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Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure 

and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, 
mutations in specific integrins, or their deregulated expression, are associated with a variety of 
diseases. In the last decades, many integrin-specific ligands have been developed and used for 
modulation of integrin function in medical as well as biophysical studies. The IC50-values reported 

for these ligands strongly vary and are measured using different cell-based and cell-free systems. A 
systematic comparison of these values is of high importance for selecting the optimal ligands for given 

applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the 
RGD-binding integrins αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, using homogenous ELISA-like solid 
phase binding assay.

Structural and signalling responses of cells are tightly regulated by multiple adhesive interactions with the peri-
cellular microenvironment, which promotes the physical networking of neighbouring cells and physical attach-
ment to diverse extracellular matrix (ECM) networks. In addition, multiple environmental cues are mediated via 
adhesion receptors that bind selectively to external ligands and activate transmembrane signaling pathways that 
a�ect cell shape, dynamics, and fate1–3.

Integrins are a highly diversi�ed class of key ECM adhesion receptors, that play essential biological functions 
in all higher organisms. �ey consist of two distinct transmembrane subunits, one α  and one β , which connect 
the intracellular cytoskeleton and the pericellular ECM. As bidirectional signaling machines integrins respond 
to environmental cues (outside-in signaling) and at the same time, transduce internal signals (e.g. mechanical 
stress) to the matrix (inside-out signaling), thereby playing crucial roles in cell-cell communication and ECM4. 
In 1984, Pierschbacher and Ruoslahti discovered the Arg-Gly-Asp (RGD) sequence in �bronectin as the minimal 
integrin binding motif5. Later, this sequence was found in other cell adhesive ECM proteins and described as a 
common cell recognition motif. �ese �ndings were readily followed by the development of multiple peptidic and 
non-peptidic RGD-based integrin ligands, with various degrees of speci�city6–9. To date, eight of the 24 known 
human integrin heterodimers were shown to bind the RGD-recognition sequence10,11. Yet, despite their apparent 
similarity, these integrins can readily distinguish between di�erent RGD-containing ECM proteins (e.g. vitronec-
tin, �bronectin, �brinogen etc.), and respond di�erently to the interaction with each one of them.

Given the involvement of integrin-mediated adhesion in the regulation of multiple physiological processes12 
(e.g. cell migration, proliferation, survival, and apoptosis) as well as pathological processes (e.g. tumor inva-
sion, metastasis), the development of integrin sub-type-exclusive antagonists is highly desirable. Indeed, integrin 
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antagonists were shown to have high therapeutic potential13–17. Speci�cally, selective integrin ligands were widely 
used to target integrin-overexpressing tumors, as inhibitors of cancer angiogenesis18,19 and as blockers of excessive 
blood coagulation15. Modi�ed integrin ligands were also used for carrying radionuclei or dyes for tumor diagno-
sis (using PET, SPECT or �uorescent probes)20, or for functionalization of adhesive surfaces and development of 
cell instructive biomaterials21–24.

Development of integrin subtype-selective compounds
Most ECM proteins display a very broad pattern of integrin binding activity. For example �bronectin prefer-
entially binds to α 5β 1, α vβ 6, α vβ 8 and to α IIbβ 3, although with di�erent activities, while integrin α IIbβ 3 is 
primarily expressed on platelets and binds to speci�c adhesive proteins, such as �brinogen/�brin, prothrombin 
and plasminogen. Nevertheless, despite their narrow speci�city, integrin ligands that target α IIbβ 3, should be 
used for therapeutic purposes with great care, since their excessive systemic administration might cause hemor-
rhagic disorders. On the other hand, short linear peptides, mimicking the RGD sequence showed a signi�cantly 
lower binding to α IIbβ 3, and had limited e�ect on platelet functions5. A few years later, we addressed the need of 
focusing on high a�nity ligands toward α vβ 3 while maintaining selectivity over α IIbβ 3, by using cyclic RGD and 
incorporating one d-amino acid. �e latter modi�cation, based on a process called: “spatial screening”25–28, had a 
drastic impact on the backbone conformation, that changed the selectivity and a�nity pattern of the cyclic pep-
tides. �ese studies revealed that ligands presenting the RGD motif in an extended conformation with distances 
of 0.7–0.9 nm between the positively-charged arginine residue and the carboxyl group of aspartate, bind prefer-
entially to α IIbβ 329. In contrast, if the binding motif is more bent or kinked (as is the situation with the cyclic pen-
tapeptide c(RGDf(NMe)Val) (= Cilengitide)30,31, ligands tend to bind preferably to other subtypes, such as α vβ 3  
and α 5β 1. �e crystal structures of integrin antagonists docked into the α vβ 3 or α IIbβ 3 receptor pocket32–34, 
explained and corroborated this phenomenon, in retrospect (see Fig. 1 and discussion below).

Another crucial aspect of achieving selectivity for α IIbβ 3, is the substitution of the guanidine group in the 
ligand by an amine. In all RGD-binding subtypes except for α IIbβ 3, the guanidine group is bound via bifurcated 
salt bridges to the α -subunit (see Fig. 1), and an amine is not recognized. �e binding mode in α IIbβ 3 is slightly 
di�erent and thus, Arg-to-Lys substitution leads to a strong enhancement of the selectivity for α IIbβ 3. Nature has 
developed this alteration, resulting in obtaining selective α IIbβ 3-speci�c ligands, avoiding crosstalk with other 
integrin subtypes.

Due to the similarity of the RGD binding regions in most integrins, it is not straightforward to achieve high 
selectivity and, at the same time, high a�nity of small synthetic ligands, for distinct subtypes. In fact, most of 
the ligands described so far as subtype-selective have residual, yet signi�cant a�nity to other integrins as well. 
Recently, we, as well as others, were able to develop ligands with su�cient activity and selectivity to e�ectively dis-
criminate between two closely related integrin subtypes, such as α vβ 3 and α 5β 135–37 or α vβ 638. �eir functional-
ization enabled the selective imaging of α vβ 3- or α 5β 1-expressing tumors in a mouse model, and the di�erential 

Figure 1. Illustration of di�erent binding modes of a linear RGD peptide to di�erent integrin subtypes. 
Crystal structures of α 5β 1 (top), α vβ 3 (middle), and α IIbβ 3 (bottom) in complex with RGD ligands. Figure 
adapted from45.
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Table 1.  IC50-values for the integrin ligands investigated for the subtypes αvβ3, αvβ5, αvβ6, αvβ8, α5β1, 
and αIIbβ3. Speci�city or subtype with the lowest IC50-value are highlighted. All values were referenced as 
given in the description of the assay and in the SI. *(S-Enantiomer).
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cell binding on di�erent surfaces39,40. �ese molecules were developed by ligand oriented molecular design and 
later re�ned on the basis of X-ray structures of the integrins α vβ 3 and α IIbβ 332,33,41 and the homology model for 
α 5β 142–44. It is interesting to note that the later published crystal structure of α 5β 1 structurally con�rmed the 
selectivity described for these ligands45.

Both, the α vβ 3- and the α 5β 1-selective ligands bind the integrins via the kinked RGD motif, but di�er-
ences are found in the binding mode of the arginine side chain. As illustrated in Fig. 1, which depicts a linear 
RGD-ligand in the binding pocket, the guanidine group of arginine is binding in a side-on manner to the Asp218 
of the α -subunit of α vβ 3, forming a bidendate salt bridge. In addition to this side-on interaction (Asp227 in α 5), 
an end-on interaction of guanidine and Gln221 can be observed in the crystal structure of α 5β 145. Keeping this 
di�erence in mind, the selectivity of the ligands can be explained as follows: the amino pyridine in sn243 inter-
acts side-on with the α v-pocket but does not allow an end-on binding due to sterical hindrance, thus reducing 
strongly the α 5β 1 a�nity. On the other hand, 44b has a full guanidine function allowing side-on and end-on 
interactions. Recently, we described a way how this small di�erence between the α v- and the α 5-binding pocket 
can be utilized to design selective peptidic integrin ligands. By alkylation of the Nω of the guanidine group of argi-
nine, the α 5-speci�c end-on interaction is blocked, leading to a shi� in selectivity for α v-integrins46.

Apart from targeting integrins α vβ 3, α 5β 1, or α IIbβ 3, other clinically relevant integrin subtypes have been 
explored16. For instance, several linear peptides, containing a helical DXLLX motif, were shown to selectively bind 
α vβ 6 and α vβ 8, and display low a�nity towards all other subtypes. �e biological role of α vβ 6 and α vβ 8 is quite 
similar, as they are both participating in the activation of transforming growth factor-β  (TGF-β ) by interacting 
with the same endogenous ligands TGF-β 1 and TGF-β 347. Finally, α vβ 3 and α vβ 5 share very similar biological 
roles (stimulate angiogenesis), but they perform this task via di�erent mechanisms48. Nevertheless, their close 
structural similarity hampers the development of selective ligands to these integrins49,50.

The aims of this work. Since the discovery and �rst application of integrin-binding RGD peptides in the 
1980s, and based on their great impact in medicine, biology, and biophysical sciences, the design and use of syn-
thetic integrin ligands attracts much attention. Most of the current research is focused on the discovery of new 
integrin-selective ligands and their use for drug delivery, diagnosis, and tumor imaging, which are crucial for 
developing e�ective personalized medical platforms.

However, unequivocally ascribing a speci�c biological role to one integrin receptor remains problematic. Even 
when high binding a�nity towards one distinct integrin subtype is achieved, it o�en remains unclear whether 
the observed biological e�ect is not based on a residual e�ect on another subtype. �is may be attributed to the 
fact that most studies so far have only focused on the selectivity between a reduced subset of integrins, e.g. α vβ 3  
vs. α IIbβ 3, or α vβ 3 vs. α 5β 1, but have totally neglected the in�uence of other closely related integrins of the 
RGD-binding family. �is is particularly problematic as integrin expression strongly depends on cell and tissue 
type, crosstalk within distinct integrin subtypes, time point of study, and biological environment (e.g. tissue type). 
Last but not least, the activities reported for integrin ligands are usually evaluated using di�erent experimental 
protocols and are, thus, highly variable.

Consequently, no reliable comprehensive comparison of the IC50-values of biologically prominent integrin 
ligands has been made, so far. Newly designed integrin ligands have seldom been evaluated for their selectivity 
against a full panel of RGD-binding integrin subtypes, mainly because there were no reliable testing systems 
established.

Table 2.  IC50-values for the functionalized integrin ligands investigated for the subtypes αvβ3, 
αvβ5, αvβ6, αvβ8, α5β1 and αIIbβ3. Speci�city or subtypes with the best IC50-values are highlighted, 
respectively. All values were referenced as given in the description of the assay and in the SI. *NOPO 
1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)
phosphinic acid. **21-amino-4,7,10,13,16,19-hexaoxaheneicosanoic acid.
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In this work, we have evaluated a large number of well-known and widely used integrin-targeting molecules 
using the same standardized competitive ELISA-based test system, by measuring the inhibition (i.e. IC50 values) 
of integrin binding to immobilized natural ECM ligands. In order to facilitate a direct comparison, we show 
here (Tables 1 and 2) the a�nity values determined with our test system, which always contained reference com-
pounds to standardize the biological data. For some ligands, IC50 values were already reported in the literature 
and the inhibitory activities might slightly deviate from our present data. However, we consider that a direct 
comparison under identical conditions is very important and thus only represent the data determined during 
this work. �is study includes RGD-based linear and cyclic peptides, peptide-mimetics as well as commonly 
used reference compounds. Furthermore, in this study we demonstrate, with carefully selected molecules, how 
functionalization of integrin ligands (e.g. with chelators, anchoring groups) can a�ect their binding a�nity and 
selectivity. �e investigated integrin subtypes studied here include: α vβ 3 and α vβ 5 (both binding to vitronectin), 
α vβ 6 and α vβ 8 (binding to LAP), α 5β 1 (binding to �bronectin) and α IIbβ 3 (binding to �brinogen), which are 
all RGD-binding (the only missing RGD-binding integrins are α vβ 1 and α 8β 1, which could not be screened in 
our test system) and have relevant clinical implications. Since none of the presented ligands have previously been 
evaluated against such an exhaustive panel of integrin subtypes, the results of this study will provide unprece-
dented insights into the binding and selectivity pro�les of synthetic integrin ligands, thus being of great value for 
the further development of integrin inhibitors for medical applications. In general, these binding activities cor-
relate very strongly with the inhibition of signal transduction and with the binding a�nity of the biochemically 
highly complex focal adhesions to ECM proteins.

An overview of the main approaches for testing integrin subtype-speci�c ligands. For the development and optimi-
zation of biologically active integrin ligands it is of utmost importance to use a reliable and reproducible test sys-
tem, which yields values for biological activity with low statistical variance and high precision. A careful revision 
of previously published integrin-binding a�nity data for well-known integrin ligands seems to indicate clear dif-
ferences between the methods used. In general, cell-based methods are strongly dependent on the experimental 
condition of the study. �us, the a�nity data obtained for the same compound and the same integrin may greatly 
vary in di�erent cell-based studies. In contrast, non-cellular systems, which are based on the use of isolated 
integrin receptors, tend to exhibit better biochemical precision and reproducibility. �e major drawback of these 
methods, however, is the fact that they represent a simpli�ed and arti�cial system, which does not fully mimic 
the intricate nature of integrin-ligand interactions and the subsequent response of the adhesome-associated sig-
naling. �us, an e�cient combination of both systems is highly recommended for an optimal and e�cient devel-
opment of integrin-targeting drugs. In the following section, several cellular and non-cellular tests are brie�y 
described.

In vitro cellular tests have been widely used to obtain integrin a�nity data. A well-established and commonly 
used method is based on the concentration-dependent inhibition of cell attachment to a surface that is usually 
coated with the native cell adhesive proteins5. Prior to the test, cells are plated on a surface and a�erwards incu-
bated with the soluble compound in di�erent concentrations. Alternatively, cells are incubated in the presence of 
the integrin ligand, which blocks their attachment to the surfaces. For the evaluation, the attached cells are viewed 

Figure 2. Schematic illustration of the enzyme-linked immunosorbent assay (ELISA). (A) 1. Each well (96-
well plate) is coated with an ECM protein (e.g. vitronectin for α vβ 3). 2. Uncoated surface is blocked by bovine 
serum albumin (BSA). 3. ECM protein competes with the tested ligand for binding to the soluble integrin (e.g. 
α vβ 3). 4. Integrin bound to ECM protein is detected by an integrin-speci�c primary antibody. 5. Secondary 
antibody, conjugated with a peroxidase (POD), detects bound primary antibody. 6. Peroxidase converts a 
colorless substrate into a colored substrate (TMB, 3,3′ ,5,5′ -tetrametylbenzidine). (B) �e ligand inhibits binding 
of the coated ECM protein to the integrin. Consequently, steps 3–6 are blocked and no color signal can be 
detected.
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by transmitted light microscopy, by �uorescence microscopy (in cases when the cells are tagged), or upon use of 
other functional imaging approaches. Such tests can be performed with a variety of cell types (e.g. NRK-epithelial 
cells, MG-63, MDA-MB-43551 or REF5252), as well as with platelets isolated from platelet-rich plasma. Another 
popular cell-based technique is the calculation of integrin binding a�nities based on ligand binding assays53. 
Suspended or adherent cells are incubated with increasing concentrations of an integrin ligand, and a�erwards 
with a radiolabeled ligand that also shows integrin-binding a�nity, such as 125I-Echistatin or 125I-c(RGDyK). �e 
radioligand is therefore competing with the compound for binding to the integrin receptors on the cell surface 
and serves as an internal standard reference for the binding a�nity. As described for the cell adhesion assay, a 
great choice of integrin expressing tumor cell lines as well as epithelial cells are available, such as 293-b β 354 or 
U87MG glioblastoma55.

Cell-based tests hold great potential to evaluate not only ligand binding but also its capacity to trigger bio-
logical responses relevant for the physiological context. �is holds true at least for cases in which the “reporter” 
cell type is physiologically relevant. It is noteworthy that cellular tests possess some serious intrinsic limitations 
that are of particular importance during drug development. �e major drawback is the limited control over 
homogeneity in the levels of integrin expression present in the di�erent cell lines used, or even in individual cells 
in the tested population. Typically, there is one highly overexpressed integrin subtype presented on the surface, 
but there may also be other minor populated integrin subtypes to which the tested compounds may bind. It is 
even more problematic that these subtype expression levels may change over time. In addition, the total surface 
receptor density can strongly vary depending on speci�c conditions (number of passages in culture, presence of 
other integrins, cell culture conditions, state of cell cycle etc.). For example, a phenomenon known as “integrin 
crosstalk” has been proven for α vβ 3 and α 5β 1. Speci�cally, α 5β 1 integrin was shown to modulate (up or down) 
the expression of another subtype and thus signi�cantly alters the expression pattern56. Consequently, the com-
parison of a�nity data measured for di�erent cell lines is highly challenging.

Tests carried out in cell-free systems, use isolated extracellular domains of integrins in conjunction with 
ECM proteins, either extracted from human tissue or produced by recombinant methods. Most of these tests are 
based on competitive solid phase binding assays, in which one component is bound to the multi-well plate and in 
a subsequent step, soluble ligands are added, testing their capacity to block the binding to that component. Mainly 
two procedures are described in the literature, di�ering in the molecule used to coat the surfaces: the isolated inte-
grin extracellular domains or the ECM protein. In the �rst case, the integrin is coated on the surface, followed by 
an incubation with a mixture of the native ECM protein and increasing concentrations of the ligand of interest49. 
In an alternative test system, the natural ECM protein (vitronectin for α vβ 3 and α vβ 5, LAP (TGFβ ) for α vβ 6 and 
α vβ 8, �bronectin for α 5β 1 and �brinogen for α IIbβ 3) is immobilized onto the surface, and the soluble integrin, 
together with a serial dilution of the inhibitory ligand, is added a�erwards57. �e read-out in both procedures is 
usually done in an ELISA-like manner by using conjugated antibodies recognizing the integrin head groups. A 
detailed schematic illustration of the di�erent steps of the integrin binding assay is presented in Fig. 2. In com-
parison to many other test systems, this system allows the accurate (SD~10%) and reproducible determination of 
IC50 values for almost all RGD-binding integrin subtypes. For a detailed description of the reference to the SI. As 
the quality of the integrins strongly depend on the batch and providers a reference compound always have to be 
used for each test plate as internal standard (we used: Cilengitide, c(RGDf(NMe)V) (α vβ 3–0.54 nM, α vβ 5–8 nM, 
α 5β 1–15.4 nM), linear peptide RTDLDSLRT (α vβ 6–33 nM; α vβ 8–100 nM) and tiro�ban (α IIbβ 3–1.2 nM).

Preliminary studies in our laboratories comparing the two methods (surface-bound integrin vs. soluble inte-
grin) revealed signi�cant di�erences in the antagonistic activity of control ligands in regards to the integrin sub-
type used. Whereas very similar IC50 values were found regardless of the method used for integrins α vβ 3 or α vβ 5,  
the activity towards α 5β 1 seemed to be highly dependent on the experimental protocol. �e drug Cilengitide 
exhibited very high a�nity (in the low nanomolar range) towards soluble α 5β 1 when �bronectin (i.e. the nat-
ural ECM ligand) was immobilized on surfaces. However, coating of the integrin and subsequent incubation 
of Cilengitide with �bronectin generally resulted in low antagonistic activities and poor reproducibility within 
assays (unpublished data). �is was already observed in our stem peptide c(RGDfV)26, and may be attributed to 
the possible denaturation of α 5β 1 integrin.

Results and Discussion
The gold standard integrin inhibitor, Echistatin. �e disintegrin Echistatin was �rst isolated in 1988 
from snake venom as an e�ective inhibitor of platelet-�brinogen interaction, as well as of platelet aggregation58. 
�is small folded protein contains an RGD-sequence in a well-exposed loop which was described to bind to α IIbβ 3,  
α vβ 3, α vβ 5, and α 5β 1 with very high a�nity59. Since the Tyr-31 residue of Echistatin can be labeled with 125I 
using a standard procedure has turned this compound into a commonly used positive control for many competi-
tive cellular integrin binding assays60,61. We therefore included Echistatin in our study to determine its selectivity 
pro�le and to compare its binding activities to those previously obtained from cellular assays. Echistatin showed 
a very broad a�nity pattern. It binds to the whole panel of investigated integrins with IC50-values in the low 
nano-molar range (Table 1). As already reported, it shows particularly low IC50-values for α vβ 3 (0.46 nM), α 5β 1  
(0.57 nM), and α IIbβ 3 (0.9 nM). Interestingly, Echistatin exhibited the lowest IC50-values for these integrins com-
pared to all other compounds investigated within this study. �us, it also represents an ideal candidate to be 
included as a positive control in cell-free integrin binding tests.

Linear RGD integrin inhibitory peptides. �e RGD-sequence was originally discovered as the minimal 
binding epitope of �bronectin and has extensively been investigated over the last decades. Moreover, it has been 
shown that the presence and chemical nature of �anking residues have a strong in�uence on its activity5. �us, 
early studies with the RGD-motif were conducted with linear tri- to heptapeptides, based on the sequence found 



www.nature.com/scientificreports/

7Scientific RepoRts | 7:39805 | DOI: 10.1038/srep39805

in �bronectin. In our study, the following linear peptides were included: RGD, RGDS, GRGD, GRGDS, GRGDSP, 
and GRGDSPK. In original reports, these peptides were described to bind to α vβ 3 and α vβ 5, but also showed rel-
atively good IC50-values for the integrin subtypes α 5β 1 and α vβ 6, as well as low a�nity for α IIbβ 362. Apart from 
the compounds mentioned above, GRGDNP63 and GRGDTP64 peptides were also included in our test system, as 
they are frequently used in biological studies. Especially, GRGDNP has been described to prefer binding to α 5β 1.  
In our evaluation, all linear peptides showed the lowest IC50-values for the integrin subtype α vβ 3 (12–89 nM), 
with IC50-values for α vβ 5 ranging from 167 to 580 nM and for α 5β 1 from 34 to 335 nM. �ese peptides generally 
displayed high IC50-values towards α vβ 6 and α vβ 8. More surprisingly, none of the linear peptides exhibited an 
IC50-value below 10 µ M on α IIbβ 3. �ese results demonstrate that the linear RGD peptides are active on integrins 
α vβ 3, α vβ 5, and α 5β 1, and selective against α vβ 6, α vβ 8 and α IIbβ 3. As presented in Table 1, the residues �anking 
the RGD-motif essentially contribute to the binding a�nity for α vβ 3 (and to a lower extent for α 5β 1 and α vβ 5).  
In particular, the IC50-value to α vβ 3 increases 7-fold from the linear tripeptide fragment RGD (89 nM) to the 
heptapeptide GRGDSPK (12.2 nM).

Cyclic RGD peptides. A major disadvantage of linear peptides is their low stability regarding enzymatic 
degradation, limiting their applicability for in vivo studies65. �is can be signi�cantly improved by cyclization 
and incorporation of a d-amino acid residue, as illustrated by cyclic pentapeptides of the formula c(RGDxX) and 
cyclic hexapeptides66. Moreover, reduction of the conformational space by cyclization can improve the biological 
potency of linear peptides when the bioactive conformation is matched67. One of the �rst cyclic compounds that 
was developed and used in cellular studies was c(RGDfV) which showed outstanding a�nity for α vβ 3, while 
retaining total selectivity against α IIbβ 3. �is core structure was later modi�ed to develop a series of new ligands 
with improved activity and selectivity pro�les68,69. Extensive Structure-Activity Relationship (SAR) studies on 
the model sequence c(RGDxX) showed, that the presence of an aromatic amino acid in the d-con�guration (i.e. 
d-Phe, d-Tyr, d-Trp) at the position 4 (residue x) was essential for the α vβ 3-binding a�nity, whereas the amino 
acid at position 5 (residue X) had little e�ect on the biological activity68,69. Based on the stem peptide c(RGDfV), 
Cilengitide, c(RGDf(NMe)V), the most active cyclic pentapeptide described to date, was developed via a system-
atic N-methylation scan. Cilengitide has a half-life in man of about four hours and is not metabolized systemi-
cally70. It became a drug candidate in phase II and III clinical studies for the treatment of di�erent tumors71–74, 
however failed in phase III as drug against glioblastoma. Despite its extraordinarily low IC50-value for α vβ 3 and 
α vβ 5, the higher, but still signi�cant value for α 5β 1 subtype is o�en neglected75. In this regard, our study clearly 
shows that this compound has also a remarkably low IC50-value for α 5β 1 (14.9 nM). Noteworthy, the IC50 for  
α vβ 3 (0.61 nM) and α vβ 5 (8.4 nM) were the highest obtained among all synthetic peptides developed and studied. 
As previously indicated, the valine residue can be substituted by almost any other amino acid66. Hence, for bio-
physical or medical applications where a functionalization or ligation of integrin ligands is needed, the derivative 
c(RGDfK)76 is o�en used. Lys has been found to be a good anchoring point for the attachment of functional units 
not only because it does not a�ect the binding a�nity of the stem peptide signi�cantly, but also because it easily 
allows the linkage of other chemical groups via the free amine. A pilot study by us used acrylate-functionalized 
derivatives of c(RGDfK) to mediate the adhesion of osteoblasts on a polymethylmetacrylate (PMMA) surface77. 
Since that time, c(RGDfK) and also c(RGDfE) were functionalized for a large number of biological applica-
tions78,79. Other cyclic penta-peptides used for functionalization are c(RGDyK)80 as well as c(RGDfC)81, are 
both included in our study. Just like the linear peptides, all of the cyclic pentapeptides of the type c(RGDxX)  
tested showed moderate to low IC50-values for α vβ 3, α vβ 5, and α 5β 1, and no binding to α IIbβ 3,  
which is of major importance for in vivo applications. Noteworthy, all the cyclic peptides displayed lower 
α vβ 3 IC50-values (i.e. in the range of 1.5 to 6 nM) compared to the linear derivatives, and followed the order 
c(RGDfV) <  c(RGDfK) <  c(RGDyK) <  c(RGDfC). �erefore, cyclic RGD-peptides should be the preferred choice 
when high α vβ 3-binding activities are required. �e IC50 values for α vβ 5 and α 5β 1 varied from 250 to 503 nM 
and from 141 to 236 nM, respectively. Interestingly, all the cyclic compounds showed relatively low IC50-values for 
α vβ 6 (49–75 nM), which has not been discussed in any of the references so far.

Ruoslahti et al. discovered the RGD-containing double cysteine-bridged (1–4, 2–3) peptide RGD-4C82 
(ACDCRGDCFCG) by phage display and reported a low IC50-value towards the subtypes α vβ 3 and α vβ 5, and 
speci�city over α 5β 1. �is peptide represents one of the most commonly used molecules in cellular tests and 
in in vivo studies and has been conjugated to target α vβ 3-overexpressing cells83. To reduce the synthetic com-
plexity that arises from two disul�de bridges, Hölig et al. developed the single cysteine-bridged peptide RGD10 
(GARYCRGDCFDGR)84, which has the same IC50 value and selectivity properties as the original RGD-4C, and 
has been functionalized for di�erent applications as well, (e.g. for surfaces coating or targeting liposomes). In our 
studies, the RGD-4C peptide exhibited an IC50-value for α vβ 3 of 8.3 nM, which is comparable to that observed 
for the best linear RGD-sequences but considerably lower than that of cyclic RGD-containing penta-peptides. 
Furthermore, it also shows a good value for α vβ 5 (46 nM), a high IC50-value for α vβ 6 and α 5β 1, and no a�nity 
for α vβ 8 and the platelet integrin α IIbβ 3. As reported in other studies, RGD-10 exhibits a similar pattern of 
bioactivity, though with a trend towards increased α vβ 3/α vβ 5 selectivity: the IC50 for α vβ 3 remains almost the 
same, whereas the α vβ 5 a�nity drops to 102 nM. Based on the RGD-4C peptide, Indrevoll et al. developed a 
PEGylated bicyclic, mono cysteine-bridged peptide with the sequence KCRGDCFC (NC100717)85 targeting the 
α vβ 3 and α vβ 5 integrin subtype. �is sca�old is the targeting unit of functionalized compounds (chelators and 
dyes), e.g. the 18F-labeled compound 18F-AH111858 (Fluciclatide86, GE), described in detail in the section of 
functionalized molecules. NC100717 showed a low nanomolar IC50-value for α vβ 3 (1.1 nM) and α vβ 5 (41 nM) 
in our test system. Nonetheless, for application of disul�de-bridged cyclic peptides it may be of interest to con-
sider the stability of disul�de bridges in vivo87. Finally, another integrin binding motif in �bronectin is the inverse 
sequence isoDGR which is based on the NGR motif a�er in situ rearranging from asparagine to iso apartate88,89. 
�e integrin subtype selectivity strongly varies depending on the �anking residues of the sequence. Recently, the 
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compound c(phgisoDGRk)50, which is bi-selective for α vβ 6 and α 5β 1, was identi�ed and used for cellular stud-
ies. In our test system, it could be shown here that the compound moreover binds to α vβ 8 as well.

Peptidomimetics and other ligands. �e non-RGD linear pentapeptide Ac-PHSCN-NH2 was derived 
from the synergy domain of �bronectin and is clinically developed under the trade name ATN16190 for the treat-
ment of several solid tumors as it is highly active for the α 5β 1 subtype, with some a�nity for α vβ 3 and α vβ 516. 
Interestingly, ATN161 showed a clear selectivity for α 5β 1 (4.2 nM) in our testing system, being essentially inactive 
for all other integrins investigated.

�e non-peptidic compound JSM642736 was designed by Stragies et al. and later developed in clinical phase 
for the treatment of age-related macular degeneration as it strongly inhibits neovascularization in the eye. It is 
described to be a relatively selective α 5β 1 antagonist, although values for α vβ 6 and α vβ 8 were not published. 
Indeed, we found JSM6427 to be tri-selective for α 5β 1 (2.5 nM), α vβ 6 (23 nM), and α vβ 8 (8.2 nM).

Recently, we reported the synthesis and binding a�nity of the highly active α vβ 3-selective sn24337 and the  
α 5β 1-selective 44b91 peptidomimetic ligands. In a proof-of-concept study, these compounds were functionalized 
and used for molecular imaging92 as well as for biophysical studies39,40, showing their potential to discriminate 
the two integrin subtypes α vβ 3 and α 5β 1 both, in vitro and in vivo. Here, we also included them to evaluate their 
full pattern of integrin selectivity, and found, besides the expected high activities for the corresponding subtype 
(sn243: 0.65 nM α vβ 3; 44b: 2.3 nM α 5β 1), a low nanomolar IC50-value for α vβ 8 for 44b (37 nM).

Integrin αvβ6-binding ligands. �e α -helical binding motif DLXXL, an α vβ 6 subtype-speci�c binding 
motif, was initially discovered by phage display and later shown to be also present in the natural α vβ 6 ligand 
latency associated peptide (LAP). Two compounds containing this motif are included in this study as they have 
extensively been used for addressing selectively α vβ 6-expressing cells in vivo, e.g. as targeting unit for molecular 
imaging. �e RTD containing 9-mer peptide RTDLDSLRT93 as well as the 20-mer peptide A20FMDV294, which 
is derived from a foot and mouth disease virus peptide (sequence: NAVPNLRGDLQVLAQKVART), were proven 
to be subtype-selective in our study and exhibited an IC50-value of 29.5 and 0.93 nM for α vβ 6, respectively. �e 
peptidomimetic compound Mol1149, which was described as the �rst α vβ 6 selective small molecule ligand, was 
resynthesized for this study as an enantiomerically pure (S-enantiomer) compound and indeed showed a very 
low IC50-value for α vβ 6 (1.3 nM), but also good values in the lower nanomolar range for α vβ 3 (13.2 nM), and  
α vβ 8 (18.5 nM). Recently, we were able to develop the cyclic peptide c(FRGDLAFp(NMe)K)38, which mimics the 
binding epitope of the helical DLXXL-motif. �e IC50 of this peptide was determined to be 0.28 nM for α vβ 6, the 
highest a�nity among the compounds investigated.

Integrin αIIbβ3-binding ligands. �e α IIbβ 3 integrin receptor, also known as glycoprotein receptor 
(GP)-IIb/IIIa, is expressed uniquely on the surface of platelets and megakaryocytes, a type of platelet-producing 
cells in the bone marrow. By binding to its natural ligand �brinogen, α IIbβ 3 is involved in primary hemosta-
sis during platelet formation. �us, application of α IIbβ 3 ligands was earlier explored as a clinical approach 
for anti-thrombotic therapy15. Today, there are two FDA-approved drugs targeting selectively the α IIbβ 3 recep-
tor, Intri�ban (Epti�batide)95 and Tiro�ban (Aggrastat)96, both clinically used for patients with acute coro-
nary syndromes undergoing percutaneous coronary intervention. Eptifibatide is a cysteine-bridged cyclic 
RGD-containing hexapeptide. It was �rst described in 1993 as a potent subtype-selective integrin antagonist 
and is, as well as the small molecule α IIbβ 3 inhibitor Tiro�ban, used both clinically and preclinically. Another 
α IIbβ 3 selective compound included in this comparison of integrin ligands is GR14405397. It is described as an 
orally available, highly potent subtype-selective �brinogen inhibitor and is used in many preclinical studies. In 
our test system, these three compounds have been con�rmed to be selective α IIbβ 3 inhibitors. �e lowest α IIbβ 3  
IC50-value was determined for Tiro�ban (1.3 nM), followed by Epti�batide (2.8 nM) and GR144053 (18 nM).

Functionalized compounds. Many of the integrin ligands that are used for biophysical or medical exper-
iments require a functional unit (e.g. for a strong covalent binding to the surface) or a chelator for molecular 
imaging. For that reason, the bioactive moiety is linked to this functionality via a spacer that separates the two 
entities of the molecule. Ideally, by using the right anchoring point in the molecule, the loss of activity upon 
functionalization is low. Nevertheless, the size, lipophilicity, and other parameters like the rigidity of the func-
tional as well as the spacing unit can in�uence the binding of the bioactive moiety to its target98,99. To estimate the 
in�uence on the IC50-values a�er modi�cation of the ligand, �ve compounds were chosen as examples (Table 2). 
Among three of them, c(RGDfK), which is functionalized via its lysine side chain, represents the bioactive tar-
geting unit. �e IC50-value of the unmodi�ed ligand was determined to be 2.3 nM for the α vβ 3 integrin sub-
type (Table 1). A�er modi�cation to F-Galacto-c(RGDfK)100 (for molecular imaging) and c(RGDfK)-Peg-MPA) 
(MPA =  mercapto propionic acid), the IC50 moderately decreased to 8 and 15 nM, respectively. Exactly the oppo-
site, namely a better α vβ 3 IC50 was observed for the (Ga)NOPO-c(RGDfK) (1.1 nM)101. �is phenomenon could 
already be observed for previously published compounds and can be explained, inter alia, by charge e�ects and/
or altered van-der-Waals interactions. For example, large substituents like chelators possess a high surface area 
and can randomly interact via unspeci�c van-der-Waals interactions with parts of the protein. �is weak inter-
action decreases the ko�-rate and thus can lead to IC50-values compared to the original targeting peptide alone. 
Concerning the selectivity pro�le of the modi�ed compounds, no changes are observable. �is is also found for 
the α vβ 6/α 5β 1 bi-selective peptide c(phgisoDGRk), where the selectivity is not a�ected but the IC50-value for the 
two integrins doubles (2-fold) a�er functionalization to c(phgisoDGRk)-Peg-MPA)52. Fluciclatide, an imaging 
agent developed by GE Healthcare, consists of NC100717 as targeting unit84. For this example, the IC50-value for 
α vβ 3 decreased 3-fold and no change in selectivity was observable. To sum up, the functionalization of a bioactive 
molecule can alter its integrin binding a�nity. �is means that in principle, every functionalized compound for 
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both in vitro and in vivo applications should be tested individually to obtain comparable results. It is important to 
mention here that e.g. the introduction of a PEG spacer does not guarantee better ligands properties (solubility, 
a�nity). Peg is not always extended in aqueous solution and thus the distance between the biomolecule and the 
functional unit is not de�ned99. Changes in a�nity induced by a spacer and a functional unit are hard to predict. 
Additionally, functionalization of bioactive compounds can also strongly alter the pharmacodynamics, e.g. the 
total uptake and distribution of the compound in the organs a�er its intake. Mostly, this is observable because 
of a big change in lipophilicity due to the di�erent modi�cations. Especially for molecular imaging, where only 
de�ned structures in the body should be visualized, it is important to evaluate and optimize the e�ect of every 
modi�cation (e.g. di�erent spacer, chelator, coordinating metal) in this regard. Important points to be addressed 
regarding the applicability of the probes in standard procedures of diagnosis are the simplicity of production and 
the �exibility in the type of tracer that can be introduced. In the case of functionalization for surface coating, the 
strength and stability of the binding to the surface by the anchoring unit and the length and chemical structure of 
the spacer for a de�ned purpose (e.g. cell adhesion) has to be taken into account.

Molecules used as negative control in the determination of binding activities. For cellular and in 
vitro experiments, molecules with comparable steric properties and lipophilicity but without biological activity 
o�en serve as control compounds. Targeted substitution of any of the three amino acids in the RGD-sequence 
leads to inactivation of the ligand. A substitution of glycine by alanine leads to steric repulsions on the binding 
groove between the α - and β -subunit. Moreover, any elongation of the ligand (e.g. glycine to β -alanine and aspar-
tate to glutamate substitution) leads to complete loss of binding activity. �e molecules can be functionalized in 
the same way as their active biologically active counterparts (e.g. via lysine side chain). For this study, linear and 
cyclic control molecules have been synthesized and evaluated.

Conclusion
A�er the initial discovery of the RGD sequence in �bronectin, a large number of integrin ligands, binding to 
RGD-recognizing integrins, were developed by many groups around the world and became highly important 
for medical applications and for biophysical studies. For the development of each of these compounds, di�erent 
evaluation techniques (e.g. various cel-based and cell free methods) have been used, allowing a good comparison 
and selection process of the compounds within a study. However, comparing the values determined by di�erent 
groups for the very same compound shows very high deviations. For this reason we evaluated for the �rst time 
the most frequently used compounds in a homogenous solid phase binding assay for their binding a�nity to six 
RGD-binding integrins (α vβ 3, α vβ 5, α vβ 6, α vβ 8, α 5β 1, α IIbβ 3). �is gives the possibility to choose the ligand 
with the ideal a�nity and selectivity pattern for a given application and opens new doors for the application of 
those ligands. However, the complex mechanism including several steps of conformational transitions in which 
the initial ligand binding to the resting state of the integrin and the stronger binding in the focal adhesion, might 
have consequences for the IC50-value given here with data under di�erent environmental condition in vivo102.

Methods Section
Integrin Binding Assay. �e activity and selectivity of integrin ligands were determined by a solid-phase 
binding assay according to the previously reported protocol103 using coated extracellular matrix proteins and 
soluble integrins. �e following compounds were used as internal standards: Cilengitide, c(RGDf(NMe)V)  
(α vβ 3–0.54 nM, α vβ 5–8 nM, α 5β 1–15.4 nM), linear peptide RTDLDSLRT4 (α vβ 6–33 nM; α vβ 8–100 nM) and 
tiro�ban5 (α IIbβ 3–1.2 nM).

Flat-bottom 96-well ELISA plates (BRAND, Wertheim, Germany) were coated overnight at 4 °C with the 
ECM-protein (1) (100 µ L per well) in carbonate bu�er (15 mM Na2CO3, 35 mM NaHCO3, pH 9.6). Each well 
was then washed with PBS-T-bu�er (phosphate-bu�ered saline/Tween20, 137 mM NaCl, 2.7 mM KCl, 10 mM 
Na2HPO4, 2 mM KH2PO4, 0.01% Tween20, pH 7.4; 3 ×  200 µ L) and blocked for 1 h at room temperature with 
TS-B-bu�er (Tris-saline/BSA bu�er; 150 µ L/well; 20 mM Tris-HCl, 150 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 
1 mM MnCl2, pH 7.5, 1% BSA). In the meantime, a dilution series of the compound and internal standard is 
prepared in an extra plate, starting from 20 µ M to 6.4 nM in 1:5 dilution steps. A�er washing the assay plate three 
times with PBS-T (200 µ L), 50 ul of the dilution series were transfered to each well from B–G. Well A was �lled 
with 100 ul TSB-solution (blank) and well H was �lled with 50 ul TS-B-bu�er. 50 ul of a solution of human inte-
grin (2) in TS-B-bu�er was transfered to wells H–B and incubated for 1 h at rt. �e plate was washed three times 
with PBS-T bu�er, and then primary antibody (3) (100 µ L per well) was added to the plate. A�er incubation 
for 1 h at rt, the plate was washed three times with PBS-T. �en, secondary peroxidase-labeled antibody (4)  
(100 µ L/well) was added to the plate and incubated for 1 h at rt. A�er washing the plate three times with PBS-T, 
the plate was developed by quick addition of SeramunBlau (50 µ L per well, Seramun Diagnostic GmbH, Heidesee, 
Germany) and incubated for 5 min at rt in the dark. �e reaction was stopped with 3 M H2SO4 (50 µ L/well), 
and the absorbance was measured at 450 nm with a plate reader (POLARstar Galaxy, BMG Labtechnologies). 
�e IC50 of each compound was tested in duplicate, and the resulting inhibition curves were analyzed using 
OriginPro 7.5G so�ware. �e in�ection point describes the IC50 value. All determined IC50 were referenced to 
the activity of the internal standard.
αvβ3

(1) 1.0 µ g/mL human vitronectin; Millipore.
(2) 2.0 µ g/mL, human α vβ 3-integrin, R&D.
(3) 2.0 µ g/mL, mouse anti-human CD51/61, BD Biosciences.
(4) 1.0 µ g/mL, anti-mouse IgG-POD, Sigma-Aldrich.
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α5β1

(1) 0.5 µ g/mL; human �bronectin, Sigma-Aldrich.
(2) 2.0 µ g/mL, human α 5β 1-integrin, R&D.
(3) 1.0 µ g/mL, mouse anti-human CD49e, BD Biosciences.
(4) 2.0 µ g/mL, anti-mouse IgG-POD, Sigma-Aldrich.

αvβ5

(1) 5.0 µ g/mL; human vitronectin, Millipore.
(2) 3.0 µ g/mL, human α vβ 5-integrin, Millipore.
(3) 1:500 dilution, anti-α v mouse anti-human MAB1978, Millipore.
(4) 1.0 µ g/mL, anti-mouse IgG-POD, Sigma-Aldrich.

αvβ6

(1) 0.4 µ g/mL; LAP (TGF-β ), R&D.
(2) 0.5 µ g/mL, human α vβ 6-Integrin, R&D.
(3) 1:500 dilution, anti-α v mouse anti-human MAB1978, Millipore.
(4) 2.0 µ g/mL, anti-mouse IgG-POD, Sigma-Aldrich.

αvβ8

(1) 0.4 µ g/mL; LAP (TGF-b), R&D.
(2) 0.5 µ g/mL, human α vβ 8-Integrin, R&D.
(3) 1:500 dilution, anti-α v mouse antihuman MAB1978, Millipore.
(4) 2.0 µ g/mL, anti-mouse IgG-POD, Sigma-Aldrich.

αIIbβ3

(1) 10.0 µ g/mL; human �brinogen, Sigma-Aldrich.
(2) 5.0 µ g/mL, human platelet integrin α IIbβ 3, VWR.
(3) 2.0 µ g/mL, mouse anti-human CD41b, BD Biosciences.
(4) 1.0 µ g/mL, anti-mouse IgG-POD, Sigma-Aldrich.
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