0.95), regardless of SNP allele

frequency (Supplementary materials ST1 and SF3). The

LD structures of other HapMap populations also showed a
significant albeit weaker correlation with that of the Ger-

man samples (ST1 and SF4–SF6). For |D0|, population-

specific estimates were less strongly correlated with one
another than for r2.

Imputation accuracy and efficacy

While the imputation accuracy was consistently high

([93%) for all four programs employing the default CT
values, their imputation efficacy varied substantially

(Table 2). Whereas BEAGLE, IMPUTE, and MACH

actually imputed most imputable SNPs (C96.5%) for all
array pairs, PLINK often failed and excluded up to 2/3 of

the markers in some instances. Since BEAGLE does not

provide a default threshold for its confidence measure (the
posterior probability), we chose 0.90 for representation in

Table 2. Increasing the number of iterations from 10 to 50

in BEAGLE did not alter the results considerably (data not
shown). Imputation of Affymetrix genotypes using Illu-

mina data as the imputation basis yielded higher

concordance rates than vice versa (see Table 2).
The use of CT values smaller than their default value

reduced the accuracy of BEAGLE, IMPUTE, and MACH

only marginally, but strongly impeded imputation with
PLINK (Fig. 1). On other hand, small CT values increased

the imputation efficacy, particularly for PLINK. Using CT

values above the default value only slightly affected the
accuracy for all four programs, but often reduced

the imputation efficacy dramatically. Figure 2 illustrates the

trade-off between accuracy and efficacy for each program.
In terms of their accuracy and efficacy, IMPUTE and

MACH were found to be superior to the other two pro-

grams, irrespective of the imputation basis. While
BEAGLE was only slightly less accurate than IMPUTE

and MACH, PLINK performed consistently more poorly

for all array pairs. IMPUTE and MACH also yielded the
best trade-off between accuracy and efficacy when varying

the CT values, irrespective of the imputation basis. The

imputation accuracy of all programs decreased with
increasing marker heterozygosity, although this effect was

weak in most instances (Supplementary Figures SF7–10).

Increasing marker hterozygosity also reduced the general
trade-off between accuracy and efficacy (Supplementary

Figures SF11–14).
Genotype imputation can be expected to perform more

poorly in regions of high inter-individual variability. The

extended major histocompability complex (xMHC) on
chromosome 6p21 (25.0–34.0 Mb) is known to be char-

acterized by an extremely high haplotype diversity in some

of its subregions (Raymond et al. 2005; Traherne 2008).
Therefore, we assessed the accuracy and efficacy of all four

programs separately for the xMHC, but using all genotypes

available for chromosome 6 as the imputation basis and
adhering to the default CT. The results were quite similar

to those of the genome-wide assessment (Supplementary

Table ST2).

Computational performance and requirements

The four programs under study differed significantly in

terms of their speed and hardware requirements. On a

single-processor machine (AMD-Barcelona, 2.1 GHz), the
cumulative run time for the entire project was approxi-

mately 349 h for BEAGLE, 455 h for IMPUTE, 1,574 h

for MACH, and 138 h for PLINK. The average computa-
tion time per imputed marker is given in Table 3 for all

arrays and all programs. The working memory allocations

did not exceed 2 GB RAM for BEAGLE, 16 GB for
IMPUTE, 8 GB for MACH, and 4 GB for PLINK,

respectively.

Discussion

Genotype imputation may potentially increase the power to

detect disease associations with a given marker set, and this

benefit has been shown to be largest for rare disease-
associated variants (Marchini et al. 2007). Hence, impu-

tation during the exploratory stage of a genetic disease

association study may unravel associations that would
otherwise be overlooked. Another instance in which

imputation can prove valuable is the fine-mapping of

known disease-associated regions. Here, imputation may
serve to identify additional candidate SNPs worth includ-

ing into a more detailed follow-up. Finally, imputation has

been discussed as a method of data quality control and
missing data inference in conjunction with high-throughput
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sequencing, thereby significantly reducing the costs of such

experiments (see the meeting report available at

http://www.1000genomes.org/). It should be remembered,
however, that imputed genotypes are not actually observed

genotypes and that the ambiguity of their prediction

somehow has to be included in their interpretation. One
way to address this issue in the context of significance

testing would be, for example, to use the posterior geno-

type probability, rather than discrete genotypes, in say
linear or logistic regression models. The need to account

for genotype ambiguity is particularly strong when whole

haplotypes including un-type loci are being ‘‘estimated’’
(Gourraud et al. 2004). Simply using marker-wise best

guesses of genotypes such instances would be meaningless.

We have shown in the present study that HapMap CEU-
based imputation can reliably infer missing genotypes in a

population of northern European descent, even in variable

regions such as the extended MHC. This corroborates
previous findings that SNPs in HapMap allow the predic-

tion of HLA class I and II gene alleles (Leslie et al. 2008).

The high imputation accuracy achieved by all four pro-
grams at their respective default CT values is not

surprising, bearing in mind that these values must have

been adjusted by the authors in such a way as to ensure a

high posterior genotype probability (e.g.C95%). By con-

trast, considerable differences were observed in terms of

the number of SNPs for which genotypes were actually
imputed, using default CT values. Taking both imputation

accuracy and efficacy into account, MACH and IMPUTE

turned out to be superior to the other two programs. At only
a minor loss of accuracy, however, BEAGLE may also be a

good choice for some applications, particularly because of

its much smaller memory requirements. MACH and
IMPUTE had nearly identical trade-offs between accuracy

and efficacy. This was due to the fact that very similar

statistical algorithms have been implemented in the two
programs, even though minor differences nevertheless

exist. For example, while MACH estimates recombination

rates from the data at hand, IMPUTE relies upon user-
specified recombination rates. Although the latter approach

may save computation time, it renders IMPUTE sensitive

to model misspecification (Browning 2008). This may be
an important issue when imputation is carried out for

populations that are only partially represented by HapMap

CEU, namely those from southern and eastern Europe. No
methodological details have been published so far about

PLINK, thereby rendering a detailed discussion of the

possible reasons for its poor performance difficult.

Fig. 1 Imputation performance
as a function of software-
specific confidence thresholds
(CT). For each of the six
combinations of imputation
basis (row) and target (column),
the imputation accuracy
(percentage of correctly
imputed genotypes, top) and the
imputation efficacy (proportion
of imputed SNPs relative to the
number of imputable SNPs,
bottom) are plotted against the
respective CT values. Note that
the CT values have program-
specific interpretations and are
therefore not directly
comparable. Default CT values,
indicated by diamonds, were as
follows: IMPUTE, 0.90
(‘confidence score’); MACH,
0.30 (r2); PLINK, 0.95 (‘info
score’). Since BEAGLE does
not provide a default confidence
threshold, we chose 0.90 for
comparison (for details, see
main text)
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In our experience, data handling is much easier with

MACH and BEAGLE than with IMPUTE. Furthermore,

IMPUTE occasionally caused problems during our study in
terms of incomplete error feedback and excessive memory

consumption.

In the present study, genotypes for Affymetrix SNPs
were imputed at higher rates on the basis of Illumina SNP

genotypes than vice versa. This is not surprising since SNP

selection for the Illumina platform was originally based
upon r2-tagging of HapMap data. Nothing can be said,

however, about the performance of imputation in regions
devoid of HapMap markers. Genotypes for markers with

two high-frequency alleles, i.e. those which are most useful

for disease association analysis, were found to be more
difficult to impute than genotypes of less polymorphic

markers (Supplementary Figures SF7–14). One straight-

forward explanation for this difference is that the frequency
of genotypes containing the common allele of a SNP

increases with decreasing minor allele frequency, so that

the former would be easier to predict for markers with rare
alleles by chance alone. In order to clarify whether dif-

ferent imputation algorithms perform differently at varying

levels of polymorphism, further benchmarking studies

focusing on the imputation accuracy for rare genotypes are

needed.
One prerequisite for genotype imputation to be feasible

is the availability of an appropriate reference data set. The

HapMap CEU phasing data used here appear ideally suited
for genotype imputation in European or Europe-derived

populations, particularly from the North and West. This

was also highlighted in our study by the strong correlation
between r2 values observed in the German and the HapMap

CEU samples, and is in line with the results of a recent

Fig. 2 Trade-off between
imputation accuracy and
efficacy. For each of the six
combinations of imputation
basis (row) and target (column),
the imputation accuracy
(percentage of correctly
imputed genotypes) is plotted
against the imputation efficacy
(proportion of imputed SNPs
relative to the number of
imputable SNPs) at varying CT
values. Performance at the
default confidence threshold is
indicated by diamonds. Default
CT values were as follows:
IMPUTE, 0.90 (‘confidence
score’); MACH, 0.30 (r2);
PLINK, 0.95 (‘info score’).
Since BEAGLE does not
provide a default threshold for
its confidence measure, i.e. the
posterior probability, we chose
0.90 for comparison (for details,
see main text)

Table 3 Computation time for genotype imputation

Array type Imputation algorithm

BEAGLE IMPUTE MACH PLINK

Affymetrix 5.0 (349,954) 0.215 0.236 0.757 0.068

Affymetrix 6.0 (586,217) 0.204 0.264 1.065 0.073

Illumina 550 k (505,844) 0.196 0.290 1.279 0.083

Given is the average computation time (in s) per imputation and
marker. Averages were taken over all imputed SNPs from the release
22 CEU HapMap phasing data that were not genotyped on the
respective array type
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genome-wide study on genetic diversity in Europe (Lao

et al. 2008). One possible explanation for the weaker inter-
population correlation observed for D0 than for r2 is the

small size of the HapMap CEU sample (120 chromo-

somes). In fact, estimates of D0 are known to be upwardly
biased and to have a large variance in small samples

(Ardlie et al. 2002; Teare et al. 2002; Terwilliger et al.

2002). Anyhow, further studies are required to evaluate the
performance of imputation algorithms in populations other

than Europeans, particular in those of African ancestry
where LD is generally lower, or in mixed populations like

those present in parts of northern America.

Recently, an insightful review has been published of the
algorithms underlying three of the computer programs

benchmarked here, namely BEAGLE, IMPUTE, and

MACH (Browning 2008). Additional details on the theo-
retical aspects of different imputation methods can be

found in that publication. Finally, we would like to point

out that we were of course aware of the existence of other
imputation programs such as, for example, FAMHAP

(Becker and Knapp 2004) and BIMBAM (Servin and

Stephens 2007). However, we chose not to include them in
our benchmarking study because they are either still in the

stage of development (FAMHAP) or focus upon associa-

tion rather than imputation and provide no measure of
imputation confidence (BIMBAM).
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