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By using k-Fibonacci numbers, we present a comprehensive family of regular and biunivalent functions of the type gðzÞ =
z +∑∞

j=2 djz
j in the open unit disc D. We estimate the upper bounds on initial coefficients and also the functional of

Fekete-Szegö for functions in this family. We also discuss few interesting observations and provide relevant connections of
the result investigated.

1. Introduction and Notations

Let ℂ be the set of all complex numbers and the disc
fz ∈ℂ : jzj < 1g be symbolized by D. Let ℕ =ℕ0 \ f0g≔
f1, 2, 3,⋯g and ℝ be the collection of all real numbers.
We denote the set of all normalized regular functions in D

that have the series of the form

g zð Þ = z + 〠
∞

j=2
djz

j, ð1Þ

by A and the symbol S stands for set of all functions of A
that are univalent (or Schlicht) in D. As per the popular
Koebe theorem (see [1]), every function g ∈ S has an inverse
function given by

g−1 ωð Þ = f ωð Þ = ω − d2ω
2 + 2d22 − d3
� �

ω3

− 5d32 − 5d2d3 + d4
� �

ω4+⋯,
ð2Þ

such that z = g−1ðgðzÞÞ and ω = gðg−1ðωÞÞ, jωj < r0ðgÞ,
r0ðgÞ ≥ 1/4, z, ω ∈D.

A function g of A is called biunivalent (or bi-Schlicht) in
D if both g and g−1 are univalent (or Schlicht) in D. Let Σ
stands for the set of biunivalent (or bi-Schlicht) functions
having the form (1). Historically, investigations of the family
Σ begun five decades ago by Lewin [2] and Brannan and
Clunie [3]. Later, Tan [4] found some coefficient estimates
for biunivalent functions. In 1986 [5], Brannan and Taha
introduced certain well-known subfamilies of Σ in D. Many
interesting results related to initial bounds for some special
families of Σ have appeared in [6–8].

In 2007, the concept of k-Fibonacci number sequence
fFk,jg∞j=0, k ∈ℝ+ was examined by Falcón and Plaza [9]

and is given by

Fk,0 = 0,
Fk,1 = 1,

Fk,j+1 = kFk,j + Fk,j−1,
ð3Þ
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where j ∈ℕ and

Fk,j =
k − tkð Þj − t jkffiffiffiffiffiffiffiffiffiffiffiffi

k2 + 4
p with tk =

k −
ffiffiffiffiffiffiffiffiffiffiffiffi
k2 + 4

p

2 : ð4Þ

F1,j = Fj is the well-known Fibonacci number sequence.
Özgür and Sokól in 2015 [10] proved that if

~pk zð Þ = 1 + t2kz
2

1 − ktkz − t2kz
2 , ð5Þ

then,

~pk zð Þ = 1 + Fk,0 + Fk,2ð Þtkz + Fk,1 + Fk,3ð Þt2kz2+⋯
= 1 + k tkz + k2 + 2

� �
t2kz

2+⋯,
ð6Þ

where tk is as in (4) and z ∈D. Further, if ~pkðzÞ = 1 + Σ~pk,jz
j,

then, we have

~pk,j = t jk Fk,j−1 + Fk,j+1
� �

, j ∈ℕ: ð7Þ

Fibonacci polynomials, Pell-Lucaspolynomials,Gegenbauer
polynomials, Chebyshev polynomials, Horadam polynomials,
Fermat-Lucas polynomials, and generalizations of them are
potentially important in many branches such as architecture,
physics, combinatorics, number theory, statistics, and engi-
neering. Additional information is associated with these poly-
nomials one can go through [11–13]. More details about the
very popular functional of Fekete-Szegö for biunivalent func-
tions based on k-Fibonacci numbers can be found in [14–20].

The recent research trends are the outcomes of the study
of functions in Σ based on any one of the above-mentioned
polynomials, which can be seen in the recent papers [21–28].
Generally, interest was shown to estimate the first two coef-
ficient bounds and the functional of Fekete-Szegö for some
subfamilies of Σ.

For functions g and f regular in D, g is said to subor-
dinate f , if there is a Schwarz function ψ in D, such that
ψð0Þ = 0, jψðzÞj < 1, and gðzÞ = f ðψðzÞÞ, z ∈D. This subor-
dination is indicated as g ≺ f . In particular, if f ∈ S , then
gðzÞ ≺ f ðzÞ⇐ gð0Þ = f ð0Þ and gðDÞ ⊂ f ðDÞ.

Inspired by the recent articles and the new trends on
functions in Σ, we present a comprehensive family of Σ
defined by using k-Fibonacci numbers as given by (3) with
Fk,j as in (4).

Throughout this paper, g−1ðωÞ = f ðωÞ is as in (2), Tk =
k − ðk2 + 2Þtk, tk is as in (4), and ~pk is as in (5).

Definition 1. A function g ∈ Σ having the power series (1) is
said to be in the family SRSτ

Σðγ, μ, ~pkÞ, if

z g′ zð Þ
� �τ

+ μz2g′′ zð Þ
γg zð Þ + 1 − γð Þz ≺ ~pk zð Þ, z ∈D

ω g′ ωð Þ
� �τ

+ μz2g′′ ωð Þ
γg ωð Þ + 1 − γð Þω ≺ ~pk ωð Þ, ω ∈D,

ð8Þ

where τ ≥ 1, 0 ≤ γ ≤ 1, and μ ≥ 0.

Remark 2. The function families SRSτ
Σðγ, 0, ~pkÞ and SRS1

Σðγ,
μ, ~pkÞwere investigated by Frasin et al. [29].

It is interesting to note that (i) γ = 1, (ii) γ = 0, and (iii)
μ = 1 lead the family SRSτ

Σðγ, μ, ~pkÞ to various subfamilies,
as illustrated in the following:

(1) SRSτ
Σð1, μ, ~pkÞ ≡ LτΣðμ, ~pkÞ is the family of functions

g∈Σ satisfying

z g′ zð Þ
� �τ
g zð Þ + μ

z2g′′ zð Þ
g zð Þ

 !
≺ ~pk zð Þ and

ω f ′ ωð Þ
� �τ
f ωð Þ

+ μ
ω2 f ′′ ωð Þ
f ωð Þ

 !
≺ ~pk ωð Þ, z, ω ∈D

ð9Þ

(2) SRSτ
Σð0, μ, ~pkÞ ≡ Kτ

Σðμ, ~pkÞ is the set of functions
g ∈ Σ satisfying

g′ zð Þτ + μzg′′ zð Þ ≺ ~pk zð Þ
�

and f ′ ωð Þ
� �τ

+ μωf ′′ ωð Þ ≺ ~pk ωð Þ, z, ω ∈D
ð10Þ

(3) SRSτ
Σðγ, 1, ~pkÞ ≡Mτ

Σðγ, ~pkÞ is the collection of func-
tions g ∈ Σ satisfying

z g′ zð Þ
� �τ

+ z2g′′ zð Þ
γg zð Þ + 1 − γð Þz ≺ ~pk zð Þ, z ∈D,

ω f ′ ωð Þ
� �τ

+ ω2 f ′′ ωð Þ
γf ωð Þ + 1 − γð Þω ≺ ~pk ωð Þ, ω ∈D

ð11Þ

Remark 3. We note that (i) LτΣð1, ~pkÞ ≡Mτ
Σð1, ~pkÞ and (ii)

Kτ
Σð1, ~pkÞ ≡Mτ

Σð0, ~pkÞ.
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Remark 4.

(i) When τ = 1, the family K1
Σðμ, ~pkÞ was introduced by

Frasin et al. [30]

(ii) The family L1Σð0, ~pkÞ ≡ S∗
Σð~pkÞÞ was mentioned by

Güney et al. [18], when μ = 0 and τ = 1
(iii) For μ = 0 and k = 1, the class LτΣð0, ~p1Þ ≡ SΣð~p1Þ was

investigated by Magesh et al. [31]

We now state the following lemma, which we will be
using in the proof of our theorem.

Lemma 5 (see [32]). If p ∈ P, where P is the collection of
regular functions p in D, satisfying RðpðzÞÞ > 0, z ∈D, with
pðzÞ = 1 + p1z + p2z

2 +⋯, z ∈D, then jpij ≤ 2, for each i.

In the next section, we derive the estimates for jd2j,jd3j
and obtain the Fekete-Szegö [33] inequalities for functions
in the class SRSτ

Σðγ, μ, ~pkÞ.

2. Coefficient Bounds and Fekete-
Szegö Functional

In this section, we offer to get the upper bounds on initial
coefficients and find the functional of Fekete-Szegö for func-
tions ∈SRSτ

Σðγ, μ, ~pkÞ.

Theorem 6. Let τ ≥ 1, 0 ≤ γ ≤ 1, and μ ≥ 0. If gðzÞ of the form
(1) in the family SRSτ

Σðγ, μ, ~pkÞ, then

d2j j ≤ k
ffiffiffi
k

p
tkj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣ γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þð Þk2tk + 2 μ + τð Þ − γð Þ2Tk

q
∣
,

ð12Þ

d3j j ≤ k tkj j
3 2μ + τð Þ − γ

+ k3t2k
γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þð Þk2tk + 2 μ + τð Þ − γð Þ2Tk

�� �� ,
ð13Þ

and for δ ∈ℝ,

where

J = 1
3 2μ + τð Þ − γ

� γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þ + 2 μ + τð Þ − γð Þ2 Tk

k2tk

����
����

� 	
:

ð15Þ

Proof. Let the function g ∈ SRSτ
Σðγ, μ, ~pkÞ. Then, from Defi-

nition 1, we have

z g′ zð Þ
� �τ

+ μz2g′′ zð Þ
γg zð Þ + 1 − γð Þz ≺ ~pk u zð Þð Þ, z ∈D, ð16Þ

ω f ′ ωð Þ
� �τ

+ μω2 f ′′ ωð Þ
γf ωð Þ + 1 − γð Þω ≺ ~pk v ωð Þð Þ, ω ∈D: ð17Þ

Let pðzÞ = 1 + p1z + p2z
2 +⋯, and p ≺ ~pk. Then, there

exists a regular function u with juðzÞj < 1 in D and pðzÞ =
~pkðuðzÞÞ. Therefore, the function mðzÞ is in the class P,

where

m zð Þ = 1 + u zð Þ
1 − u zð Þ = 1 + u1z + u2z

2+⋯: ð18Þ

So it follows that

u zð Þ = m zð Þ − 1
m zð Þ + 1 = u1

2 z + u2 −
u21
2


 �
z2

2 + u3 − u1u2 +
u31
4


 �
z3

2 +⋯,

ð19Þ

~pk u zð Þð Þ = 1 + ~pk,1
u1z
2 + u2 −

u21
2


 �
z2

2 +⋯

 �

+ ~pk,2
u1z
2 + u2 −

u21
2


 �
z2

2 +⋯

 �2

+⋯

= 1 +
~pk,1u1z

2 + 1
2 u2 −

u21
2


 �
~pk,1 +

u21
4

~pk,2


 �
z2+⋯:

ð20Þ

d3 − δd22
�� �� ≤

k ∣ tk ∣
3 2μ + τð Þ − γ

; 1 − δj j ≤ J ,

k3t2k 1 − δj j
γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þð Þk2tk + 2 μ + τð Þ − γð Þ2Tk

�� �� ; 1 − δj j ≥ J ,

8>>>><
>>>>:

ð14Þ
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Similarly, it follows that

~pk v ωð Þð Þ = 1 +
~pk,1v1ω

2 + 1
2 v2 −

v21
2


 �
~pk,1 +

v21
4
~pk,2


 �
ω2+⋯,

ð21Þ

where v is a regular function such that ∣vðωÞ ∣ <1 in D such
that pðωÞ = ~pkðvðωÞÞ and the function lðωÞ is in the class P,
where

l ωð Þ = 1 + v ωð Þ
1 − v ωð Þ = 1 + v1ω + v2ω

2+⋯: ð22Þ

By virtue of (14), (15), (18), and (19), we obtain

2 μ + τð Þ − γð Þ d2 =
u1k tk
2 , ð23Þ

3 2μ + τð Þ − γð Þd3 + γ2 − 2γ μ + τð Þ + 2τ τ − 1ð Þ� �
d22

= 1
2 u2 −

u21
2


 �
ktk +

u21
4 k2 + 2
� �

t2k,
ð24Þ

− 2 μ + τð Þ − γð Þd2 =
v1k tk
2 , ð25Þ

3 2μ + τð Þ − γð Þ 2d22 − d3
� �

+ γ2 − 2γ μ + τð Þ + 2τ τ − 1ð Þ� �
d22

= 1
2 v2 −

v21
2


 �
k tk +

v21
4 k2 + 2
� �

t2k:

ð26Þ

From (21) and (23), we get

u1 = −v1, ð27Þ

and also,

2 2 μ + τð Þ − γð Þ2d22 =
u21 + v21
� �

k2 t2k
4 : ð28Þ

If we add (26) and (24), then we obtain

2 γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þ� �
d22 =

1
2 u2 + v2ð Þk tk

−
1
4 k tk − k2 + 2

� �
t2k

� �
u21 + v21
� �

:

ð29Þ

Substituting the value of ðu21 + v21Þ from (26) in (27),
we get

d22 =
k3 t2k u2 + v2ð Þ

4 γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð ÞÞk2 tk + 2 μ + τð Þ − γð Þ2Tk

�  ,
ð30Þ

which gets (10), on using Lemma 5.
On using (25) in the subtraction of (24) from (26), we

arrive at

d3 = d22 +
k tk u2 − v2ð Þ

4 3 2μ + τð Þ − γð Þ : ð31Þ

Then, in view of Lemma 5 and equation (28), (29)
reduces to (11).

From (28) and (29), for δ ∈ℝ, we can easily compute
that

d3 − δd22
�� �� = k tkj j T δð Þ + 1

4 3 2μ + τð Þ − γð Þ

 �

u2

����
+ T δð Þ − 1

4 3 2μ + τð Þ − γð Þ

 �

v2

����,
ð32Þ

where

T δð Þ = 1 − δð Þk2tk
4 γ2 + τ − γð Þ 2τ + 1ð Þ + 2μ 3 − γð Þð Þk2 tk + 2 μ + τð Þ − γð Þ2Tk

�  :
ð33Þ

In view of (4), we find that

d3 − δd22
�� �� ≤

k ∣ tk ∣
3 2μ + τð Þ − γð Þ ;0 ≤ T δð Þj j ≤ 1

4 3 2μ + τð Þ − γð Þ ,

4k tkj j T δð Þj j ; T δð Þj j ≥ 1
4 3 2μ + τð Þ − γð Þ ,

8>>><
>>>:

ð34Þ

which enable us to conclude (12) with J as in (13). Theorem
6 is proved.

Remark 7. By taking τ = 1 in the above theorem, we obtain a
result of Frasin et al. ([29], Corollary 3.4) and if we let μ = 0
in the above theorem, we get another result of Frasin et al.
([29], Corollary 3.7).

Remark 8. Allowing k = γ = 1 and μ = 0 in the above
theorem, we have Theorem 2.3 of Magesh et al. [31].

Remark 9. Letting τ = γ = 1 and μ = 0 in the Theorem 6, we
obtain two results of Güney et al. ([18], Corollary 10 and
Corollary 23). Further, if we take k = 1, we get results of
Güney et al. ([17], Corollary 1 and Corollary 4).

In Section 3, few interesting consequences and relevant
observations of the main result are mentioned.
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3. Outcome of the Main Result

By setting (i) γ = 1, (ii) γ = 0, and (iii) μ = 1 in our main
theorem, we obtain the following results, respectively.

Corollary 10. If the function g∈LτΣðμ, ~pkÞ, then

d2j j ≤ k
ffiffiffi
k

p
tkj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣ τ 2τ − 1ð Þ + 4μð Þk2tk + 2 μ + τð Þ − 1ð Þ2Tk

q
∣
,

d3j j ≤ k tkj j
3 2μ + τð Þ − 1

+ k3t2k
τ 2τ − 1ð Þ + 4μð Þk2tk + 2 μ + τð Þ − 1ð Þ2Tk:

�� �� ,
ð35Þ

and for δ ∈ℝ,

d3 − δd22
�� �� ≤

k tkj j
3 2μ + τð Þ − 1

; 1 − δj j ≤ J1,

k3 t2k ∣ 1 − δ ∣
∣ τ 2τ − 1ð Þ + 4μð Þk2tk + 2 μ + τð Þ − 1ð Þ2Tk ∣

; 1 − δj j ≥ J1,

8>>><
>>>:

ð36Þ

where

J1 =
1

3 2μ + τð Þ − 1
τ 2τ − 1ð Þ + 4μ + 2 μ + τð Þ − 1ð Þ2 Tk

k2tk

����
����


 �
:

ð37Þ

Remark 11.

(i) By taking μ = 0 and k = 1 in the above corollary, we
obtain Theorem 2.3 of Magesh et al. [31]

(ii) By allowing μ = 0 and τ = 1 in the above corollary,
we get two results Güney et al. ([18], Corollary 10
and Corollary 23)

Corollary 12. If the function g∈Kτ
Σðμ, ~pkÞ, then

d2j j ≤ k
ffiffiffi
k

p
tkj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ 2τ + 1ð Þ + 6μð Þk2tk + 4 μ + τð Þ2Tk

�� ��q ,

d3j j ≤ k3t2k
τ 2τ + 1ð Þ + 6μð Þk2tk + 4 μ + τð Þ2Tk

�� �� + k tkj j
3 2μ + τð Þ ,

ð38Þ

and for some δ ∈ℝ,

d3 − δd22
�� �� ≤

k tkj j
3 2μ + τð Þ ; 1 − δj j ≤ J2,

k3t2k 1 − δj j
τ 2τ + 1ð Þ + 6μð Þk2tk + 4 μ + τð Þ2Tk

�� �� ; 1 − δj j ≥ J2,

8>>>><
>>>>:

ð39Þ

where

J2 =
1

3 2μ + τð Þ τ 2τ + 1ð Þ + 6μ + 4 μ + τ2
� � Tk

k2t2k

�����
�����

" #
: ð40Þ

Remark 13. For τ = 1, Corollary 12 reduces to a result of
Frasin et al. ([30], Corollary 3.6). Further, allowing k = 1,
we get Corollary 10 of Altnkaya [22].

Corollary 14. If the function g∈Mτ
Σðγ, ~pkÞ, then

∣d2∣ ≤
k
ffiffiffi
k

p
∣ tk ∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣ 1 − γð Þ2 + τ − γð Þ 2τ + 1ð Þ + 5 − γ
� �

k2tk + 2 1 + τð Þ − γð Þ2Tk

q
∣
,

d3j j ≤ k tkj j
3 2 + τð Þ − γ

+ k3t2k
4μ + 1ð Þk2tk + 2μ + 1ð Þ2Tk

�� �� ,
ð41Þ

and for δ ∈ℝ,

where

d3 − δd22
�� �� ≤

k ∣ tk ∣
3 2 + τð Þ − γ

; 1 − δj j ≤ J3,

k3t2k ∣ 1 − δ ∣
1 − γð Þ2 + τ − γð Þ 2τ + 1ð Þ + 5 − γ

� �
k2tk + 2 1 + τð Þ − γð Þ2Tk

�� �� ;∣1 − δ∣ ≥ J3,

8>>>><
>>>>:

ð42Þ

J3 =
1

3 2 + τð Þ − γ
1 − γð Þ2 + τ − γð Þ 2τ + 1ð Þ + 5 − γ

� �
+ 2 1 + τð Þ − γð Þ2 Tk

k2 tk

����
����


 �
: ð43Þ
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4. Conclusion

A comprehensive family of biunivalent (or bi-Schlicht) func-
tions is introduced by using k-Fibonacci numbers. Bounds of
the first two coefficients ∣d2 ∣ and ∣d3 ∣ and the celebrated
Fekete-Szegö functional have been fixed for this family.
Through corollaries of our main result, we have highlighted
many interesting new consequences.

A comprehensive family examined in this research paper
could inspire further research related to other aspects such
as a comprehensive family using q-derivative operator, a
meromorphic biunivalent function family associated with
Al-Oboudi differential operator, and a comprehensive family
using integrodifferential operator.
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