
ARTICLE

A comprehensive examination of Nanopore native
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transcriptomes
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A platform for highly parallel direct sequencing of native RNA strands was recently described

by Oxford Nanopore Technologies, but despite initial efforts it remains crucial to further

investigate the technology for quantification of complex transcriptomes. Here we undertake

native RNA sequencing of polyA+ RNA from two human cell lines, analysing ~5.2 million

aligned native RNA reads. To enable informative comparisons, we also perform relevant ONT

direct cDNA- and Illumina-sequencing. We find that while native RNA sequencing does

enable some of the anticipated advantages, key unexpected aspects currently hamper its

performance, most notably the quite frequent inability to obtain full-length transcripts from

single reads, as well as difficulties to unambiguously infer their true transcript of origin. While

characterising issues that need to be addressed when investigating more complex tran-

scriptomes, our study highlights that with some defined improvements, native RNA

sequencing could be an important addition to the mammalian transcriptomics toolbox.
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T
he observed complexity of cellular mRNA splicing patterns
appears to have generally expanded during the course of
evolution1, and in more advanced species, several subtly

different mRNA transcript isoforms are likely to exist for most
genes2–4. Within a biological organism, the observed pattern of
mRNA splicing for a given gene also frequently varies between
tissues and cell types, and can even respond to external cues or
changes to the environment5. Thus, the ability to readily perform
transcript-level functional investigations will almost certainly
enrich our understanding of a number of important biological
processes. To enable this to be accomplished in a reliable manner,
methods that can unequivocally distinguish and quantify the
presence of transcript isoforms from raw sequence reads are
required.

Recently, long-read sequencing methodologies have been
introduced into the transcriptomics field, offering the opportunity
to directly generate individual reads that can span the full length
of transcripts6–12. This could, for example, ameliorate problems
associated with earlier technologies’ needs for DNA-mediated
amplification and computational transcript assembly from short
sequence reads13,14. Notably, the long-read Oxford Nanopore
Technologies (ONT) platform now also provides the ability to
sequence native RNA strands directly15. In their study, ONT
described the efficient use of native RNA sequencing to yield
reliable abundance estimates of full-length transcripts from a
yeast polyA+ transcriptome as well as sets of standardized syn-
thetic transcripts. However, larger transcriptome sizes, and in
particular the much higher complexity of splicing patterns that
can be observed in higher organisms, might pose additional
challenges during such transcript-level investigations.

In this study, we apply ONT long-read native RNA sequencing
to samples from two human cell lines; HAP1 and HEK293, with
the primary aim of evaluating the ability to identify and quantify
transcripts and genes in a complex transcriptome setting. We also
perform matched ONT direct (PCR-free) cDNA sequencing as
well as regular Illumina RNA-seq to enable relevant comparisons
and assessments. For computational analysis, considering the
lower accuracy of Nanopore sequencing, we primarily employ a
reference-based approach, estimating abundances of annotated
transcript isoforms and genes. An additional motivation for this
is that also in situations where a reference-free approach is used
for transcript identification, reference-based methods are often
useful for subsequent quantification of transcript abundances. We
present our findings relating to differences between the perfor-
mance of a variety of analysis algorithms, and the potential
advantages that current ONT direct RNA-seq brings over the
traditional Illumina sequencing, as well as current limitations of
the technology.

Results
Overall data characteristics. We utilized three ONT library
preparation workflows in this study, all having in common that
RNA or cDNA molecules are sequenced directly without PCR.
For our initial efforts, during which direct cDNA sequencing kits
were not available from ONT, we modified the regular 2D ONT-
NSK007 PCR-based workflow essentially as we previously
described for NSK007 1D native genomic DNA sequencing16,17

in order to enable 1D direct cDNA sequencing (see Methods)
(Fig. 1a). We also made use of the subsequently released ONT-
DCS108 kit for direct cDNA sequencing which incorporates
enrichment for full-length cDNAs (Fig. 1b). Most of the data
presented in this study were obtained using the ONT-RNA001 kit
for native RNA sequencing (Fig. 1c).

The yield from the different ONT protocols varied between
approximately 0.5 and 1.5 million unfiltered reads per library,

giving in total 1.6–4.3 million unfiltered reads per library type
(Supplementary Fig. 1A). The read-length distributions were
overall similar among the libraries, with a peak close to 1000
bases (Supplementary Fig. 1B), while the cDNA libraries showed
higher base qualities than the native RNA libraries (Supplemen-
tary Fig. 1C). We also noticed an association between the read
length and the average reported base quality, with both very short
and very long reads often having lower quality (Supplementary
Fig. 2). The base-level accuracy, estimated by comparing the
primary genome alignments with the underlying reference
sequence, showed a similar pattern as the reported average base
quality (Supplementary Fig. 3).

Genome and transcriptome alignment. The ONT reads were
aligned to the human reference genome and transcriptome using
minimap2 (see Methods). The median aligned lengths for the
reads in the ONT-NSK007-HAP, ONT-DCS108-HAP, ONT-
RNA001-HAP, and ONT-RNA001-HEK data sets were 633, 765,
621, and 596 bases, respectively. As we aligned unfiltered reads,
the alignment rates were unsurprisingly only modest, varying
across protocols between 62 and 69% for the genome alignment,
and from 47 to 66% for the transcriptome alignment (Fig. 2a,
Supplementary Fig. 4A). As expected, the unaligned reads were
enriched for low base qualities (Supplementary Fig. 5A), and thus
largely represented reads that would have been classified as failed
during automatic filtering. In comparison, for the Illumina
libraries, STAR aligned between 89 and 94% of the reads uniquely
to the genome, with an additional 2–2.5% multimapping reads.
Whereas the genome alignment rates were generally only mar-
ginally higher than the transcriptome alignment rates (Fig. 2a),
the ONT-DCS108-HAP libraries displayed a larger difference
(64% for genome alignment vs 47% for transcriptome alignment).
The reason for this disparity is unclear, but many reads aligning
exclusively to the genome showed an unexpectedly high GC
content (Supplementary Fig. 6).

Approximately 40% of the reads with a primary genome
alignment had also at least one reported secondary genome
alignment (Fig. 2b, Supplementary Fig. 4B). For most libraries, a
single secondary alignment was most common, while for the
ONT-DCS108-HAP libraries, a larger fraction of reads had more
than five secondary genome alignments (Supplementary Fig. 7A).
As expected, due to the high similarity among transcripts, the
fraction of reads with reported secondary alignments increased to
~80% for the transcriptome alignment (Fig. 2b, Supplementary
Fig. 4B). Again, a small number of secondary alignments was
most common (Supplementary Fig. 7B). The secondary tran-
scriptome alignment rate was only marginally affected by
increasing the -p argument of minimap2 to 0.99 instead of the
default 0.8 (Fig. 2b, Supplementary Fig. 4B). For a majority of the
reads, the target transcripts of all primary and secondary
transcriptome alignments were isoforms of the same gene (Fig. 2b,
Supplementary Fig. 4B), suggesting that the main source of
ambiguity is on the individual isoform level rather than on the
gene level. Only a small part of the secondary alignments
(typically <5% of the reads) arose due to the presence of multiple
fully identical transcripts in the Ensembl reference catalog.
Unavoidable secondary alignments may also be the result of reads
stemming from reference transcripts that are proper subse-
quences of other reference transcripts. Among the 1,044,960 pairs
of reference transcripts annotated to the same gene in our
annotation catalog, there are 64,437 such pairs (6.2%). In these
situations, a read could potentially still be considered unambigu-
ously assignable to the shorter transcript if it is similar enough,
under the assumption that all ONT reads represent full-length
transcripts. Without this strong assumption, effective automated
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disambiguation would require a reliable model of the read
generation process, accounting for the probability of transcript
truncation in the library preparation step and/or read truncation
during the sequencing-basecalling process. To investigate to what
extent the secondary alignments in our libraries could be the
result of nested sets of reference transcripts, we extracted all reads
with at least one secondary transcriptome alignment, and among
all primary and secondary alignments, we selected the one for
which the covered portion of the target transcript by the read was
highest. If the secondary alignments are the result of the true
transcript of origin being contained in the other target transcripts,
we expect this maximally covered portion to be close to 1. While
we did notice a clear peak close to 1 for most data sets, there was
also a broad distribution of lower coverage degrees (Supplemen-
tary Fig. 8). Taken together, these observations suggest that,
despite the long-read length, unambiguously inferring the true
transcript of origin for any given read is still highly nontrivial,
and simply selecting the reported primary transcriptome align-
ment for downstream analysis can give misleading results.

While secondary alignments represent possible mapping
positions of a read beyond the one reported as primary,
supplementary alignments arise when a read cannot be mapped
in a contiguous fashion, and consequently minimap2 splits the
alignment into multiple parts. We observed a comparatively large
number of supplementary alignments in the ONT-DCS108-HAP
data set, both for genome and transcriptome alignments (Fig. 2b).
Further investigation revealed that in this data set, as well as in
ONT-NSK007-HAP, a relatively large fraction of the supplemen-
tary alignments overlapped the corresponding primary align-
ment, but on the opposite strand (Fig. 2c). In these cases, the

overlap between the primary and supplementary alignments was
often large (Fig. 2d). There was also an enrichment of reads
containing long palindromes (i.e., a sequence as well as its perfect
reverse complement) in the ONT-DCS108-HAP data set
compared with ONT-RNA001-HAP, and additionally an enrich-
ment of such sequences among reads with reported supplemen-
tary alignments (Supplementary Fig. 9). These observations are
interesting, as we note that the ONT 1D2 sequencing mode
(https://nanoporetech.com/) exploits the observation that the
second strand of a double-stranded DNA molecule often enters
the nanopore immediately following the first strand during 1D
sequencing. 1D2 sequencing chemistry is designed to further
promote this observed phenomenon, and the associated 1D2

basecaller is customized to efficiently split reads according to each
strand sequenced. Thus, observations of frequent overlapping
primary-supplementary alignments on opposite strands during
1D cDNA sequencing may reflect un-split reads by the standard
1D basecaller.

A peak of short low-quality unfiltered reads was consistently
observed in the native RNA libraries (Supplementary Fig. 1B),
and the majority of these did not align adequately to either the
genome or the transcriptome (Supplementary Fig. 5A, B). More
generally, for aligned reads, in particular those shorter than
10,000 bases, most of the individual bases could be matched to a
position in the reference sequence, indicated by a large fraction of
Ms and consequently a low fraction of insertions, deletions and
soft-clipped bases in the CIGAR string (Fig. 2e, Supplementary
Figs 5, 10). Reads longer than 10,000 bases, which were mostly
found in the cDNA libraries, typically did not align end-to-end
(Fig. 2e). For the ONT-DCS108-HAP libraries, a large fraction of
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the bases in the primary alignments were soft-clipped, corre-
sponding to the large number of supplementary alignments
discussed above. Incorporating the genomic coordinates of the
annotated genes, we also observed differences in the gene body
read coverage distribution between the libraries (Supplementary
Fig. 11), with a stronger 3′ coverage bias in the cDNA libraries
than in the native RNA libraries.

Coverage of full-length transcripts by individual ONT reads.
To investigate to what extent individual ONT reads can be
expected to represent full-length transcripts, we selected the best
target transcript for each read as described in Methods. As
expected, since the ONT-NSK007-HAP library preparation does
not involve full-length cDNA enrichment (Fig. 1a), these reads
achieved a much lower degree of full-length transcript coverage
across the range of transcript lengths (Fig. 3a). In contrast,
transcripts shorter than 2 kb could often be completely covered
by a single read in the other libraries, although this was more
rarely the case for longer transcripts (Fig. 3a, Supplementary

Fig. 12). Recently, a preprint described the analysis of 9.9 million
aligned native RNA reads from the NA12878 human reference
cell line18, and reported the presence of frequently truncated
reads when sequenced mitochondrial transcripts were analyzed.
We therefore next investigated whether read truncation might
be a more general feature also of the NA12878 data set. While
there appeared to be some more subtle differences between the
native RNA sequencing output from the three different cell lines
(Fig. 3a: ONT-RNA001-HAP and ONT-RNA001-HEK, Fig. 3b:
NA12878), the overall observations and trends were similar, with
transcripts longer than 2 kb particularly often poorly covered by
a single read. Applying the same procedure to the SIRV and
ERCC data sets from Garalde et al.15 revealed that a majority of
these synthetic transcripts were well covered by single reads
(Fig. 3c, d), confirming observations from previous studies9,15;
importantly, however, all transcripts in the SIRV and ERCC
catalogs are shorter than 2.5 kb, while ~17% of the transcripts in
the Ensembl GRCh38.90 catalog are longer than that. This
suggests that while the synthetic transcript catalogs provide
useful information about the performance of long-read
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transcriptome sequencing and analysis methods, extrapolation of
the results to real, complex transcriptomes should be done with
care.

To further investigate the degree to which individual ONT
reads are likely to represent full-length transcripts, we compared
the observed raw ONT read length distribution (for reads with at
least one genome alignment) with the expected transcript length
distribution in these samples, obtained by weighting the
annotated transcript lengths by the estimated transcript abun-
dances (in transcripts per million) estimated by Salmon in the
Illumina samples. This analysis showed an apparent shortage of
ONT reads in the length range of the longest transcripts inferred
to be expressed in the Illumina data (Fig. 3e). The ONT-DCS108-
HAP samples were the exception; however, for many of the reads
in these libraries, the primary alignment does not cover the entire
read (Fig. 2e, Supplementary Fig. 13A–C). Further inspection of
the longer annotated transcripts with high estimated abundances
in the Illumina samples, the majority of which were protein
coding, revealed consistent base pair coverage by Illumina reads
along their length (Supplementary Fig. 13D), indicating that they
were indeed truly present. Overall, such observations further
illustrate that using current library preparation and sequencing
workflows, long transcripts are often not represented by single
ONT reads.

Reference-based transcript detection and quantification. Four
reference-based methods were used to estimate transcript and
gene abundances in each of the ONT libraries. For two of these
methods, we specifically evaluated the impact of data pre-
processing: for minimap2 followed by Salmon in alignment-based
mode (denoted salmonminimap2), we investigated the effect of
setting the -p argument of minimap2 to different values (the
default of 0.8 as well as 0.99) in the transcriptome alignment step,
and for Salmon in quasi-mapping mode, we evaluated the effect
of providing only the aligned bases of the reads with a primary
alignment anywhere in the genome (see Methods). Increasing -p
to 0.99 led to a slightly improved correlation between ONT
transcript read counts and estimated transcript abundances from
the Illumina samples (obtained by Salmon in quasi-mapping
mode), and thus, in the following analyses, we set -p equal to
0.99 for Salmon following minimap2 (Supplementary Fig. 14).
Removing the non-aligned bases before running Salmon did not
improve the correlations notably (Supplementary Fig. 14). Since
this is a more involved procedure, and further introduces a
dependency on the genome alignments, we use the Salmon
quantifications obtained using the original, non-truncated reads
for the rest of the analyses.

We observed a large difference between the numbers of reads
assigned to features by the different methods (Supplementary
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Fig. 15). The highest assignment rates were consistently obtained
with salmonminimap2, where all reads that were aligned to the
transcriptome were also subsequently assigned to features.
featureCounts assigned a slightly lower fraction of the reads to
genes, while Salmon in quasi-mapping mode and Wub assigned
considerably fewer reads. However, the relatively low number of
reads assigned by Salmon in quasi-mapping mode were

distributed across as many, sometimes more, genes and
transcripts as the reads assigned by salmonminimap2 (Fig. 4a,
b), suggesting that no category of genes or transcripts was
consistently missed. In general, the transcript-level detection rate
increased with transcript length, both for ONT and Illumina
libraries (Fig. 4c). Counting the number of detected transcripts
and genes at various degrees of subsampling (Fig. 4d, e) suggested
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that the current sequencing depth of up to 3 million mapped
ONT reads per library type was not enough to detect all expressed
genes or transcripts. Furthermore, the number of detected genes
were similar to the number observed in the Illumina libraries if
these were subsampled to comparable sequencing depths. With
the aim of investigating whether there are systematic blind spots
in the detection of features in the ONT data (in which case we
expect the same set of transcripts to be detected in all libraries) or
if the lack of saturation is purely a result of undersampling (in
which case we would expect differences in the set of detected
transcripts across libraries), we compared the saturation curves
obtained from individual samples to that obtained by first pooling
the reads across all replicates within a data set, and subsequently
sampling from this pool (Supplementary Fig. 16). On the
transcript level, pooling the samples improved the degree of
saturation for a given number of reads, while no improvement
could be seen on the gene level.

Next, we calculated the correlation between abundance
estimates among replicates of the HAP cell line, within and
between data sets. As expected, the correlation between replicates
was higher on the gene level than on the transcript level, and
higher within a data set than between data sets (Supplementary
Fig. 17). On the gene level, correlation between replicates was
almost as high in the ONT data as in the Illumina data, for all

quantification methods, while for transcript-level abundances,
higher correlations were observed in the Illumina data. Overall,
Wub showed the highest correlation of abundance estimates
between replicates in the ONT data sets. Notably, correlations
between cDNA and native RNA samples were often as high as
those among samples obtained with different cDNA protocols.

Comparing the abundance estimates obtained for the same
library with different quantification methods showed that,
perhaps unsurprisingly, Salmon in quasi-mapping mode and
salmonminimap2 had the highest correlation (Supplementary
Fig. 18). Stratifying transcripts and genes by the annotated
biotype suggested that certain biotypes (in particular, short
transcripts such as miRNAs) were consistently assigned very low
abundances with ONT, while they were considered expressed by
Salmon in the Illumina libraries (Supplementary Fig. 19).

Transcript identifiability. Next, we focused on specific tran-
scriptomic features that are useful for discriminating between
similar isoforms. First, we extracted the junctions observed after
aligning the ONT reads to the genome. The majority of the
junctions that were covered by at least five ONT reads were
already annotated in the reference transcriptome, while this was
more rarely the case for lowly covered junctions (Fig. 5a, b,
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Supplementary Fig. 20A, B). Junctions that were observed in the
ONT reads but did not correspond to annotated junctions
were less likely than those already annotated to be observed in the
Illumina data, and also less likely to harbor a canonical splice
junction motif (GT-AG) (Supplementary Fig. 21). Not surpris-
ingly, individual ONT reads generally spanned more junctions
than Illumina reads (Supplementary Fig. 22), which should pro-
vide improved ability of correct transcript identification.

In order to further investigate if the increased length of ONT
reads improved their unambiguous assignment to specific
transcripts, we tabulated the number of transcripts included in
the equivalence class that each read was assigned to when running
Salmon in quasi-mapping mode. A read being assigned to a large
equivalence class indicates that the read sequence is compatible
with many annotated transcripts, and consequently that unam-
biguous assignment is difficult. While fewer ONT reads were
assigned to equivalence classes with a very large number of
transcripts compared with the Illumina counterparts, the average
number of transcripts in the equivalence class, across all reads,
was almost identical (Fig. 5c, d, Supplementary Fig. 20C, D). To
investigate to what extent this was an effect of the high
redundancy among the annotated transcripts, we ran Salmon
with the same index, but using the annotated transcript catalog as
a proxy for error-free, full-length reads. In this case, 87% of these
read proxies were assigned to single-transcript equivalence
classes. This illustrates both that even in this idealized situation,
not all reads would be unambiguously assignable to a single
annotated isoform, and that for the real ONT reads, the
ambiguity is still considerably higher than in the ideal situation.
Together with the large number of secondary transcriptome
alignments observed above, this illustrates the challenging nature
of reference-based transcript identification based on ONT reads.

Reference-free transcript identification. In addition to the
reference-based transcript identification and quantification dis-
cussed above, we generated a set of high-confidence consensus
transcripts for each ONT data set using FLAIR (https://github.
com/BrooksLabUCSC/flair). The identified transcripts were
compared with the annotated reference transcriptome using
SQANTI19 and gffcompare (https://ccb.jhu.edu/software/
stringtie/gffcompare.shtml), assigning to each transcript a struc-
tural category (SQANTI) or class code (gffcompare), describing
the type of relationship to the most similar reference transcript.
Only a relatively low fraction of the identified transcripts in each
data set contained a junction chain that was identical to that of an
annotated transcript (Fig. 6a, structural category ‘full-splice_-
match’, Supplementary Fig. 23, class code ‘= ’), with an addi-
tional fraction of the identified transcripts having a junction chain
that was consistent with an annotated transcript, but only con-
tained a subset of the junctions. This corroborates the previous
observations that many ONT reads may not represent full-length
transcript sequences. There is a marked difference compared with
the set of transcripts assembled with StringTie from the Illumina
samples, a larger fraction of which contain a complete intron
chain match with an annotated transcript. There is also a larger
fraction of Illumina-derived transcripts that do not overlap
known transcripts (Fig. 6a, structural category ‘intergenic’, Sup-
plementary Figs. 23, class code ‘u’). FLAIR transcripts with a
junction chain perfectly matching an annotated transcript span-
ned a range of lengths and number of junctions (Fig. 6b, c,
Supplementary Figs. 23, 24), suggesting that transcript identifi-
cation is not limited to, e.g., short isoforms. Overall, the set of
transcripts assembled by StringTie from the Illumina data were
more often multi-exonic than those from the ONT libraries, and

also spanned a broader range of transcript lengths. Supplying the
set of splice junctions seen in the short-read libraries to FLAIR
when identifying transcripts generally led to a larger number of
transcripts (Fig. 6a) and, among those, a larger fraction of novel
transcripts with splice junctions that were not included in the
reference catalog. While the categories used by SQANTI and
gffcompare are different, there is often a clear association between
them (Supplementary Fig. 25). A random selection of FLAIR
transcript sequences (from the ONT-RNA001-HAP library)
corresponding to annotated transcripts are shown in Supple-
mentary Fig. 26, to illustrate the variety of transcripts that could
be identified.

Comparing the set of annotated reference transcripts that could
be identified by at least one FLAIR transcript (SQANTI structural
category ‘full-splice_match’ or ‘incomplete-splice_match’) in the
respective ONT data sets showed that a large fraction of these
transcripts were only identified in a single data set (Fig. 7a), while
others were only identified if Illumina junctions were supplied to
FLAIR at runtime. In addition, reference transcripts identified by
the native RNA sequencing protocol in the two different cell lines
showed a high degree of similarity to each other, suggesting that
transcript identification can be strongly affected by the library
preparation protocol. Of note, the native RNA protocols provide
information about the strandedness of the reads, which is not the
case for the cDNA protocols employed here. Reference transcripts
with junction chains corresponding to at least one FLAIR
transcript generally showed a higher expression level in the
Illumina samples than the reference transcripts that were not
identified in any ONT data set (Fig. 7b), suggesting that one
possible explanation for the discrepancy between the transcripts
identified in the different ONT data sets could be the limited
sequencing depth, and that a larger number of ONT reads may be
necessary to identify a stable set of expressed transcripts.

Investigation of polyA tail length. Eukaryotic mRNAs can
harbor varying lengths of polyA tails at their 3′ termini, which
can regulate mRNA turnover, as well as influence several other
biologically important phenomena20. Thus, whereas a more
standard polyadenylation takes place co-transcriptionally in the
nucleus, cytoplasmic polyadenylation of mRNA transcripts has
been shown to regulate diverse processes such as synaptic plas-
ticity, oocyte maturation, and circadian rhythm/biological tim-
ing20. Accordingly, important sequencing-based techniques have
been introduced to enable measurement of polyA length, most
notably the TAIL-seq method21. While the implementation of
TAIL-seq has improved our understanding of polyA tail length
function to a degree, the relatively laborious technical nature of
the procedure has likely limited its more widespread use. Thus,
although the main focus of our study was on the ability to
accurately estimate transcript and gene abundance levels and
identify expressed features from ONT reads, we also performed
some analysis into characterizing the length of transcript polyA
tails from Nanopore data. We investigated native RNA reads
from an ONT-RNA001-HAP library using Nanopolish18 and
tailfindr22, which displayed largely concordant estimates of polyA
length (Fig. 8a, b), and further appeared in agreement with a
modal polyA length of ~50–100 nt observed via TAIL-seq
experiments from mammalian cell lines21. Furthermore, we
were able to observe differential polyA tail length distributions
between various RNA biotypes, as well between subtypes of
protein coding genes (Fig. 8c). Most notably, transcripts from all
mitochondrial gene subtypes, including mitochondrial protein
coding genes, displayed generally shorter polyA tail lengths, in
accordance with previous independent observations18,23.
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junctions identified in the Illumina libraries were supplied when running FLAIR. b Number of exons in each transcript identified by FLAIR/StringTie,

stratified by the relation to the annotated transcripts (represented by the assigned structural category). c Length distribution of transcripts identified by

FLAIR/StringTie, stratified by the relation to the annotated transcripts (represented by the assigned structural category). The center line represents the

median; hinges represent first and third quartiles; whiskers the most extreme values within 1.5 interquartile range from the box. Source data for panels

a, b are provided as a Source Data file
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Discussion
We have performed a detailed evaluation of reads from Nanopore
native human RNA sequencing as well as complementary direct
cDNA sequencing, from the perspective of transcript identifica-
tion and quantification. We observed that despite the fact that
ONT reads are around an order of magnitude longer than typical
Illumina reads, identification of their transcript of origin is still
highly nontrivial, and a large number of secondary transcriptome
alignments with mapping scores very close to the primary
alignments were observed for all libraries. This suggests that
quantification methods that focus exclusively on the reported
primary alignment are likely to be suboptimal, and can be highly
biased depending on how the primary alignment is selected
among a set of equally good mappings. We expect that reference-
based transcript abundance estimation methods that are able to
incorporate information about these multimapping reads are
more likely to produce reliable abundance estimates; however, to
our knowledge no such ONT-specific method, with a read gen-
eration model adapted to the ONT data characteristics, currently
exists.

De novo as well as reference-based identification of transcripts
suggested that a considerable number of the raw ONT reads are
unlikely to represent full-length reference transcripts. This can
have implications for transcript identification and quantification.
For example, it is difficult to determine whether a truly truncated
version of a reference transcript is present in a sample, or if the
reads rather are fragments of longer transcript molecules. In
addition, by attempting to mitigate this issue, e.g., by filtering the
ONT reads to only retain those that overlap a known promoter
region, the quantitative nature of the data, as well as the number
of usable reads, may be reduced. The overall causes for the
observed direct cDNA and native RNA truncations are unclear,
but could well vary, with the former, for example, potentially
influenced by the suboptimal nature of template-switching to
directly select for full-length cDNAs during library preparation,
and the latter more specifically influenced by factors during the

sequencing process itself. For example, the Nanopore RNA-seq
consortium study estimated that a significant proportion of native
RNA transcripts may be truncated by nanopore signal noise
caused by electrical signals associated with RNA motor enzyme
stalls, or by otherwise stray current spikes of unknown origin18.
We also agree that nanopore native RNA read truncation is
unlikely due to some fundamental limitation of nanopore-based
sequencing, especially considering that ONT 1D genomic DNA
sequence reads of several kilobases are consistently achieved
without issue using the current pore type16,24,25 used to sequence
both DNA and RNA. Further, such problems could conceivably
be addressed, to at least some extent, by training basecallers to
reliably recognize relevant nanopore signal noise events which
might cause single molecule sequence reads to be truncated
or split.

Our observations of ONT native RNA sequencing-mediated
polyA tail length measurement were encouraging, and corrobo-
rated results from independent analysis methods as well as past
observations made using orthogonal techniques. Considering its
relative methodological simplicity in terms of library preparation
and sequencing workflow, we suggest that native RNA-seq along
with the available analysis tools, Nanopolish18 and tailfindr22,
might already be considered state-of-the-art for more routine
transcriptomic investigations of polyA tail lengths. One of the
additional central advantages that ONT native RNA sequencing
offers, that we have not investigated here, is the potential for
direct detection of RNA ribonucleotide modifications, which are
known to be key regulators of a wide range of practically
important aspects of biology26. Current sequencing-based epi-
transcriptomics methods rely on sequencing via a DNA inter-
mediate in order to infer the RNA modification site; such
approaches are, however, often not ideal as they can yield high
numbers of inaccurate modification calls27. The development of
accurate and robust non-canonical basecalling tools for ONT
native RNA-seq data would potentially solve many of the unre-
solved issues in the field.
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Fig. 7 Comparison of annotated transcripts identified by FLAIR in the four ONT data sets. a UpSet plot representing overlaps between the annotated

transcripts that are identified by FLAIR in the different ONT data sets. An annotated transcript is considered to be identified if at least one FLAIR transcript

is assigned to it with a structural category annotation of either ‘full-splice_match’ or ‘incomplete-splice_match’. These sets of annotated transcripts are

then compared between data sets. Horizontal bars indicate the total number of identified annotated transcripts in the respective data sets, and vertical bars
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transcripts that are considered identified or not by FLAIR. An annotated transcript is considered to be identified if at least one FLAIR transcript from at least
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An inability to read ~10–15 nucleotides at the 5′ end of each
strand, and relatively higher error rates, were identified as the two
principal drawbacks of native RNA sequencing by the Nanopore
RNA-seq consortium study, although these are potentially readily
addressable18. Here we highlight that the sequencing depths
achieved from native RNA libraries from single flow cells (typi-
cally ~0.5 M aligned reads) are likely not enough to saturate
transcript detection, either using reference-based or de novo
approaches. Improving throughput (the amount of sequence
rendered per unit cost and unit time) is a critical issue; although
protein-pore sequencing can be scaled to considerably higher
levels (i.e., either on the ONT GridION or PromethION instru-
ments), the associated consumable nanopore array costs remain
high. Thus, native RNA-seq throughput characteristics that are

deemed acceptable by the transcriptomics community at large
will likely require a highly optimized RNA motor enzyme, or
ultimately a shift to a lower cost or more durable nanopore array
type. When characterization of complex transcriptomes at
transcript-level comprises the project remit, our study here
describes that Nanopore direct RNA-seq remains a roundly
promising but fledgling analysis tool.

Methods
Cell lines and culture. HEK293 cells (ATCC, catalog# CRL-1573) were cultured in
Dulbecco’s modified Eagles medium (DMEM) supplemented with 10% FBS and
penicillin/streptomycin. HAP1 cells (Horizon Discovery, catalog# C631) were
grown in Iscove’s modified Dulbecco’s medium (IMDM) supplemented with 10%
FBS and penicillin/streptomycin. All cultures were maintained at a temperature of
37 °C in a humidified incubator with 5% CO2. When required, exponentially
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growing cells were harvested by washing in phosphate buffered saline (PBS) and
then incubating with Trypsin-EDTA, followed by further washing of pelleted cells
in PBS.

Library preparation and sequencing. For the Nanopore libraries, total RNA was
extracted from cell pellets using Trizol, and the DNase-treated samples were then
polyA-selected using oligodT dynabeads (Invitrogen). The ONT kits NSK007,
DCS108, and RNA001 were then used for PCR-free 1D library preparations. For
each RNA001 library (6× HAP & 5× HEK), 500 ng of input polyA+ RNA was
used, and these were made following ONT instructions. For DCS108, 100 ng of
input polyA+ RNA was used per library (2× HAP), and these were prepared
according to the ONT-recommended protocol. For NSK007 libraries (2× HAP),
100 ng of input polyA+ RNA was used, and these were made according to ONT
instructions, except that the hairpin adaptor (HPA) ligation and PCR steps were
omitted in order to enable 1D direct cDNA sequencing. The 15 prepared libraries
were sequenced on the MinION using R9.4 flow cells with the relevant MinKNOW
script to generate fast5 files. All generated fast5 reads were then basecalled in
Albacore (version 1.2.6 for NSK007 libraries and version 2.1.0 for DCS108 and
RNA001 libraries) using the relevant script to yield fastq files. As Albacore only
contained a 2D script for NSK007 basecalling, only the generated NSK007 fastq
raw reads (i.e., complement and template) were taken forward for analysis, while
any attempted consensus reads present were discarded. We noted concerns of
previous studies reporting that filtering of reads during basecalling often resulted in
a significant number of useful good-quality reads being discarded10. Indeed, in later
versions of available ONT Albacore packages, filtering was either turned off as
default, or its disabling offered as an option. As sequencing depth would likely be
the key limiting factor influencing our downstream analyses, and reasoning that
true low-quality reads would be filtered during the alignment step, we thus made
use of the Albacore non-filtering option for all sequenced libraries.

For the Illumina samples, all libraries were made using the Illumina TruSeq
stranded mRNA kit. The mRNA libraries were prepared from 500 ng of Trizol-
extracted total RNA using the Illumina TruSeq® Stranded mRNA Sample
Preparation Kit with 15 PCR cycles applied. Libraries were quantified and quality
checked using qPCR with Illumina adapter specific primers and Agilent 2200
TapeStation, respectively. Diluted indexed mRNA-seq (10 nM) libraries were
pooled, used for cluster generation (Illumina TruSeq PE Cluster Kit v4-cBot-HS)
and sequenced [Illumina HiSeq 4000, Illumina TruSeq SBS Kit v4-HS reagents,
paired-end approach (2 × 150 bp) with 40–55 million reads per sample].

Genome and transcriptome alignment. ONT reads were aligned to the human
genome (Ensembl primary assembly GRCh38) and transcriptome (combined
cDNA and ncRNA reference fasta files from Ensembl GRCh38.90) using minimap2
v2.1228. The genome alignments were performed with the arguments -ax
splice -N 10, to allow spliced alignments and up to 10 secondary alignments
per read. Alignment files from minimap2 were converted to bam format, sorted
and indexed using samtools v1.629. The Bioconductor package GenomicAlign-
ments (v1.32.0)30 was used to extract junctions from the alignments. For each
observed junction, we calculated the distance (the absolute difference between the
start positions plus the absolute difference between the end positions) to the closest
annotated junction. For the transcriptome alignment, we used the arguments -ax
map-ont -N 100 to allow more secondary alignments, given the high similarity
among transcript isoforms. The minimap2 -p argument, representing the minimal
ratio of the secondary to primary alignment score that is allowed in order to report
the secondary mapping, has a default value of 0.8. For transcriptome alignment, we
investigated the effect of increasing this value in order to restrict the number of
reported suboptimal secondary alignments. To evaluate the alignments, we
recorded the alignment rates, defined as the fraction of reads with a reported
primary alignment, as well as the aligned fraction of each read, which we defined as
the sum of the number of M and I characters in the CIGAR string, divided by the
full length of the read. In addition to the average base quality across all bases in a
read, as reported in the FASTQ files, we estimated the base-level accuracy from the
primary genome alignments18,31, as (nbrM+ nbrI+ nbrD−NM)/(nbrM+ nbrI
+ nbrD), where nbrM, nbrI, and nbrD are the number of M, I, and D characters in
the CIGAR string, respectively, and NM is the edit distance as reported by
minimap2.

For some reads, minimap2 also reported supplementary alignments. For each
supplementary genome alignment, we compared the alignment position to that of
the corresponding primary alignment, and recorded whether these were on the
same or different chromosome and/or strand, and whether the primary and
supplementary alignments overlapped each other. For each library, we further
extracted 100,000 reads randomly, and used the findPalindromes() function in the
Biostrings Bioconductor package (v2.48.0) to search for perfect-match
palindromes, that is, the presence of a sequence (at least 10 bases long) and its
perfect reverse complement in any position in the same read. For each read, we
recorded the length of the longest such sequence (for reads where no sequence of at
least 10 bases could be found, we assigned a value of 0).

Finally, we generated reduced FASTQ files by retaining only reads with a
primary alignment to the genome, and for each such read, removing all bases that
were (soft-)clipped in the primary alignment. The resulting bam files were
converted to FASTQ format using bedtools bamtofastq v2.27.032, and the reads

were subsequently shuffled using bbmap v38.02 (https://sourceforge.net/projects/
bbmap/). RSeQC v2.6.533 was used to examine the coverage profile along gene
bodies for each library, based on the GENCODE basic v24 bed file downloaded
from https://sourceforge.net/projects/rseqc/files/BED/Human_Homo_sapiens/ on
October 23, 2018.

To investigate to what extent individual ONT reads could be expected to
represent full-length transcripts, we selected the best target transcript for each read,
starting from the set of all primary and secondary transcriptome alignments
obtained with minimap2, with -p set to 0.99. For each read, we kept all alignments
for which the number of aligned nucleotides was at least 90% of the maximal such
number across all alignments for the read, and among these, we selected the one
with the largest transcript coverage degree (number of M and D characters in the
CIGAR string of the alignment, divided by the annotated transcript length). While
this alignment does not necessarily represent the true origin of the read, the
procedure gives an upper bound of the degree of transcript coverage achieved by
individual reads.

Gene and transcript abundance estimation. Four different computational
methods were used to estimate transcript and gene abundances for the ONT
libraries. First, we applied Salmon v0.11.034 in quasi-mapping mode, with an index
generated from the combined Ensembl cDNA and ncRNA reference fasta files and
using the default k value of 31 (denoted salmon31 below). For comparability across
pipelines, we retained any duplicate transcripts in the index generation. The mean
and maximal fragment lengths were set to 600 and 230,000, respectively, and the
flag --dumpEq was set to retain equivalence class information. Salmon was also
run in quasi-mapping mode on the modified FASTQ files, containing only the
aligned part of the primary alignments as described above. Second, we applied
Salmon in alignment-based mode to the output bam files from the minimap2
transcriptome alignment, using the flag --noErrorModel to disable the default
short-read error model of Salmon in the quantification (denoted salmonmini-
map2). Third, we applied the bam_count_reads.py script from the Wub package
(https://github.com/nanoporetech/wub) to the output files from the transcriptome
alignment, setting the minimal mapping quality (-a argument) to 5 (denoted
wubminimap2). Finally, we applied featureCounts (from subread v1.6.0)35,36 to the
primary genome alignments, requiring a minimum overlap of 10 bases and using
the -L argument to enable the long-read mode (denoted fCminimap2primary).
While the Salmon variants and Wub provided transcript-level abundance esti-
mates, which were also aggregated to the gene level, featureCounts provided only
gene-level counts and was therefore not considered for transcript quantification.

De novo transcript identification. In addition to the reference-based quantifica-
tion described above, we also performed reference-free, de novo transcript iden-
tification using FLAIR (obtained from https://github.com/BrooksLabUCSC/flair on
April 18, 2019), applied to the combined primary genome alignments from all
libraries in each ONT data set. The minimap2 bam files were converted to bed
format using the bam2bed12.py script provided with FLAIR, and identified junc-
tions were subsequently corrected by comparison with either the reference anno-
tation, or both the reference annotation and junctions covered by at least five
uniquely mapped reads in the Illumina libraries (for the HAP samples), using the
default window size of 10. Next, the corrected reads were collapsed using FLAIR,
requiring that the 5′ end of the read falls close to a promoter and retaining only
transcripts represented by at least 3 reads. The promoter bed file was obtained by
combining active, weak, and poised promoters identified in nine cell lines by the
ENCODE consortium (obtained from https://genome.ucsc.edu/cgi-bin/hgFileUi?
db= hg19&g=wgEncodeBroadHmm and lifted over to hg38 coordinates using
the UCSC Genome Browser liftOver tool). The identified transcripts from each
data set were compared with the set of annotated transcripts using gffcompare
(https://ccb.jhu.edu/software/stringtie/gffcompare.shtml) and SQANTI v1.219,
whereby each FLAIR transcript was assigned a class code (gffcompare) or a
structural category (SQANTI), detailing the way in which it is related to the most
similar reference transcript. For the HAP libraries, SQANTI was provided with the
junctions observed in the Illumina libraries.

PolyA tail length estimation. We used the nanopolish-polya pipeline18 (cloned
from https://github.com/nanoporetech/pipeline-polya-ng on April 19, 2019) as well
as the tailfindr R package (v0.1.0)22 to estimate polyA tail lengths of the basecalled
reads from one of the ONT-RNA001-HAP libraries. The assignment of reads to
transcripts by Nanopolish was used to group reads by the transcript biotype
annotated in the Ensembl catalog.

Processing of Illumina libraries. Sequencing adapters were removed from the
Illumina libraries with TrimGalore! v0.4.4 (http://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/, using cutadapt v1.1337), with quality and length cut-
offs both set to 20, and reads were aligned to the Ensembl GRCh38.90 primary
genome assembly using STAR v2.5.1b38. Abundances of annotated transcripts were
estimated using two different methods: first, with StringTie v1.3.3b39 using reads
aligned with HISAT2 v2.1.040 (with the --dta flag set and using a known splice
site file), and second, with Salmon in quasi-mapping mode, using the same index as
for the ONT libraries, and including adjustments for GC content and sequence

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11272-z

12 NATURE COMMUNICATIONS |         (2019) 10:3359 | https://doi.org/10.1038/s41467-019-11272-z | www.nature.com/naturecommunications

https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/rseqc/files/BED/Human_Homo_sapiens/
https://github.com/nanoporetech/wub
https://github.com/BrooksLabUCSC/flair
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm
https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
https://github.com/nanoporetech/pipeline-polya-ng
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
www.nature.com/naturecommunications


bias. Abundances were read into R using tximport (v1.8.0)41. In addition, we used
StringTie to assemble new transcripts (without the -e flag, provided with the
reference gtf file) for comparison with the transcripts identified by FLAIR from the
ONT libraries. For this analysis, we merged the HISAT2 bam files from all four
Illumina samples to use as the input for StringTie. We used the default coverage
cutoff of 2.5 to determine which assembled transcripts to retain in the output file.
Assembled transcripts were then characterized with gffcompare and SQANTI, as
for the transcripts identified from the ONT data.

Public data. In addition to the ONT and Illumina data generated in-house, we
processed the SIRV E0 (SRA accession number SRR6058584) and ERCC Mix1
(SRA accession number SRR6058582) ONT dRNA libraries from Garalde et al.15.
The reads were aligned to the respective transcriptomes using minimap2 with the
same settings as above. The SIRV data set was also aligned to the corresponding
genome using minimap2 with the settings described above, and additionally setting
--splice-flank = no to accommodate the non-canonical splice sites present in
this data. We also downloaded the native RNA PASS reads from the NA12878 cell
line sequenced in Workman et al.18 from https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/RNA.md, and aligned them to the genome and
transcriptome using the same parameters as for our libraries.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw sequence files have been uploaded to ArrayExpress under accession numbers E-

MTAB-7757 (Illumina) and E-MTAB-7778 (ONT). In addition, we processed the SIRV

E0 (SRA accession number SRR6058584) and ERCC Mix1 (SRA accession number

SRR6058582) ONT dRNA libraries from Garalde et al.15, and the native RNA PASS reads

from the NA12878 cell line sequenced in Workman et al.18 (downloaded from https://

github.com/nanopore-wgs-consortium/NA12878/blob/master/RNA.md). The source

data underlying Figs. 2a–c, 4a–e, 5a–b, 6a–b and Supplementary Figs 1a, 4a-c, 7a-b, 14a-

b, 15, 17a-b, 18a-b, 19a-b, 20a-b, 21a-b, 22a-b, 23a-b, 24b, 25 are provided as a Source

Data file. The code used to perform the analyses in the paper is available on GitHub:

https://github.com/csoneson/NativeRNAseqComplexTranscriptome. Any additional

relevant data are available from the authors upon reasonable request.
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