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[1] Accurately modeling the ionosphere is a critical component to many radionavigation
applications. However, in a significant number of cases, these models assume the
ionosphere is compacted into a thin shell surrounding the Earth, rather than a full three-
dimensional field. While such models allow for ease of use and small storage needs,
they are necessarily lacking in detailed information on the actual three-dimensional
distribution of electrons in the ionosphere. This paper attempts to quantify all geometric
and numerical errors made through the use of a shell model. Such errors can reach as
high as 14% on days of no strong ionosphere activity. Ultimately, this paper concludes that
the highest levels of accuracy require the total electron content of the ionosphere be
modeled three-dimensionally. However, for those who must continue to use a shell model,
a new mapping function has been derived which removes as much as 50% of the total
errors seen using the previous, standard mapping function for shell models.

Citation: Smith, D. A., E. A. Araujo-Pradere, C. Minter, and T. Fuller-Rowell (2008), A comprehensive evaluation of the

errors inherent in the use of a two-dimensional shell for modeling the ionosphere, Radio Sci., 43, RS6008,

doi:10.1029/2007RS003769.

1. Introduction

[2] The ionosphere is a three-dimensional field of ions
and free electrons in the upper atmosphere of the Earth
which changes with time (thus is truly four-dimensional).
Because the ionosphere affects the propagation of
electromagnetic (EM) waves (such as those from the
Global Positioning System, GPS), it has been studied and
modeled for years [Komjathy, 1997; Bilitza, 2001]. The
impact of the ionosphere on EM waves is directly related
to the number of electrons through which the wave
passes, so any useful model of the ionosphere must be
able to accurately describe the total number of electrons
along any ray in any direction passing through the
ionosphere. This is not simple task, but is aided by the
fact that the majority of electrons in the ionosphere
generally are concentrated in a relatively ‘‘thin’’ layer.
Although the ionosphere is hundreds of kilometers thick,

the majority of free electrons fall in a �100 km thick
band centered around 400 km above the Earth’s surface
[Bilitza, 2001]. As such, many attempts to model the
ionosphere over the years have begun with the (unreal-
istic, but mathematically simple) assumption that the
ionosphere is a two-dimensional shell surrounding the
Earth at some specific radius. This paper seeks to
examine the inherent mathematic/geometric and geo-
physical limitations in using such a model, quantify their
impact on determination of the true electron distribution
along various ray paths and determine when (if at all)
such shell models can be used reliably. In particular, the
impact of using the 2-D ionospheric shell approximation
in the presence of vertical and horizontal structure will be
quantified by using a realistic assimilated ionosphere.
The results of this study will show that nonnegligible
errors from geometry alone occur when an infinitesimally
thin shell is used, rather than a simple shell of some finite
thickness. As further refinements are added, the errors
suffered by a simple shell model grow, though not to the
point that a shell model is useless. It is the quantification
of these errors that will show that shell models can be
useful for applications at certain levels of accuracy, while
higher orders of accuracy must be reserved for more
detailed 3-D models. This study compliments previous
efforts to evaluate the effect of using an ionospheric
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shell model [e.g., Radicella et al., 2004; Komjathy and
Langley, 1996].

2. Total Electron Content

[3] Consider the example shown in Figure 1. The
density of electrons (elec/m3) at any point is Ne. Of
interest is the total number of electrons (per square
meter) passed through along the slanted path (through
points A and B in Figure 1) through the ionosphere, the
well known ‘‘Total Electron Content’’, or ‘‘TEC’’:

TEC ¼
ZB
A

Neds ð1Þ

[4] The TEC of equation (1) will have units of elec/m2,
but is more frequently expressed in TEC Units
(‘‘TECU’’) of 1 TECU = 1016 elec/m2. Note that there
is no scientific consensus as to where the ‘‘bottom’’ and
‘‘top’’ of the ionosphere lie (they are ‘‘transitional
boundaries’’), but values of 50 to 1000 km above the
Earth cover the majority of such estimates. Also, it
should be noted that the path of the EM wave is slightly
bent (refracted) as it traverses the ionosphere, but for the
purposes of this study, such an effect has been ignored.
Since we focus here on application to GPS systems at
gigahertz frequencies, such effects are small.
[5] A variety of types of TEC will be used in this

study. First is the ‘‘Slant TEC’’ or ‘‘STEC’’ which is the
actual TEC along the slanted line from a point below
the ionosphere to a point above it (computed from

equation (1)). The distance traveled is ‘‘s’’ (shown as
line AB in Figure 1). The formula for STEC is therefore
identical to the generic TEC formula:

STEC ¼
ZB
A

Neds ð2Þ

[6] The second type of TEC to be considered in this
paper is called ‘‘Vertical TEC’’ or ‘‘VTEC’’, and is the
special case of STEC where the EM ray travels through
the ionosphere along the radial direction. The distance
thus traveled will be called ‘‘d’’ (shown as line PQ in
Figure 1). The formula for VTEC is:

VTEC ¼
ZQ
P

Neds ð3Þ

where the differential distance ‘‘ds’’ is aligned radially
on the line through points P and Q.

3. Electron Density, Geometry, and 2-D

Shells

[7] The ionosphere is a highly complex field, but it
does (generally) tend to have a dense central layer
around 400 km above the Earth. While the approximate
location of rs in Figure 2 can be considered to lie in this
dense region, the actual value of ‘‘rs’’ in Figure 2 is
irrelevant, as it is simply a convenient tool to introduce a
piercing angle, z0. For any given slanted ray, picking a

Figure 1. Idealization of the geometry inherent to the impact of the ionosphere on GPS, including
a generic STEC ray (AB) and the VTEC ray (PQ).
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different rs yields a different piercing point and piercing
angle z0. The values rs and z0 will simply be used as tools
for aiding in the geometric relationships derived later.
[8] Because the length of the slant ray, s, is so critical

to the understanding of STEC, its exact formula should
be known. Using basic spherical relationships (full
derivation is found in Appendix A), one can write the
equations for both s and d as:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2t � r2s sin

2 ðz0Þ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b � r2s sin

2 ðz0Þ
q

ð4Þ

d ¼ rt � rb ð5Þ

[9] We will make extensive use of equation (4)
throughout the next few sections. It is briefly noted that
alternative formulae for equation (4) have been com-
monly used which depend upon the elevation angle
(above the horizon) of the satellite, rather than the
piercing angle of the ray through the shell. While
mathematically equivalent to equation (4), the depen-
dence on elevation angle, rather than piercing angle,
means such formulae do not lend themselves easily to the
analysis within this paper.
[10] Because of the dense electron layer around

400 km, modeling of the ionosphere has frequently been
done by assuming that the ionosphere is not a 3-D field,
but is instead compressed in the radial direction (from its
top and bottom) into a 2-D ‘‘shell’’ located around the
densest layer of the ionosphere [Komjathy, 1997].

[11] Such a ‘‘shell model’’ has many advantages,
including mathematical simplicity and reduction in over-
all data storage (but this comes with the basic disadvan-
tage of loss of information content, of course). After
condensing to a shell the only information left over is
obviously the VTEC at any given point on the shell. This
is because the radial compression takes the full VTEC
value along a radial line and compresses it to a point,
without changing its total value. However, since most
EM waves of interest (such as GPS signals) do not pass
vertically through the ionosphere, but rather on a slant,
some method must be chosen to derive STEC values
from the still-available VTEC values. To distinguish
between the actual TEC values along the slant ray
(STEC), and those which are ‘‘mapped’’ or derived
solely from VTEC information, the term ‘‘MSTEC’’ is
introduced to mean ‘‘Mapped STEC’’.
[12] For many years, computing MSTEC from VTEC

has been done with a simple mapping function (denoted
‘‘W’’ in this paper; the ‘‘hat’’ is used, to distinguish the
mapping function from the actual ratio of STEC to
VTEC, which will be designated later as simply ‘‘W’’):

MSTECðX
!
sat;X

!
recÞ ¼ Ŵ �VTECðX

!
ppÞ ð6Þ

where Xsat is the 3-D coordinate vector for a satellite
(such as some GNSS satellite giving off a radio signal),
Xrec is the 3-D coordinate vector of the receiver on
Earth’s surface (receiving the radio signal), and Xpp is the
3-D coordinate vector of the pierce point where the line
from receiver to satellite pierces the 2-D ionosphere
shell. The coordinates of the pierce point are usually

Figure 2. Geometry of an idealized planar 2-D ionosphere shell.
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expressed only in latitude and longitude, since the shell’s
location is at a constant (given) height. Also, the pierce
point coordinate vector can be expressed as a function of
the satellite and receiver coordinates and the shell radius:

X
!
pp ¼ X

!
ppðX

!
sat;X

!
rec; rsÞ ð7Þ

[13] Finally, the most common, by far, mapping func-
tion used in most of books and papers on this subject
seems to be:

Ŵ ¼ 1

cosðz0Þ ð8Þ

where z0 (introduced earlier) is the angle made between
the radially outward direction and the direction of the
slant line between the satellite and receiver (see Figure 1
for a reminder). As such, it is a function of the shell’s
location, and the location of the satellite and receiver:

z0 ¼ z0ðX
!

sat;X
!
rec; rsÞ ð9Þ

[14] In similar fashion to equation (4), there are alter-
native formulae for equation (8) in the literature which
depend on the elevation angle of the ray above the
horizon, rather than the piercing angle through a shell.
Those alternative formulae are less useful for this anal-
ysis and are not presented here.
[15] So finally one often sees (eliminating unnecessary

variables):

MSTEC ¼ VTEC

cosðz0Þ ð10Þ

where we compute MSTEC, an approximated (or
‘‘mapped’’) STEC, rather than the true STEC. Note the
dependence on z0 in equation (10), and the dependence
which z0 has on rs from equation (9). As such, using the
mapping function of equation (8), one can see that the
value of MSTEC depends upon the chosen shell height,
even though VTEC remains the same for all shell
heights.
[16] There are well known (and not so well known)

inherent errors associated with using this mapping func-
tion. The most obvious (though not comprehensively
studied) is that deriving MSTEC from VTEC at a single
point yields no actual information about the total electron
content along the actual slant path (STEC); that is, all
ionosphere information about the ionosphere along a
slanted path is expected to be contained at one point
(the piercing point) in the shell. The errors inherent in
this approximation are the primary focus of this paper.
However, a second (and less studied) error is that the
simple mapping function of equation (10) fails to address

the curvature of the precondensed (3-D) ionosphere, and
thus will always suffer from a systematic error from a
purely geometric standpoint. (It will be shown later that
the curvature of the postcondensed (2-D) ionosphere
shell will not be a factor in this discussion.) All of these
geometrical issues will be addressed in the next section
prior to analyzing the actual ionosphere data itself.

4. Mapping Function (Ŵ ) Versus the True

STEC//VTEC Ratio (W)

[17] The need for a mapping function arises when
VTEC is given, STEC is needed, and thus MSTEC is
computed as an estimate to STEC. It will be instructive
for the following discussion to derive the best mapping
function between MSTEC and VTEC under certain
simplified geometric situations. First, it is critical to
recall the distinction between the mapping function
(Ŵ ) of equation (6) and the actual ratio between STEC
and VTEC, which is designated ‘‘W’’ (without the hat):

W ¼ STEC=VTEC ð11Þ

The obvious idea behind choosing a mapping function is
to find a Ŵ value that best represents the actual W value.
This will be pursued in the next few sections.

5. Flat-Plane Mapping Function

[18] Consider (for the moment) the ionosphere con-
densed to an infinitesimally thin (but with finite thick-
ness) layer with no curvature. Because the thickness of
this layer is not zero, it will be referred to as a ‘‘nearly
flat plane’’, to distinguish it from a ‘‘flat plane’’ which
would have zero thickness. (The term ‘‘flat’’ will be used
to mean ‘‘zero thickness’’ through the next few sections.)
[19] This nearly flat plane contains electrons at a

density Ne, as shown in Figure 2. Under such a scenario,
all electrons have been condensed to a constant value in
an infinitesimally local area and as such, the STEC and
VTEC values (subscripted ‘‘nfp’’ for ‘‘nearly flat plane’’)
for such a model are:

STECnfp ¼ snfp � Ne ¼ AB� Ne

VTECnfp ¼ dnfp � Ne ¼ PQ� Ne ð12Þ

where the values ‘‘s’’ and ‘‘d’’ are the slant (AB) and
vertical (PQ) lengths of interest as before (but now
compressed to their infinitesimally small values).
Rearranging equation (12), and removing Ne yields:

STECnfp ¼
snfp

dnfp
� VTECnfp ð13Þ
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Examiningequation(13) incombinationwithequation(11),
one sees that the mapping function in a nearly flat plane
geometry is:

Wnfp ¼
snfp

dnfp
ð14Þ

The relationship between s and d under the flat shell
geometry is a trivial cosine relationship which may be
inferred directly from the geometry of Figure 2. Combin-
ing that with equation (14), one can arrive at:

snfp

dnfp
¼ 1

cosðz0Þ ¼ Wnfp ð15Þ

One final step must be taken before one can arrive at the
actual mapping function between STEC and VTEC in
planar geometry. Remember that equation (15) was
derived for a nearly flat plane of small, but finite,
thickness, ‘‘d’’. To derive the mapping function between
STEC and VTEC in an actual two-dimensionally flat
planar geometry, the limit as d approaches zero must be
taken (where the subscript ‘‘fp’’ is for a truly two-
dimensional ‘‘flat plane’’, in contrast to the ‘‘nfp’’
subscript used up to this point):

Wfp ¼ Lim
dnfp�>0

ðWnfpÞ ¼ Lim
dnfp�>0

snfp

dnfp
¼ 1

cosðz0Þ ð16Þ

(Although the limit in equation (16) seems trivial, it is
necessary in order to draw a parallel with the next

example.) Equation (16) shows that, under an actual
two-dimensional flat plane ionosphere, the well known
mapping function of equation (8) is exact.

6. Spherical Shell Mapping Function

[20] Now, consider the same condensed ionosphere as
before, but of spherical shape (see Figure 3). As before,
the STEC and VTEC values can be directly related to
infinitesimal lengths through the shell and a constant
local Ne value at the pierce point. That is, equations (12),
(13), and (14) still hold (where the subscript ‘‘nfp’’ may
be replaced with ‘‘nfs’’ for ‘‘nearly flat shell’’), even in
the spherical domain.
[21] However, the nonplanar nature of the shell changes

the relationship between s and d from that of equation (15)
to something much more complex. Using equation (4),
and substituting rs � (d/2) for rb and rs + (d/2) for rt, the
mapping function for a nearly flat shell (which is also the
ratio s/d for a thin shell of thickness ‘‘d’’ centered around
radius ‘‘rs’’), can be written:

Wnfs ¼
snfs

dnfs
¼ 1

dnfs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs þ

dnfs

2

� �2

�rs sin
2 z0

s2
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rs �

dnfs

2

� �2

�rs sin
2 z0

s 3
5 ð17Þ

Figure 3. Geometry of an idealized spherical 2-D ionosphere shell.
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[22] Through a series expansion (of equation (17))
about dnfs, one can immediately see that equations (17)
and (15) share the same cosine relationship:

Wnfs ¼
snfs

dnfs
¼ 1

cosðz0Þ þ
cos2 ðz0Þ � 1

8r2s cos
5 ðz0Þ d

2
nfs

þ 7� 10 cos2 ðz0Þ þ 3 cos4 ðz0Þ
128r4s cos

9 ðz0Þ d4nfs þ . . . ð18Þ

[23] At first glance, equation (18) would seem to imply
that a set of second (or even fourth) order terms should
be applied to the spherical mapping function. However,
as before, notice that equation (18) holds for the geom-
etry of a shell whose thickness (dnfs) is small, but still
finite. So, as before, the limit as the thickness approaches
zero must be taken to arrive at the actual mapping
function in this geometry:

Wfs ¼ Lim
dnfs�>0

ðWnfsÞ ¼ Lim
dnfs�>0

snfs

dnfs
¼ 1

cosðz0Þ ð19Þ

[24] Notice in equation (19) that the geometry remains
spherical (that is, rs remains a finite number.) This means
that a truly zero-thickness shell of spherical shape has the
same mapping function as that of a flat plane and thus the
spherical nature of the postcondensed ionosphere has no
impact on the mapping function.
[25] However, the second (and higher) order terms in

equation (18) indicate that some content in the mapping
between VTEC and STEC is being overlooked in a
spherical ionosphere of nonzero thickness. This gets to
the shape of the precondensed ionosphere, discussed in
the next session.

7. Errors From Precondensed Spherical

Geometry

[26] As pointed out in the previous section, if the
ionosphere were truly a two-dimensional spherical shell
(when approached as a limit), then the relationship
between STEC and VTEC (the mapping function) exactly
matches that of flat-plane geometry (equations (19) and
(16) match). However, we know that the ionosphere is
three-dimensional and it is worth asking whether a
mapping function, given that the ionosphere is more
accurately described in three dimensions, can ever be as
simple as that of equation (19). The answer, unfortunately,
is ‘‘no’’. A few simplistic geometry examples will prove
this, followed by a more detailed analysis based on actual
data.
[27] Geometry Example 1: Presume, for now, that the

three-dimensional ionosphere is made up of a purely

homogenous density distribution of electrons (Ne =
constant). This can be visualized in Figure 1, with the
presumption of a constant Ne value. Although this does
not constitute a ‘‘condensed shell’’, one can still define
some radius (rs) as the place where the piercing angle (z0)
occurs. Since Ne is assumed constant, the relationship
between s and STEC and that between d and VTEC are
found in equation (12). Similarly, the relationship
between STEC and VTEC is found in equation (13).
However, since we no longer assume the ionosphere to
be infinitesimally thin, the exact length of s is computed
from equation (4). As such, the mapping function (Whs,
where the ‘‘hs’’ subscript is for ‘‘homogenous sphere’’) is
exactly that of equation (18), without taking any limit,
and where we replace the ‘‘nfs’’ subscript with ‘‘hs’’:

Whs ¼
shs

dhs
¼ 1

cosðz0Þ þ
cos2 ðz0Þ � 1

8r2s cos
5 ðz0Þ d

2
hs

þ 7� 10 cos2 ðz0Þ þ 3 cos4 ðz0Þ
128r4s cos

9 ðz0Þ d4hs þ . . . ð20Þ

Togainanappreciationfor themagnitudeof thesecond-and
fourth-order terms of equation (20), some nominal values
were chosen and their impacts quantified inTable 1. For the
sake of this example, the bottom and top radii of
the ionosphere were chosen as 50 and 1000 km above the
Earth’s mean radius (re) of 6371 km.
[28] What Table 1 basically says is that if the iono-

sphere is not modeled as a two-dimensional spherical
shell, but is instead allowed to retain its three-dimensional
(spherical) shape under the simple assumption of Ne =
constant, that the use of 1/cos(z0) (the zeroth-order term) as
a stand-in for the mapping function yields errors ranging
from a few hundredths of a percent up to 15%, depending
on choice of shell height and angle of ray piercing.
[29] Note also that in this model of the ionosphere, for

the most part, the percent error between the Whs value and
that approximated by 1/cos(z0) is almost always positive,
with the only exceptions being for shells over 400 km high
or else for extreme z0 values for shells at 400 km. This
indicates that one can expect that using 1/cos(z0) will, on
average, yield a systematically too large value of Whs.
Applying this conclusion to equation (11), it can be
concluded that using the standard 1/cos(z0) mapping
function to determine MSTEC from VTEC in a spherical
shell model should, for themost part, yieldMSTEC values
that are systematically too large. (Replace ‘‘too small’’
with ‘‘too large’’ for shells at 500 km height.) Of course,
this continues to rely on the overly simple Ne = constant
assumption over the entire ionosphere.
[30] Finally, as a matter of explanation, there is no

entry for z0 = 70� in Table 1 at 500 km because it is
geometrically impossible for a ray (beginning at re =
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6371 km) to pierce the 500 km high shell at an angle
greater than 68.007�.
[31] Geometry Example 2: As in Geometry Example 1,

allow the ionosphere to retain three dimensions, but
consider that all of the electrons are contained in a
limited, high density region (the ‘‘F region’’, as it is
known) of constant electron density (Ne). Let that region
not be a shell of zero thickness, but instead be limited to
± 50 km surrounding a central radius ‘‘rs’’. This is a
somewhat more realistic model, which accounts for a
large majority of the actual distribution of electrons in the
ionosphere. In a manner similar to Geometry Example 1,
the terms and truncation error for the mapping function
can be computed. However, because the ionosphere is

limited to a tight 50 km band around the central radius,
the error in slant length is reduced, as is the error in using
1/cos(z0) as the mapping function. The results are shown
in Table 2.
[32] Note that while the size of the truncation error is

reduced in this example, from that of example 1, it is
always systematically negative. Since this example
represents a large portion of the total electron density
of the ionosphere, it may be appropriate to conclude that
the use of 1/cos(z0) to map STEC from VTEC probably
will yield systematically low values under any shell
model of reasonable rs.
[33] Obviously the real ionosphere is going to have

electrons outside of this tight band of example 2, but not

Table 2. Magnitude of Terms, and Error Associated With Truncation, in the Mapping Function Assuming the Ionosphere Is

Spherically Three-Dimensional (Within ± 50 km of Central Radius ‘‘rs’’) and of Constant Electron Density

rs � re
(km) z0

Zeroth-Order
Term

Second-Order
Term

Fourth-Order
Term

Percent Error
Ignoring All Second- and

Higher-Order Terms

200 10 1.015 �9.42 � 10�7 5.93 � 10�11 �0.000%
200 30 1.155 �1.49 � 10�5 1.82 � 10�9 �0.003%
200 50 1.556 �1.55 � 10�4 7.56 � 10�8 �0.020%
200 70 2.924 �5.46 � 10�3 3.84 � 10�5 �0.373%
300 10 1.015 �9.14 � 10�7 5.58 � 10�11 �0.000%
300 30 1.155 �1.44 � 10�5 1.71 � 10�9 �0.002%
300 50 1.566 �1.50 � 10�4 7.12 � 10�8 �0.019%
300 70 2.924 �5.30 � 10�3 3.62 � 10�5 �0.362%
400 10 1.015 �8.88 � 10�7 5.26 � 10�11 �0.000%
400 30 1.155 �1.40 � 10�5 1.61 � 10�9 �0.024%
400 50 1.556 �1.46 � 10�4 6.71 � 10�8 �0.019%
400 70 2.924 �5.14 � 10�3 3.41 � 10�5 �0.351%
500 10 1.015 �8.62 � 10�7 4.96 � 10�11 �0.000%
500 30 1.155 �1.36 � 10�5 1.52 � 10�9 �0.002%
500 50 1.556 �1.42 � 10�4 6.33 � 10�8 �0.341%

Table 1. Magnitude of Terms, and Error Associated With Truncation, in the Mapping Function (Whs) Assuming the Ionosphere Is

Spherically Three-Dimensional (Between 50 and 1000 km Above the Earth’s Surface) and of Constant Electron Density

Shell Height
(km) (=rs � re) z0

Zeroth-Order
Term

Second-Order
Term

Fourth-Order
Term

Percent Error
Ignoring All Second- and

Higher-Order Terms

200 10 1.015 �8.50 � 10�5 4.83 � 10�7 0.12%
200 30 1.155 �1.34 � 10�3 1.48 � 10�5 1.31%
200 50 1.556 �0.014 6.16 � 10�4 4.80%
200 70 2.924 �0.493 0.313 15.12%
300 10 1.015 �8.25 � 10�5 4.55 � 10�7 0.09%
300 30 1.155 �1.30 � 10�3 1.39 � 10�5 0.86%
300 50 1.566 �0.014 5.80 � 10�4 2.91%
300 70 2.924 �0.478 0.295 4.65%
400 10 1.015 �8.01 � 10�5 4.29 � 10�7 0.04%
400 30 1.155 �1.26 � 10�3 1.31 � 10�5 0.38%
400 50 1.556 �0.131 5.46 � 10�4 0.94%
400 70 2.924 �0.464 0.278 �9.01%
500 10 1.015 �7.78 � 10�5 4.04 � 10�7 �0.00%
500 30 1.155 �1.23 � 10�3 1.24 � 10�5 �0.09%
500 50 1.556 �0.013 5.15 � 10�3 �1.10%
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quite as widely and homogenously spread as that of
example 1. As such, the actual geometry-based error in
using equation (8) will likely have a magnitude some-
where between those found in Tables 1 and 2. It is not
possible to delve further into this geometric error without
the introduction of more detailed information on the
actual distribution of electrons in the ionosphere itself,
so that will be the subject of the next section.

8. US-TEC Model

[34] The US-TEC model uses a set of empirical ortho-
normal functions (EOFs) to characterize the vertical
variation in electron density through the ionosphere.
These orthonormal functions are calculated at the start of
each day using a singular-value decomposition algorithm
based on the vertical density profiles from the IRI95
model. Exactly three EOFs are used in theUS-TECmodel.
Increasing the number of EOFs beyond three achieves
only negligible improvement in the accuracy. The state
vector in the Kalman filter consists of a set of amplitude
coefficients for these EOFs, which describes the vertical
structure. The amplitude coefficients for each grid point,
with a geographic spacing of 1.5� latitude and 4.0�
longitude, are calculated every 15 min. The resultant
model provides a succinct representation of the electron
density field in four dimensions.
[35] The input data to US-TEC are 115 continuously

operating, permanent GPS receivers distributed around
the United States and Canada. Data are received by
NOAA’s Space Weather Prediction Center in real-time,
and therefore allow very low latency computations. In
US-TEC, the Kalman filter uses the IRI95 model to
propagate the state and its associated covariance matrix

to the next observation set, every 15 min. The forward
propagation of the state is constructed from a weighted
linear combination of the relative spatial/temporal gra-
dients in IRI95 and an absolute estimate from IRI95.
Correlations are assumed between neighboring grids in
the latitude and longitude directions where the amount of
correlation decreases with distance, on the basis of a
Gaussian function. No covariance, and therefore no
correlation, is assumed in the radial direction. Model
errors are also included in the propagation of the state
covariance. Details can be found in the work by Spencer
et al. [2004].

9. Using US-TEC to Approximate

the Expected Geometry-Based Mapping

Error

[36] Although US-TEC is a model of the ionosphere, it
is based on adjusting the plasma density profiles from the
IRI empirical model [Spencer et al., 2004; Fuller-Rowell
et al., 2006] based on ground-based, dual-frequency,
GPS receiver observations. Validation of the output
indicates an accuracy of less than 2 TEC units in the
average slant content [Araujo-Pradere et al., 2007;
Minter et al., 2007] making the data ideal for evaluating
the validity of using a shell model. Because it has a full
four dimensions of data (latitude, longitude and height,
plus time), a great deal of analysis can be done using this
data. One such analysis will be a more comprehensive
look at how the spherical geometry impacts the error in
using 1/cos(z0) to map STEC from VTEC. Before going
on to a full data analysis, one final example to quantify
the geometric error will be presented.

Figure 4. Geometry of an idealized ionosphere of individually constant, stratified layers.
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[37] Geometry Example 3: Allow the ionosphere to
retain three dimensions, and allow the density of elec-
trons to be stratified into ‘‘n’’ discrete spherical layers,
each one with a constant value of Ne(i), 1 
 i 
 n (see
Figure 4). This is the most realistic, and frequently cited,
approximation for the real distribution of the ionosphere
without consideration of more complex vertical mixing.
Although the ionosphere does not truly stratify in this
way, on a calm ionospheric day it will tend toward some
stratification [Bilitza, 2001].
[38] To find a ‘‘reasonable’’ stratification of the iono-

sphere, an average vertical profile was generated over the
entire US-TEC area for a day of ‘‘average’’ (Ap = 16)
ionosphere activity. The day used for this test was
12 May 2006. For that day, the average vertical profile
of US-TEC was generated, and these Ne values assigned
to the 53 distinct layers of US-TEC. Figure 5 shows the
electron density of each of the 53 layers, with the two
curves representing ‘‘day’’ and ‘‘night’’ hours. The
heights of each of the 53 layers are given along the X
axis, with the associated electron density of that layer
height given along the Y axis.
[39] As can be seen, the largest share of electrons is

concentrated in the 300–350 km height area. As such, it
may be expected that limiting the geometric mapping
error in that region (by using a ‘‘shell height’’ around

300–350 km) might help minimize the total error.
However, it is important to note that while the contribu-
tions of the highest layers are small (relative to the region
of maximum density) they nonetheless sum up to a
significant portion of the total number of electrons a
raypath will intersect. In addition, the curvature of layers
far removed from the shell itself may cause a growing
‘‘geometric error’’, even as the density of electrons in
those layers is decreasing.
[40] In order to assess whether the small Ne contribu-

tions of higher layers are overwhelmed by the increas-
ingly large geometric mapping errors of said layers, a
few simple tests were performed. Consider first that in
the discretized case of a 53 layer US-TEC model of the
ionosphere the STEC, VTEC and MSTEC can be written
as follows:

VTEC ¼
X53
i¼1

NeðiÞ � dðiÞ ¼ d �
X53
i¼1

NeðiÞ ð21Þ

STEC ¼
X53
i¼1

NeðiÞ � sðiÞ ð22Þ

Figure 5. Average electron density of USTEC, by layer, for 12 May 2006.
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MSTEC ¼ VTEC

cosðz0Þ ¼
l

cosðz0Þ �
X53
i¼1

NeðiÞ � dðiÞ

¼
X53
i¼1

NeðiÞ � sM ð23Þ

In the above equations, Ne(i) refers to the number of
electrons in each of the 53 layers, while s(i) refers to the
slant length along the raypath through each of the 53
layers. Each layer will have a unique s(i) value,
computed by inserting the layers top and bottom radii
into equation (4). The value z0 occurs by choosing some
particular shell, r = rs by which the computing of
MSTEC from VTEC will be done. (Note that US-TEC,
being a three-dimensional model, has no inherent
‘‘shell’’ height though. For this paper, a variety of shell
heights will be chosen for study.)
[41] The value of d(i), the vertical length through each

of the 53 layers, has this constant value for US-TEC:

dðiÞ ¼ 25km ¼ d ð24Þ

Note the similarity between equations (22) and (23). In
order to draw on their similarity, the variable ‘‘sM’’ has
been introduced in equation (23), and will be referred to
as the ‘‘mapped slant length’’. This is not to be confused
with the true slant length, s(i), which is found in
equation (22). The equation for sM can be deduced from
equation (23) as:

sM ¼ d

cosðz0Þ ð25Þ

[42] The mapped slant length (sM) for each layer ‘‘i’’
will thus be constant, since d is constant (25 km), and the
piercing angle is a constant for any given ray and shell
choice. In equations (22) and (23) the only difference is
the use of s(i) in (22) (for STEC) and sM in (23) (for
MSTEC). It is exactly for this reason that the ‘‘geometric
error’’ grows larger as one investigates layers further and
further away from the r = rs shell, since sM, remains
constant and increasingly fails to accurately approximate
the true slant length at a layer, s(i). The layers farthest
from a chosen ‘‘rs’’ shell will have the largest difference
between s(i) and sM. However, as most reasonable ‘‘rs’’
values will lie near the area of densest Ne values it is also
true that those remote layers will have less Ne

to contribute to the overall STEC anyway. The real
question then is whether the geometric errors of layers
far from rs will be outweighed by the smallness of their
Ne contributions.
[43] In this idealized and discretized case where the

geometry and stratification of the model are known, it is
possible to actually sum up the STEC and VTEC values

as implied by the USTEC model. In addition, one may
choose any rs shell and use that to compute z0 and thus
MSTEC. With this in mind, the total (geometry-only)
error (‘‘E’’) of using a shell and simple 1/cos(z0)
mapping function to approximate STEC by MSTEC is
computed as:

E ¼ STEC �MSTEC ¼
X53
i¼1

NeðiÞ � sðiÞ �
X53
i¼1

NeðiÞ � sM

¼
X53
i¼1

NeðiÞ � sðiÞ � sM
� 


¼
X53
i¼1

NeðiÞ � sðiÞ � 25km

cosðz0Þ

� �

ð26Þ

where the individual contribution of each layer to the
total error will be represented as:

eðiÞ ¼ NeðiÞ � sðiÞ � sM
� 


ð27Þ

Equation (27) helps exemplify what was mentioned
before: For each layer further and further from the shell
(especially higher), Ne(i) grows smaller, but [s(i) � sM]
grows larger and the question of interest is whether the
combined quantity, e(i) shrinks or grows as the one
moves into ‘‘i’’ layers high above the shell.
[44] Inorder toquantify thesizeoferrors inequation (26),

and how each layer contributes to them, a sampling of
shell heights and piercing angles were tested. Table 3
shows the total errors incurred in this example:
[45] These data are presented graphically in Figure 6.

Notice in that figure that the signature of these errors is
not highly complex, and definitely able to be modeled by
a simple function (quadratic, logarithmic or other).
However, the coefficients of such a function would
depend upon time of day, shell height, piercing angle
and of course absolute knowledge of the stratification of
the ionosphere.

Table 3. Total Error (= E = STEC-MSTEC) Incurred in Using

1/cos(z0) Mapping Angle in a 53 Layer Perfectly Stratified

‘‘Average’’ Spherical Ionospherea

Shell Height
(km)

Piercing Angle at Shell Height (z0) (deg)

5 15 25 35 45 55 65

200 (day) �0 �0.012 �0.039 �0.094 �0.212 �0.489 �1.256
200 (night) �0 �0.006 �0.019 �0.045 �0.103 �0.237 �0.608
300 (day) �0 �0.008 �0.025 �0.060 �0.134 �0.304 �0.753
300 (night) �0 �0.004 �0.012 �0.029 �0.065 �0.148 �0.367
400 (day) �0 �0.003 �0.010 �0.024 �0.051 �0.100 �0.132
400 (night) �0 �0.002 �0.005 �0.012 �0.025 �0.050 �0.070
500 (day) �0 0.001 0.004 0.012 0.037 0.127 0.664
500 (night) �0 0.001 0.002 0.006 0.017 0.059 0.312

aUnits are TECU.
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[46] However, if one looks at the ratio of E to STEC
(shown in Table 4) it is seen that the time-of-day
dependence is effectively removed (leaving dependence
on shell height, piercing angle and layer stratification
only). This indicates that, if the actual stratification of the
ionosphere were to follow the one chosen on this
particular day, that a simple scale factor can be applied
(based on shell height and piercing angle) which will
alleviate the effect of the systematic geometric error, E.
[47] Table 4 is represented graphically in Figure 7,

where a few things can be seen. First off, looking at one
shell at a time, one can see an asymptotic behavior
(which turns out to be nicely estimated by an arctangent,
as will be seen next) as the piercing angle goes from 65 to
0 degrees. However, looking at one piercing angle at a
time, it is clear that there is a linear trend to the percent
error as the shell height changes from 200 km high to
500 km high. These simple observations will be used to
propose a modification to the ‘‘original’’ mapping func-
tion (equation (8)) later.
[48] Prior to proposing a modification to the mapping

function, let us turn our attention to the question of layer-
by-layer contributions to the geometric error. Breaking
down the total error (E) into its layer-by-layer contribu-
tions (e(i)), one can begin to answer whether the

shrinking Ne(i) or growing [s(i) � sM] values dominate
higher layers. Figures 8–11 show the contribution of
each layer to the total geometry error. In order to arrive at
the total error (as shown in Table 3), the integral under
each curve in Figures 8–11 must be performed (normal-
ized against the distance between the top and bottom
layers.) There are a few interesting things to note in those
figures. First, the transition from those layers yielding a
positive error to those yielding negative error occurs
(predictably) at the layer height corresponding to the

Figure 6. Total error (MSTEC – STEC) induced in an idealized 53 layer stratified ionosphere by
using a simple cosine mapping angle and a variety of spherical shell heights.

Table 4. Ratio of Total Error (E) Relative to STECa

Shell Height
(km)

Piercing Angle at Shell Height (z0) (deg)

5 15 25 35 45 55 65

200 (day) �0.03 �0.28 �0.84 �1.86 �3.68 �7.10 �14.36
200 (night) �0.03 �0.28 �0.85 �1.88 �3.71 �7.15 �14.47
300 (day) �0.02 �0.18 �0.54 �1.18 �2.30 �4.30 �8.14
300 (night) �0.02 �0.18 �0.54 �1.19 �2.32 �4.36 �8.26
400 (day) �0.01 �0.08 �0.22 �0.48 �0.87 �1.38 �1.34
400 (night) �0.01 �0.08 �0.23 �0.49 �0.89 �1.44 �1.47
500 (day) +0.00 +0.03 +0.09 +0.24 +0.61 +1.69 +6.22
500 (night) +0.00 +0.03 +0.09 +0.23 +0.58 +1.63 +6.08

aUnits are percent.
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chosen shell. This is due to the fact that geometry errors
go to zero [s(i) = sM] at the shell. Secondly, it can be seen
that the greater piercing angles tend to generate larger
bulges of error in approaching the shell, as well as
thicker ‘‘tails’’ for layers above the shell. However,
despite the size of the preshell bulge, or the postshell
tail, the real story is that each layer does contribute to the
geometric error and unless the positive and negative
aspects just happen to be perfectly balanced, the fact is
that geometry alone will yield a nonzero systematic error
in MSTEC.
[49] One final and cautionary note is that the tails of all

functions seen in Figures 8–11 do not asymptotically
approach zero at the maximum height of US-TEC. This
implies that the density of electrons is not shrinking fast
enough to overwhelm the growing geometry error as the
layers get farther and farther from the shell. Eventually,
of course, the number of electrons will approach zero and
the geometric errors will be of no consequence. But at
least at the 1400 km height (top of US-TEC), there
appears to be still significant electron density which

should yield even more systematic error if the ‘‘tails’’
in Figures 8–11 were allowed to extend to the top of the
ionosphere (wherever that might lie).
[50] As predicted in ‘‘Geometric Example 2’’, the

actual percentage error incurred by using a simple 1/cos(z0)
mapping function (shown in Table 4) has a purely

geometric signal which falls between a few hundredths
of a percent to as large as 14%. Also, the sign of this
systematic (purely geometric) error is constant for a
chosen shell height. As such, this third example proves
that even if the ionosphere is treated as a known series of
stratified layers, that the use of 1/cos(z0) will always yield
an MSTEC value which is systematically too large or too
small, relative to STEC (depending on chosen shell
height).

10. Modified Mapping Function

[51] In the three geometric examples provided, it has
been shown that there will always be a systematic
component to the error induced by reliance upon 1/cos(z0)

Figure 7. Percentage error ((STEC – MSTEC)/STEC)*100% induced in an idealized 53 layer
stratified ionosphere by using a simple cosine mapping angle and a variety of spherical shell
heights.
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as the sole mapping function for MSTEC. But it has also
been shown that this systematic error is dependent both
upon the actual distribution of electrons and how that
distribution relates to the choice of shell height. Can a
better, generic mapping function be proposed which
attempts to model and remove this systematic error?
Possibly, but only under certain presumptions: (1) The
precondensed ionosphere is stratified and (2) that strat-
ification is known. These conditions are quite limiting
due to the fact that the electron density depends on time
of day, and that any vertical structure will make such an
attempt fruitless. Is the average stratification of 12 May
2006 a good estimate of the ionosphere? Maybe, but
attempting to find a better mapping function between
VTEC and STEC seems somewhat futile when the
distribution of the ionosphere changes in space and time
in ways that are too difficult to rely on a shell model
anyway.
[52] On the other hand, it should be pointed out that

shell models (despite known problems) will probably
continue to be popular methods for modeling the iono-
sphere into the future. As such, a simple ‘‘fix’’ to the
basic 1/cos(z0) version of Ŵ will be proposed, based on
the data of Table 4 and the graphical observation of that
data in Figure 7.

[53] First, recall that Table 4 has ‘‘percent error’’
(which will be given the variable ‘‘p’’):

p ¼ STEC �MSTEC

STEC
� 100% ð28Þ

where MSTEC = (VTEC/cos(z0)).
[54] Recall that the entire goal of the mapping function

is to estimate STEC from VTEC and ‘‘shell informa-
tion’’ (piercing angle, for example). As such, solving
equation (28) for STEC and expanding the original
‘‘MSTEC’’ function, we arrive at:

STEC ¼ 1

1� ðp=100Þ �MSTEC

¼ 1

1� ðp=100Þ �
VTEC

cosðz0Þ

¼ VTEC

ð1� ðp=100ÞÞ � cosðz0Þ ð29Þ

Thus, the proposed new mapping function takes this
form:

Ŵ new ¼ 1

ð1� ðp=100ÞÞ � cosðz0Þ ð30Þ

Figure 8. Layer-by-layer contribution to the total geometry error for a perfectly stratified
ionosphere if a 200 km shell is chosen for mapping VTEC into STEC.
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[55] The values for p depend on z0 and rs. Either a
lookup table could be used or else (for simplicity of
coding) a generic functional representation of p can be
sought. That is where the observations of Figure 7 were
useful. In order to fit a function to the data of Table 4,
each z0 value was allowed to have a linear fit for p across
all rs (or h) values, and then the coefficients of those lines
(‘‘a’’ and ‘‘b’’) were fit to arctangents, as such:

p ¼ aþ b � h
a ¼ � arctan½ðz0 � a0Þ � a1
 � a2ð Þ � a3
b ¼ � arctan½ðz0 � b0Þ � b1
 � b2ð Þ � b3

ð31Þ

where z0 is given in degrees, h is the shell height in
kilometers (equal to rs minus the mean Earth radius), and
the following coefficients fit the data of Table 4 best in a
least squares sense:

a0 ¼ 64:4297 b0 ¼ 64:3659
a1 ¼ 0:0942437 b1 ¼ 0:104974
a2 ¼ 1:39436 b2 ¼ 1:41152
a3 ¼ 19:6357 b3 ¼ �0:0463341

[56] This new mapping function obviously is predis-
posed to agree better with the stratified ionosphere
model, since it was derived directly from it. As such, it
will be unnecessary to test it against that model. How-
ever, this mapping function will be examined for its
usefulness in later sections, against actual 3-D vertically
mixed data to see if it adds any accuracy.
[57] All of the above examples have only examined the

geometric problems arising from reliance upon 1/cos(z0)
as the mapping function between VTEC and MSTEC. In
the following sections, the problem of the ionosphere
having a complex distribution (far from being simply
stratified) will be examined, and its impact on MSTEC
vs STEC quantified. As will be shown, this error is the
real error of using a shell model, as it will be shown to
dominate the total error budget, making these geometric
errors seem small by comparison.

11. Quantifying Overall STEC Errors

Using US-TEC

[58] The previous sections have dealt with idealized
electron distributions in an attempt to simplify the
quantification of errors associated with the use of a shell

Figure 9. Layer-by-layer contribution to the total geometry error for a perfectly stratified
ionosphere if a 300 km shell is chosen for mapping VTEC into STEC.
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model. Obviously such simplifications are limited in
what they can contribute to the overall understanding
of the errors. In order to further expand this study, it is
necessary to take a reliable, realistic 3-D (vertically
mixed) model of the ionosphere and compute the actual
STEC seen through such a model and compare it with
the MSTEC which would be computed if the 3-D model
were replaced with a 2-D shell model and some mapping
function.
[59] Few such models exist. However, one readily

available, and reliable model is the previously mentioned
US-TEC [Spencer et al., 2004], of the Space Weather
Prediction Center (SWPC) of the National Oceanic and
Atmospheric Administration (NOAA’s) National Weather
Service (NWS). This model covers the region from 10 to
60 degrees north latitude (by 1.5 degree increments),
220 to 300 degrees east longitude (by 4.0 degree incre-
ments), and from 80 to 1400 km above an average Earth
radius (by 25 km increments).
[60] A grid of points, spaced across the conterminous

United States was used as the points of interest. At each
of these points, the actual STEC value along a raypath
from the grid point to each visible GPS satellite was
integrated through the three-dimensional US-TEC iono-
sphere model. (In fact, SWPC provides these integrated

values as a series of grids, precomputed.) While these
values come from US-TEC, which is a model of the
ionosphere, they are the true integration along raypaths
from the grid points of interest, through US-TEC. As
such, these STEC values will be, for the purposes of this
paper, considered ‘‘control’’ STEC values, against which
the MSTEC values will be compared. The VTEC
values for the shell models were created by integrating
the US-TEC model vertically at each latitude and longi-
tude combination in the 3-D grid in order to get an
electrons/square-meter value to place at a grid location
on any given shell. Since any given shell model uses its
own specific shell height, these vertically integrated
values were applied to a variety of popular shell heights
(200 km to 500 km) in order to generate a family of shell
models for testing.
[61] Using the US-TEC data, and the family of deriv-

ative shell models therefrom, a set of data was examined
spanning 12 April 2006 to 12 September 2006. Two
mapping functions were used to generate MSTEC: the
original (1/cos(z0)), and the new Ŵ new from equation (30).
Statistics of E (the difference between STEC andMSTEC)
were generated using these two different mapping
functions. These E data were parsed into a variety of
categories, including Satellite Vehicle Number, Latitude,

Figure 10. Layer-by-layer contribution to the total geometry error for a perfectly stratified
ionosphere if a 400 km shell is chosen for mapping VTEC into STEC.
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Longitude, Shell Height, Angle above the Horizon, Time
of Day, and the ionosphere activity index ‘‘Ap’’. The
initial statistics showed no significant statistical correla-
tion with Longitude nor with Satellite Vehicle number,
so further analysis using these two variables was not
pursued. However, the other five variables definitely had
a quantifiable impact in the E values and are presented
next. Before looking at interactions between parameters,
the basic statistical data for each variable independently
are presented in Tables 5–9.

[62] It should be noted that Tables 5–9 all represent the
same data, but grouped for a different independent vari-
able on each table. The purpose of these five different
tables is to answer two main questions of this paper: (1)
Does the new mapping function show an improvement
over the old mapping function? (2) How well or how
poorly do shell models behave with respect to a particular
variable (time of day, etc.)? Further discussion of these
two questions is provided for each table.

Figure 11. Layer-by-layer contribution to the total geometry error for a perfectly stratified
ionosphere if a 500 km shell is chosen for mapping VTEC into STEC.

Table 5. STEC – MSTEC by Latitudea

North Latitude Number of Values Average Standard Deviation RMS Minimum Maximum

10–20 664 � 106 �1.4 4.3 4.5 �97.7 +43.9
�0.2 2.1 2.1 �64.2 +44.3

20–30 801 � 106 �1.0 3.1 3.3 �74.1 +30.4
�0.0 1.8 1.8 �40.2 +35.7

30–40 824 � 106 �0.8 2.6 2.7 �67.2 +30.8
+0.0 1.5 1.5 �44.0 +38.5

40–50 802 � 106 �0.4 1.9 2.0 �41.4 +29.0
+0.2 1.1 1.1 �28.1 +32.6

50–60 739 � 106 �0.3 1.4 1.4 �40.4 +35.5
+0.2 0.9 0.9 �28.1 +38.5

aUnits are TECU. All shells, all times, all horizon angles, all Ap values. Statistics using the original 1/cos(z
0) function

are shown in nonbold type. Statistics using the new mapping function (Ŵ new) are shown in bold type.
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[63] A few things are clear from this table. The first is
that points in the midlatitudes have more data. This is
simply because such points fall under the central area of
US-TEC and therefore have more receiver-satellite ray-
paths which pass through the complete US-TEC grid.
Also, note that the statistics of E definitely improve as
one moves away from the equator northward. Although
such impacts could be explained from a variety of
sources, the most likely seems (to the authors) to be that
ionosphere structure is greater, that is steeper gradients
exist, in the southern part of CONUS than in the northern
part. The southern United States is closer to the equato-
rial ionization anomaly (EIA), which is know to have
more structure than at midlatitudes, and the northern part
of the United States is still sufficiently far removed from
the processes associated with auroral oval. Since greater
ionosphere activity is expected to contribute to the
inability of a shell model to properly reflect the true
slant delays, it is reasonable to hypothesize that this
south-to-north reduction in structure correlates to a
south-to-north improvement in the agreement between
USTEC-derived ‘‘control’’ slant delays and mapped slant
delays.
[64] Additionally, while all of the above conclusions

can be drawn for both the original or the new mapping
functions, it is clear that using the new mapping function
has reduced the bias (average E) significantly, as well as

the overall agreement. (Standard deviations improved by
36% to 51%, depending on latitude.)
[65] Table 6 shows, by 2 hour time blocks, how E

changes through out a day. Although the US-TEC model
covers 4 time zones, the statistics can still be viewed as
‘‘day’’ and ‘‘night’’ by allowing the central time zone of
the United States to approximate the US-TEC time for
the general purposes of dividing the day into daytime and
nighttime. Certain expected outcomes can be seen in
Table 6, such as no strong correlation between the
number of data points and time of day (as GPS satellites
are visible day and night; note, however, that there is a
moderate dropoff, indicating a slight increase in visible
GPS satellites over the United States during the day).
Also, as expected, the smaller ionospheric TEC values
during the night yields better statistics for E. In fact, the
strongest conclusion one could draw from this table
would be ‘‘in absolute terms, using a shell model during
the night is two to three times more reliable than using
one during the day’’.
[66] As in Table 5, a comparison between the old and

new mapping function statistics shows that the new
mapping function generally removes all biases (average
E tends toward 0.0) and the standard deviations improve
by 30% to 50% as well, with the greatest improvement
being the reduction of standard deviations during day-
light hours.

Table 6. STEC – MSTEC by Time of Daya

Hour of Day (UTC) Number of Values Average Standard Deviation RMS Minimum Maximum

0–2 313 � 106 �1.1 3.5 3.7 �74.5 +33.8
+0.0 1.8 1.8 �46.5 +37.0

2–4 309 � 106 �0.8 2.7 2.8 �69.5 +35.5
+0.0 1.4 1.4 �43.6 +38.5

4–6 303 � 106 �0.6 1.9 2.0 �48.3 +20.7
+0.0 1.1 1.1 �29.2 +31.7

6–8 299 � 106 �0.4 1.5 1.5 �33.2 +23.1
+0.0 0.9 0.9 �22.6 +23.1

8–10 305 � 106 �0.3 1.2 1.3 �28.7 +10.4
+0.0 0.7 0.7 �17.8 +12.9

10–12 314 � 106 �0.4 1.4 1.4 �24.5 +9.8
+0.0 0.8 0.8 �17.5 +13.2

12–14 328 � 106 �0.5 1.8 1.9 �37.6 +13.0
+0.0 1.0 1.0 �26.9 +15.5

14–16 337 � 106 �0.7 2.4 2.6 �58.3 +18.1
+0.1 1.3 1.3 �34.2 +25.2

16–18 342 � 106 �0.9 3.1 3.2 �87.0 +24.8
+0.1 1.6 1.6 �56.1 +28.1

18–20 336 � 106 �1.1 3.7 3.8 �84.2 +25.6
+0.1 2.1 2.1 �49.8 +30.8

20–22 328 � 106 �1.1 4.0 4.2 �97.7 +43.9
+0.2 2.3 2.3 �64.2 +44.3

22–24 316 � 106 �1.2 4.0 4.2 �85.7 +30.8
+0.1 2.1 2.1 �51.4 +30.5

aUnits are TECU. All shells, all horizon angles, all latitudes, all Ap values. Areas in italics indicate ‘‘night’’ in the
Central Time Zone. Statistics using the original 1/cos(z0) function are shown in nonbold type. Statistics using the new
mapping function (Ŵ new) are shown in bold type.
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[67] Table 7 breaks down the E statistics by elevation
angle of the satellite above the horizon. Because it has
been shown that the original mapping function, 1/cos(z0)
gets progressively worse at low elevation angles, it is not
at all a surprise to see the E statistics (based on the
original mapping function) improve (in both average and
standard deviation about the average) as raypaths move
from near-horizon (0 to 5 degrees) to near-vertical (85–
90 degrees). For the new mapping function, the improve-
ment in standard deviation still occurs when going from
near-horizon to near-vertical, but note that a significant
portion of the bias (average E) has been removed by
using the new mapping function, even at the lowest
elevation angles.
[68] Although outliers continue to exist for near-

vertical raypaths at the level of a few TECUs for both
mapping functions, the overall statistics are quite good
for these points. Still, the RMS of E exceeds 1.0 TECU

at 40 degrees for the original mapping function (35
degrees for the new mapping function). If the need for
TEC accuracy is at the 1.0 TECU level, then blindly
applying a generic shell model (even with the new
mapping function) simply will not suffice for satellites
under 35 degrees above the horizon. And as can be
calculated from the data counts, 62% of all raypaths
occur below 35 degrees of elevation angle. That is a lot
of data to ignore in order to gain 1.0 TECU accuracy
from a shell model.
[69] Some very interesting information can be inferred

from Table 7. First, and of critical importance, it must be
remembered that US-TEC is built without any concept of
a 2-D shell whatsoever. There is therefore no predispo-
sition to any particular ‘‘shell height’’, though it should
be mentioned that the underlying IRI95 model certainly
does allow for regions of high density and low density.
With this in mind, it is striking how clearly one can see

Table 7. STEC – MSTEC by Angle Above the Horizona

Horizon Angle Number of Values Average Standard Deviation RMS Minimum Maximum

0–5 292 � 106 �2.2 6.0 6.4 �94.6 +43.9
+0.1 3.0 3.0 �61.4 +44.4

5–10 306 � 106 �1.9 5.1 5.5 �97.7 +33.8
+0.1 2.6 2.6 �64.2 +37.0

10–15 311 � 106 �1.6 3.9 4.2 �85.3 +33.0
+0.1 2.1 2.1 �56.7 +36.7

15–20 309 � 106 �1.2 2.8 3.1 �61.7 +29.0
+0.2 1.7 1.7 �38.4 +35.7

20–25 301 � 106 �0.9 2.1 2.2 �45.0 +26.2
+0.2 1.4 1.4 �29.4 +27.6

25–30 292 � 106 �0.6 1.6 1.7 �36.7 +18.8
+0.1 1.2 1.2 �26.2 +24.0

30–35 284 � 106 �0.5 1.3 1.4 �32.1 +19.4
+0.0 1.0 1.0 �25.2 +20.1

35–40 273 � 106 �0.4 1.1 1.1 �25.1 +17.0
+0.0 0.9 0.9 �20.7 +18.7

40–45 256 � 106 �0.2 0.8 0.9 �20.9 +18.3
�0.0 0.7 0.7 �18.2 +18.8

45–50 236 � 106 �0.2 0.7 0.7 �16.9 +14.3
�0.0 0.6 0.6 �15.0 +14.7

50–55 213 � 106 �0.1 0.5 0.5 �13.9 +10.4
�0.0 0.5 0.5 �12.9 +11.3

55–60 188 � 106 �0.09 0.4 0.4 �12.3 +8.3
�0.01 0.4 0.4 �11.3 +8.4

60–65 164 � 106 �0.06 0.3 0.3 �11.8 +9.1
�0.01 0.3 0.3 �11.6 +9.2

65–70 138 � 106 �0.04 0.3 0.3 �7.5 +7.8
�0.01 0.3 0.3 �7.1 +7.9

70–75 111 � 106 �0.03 0.2 0.2 �5.3 +8.3
�0.005 0.2 0.2 �5.2 +8.3

75–80 83 � 106 �0.01 0.2 0.2 �5.5 +5.0
�0.002 0.2 0.2 �5.5 +5.0

80–85 53 � 106 �0.004 0.1 0.1 �3.9x +3.4
+0.000 0.1 0.1 0.1 +3.4

85–90 18 � 106 �0.002 0.2 0.2 �3.4 +3.7
�0.003 0.2 0.2 �3.4 +3.6

aUnits are TECU. All shells, all times, all latitudes, all Ap values. Statistics using the original 1/cos(z0) function are
shown in nonbold type. Statistics using the new mapping function (Ŵ new) are shown in bold type.
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improvements in E by using a shell located at 400 km, as
opposed to any other of the tested shells. The near zero
average and sub-TECU standard deviation (for the orig-
inal mapping function) indicate that, day or night, high
satellite or low, at any latitude, one can, on average, get
about 1 TECU of accuracy by using a 400 km shell.
Remember that Table 7 indicated a cutoff angle of 35
degrees was required to yield sub-TECU accuracy.
Clearly that result was based on all the bad statistics
coming from the shells not located at 400 km altitude.
[70] It is also striking to notice that the new mapping

function yields significant improvement to all shell
models except that at 400 km (where, as we will see
later, it has some positive and some negative impact over

using the original mapping function). The fact that all
shells except 400 km have a dramatic improvement in
using the new mapping function can be inferred from
Figure 7 where the percentage errors for all shells except
400 km have a nonzero signature.
[71] However, one slight disadvantage of 400 km

shells, relative to lower shells is that as one uses a higher
and higher shell, more rays can be drawn from receivers
on the ground to the GPS SV’s without intersecting the
shell within its latitude and longitude range. Thus, as
seen in Table 8, as shell height increases from 200 to
500 km, the number of actual values available for
comparison is reduced from 558 million to 535 million.
However, this slight disadvantage seems unimportant

Table 8. STEC – MSTEC by Shell Heighta

Shell Height (km) Number of Values Average Standard Deviation RMS Minimum Maximum

200 558 � 106 �2.9 4.9 5.7 �97.7 +40.6
�0.3 2.6 2.6 �64.2 +43.9

250 555 � 106 �1.9 3.3 3.8 �70.0 +41.1
�0.0 1.9 1.9 �47.5 +44.1

300 551 � 106 �1.2 2.1 2.4 �47.3 +42.3
+0.1 1.4 1.4 �33.9 +44.1

350 547 � 106 �0.5 1.2 1.3 �33.7 +43.3
+0.1 1.0 1.1 �27.5 +44.3

400 544 � 106 �0.01 0.9 0.9 �26.7 +43.9
+0.17 0.9 0.9 �26.1 +44.2

450 539 � 106 +0.4 1.1 1.2 �24.8 +43.7
+0.2 0.9 0.9 �27.4 +43.4

500 535 � 106 +0.8 1.6 1.8 �24.2 +42.6
+0.2 1.1 1.1 �28.1 +41.7

aUnits are TECU. All horizon angles, all times, all latitudes, all Ap values. Statistics using the original 1/cos(z0)
function are shown in nonbold type. Statistics using the new mapping function (Ŵ new) are shown in bold type.

Table 9. STEC – MSTEC by Ap Index
a

Ap Index Number of Values Average Standard Deviation RMS Minimum Maximum

0–10 2677 � 106 �0.8 2.8 2.9 �85.7 +43.9
+0.1 1.5 1.5 �49.7 +44.3

10–20 796 � 106 �0.8 2.9 3.0 �84.2 +29.4
+0.1 1.6 1.6 �51.4 +32.0

20–30 267 � 106 �0.8 2.9 3.0 �97.7 +35.5
+0.0 1.6 1.6 �64.2 +38.5

30–40 59 � 106 �0.7 3.0 3.1 �87.0 +25.2
+0.0 1.7 1.7 �56.1 +28.6

40–50 0b — — — — —
50–60 30 � 106 �0.5 2.2 2.3 �62.1 +22.7

+0.1 1.4 1.4 �31.8 +25.5
60–70 0b — — — — —
70–80 0b — — — — —
80–90 0b — — — — —
90–100 0b — — — — —
100–110 0b — — — — —
110–120 0b — — — — —

aUnits are TECU. All shells, all times, all latitudes, all horizon angles. Statistics using the original 1/cos(z0) function
are shown in nonbold type. Statistics using the new mapping function (Ŵ new) are shown in bold type.

bNo days with an Ap value in this range occurred during the study period.
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relative to the reliable results which seem to come from
the 400 km shell choice.
[72] The final single-variable analysis was about the

Ap index, in Table 9. What is decidedly odd about this
table is that no immediate correlation between Ap index
and E is obvious. However, as only 3 days had Ap

indices above 30 (two in the 30–40 range, one in the
50–60 range) in this 5 month period, the amount of data
is somewhat prohibitive. One possible interpretation is
that as geomagnetic activity increases the ionosphere
tends to become more ‘‘chemically’’ controlled, particu-
larly in summer and equinox, which is the period under
study [Fuller-Rowell et al., 1996]. Increased chemical
control from storm-time changes in the neutral atmo-
sphere (thermosphere) tends to increase the rate of ion
recombination, and hence decrease plasma densities.
Variability from other sources, such as neutral wind
surges, is also less effective during these times. The
same study may indicate increased variability in winter
as a function of Ap. It may also be the case that more
severe geomagnetic disturbance will eventually reverse
the apparent trend seen in Tables 9 and 10.

12. Combinations Yielding Best

Performance

[73] It cannot be overemphasized that the reason 2-D
shells have been used for so long is that there are
significant advantages to them (smaller data storage,
simpler mathematical formulation, easier dissemination
over limited bandwidths, etc.). Recognizing this, and
thus the likelihood that some applications will continue

to use shell models indefinitely, it seems useful to ask
what the very best performance one can obtain with a
shell model might be. This means picking certain vari-
ables, of which the first choice seems obvious from the
previous tables: use a shell height of 400 km. Focusing
on that specifically, one can dig deeper for the optimal
way to use a shell model. It is hypothesized that the lack
of significant improvement in statistics with lower Ap

values might have been clouded by the number of ‘‘bad
shells’’ which went into that table. Looking exclusively
at only the 400 km shell, Table 9 can be recalculated and
is presented in Table 10.
[74] Unfortunately, and once again, these results are

somewhat confusing and unsatisfying. No clear indica-
tion that a larger Ap value yields a lack of reliability in a
shell model can be seen. Obviously more data are needed
for days of greater ionosphere activity to draw reasonable
conclusions. Furthermore, as already pointed out in
Table 8, the new mapping function is not much of an
aid to improvement when focusing solely on the 400 km
shell.
[75] To further exemplify the usefulness of a shell

model at 400 km, Table 7 was recreated only with the
400 km shell and presented in Table 11. That table shows
the RMS for E values does not exceed 1.0 TECU until
the raypath is as low as 20 degrees above the horizon.
This is a definite improvement over the ‘‘all shells’’
statistics which Table 7 presented.
[76] Also, Table 11 allows a closer examination of the

impact of switching to the new mapping function for this
particular shell. Examining average, standard deviation
and RMS values it can be seen that at the lowest horizon
angles, the new mapping function actually has a very

Table 10. STEC – MSTEC by Ap Index
a

Ap Index Number of Values Average Standard Deviation RMS Minimum Maximum

0–10 380 � 106 �0.0 0.85 0.85 �23.2 +43.9
+0.2 0.85 0.86 �22.7 +44.2

10–20 113 � 106 �0.0 0.9 0.9 �24.0 +21.6
+0.2 0.9 0.9 �24.0 +22.2

20–30 38 � 106 �0.0 0.9 0.9 �26.7 +23.9
+0.2 0.9 0.9 �26.1 +24.0

30–40 8 � 106 �0.02 1.09 1.09 �23.9 +21.6
+0.15 1.08 1.09 �23.0 +22.2

40–50 0b — — — — —
50–60 4 � 106 +0.08 0.99 0.99 �11.9 +11.0

+0.21 1.00 1.02 �11.6 +11.8
60–70 0b — — — — —
70–80 0b — — — — —
80–90 0b — — — — —
90–100 0b — — — — —
100–110 0b — — — — —
110–120 0b — — — — —

aUnits are TECU; 400 km shell only. All times, all latitudes, all horizon angles. Statistics using the original 1/cos(z0)
function are shown in nonbold type. Statistics using the new mapping function (Ŵ new) are shown in bold type.

bNo days with an Ap value in this range occurred during the study period.
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slight degradation in the statistics. However, once the
raypaths are more than 20 degrees above the horizon, the
new mapping function yields a very slight improvement.
[77] Table 11 shows some good news for those appli-

cations which must rely on a shell model. Generally
speaking, the use of a 400 km shell allows raypaths as
low as 15 degrees above the horizon while maintaining
an RMS accuracy of 1.0 TECU. The elimination of
raypaths below 15 degrees only corresponds to 26% of
all raypaths over these days. And if this additional data is
needed (accompanied by an allowable loss of accuracy)
the RMS never exceeds 1.7 TECU for this shell model.
[78] Generally speaking, if one is using a shell model,

the only controllable variables are shell height and cutoff
angle for raypaths. After that, most shell models must be
expected to work at a variety of latitudes, and times of
day. About the only case not strongly studied is that of
very high geomagnetic activity, such as during geomag-

netic storms. Further studies should focus exclusively on
using shell models during more energetic ionospheric
activity.

13. Conclusions

[79] This paper has focused on the errors inherent to
the use of spherical shell models of the ionosphere. Such
models, while simple to use, contain no information
about the vertical structure of the ionosphere and there-
fore cannot perfectly describe the Total Electron Content
of a ray whose path slants through the shell.
[80] It was shown that the frequently used ‘‘original

mapping function’’ (1/cos(z0)) which connects the verti-
cal TEC to the slant TEC is mathematically perfect if
(and only if) the ionosphere truly is a spherical shell of
zero thickness. However, a number of geometric
examples were then used to examine how the original

Table 11. STEC – MSTEC by Angle Above the Horizona

Horizon Angle Number of Values Average Standard Deviation RMS Minimum Maximum

0–5 41 � 106 +0.6 1.5 1.7 �26.7 +43.9
+0.9 1.5 1.8 �26.1 +44.2

5–10 44 � 106 +0.3 1.4 1.4 �22.8 +25.9
+0.6 1.4 1.5 �22.2 +26.0

10–15 44 � 106 +0.0 1.2 1.2 �20.0 +20.7
+0.3 1.1 1.2 �19.7 +20.8

15–20 44 � 106 �0.2 1.0 1.0 �19.8 +16.3
+0.1 1.0 1.0 �18.5 +16.5

20–25 43 � 106 �0.2 0.8 0.9 �20.9 +13.8
+0.1 0.8 0.8 �19.5 +14.7

25–30 41 � 106 �0.2 0.7 0.8 �15.3 +12.5
+0.1 0.7 0.7 �14.1 +13.2

30–35 40 � 106 �0.2 0.7 0.7 �14.9 +12.8
+0.0 0.6 0.6 �13.9 +13.2

35–40 39 � 106 �0.1 0.6 0.6 �12.9 +11.9
+0.0 0.5 0.5 �12.4 +12.0

40–45 36 � 106 �0.1 0.5 0.5 �11.6 +9.0
+0.0 0.5 0.5 �11.1 +9.0

45–50 34 � 106 �0.1 0.4 0.4 �8.7 +9.3
+0.0 0.4 0.4 �8.4 +9.4

50–55 30 � 106 �0.1 0.3 0.3 �9.5 +7.5
+0.0 0.3 0.3 �9.3 +7.6

55–60 27 � 106 �0.05 0.3 0.3 �8.3 +7.3
�0.00 0.3 0.3 �8.1 +7.3

60–65 23 � 106 �0.04 0.3 0.3 �6.7 +7.1
�0.01 0.3 0.3 �6.6 +7.1

65–70 20 � 106 �0.02 0.2 0.2 �4.4 +5.3
�0.00 0.2 0.2 �4.3 +5.3

70–75 16 � 106 �0.02 0.2 0.2 �5.2 +8.3
�0.01 0.2 0.2 �5.2 +8.3

75–80 12 � 106 �0.01 0.2 0.2 �5.2 +4.9
�0.00 0.2 0.2 �5.2 +5.0

80–85 8 � 106 �0.003 0.1 0.1 �2.9 +3.1
�0.000 0.1 0.1 �2.9 +3.1

85–90 3 � 106 �0.002 0.2 0.2 �3.3 +3.6
�0.002 0.2 0.2 �3.3 +3.6

aUnits are TECU; 400 km shell only. All times, all latitudes, all Ap values. Statistics using the original 1/cos(z0)
function are shown in nonbold type. Statistics using the new mapping function (Ŵ new) are shown in bold type.
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mapping function fails even under the most simplistic of
three-dimensional and horizontally uniform conditions.
[81] While none of the geometric examples was meant

to capture a realistic vertical structure, they all showed
that a stratified ionosphere (without any vertical mixing),
cannot be perfectly captured using a shell model com-
bined with the original mapping function. While the
errors could be as small as a few tenths of a TECU,
such a systematic error would propagate poorly in
positioning applications which rely on a priori knowl-
edge of the ionosphere.
[82] When quantifying the purely geometric error, an

‘‘average stratification’’ model was tested against shell
models and a very simple pattern of geometric error was
discerned. This simple pattern was dependent upon shell
height and piercing angle. Upon studying this pattern of
geometric error, a ‘‘new mapping function’’ Ŵ new was
proposed which scaled the ‘‘original mapping function’’
to remove the geometric error. It would be of value to test
this function on other model ionospheres.
[83] An attempt to quantify the total error of using a

shell model (combining both geometric issues with
actual vertical and horizontal structure) was made by
using the US-TEC model of NOAA’s Space Weather
Prediction Center. Seven months of US-TEC data were
examined. Actual integrated TEC values along slant
raypaths were compared against values mapped from
the vertical TEC values using both the ‘‘original’’ and
‘‘new’’ mapping functions. The statistics of these STEC-
MSTEC data were broken down five different ways,
each based on a different variable: latitude, time of day,
vertical angle, shell height and Ap index (ionosphere
activity).
[84] Although the conclusions were mixed from the

view of Ap index, the conclusion drawn from investi-
gating latitude, time of day, vertical angle and shell
height all were conclusive: improvements of 30% to
50% in matching mapped STEC to actually integrated
STEC could be gained by switching from the original
mapping function to the new mapping function.
[85] Additionally, these data helped answer whether an

‘‘optimal shell model’’ could be found was then
addressed. Based on the results in this paper, the follow-
ing conclusions could be drawn:
[86] 1. If one is using a shell at 400 km height, and data

are restricted to 15 degrees or more above the horizon
(and, ostensibly, has an Ap index of no more than 30)
then the errors inherent in using a shell model can be
contained to an RMS of 1.0 TECU. The new mapping
function yielded smaller residuals in this case, but
worked worse than the original mapping function below
horizon angles of 15 degrees.
[87] 2. If any other shell height besides 400 km is used

(for example, if using the WAAS ionosphere model
which places the shell at 350 km) then using the new

mapping function reduces disagreement between STEC
and MSTEC by a factor as much as 50%.
[88] While the use of shell models will always contain

some inherent error, it was shown that such error can be
controlled by optimal choice of variables (specifically
shell height, piercing angle and mapping function). If,
however, one is interested in accuracies of the slant TEC
which are always below 1.0 TECU, then no shell model
could be found which satisfied this criteria, unless one
were restricted to very nearly vertical raypaths, which
seems too restrictive to be applied to most general
purposes.
[89] This study exclusively examined the errors in a 2-

D shell model. Further investigations could be done
which examine the error inherent in using spherical,
rather than the more accurate ellipsoidal, shapes for both
the 2-D and 3-D ionosphere models.

Appendix A

[90] Equation (4) shows a concise relationship between
rb, rt, rs, z

0 and s. That relationship is derived in this
appendix. Consider an expansion of Figure 1, as seen in
Figure A1. One new detail is labeling the center of the rb,
rs and rt spheres as point ‘‘O’’. If the line through points
A and B is radial, then the equation for ‘‘s’’ simplifies to
the equation for ‘‘d’’ seen in equation (5). However, in
the general case, the line through A and B is nonradial
and can therefore be extended Earthward until it inter-
sects with another radius, from O to F, forming a right
angle at point F as shown. The actual size of ‘‘rf’’ is
unimportant, as it is only a computational tool which will
eventually fall out of the equation for ‘‘s’’. It has no
relationship with any other spheres mentioned in this
paper, and is different for every combination of rb, rs, rt
and z0.
[91] Begin with the following simple relationship:

s ¼ v� d ðA1Þ

[92] By the Pythagorean theorem applied first to trian-
gle FOB and then to triangle FOA, the equations for v
and d are:

v2 þ r2f ¼ r2t ) v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2t � r2f

q
ðA2Þ

d2 þ r2f ¼ r2b ) d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b � r2f

q
ðA3Þ
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[93] Substituting equations (A3) and (A2) into (A1),
yields:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2t � r2f

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b � r2f

q
ðA4Þ

[94] All that remains is to remove rf from equation (A4).
From the Sine law, applied to right triangle OFC:

rf

sin z0
¼ rs

sin 90�
ðA5Þ

which, when rearranged, yields:

rf ¼ rs sin z
0 ðA6Þ

[95] Substituting equating equation (A6) into
equation (A4) yields equation (4) in the main portion
of the paper.
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Figure A1. Expansion of ionosphere geometry for
deriving equation (4).
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