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A Comprehensive Framework for Performance
Analysis of Cooperative Multi-Hop Wireless
Systems over Log-Normal Fading Channels

Marco Di Renzo, Member, IEEE, Fabio Graziosi, Member, IEEE, and Fortunato Santucci, Senior Member, IEEE

Abstract—In this paper, we propose a comprehensive frame-
work for performance analysis of multi–hop multi–branch wire-
less communication systems over Log–Normal fading channels.
The framework allows to estimate the performance of Am-
plify and Forward (AF) relay methods for both Channel State
Information (CSI–) assisted relays, and fixed–gain relays. In
particular, the contribution of this paper is twofold: i) first of all,
by relying on the Gauss Quadrature Rule (GQR) representation
of the Moment Generation Function (MGF) for a Log–Normal
distribution, we develop accurate formulas for important perfor-
mance indexes whose accuracy can be estimated a priori and just
depends on GQR numerical integration errors; ii) then, in order
to simplify the computational burden of the former framework
for some system setups, we propose various approximations,
which are based on the Improved Schwartz–Yeh (I–SY) method.
We show with numerical and simulation results that the proposed
approximations provide a good trade–off between accuracy and
complexity for both Selection Combining (SC) and Maximal
Ratio Combining (MRC) cooperative diversity methods.

Index Terms—Cooperative systems, multi-hop, antenna shar-
ing, spatial diversity, log-normal fading.

I. INTRODUCTION

O
VER the last years, spatial diversity techniques have
been proved to be a very effective remedy to boost

channel capacity and improve error performance over fading
channels [1]–[3]. In the recent period, a new concept of
spatial diversity is gaining growing attention in the research
community: cooperative diversity [4]–[6]. The basic premise
of cooperative diversity is to achieve the benefits of spatial
diversity without requiring each mobile radio to be equipped
with co–located multiple antennas. Instead, each mobile radio
becomes part of a large distributed array, and shares its single–
antenna to help the communication between two neighboring
source and destination radios by using relayed transmissions,
and distributed diversity combining techniques [6].
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Various analytical frameworks have been developed to an-
alyze the performance of virtual antenna array systems over
fading channels (see, e.g., [7]–[13] and references therein).
However, a careful review of the up–do–date open technical
literature has pointed out that these analytical studies are
limited to a restricted number of fading channel models,
i.e., Rayleigh, Nakagami–m, Nakagami–n (Rice), Nakagami–
q (Hoyt), and Weibull. While, the analysis of Log–Normal
and composite fading channel models is, to the authors’
best knowledge, still very limited [14]–[18]. However, Log–
Normal fading is often encountered in many reference scenar-
ios of practical interest. For example, it typically characterizes
the shadowing effects from indoor obstacles and moving
human bodies, and the Log–Normal distribution provides, in
general, a better fit for empirical fading channel measurements
and for modeling fading fluctuations in indoor radio propaga-
tion environments, where long– and short–term contributions
tend to get mixed, and the Log–Normal contribution tends to
be the dominant factor [19], [20]. Moreover, it is known that
shadowing effects in outdoor scenarios are well modeled by a
Log–Normal distribution [1]1. Finally, and more importantly,
recent experimental activities have shown the need to take
into account the randomness induced by Log–Normal fading
effects for a proper analysis, design, and optimization of
cooperative multi–hop networks, as well as pointed out that
oversimplifying these wireless propagation phenomena may
lead to erroneous protocol and system design guidelines [22]–
[26].

Motivated by the above considerations, in the present contri-
bution we propose a comprehensive framework for the analysis
of cooperative multi–hop wireless systems over Log–Normal
fading channel, which aims at overcoming the limitations
of previous proposed frameworks on the same subject. In
particular, the following limitations can be acknowledged
in the available contributions: i) in [14], only the Outage
Probability (Pout) is investigated, and the suggested approx-
imation is not substantiated by numerical simulations, ii)
in [15], as the authors are mainly interested in analyzing
optimal power allocation issues, and performing diversity gain
analysis, Chernoff bounds are used, which, however, may not
provide accurate results; furthermore, only the basic dual–
branch dual–hop scenario is analyzed therein, and iii) in [16],

1Note that indoor and outdoor scenarios are both considered, e.g., within
the IEEE 802.16j Broadband Wireless Access Working Group [21], which is
working on standardization activities for wireless multi–hop networks.
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although the proposed framework is very general, explicit
closed–form formulas are not provided, but only integral
results are available for most performance indexes. Moreover,
[14] and [16] only consider the scenario where the relays
have full Channel State Information (CSI), while the more
practical relay schemes with either average or no CSI are, to
date, analyzed only in [15] for Log–Normal fading channels.
However, only single–relay networks are investigated therein.

In the light of the above, the contribution of the present
paper is twofold: i) first of all, by relying on the Gauss
Quadrature Rule (GQR) representation of the Moment Gen-
eration Function (MGF) for a Log–Normal distribution, we
develop accurate formulas for computing important perfor-
mance indexes, i.e., Average Bit Error Probability (ABEP),
Pout, Outage Capacity (OC), and Ergodic (Shannon) Capac-
ity (EC) for Amplify and Forward (AF) relay methods; ii)
then, in order to simplify the computation burden of the
former framework for some system setups, we also propose
and analyze various approximations, which are based on the
recently proposed Improved Schwartz–Yeh (I–SY) method
[27]2. We show with numerical and simulation results that the
proposed approximations provide a good trade–off between
accuracy and complexity for both Selection Combining (SC)
and Maximal Ratio Combining (MRC) cooperative diversity
methods. Various relay schemes, which include CSI–assisted
analog relays [7], and semi–blind and blind analog relays [12],
will be considered in the analysis.

The remainder of the paper is organized as follows. Sec-
tion II describes system and channel models. In Section III,
the GQR–based framework is presented for SC and MRC
methods. In Section IV, various approximations based on the
I–SY method are provided and compared. Section V analyzes
the computational complexity of the proposed frameworks.
Finally, Section VI shows some numerical results to validate
the accuracy of them, and Section VI concludes the paper.

Notation. The following notation is used throughout the
paper: i) 𝐿𝑜𝑔𝑁 (𝜇, 𝜎) denotes a Log–Normal Random Vari-
able (RV) with parameters (in dB) 𝜇 and 𝜎, ii) v (𝑖) denotes
the 𝑖–th element of vector v, and M (𝑖, 𝑗) the element in
the 𝑖-th row and 𝑗–th column of matrix M, iii) {𝑥𝑝}𝑁𝑝

𝑝=1

and
{

𝐻𝑥𝑝

}𝑁𝑝

𝑝=1
are zeros and weights of the 𝑁𝑝–order Her-

mite polynomial, respectively, iv) N0 is the power spectral
density of the Additive White Gaussian Noise (AWGN) of
every transceiver and 𝐸𝑠 is the average radiated energy per
transmitted symbol, v) Pr {⋅} means probability, vi) 𝑄 (𝑥) =
(1/2) erfc

(

𝑥
/√
2
)

is the 𝑄 (⋅) function, and erfc (⋅) is the
complementary error function in [29, Eq. (7.1.2)], vii) the
function 1{𝑥≤𝜖} is defined as 1{𝑥≤𝜖} = 1 if 𝑥 ≤ 𝜖,
and 1{𝑥≤𝜖} = 0 otherwise, viii) 𝐸 {⋅} denotes statistical
expectation, ix) 𝑓𝑋 (⋅) and 𝑀𝑋 = 𝐸 {exp (−𝑠𝑋)} are the
Probability Density Function (PDF) and the MGF of RV X, x)
max {𝑋1, . . . , 𝑋𝑛} and min {𝑋1, . . . , 𝑋𝑛} are the maximum
and minimum of RVs {𝑋𝑖}𝑛𝑖=1, respectively, xi) Γ (⋅) is the
Gamma function in [29, Eq. (6.1.1)], xii) 𝛿 (⋅) and 𝛿𝑛,𝑚 are
Dirac’s and Kronecker’s Delta functions, respectively, xiii)

2Recently, a Fenton–Wilkinson based method has also been proposed in
[28] to compute the EC for Log–Normal channels, but the accuracy of it
has not been tested for cooperative diversity. In this paper we use a different
approach, i.e., the I–SY method.

𝐽𝜈 (⋅) and 𝐼𝜈 (⋅) are the Bessel and modified Bessel functions
of first kind and order 𝜈 in [29, Ch. 9)], respectively, and xiv)
C (𝑋 ; 𝑘) = 𝑘−1 log2 (1 +𝑋) is the (instantaneous) channel
capacity of RV X.

Moreover, by denoting with RV 𝑋 the end–to–end
Signal–to–Noise Ratio (SNR) of a generic system setup 𝑆,
we define ABEP, Pout, EC, and OC as follows, respec-
tively: 1) ABEPS (𝑋 ; 𝑎, 𝑏) =

∫ +∞
0

𝑏𝑄
(

𝑎
√
𝜉
)

𝑓𝑋 (𝜉) 𝑑𝜉 =

(𝑏/𝜋)
∫ 𝜋/2

0
𝑀𝑋

(

0.5𝑎2
/

sin2 (𝜃)
)

𝑑𝜃, which holds for lin-
ear modulation schemes with coherent detection, 𝑎 and 𝑏

are constant factors depending on the modulation scheme,
and the last equality is known as Craig’s formula, 2)
PSout (𝑋 ;𝑉𝑇 ) =

∫ 𝑉𝑇

0
𝑓𝑋 (𝜉) 𝑑𝜉, where 𝑉𝑇 is the protection

threshold for reliable communications, 3) ECS (𝑋 ;𝐵) =
𝐵−1

∫ +∞
0 log2 (1 + 𝜉) 𝑓𝑋 (𝜉) 𝑑𝜉, with 𝐵 being a scaling fac-

tor that depends on the system setup, and 4) OCS (𝑋 ;𝐵, 𝑟) =
∫ 2𝐵𝑟−1

0 𝑓𝑋 (𝜉) 𝑑𝜉, where 𝑟 is the desired rate in [bits/s/Hz].

II. SYSTEM MODEL

A. Parallel Relay Channel

Let us consider a typical multi–branch multi–hop cooper-
ative network with 𝐿 virtual diversity branches and {𝑁𝑙}𝐿𝑙=1

hops for every branch, with 𝑀 =
∑𝐿

𝑙=1 (𝑁𝑙 − 1) representing
the total number of relays in the network (see, e.g., [16,
Fig. 1] for a similar system setup). In such a network, the
communication between a source (S) and a destination (D) is

facilitated by 𝑀 relays
{

{𝑅𝑙,𝑛}𝐿𝑙=1

}𝑁𝑙−1

𝑛=1
, which amplify the

signal received by either the source or the previous relay in the
same branch, and route the amplified signal to the destination
(AF relay technique) [6]. More specifically, i) 𝑅𝑙,𝑛 denotes
the 𝑛–th relay in the 𝑙–th branch, and 𝐺𝑙,𝑛 is the related relay
gain, ii) 𝛼𝑙,𝑛 is the fading amplitude in the 𝑛–th hop of the

𝑙–th branch, and 𝛾𝑙,𝑛 = 𝛼2
𝑙,𝑛𝐸𝑠

/

N0 the related SNR, and iii)

𝛾0 = 𝛼2
0𝐸𝑠

/

N0 denotes the SNR of the direct path between S
and D (i.e., one–hop transmission). Moreover, the normalized
SNR 𝛾𝑙,𝑛 = 𝛾𝑙,𝑛/(𝐸𝑠/N0) = 𝛼2

𝑙,𝑛 will be assumed to be
Log–Normal distributed with parameters (in dB) 𝜇𝑙,𝑛 and 𝜎𝑙,𝑛,
i.e.,:

𝑓𝛾𝑙,𝑛
(𝜉) =

10

ln (10)

1√
2𝜋𝜎𝑙,𝑛𝜉

exp

[

− (10 log10 (𝜉)− 𝜇𝑙,𝑛)
2

2𝜎2𝑙,𝑛

]

(1)
Depending on the a priori CSI knowledge at the relays, the

end–to–end SNR in every diversity branch, 𝛾𝑙, may take one
of the following forms:

1) Full CSI (F–CSI), i.e., CSI–assisted analog relays, [5],

[7]: 𝛾F−CSI−I
𝑙 =

[

∑𝑁𝑙

𝑛=1 𝛾
−1
𝑙,𝑛

]−1

, and 𝛾F−CSI−R
𝑙 =

[

∏𝑁𝑙

𝑛=1

(

1 + 𝛾−1
𝑙,𝑛

)

− 1
]−1

, which are obtained by set-

ting 𝐺𝑙,𝑛 = 1/𝛼𝑙,𝑛 and 𝐺𝑙,𝑛 =

√

1
/(

𝛼2
𝑙,𝑛 +N0/𝐸𝑠

)

,

respectively. When the F–CSI–I setup is considered, it
is assumed that every relay can invert the fading effect
of the previous hop without imposing any limits on the
output power of the relay. On the other hand, the F–
CSI–R system setup limits the output power of every
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⎩

Π𝑙 (p) =

𝑁𝑙
∏

𝑘=1

𝐻𝑝𝑘√
𝜋

Ω𝑙 (p) =

𝑁𝑙
∑

𝑘=1

exp

⎡

⎣

ln (10)

10

√
2

𝑁𝑙
∑

𝑗=1

𝝇 𝑙 (𝑘, 𝑗)𝑥𝑝𝑗
+
ln (10)

10
𝝁𝑙 (𝑘)

⎤

⎦

(4)

relay if the fading amplitude of the previous hop is too
low.

2) No CSI (N–CSI), i.e., blind analog relays, [12]:

𝛾N−CSI
𝑙 =

[

∑𝑁𝑙

𝑛=1

(

∏𝑛

𝑗=1 𝐶𝑙,𝑗−1𝛾
−1
𝑙,𝑗

)]−1

, where

𝐺𝑙,𝑗 =
√

𝐸𝑠/(𝐶𝑙,𝑗N0) and {𝐶𝑙,0}𝐿𝑙=1 = 1.
3) Average CSI (A–CSI), i.e., semi–blind analog relays,

[12]: The end–to–end SNR is formally the same as the
blind scenario, i.e., 𝛾A−CSI

𝑙 = 𝛾N−CSI
𝑙 , but the relay

gain is 𝐺2
𝑙,𝑛 = 𝐸

{

(

𝛼2
𝑙,𝑛 +N0/𝐸𝑠

)−1
}

. For Log–

Normal fading channels, it can be obtained by putting
the GQR–closed–form expression of the MGF of a Log–
Normal distribution [2, Eq. (2.28)] into [30, Eq. (4.1)],
and computing the related integral as follows:

𝐺2
𝑙,𝑛 =

1√
𝜋

𝑁𝑝
∑

𝑝=1

𝐻𝑥𝑝

10[(
√
2𝜎𝑙,𝑛𝑥𝑝+𝜇𝑙,𝑛)/10] +N0/𝐸𝑠

(2)

where {𝑥𝑝}𝑁𝑝

𝑝=1 and
{

𝐻𝑥𝑝

}𝑁𝑝

𝑝=1
can be found in [29,

Table 25.10]. The interested reader may refer to [31]
for issues related to truncation errors and convergence
conditions of GQR integration.

With regard to diversity combining techniques, we analyze
the performance of SC and MRC methods, whose end–to–
end SNRs at the combiner output are given by 𝛾𝑆𝐶 =
max {𝛾0, 𝛾1, . . . , 𝛾𝐿} and 𝛾𝑀𝑅𝐶 =

∑𝐿
𝑙=0 𝛾𝑙, respectively.

Moreover, for analytical tractability, but without loss of gen-
erality, in what follows the direct path 𝛾0 will be implicitly
treated as a multi–hop link with a single hop, i.e., 𝑁0 = 1.

B. Performance Analysis: The Need of Modeling Log-Normal

Power-Sums

By carefully looking at 𝛾F−CSI−R
𝑙 , 𝛾F−CSI−I

𝑙 , 𝛾N−CSI
𝑙 , and

𝛾A−CSI
𝑙 , we can easily figure out that, regardless of the a

priori knowledge of relay’s CSI, the inverse of the SNR of
every diversity branch is given by the summation of correlated
Log–Normal RVs. In particular, these SNRs can be written as

𝛾𝑙 =
[

∑𝑁𝑙

𝑛=1 𝑌𝑙,𝑛

]−1

, where {𝑌𝑙,𝑛}𝑁𝑙

𝑛=1 are Log–Normal RVs
with mean vector (𝝁𝑌𝑙

) and covariance matrix (Σ𝑌𝑙
) given as

follows:

1) 𝛾F−CSI−I
𝑙 : 𝝁𝑌𝑙

(𝑛) = −𝜇𝑙,𝑛 − 10 log10 (𝐸𝑠/N0), and
Σ𝑌𝑙

(𝑛,𝑚) = 𝜎2𝑙,𝑛𝛿𝑛,𝑚;

2) 𝛾N−CSI
𝑙 and 𝛾A−CSI

𝑙 : Σ𝑌𝑙
(𝑛,𝑚) =

∑min(𝑛,𝑚)
𝑗=1 𝜎2𝑙,𝑗 , and

𝝁𝑌𝑙
(𝑛) =

∑𝑛

𝑗=1

(

−𝜇𝑙,𝑗 − 10 log10
(

𝐺2
𝑙,𝑗

))

;

3) 𝛾F−CSI−R
𝑙 : see Appendix I.

Accordingly, modeling the distribution of these SNRs is
equivalent to find the distribution of the power–sum of gener-
ically correlated Log–Normal RVs. However, a closed–form

solution for the PDF of such a power–sum is still unknown
to date, even though several approximation techniques have
been proposed to deal with the above problem [27]. Moreover,
although closed–form solutions for the PDF do not exist,
an efficient and accurate representation via GQR methods is
available in the literature to compute the MGF [32]. In the
present paper, we will move from and generalize these results
for performance analysis of cooperative multi–hop networks.

Finally, we would like to emphasize that in the present
contribution we need to model the power–sum of correlated
Log–Normal RVs as a consequence of the particular structure
of the end–to–end SNRs. In other words, even though fading
effects can be assumed to be uncorrelated, computing the end–
to–end performance of multi–hop networks needs to develop
frameworks that allow to deal with correlated summands. So,
even though we resort to the assumption of uncorrelated fading
in this manuscript, the proposed frameworks can be used to
analyze the performance of multi–hop networks over gener-
ically correlated fading environments. The generalization to
scenarios with correlated fading among the diversity branches
is, on the contrary, left to a future contribution.

III. ACCURATE FRAMEWORK FOR PERFORMANCE

ANALYSIS

A. Multi-Hop Networks - No Diversity

Although the PDF of 𝛾−1
𝑙 is not available in closed–form,

its MGF can be computed as follows [32]:

𝑀𝛾
−1

𝑙
(𝑠) =

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p) 𝑒
−𝑠Ω𝑙(p)

]

(3)

with Π𝑙 (⋅) and Ω𝑙 (⋅) being defined in (4) on top of this page,
and 𝝇 (𝑘, 𝑗) is the (𝑘, 𝑗)–th element of Σ𝑠𝑞

𝑌𝑙
= 𝑼𝑌𝑙

(V𝑌𝑙
)
0.5,

𝑼𝑌𝑙
and 𝑽 𝑌𝑙

are the matrices containing eigenvectors and
eigenvalues of Σ𝑌𝑙

, and p is a vector with elements {𝑝𝑗}𝑁𝑙

𝑗=1.
From (3), the MGF of 𝛾𝑙 can be obtained using the recent

result [16, Theorem 1]:

𝑀𝛾𝑙
(𝑠) = 1− 2

√
𝑠

∫ +∞

0

𝐽1
(

2
√
𝑠𝜉
)

𝑀𝛾
−1

𝑙

(

𝜉2
)

𝑑𝜉 (5)

which can be solved using GQR integration and [33, Eq.

6.618], as shown in (6) on top of the next page, where
(𝑎)
=

and
(𝑏)
= are obtained by using [29, Eq. (10.2.13)] and [29, Eq.

(4.5.1)], respectively. Moreover,
(𝑐)
= comes from the identity

∑𝑁𝑝

𝑝1=1

∑𝑁𝑝

𝑝2=1 ⋅ ⋅ ⋅
∑𝑁𝑝

𝑝𝑁𝑙
=1Π𝑙 (p) = 1.

Finally, via inverse Laplace transform [34], the PDF, 𝑓𝛾𝑙
(⋅),

is as follows:

𝑓𝛾𝑙
(𝜉) =

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p) 𝛿

(

𝜉 − 1

Ω𝑙 (p)

)]

(7)
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𝑀𝛾𝑙
(𝑠) = 1−

√
𝜋𝑠

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p)
√

Ω𝑙 (p)
exp

(

− 𝑠

2Ω𝑙 (p)

)

𝐼 1

2

(

𝑠

2Ω𝑙 (p)

)

]

(𝑎)
= 1− 2

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p) exp

(

− 𝑠

2Ω𝑙 (p)

)

sinh

(

𝑠

2Ω𝑙 (p)

)]

(𝑏)
= 1−

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

{

Π𝑙 (p)

[

1− exp
(

− 𝑠

Ω𝑙 (p)

)]}

(𝑐)
=

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p) exp

(

− 𝑠

Ω𝑙 (p)

)]

(6)

ABEPSC (𝛾𝑆𝐶 ; 𝑎, 𝑏) = 𝑏

𝐿
∑

𝑙=0

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p)𝑄

(

𝑎

√

1

Ω𝑙 (p)

)

𝐿
∏

𝑘=0

PMh
out

(

𝛾𝑘 ∕=𝑙;
1

Ω𝑘 (p)

)

]

(13)

ECSC (𝛾𝑆𝐶 ;𝑀 + 1) =
1

(𝑀 + 1)

𝐿
∑

𝑙=0

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p) log2

(

1 +
1

Ω𝑙 (p)

) 𝐿
∏

𝑘=0

PMh
out

(

𝛾𝑘 ∕=𝑙;
1

Ω𝑘 (p)

)

]

(14)

It is possible to verify that (7) is a true PDF as the
following two conditions are satisfied simultaneously: i) 𝑓𝛾𝑙

(⋅)
is positive semi–definite for each value of its argument, and
ii)
∫ +∞
0

𝑓𝛾𝑙
(𝜉) 𝑑𝜉 = 1. The first condition can be proved

by taking into account that, by definition, the GQR weights
are always positive. The second condition can be obtained
by taking into account that

∫ +∞
0 𝛿

(

𝜉 − Ω−1
𝑙 (p)

)

𝑑𝜉 = 1 and
∑𝑁𝑝

𝑝1=1

∑𝑁𝑝

𝑝2=1 ⋅ ⋅ ⋅
∑𝑁𝑝

𝑝𝑁𝑙
=1Π𝑙 (p) = 1. Similar arguments can

be used to verify that other PDFs developed in this paper are
true PDFs.

Therefore, by using (7), ABEP, Pout, and EC3 for multi–
hop (Mh) systems over Log–Normal fading channels can be
obtained via simple algebraic manipulations, as follows:

ABEPMh (𝛾𝑙; 𝑎, 𝑏)

= 𝑏

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p)𝑄

(

𝑎

√

1

Ω𝑙 (p)

)]

(8)

PMh
out (𝛾𝑙;𝑉𝑇 )

=

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p) ⋅ 1{Ω−1

𝑙
(p𝑙)≤𝑉𝑇}

] (9)

ECMh (𝛾𝑙;𝑁𝑙)

=
1

𝑁𝑙

𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

[

Π𝑙 (p) log2

(

1 +
1

Ω𝑙 (p)

)]

(10)

Note that the scaling factor 𝐵 = 𝑁𝑙 in EC is due to the
assumption of a time division channel allocation scheme
for delivering information through the network [35], [36].
When SC and MRC diversity is considered the scaling factor
is 𝐵 = 𝑀 + 1, with 𝑀 defined in Section II. Finally,
OCMh (𝛾𝑙;𝑁𝑙, 𝑟) = P

Mh
out

(

𝛾𝑙;𝑉𝑇 = 2
𝑟𝑁𝑙 − 1

)

.

3Note that, similar to [35], [36], the expression for computing channel
capacity neglects the effect of discontinuous transmissions among the diversity
branches of the network, and delay transmission of bits in every relay node
of it.

B. Multi-Branch Multi-Hop Networks - Distributed Diversity

1) Selection Combining (SC): By assuming that the signals
received in every diversity branch are independent from each
other, Pout for SC methods is given by:

PSCout (𝛾𝑆𝐶 ;𝑉𝑇 ) = Pr {𝛾𝑆𝐶 ≤ 𝑉𝑇 }
= Pr {max {𝛾0, 𝛾1, . . . , 𝛾𝐿} ≤ 𝑉𝑇 }
= Pr {𝛾0 ≤ 𝑉𝑇 , 𝛾1 ≤ 𝑉𝑇 , . . . , 𝛾𝐿 ≤ 𝑉𝑇 }

=

𝐿
∏

𝑙=0

Pr {𝛾𝑙 ≤ 𝑉𝑇 } =
𝐿
∏

𝑙=0

PMh
out (𝛾𝑙;𝑉𝑇 )

(11)

From (11), the PDF of 𝛾𝑆𝐶 can be obtained via simple
differentiation:

𝑓𝛾𝑆𝐶
(𝜉) =

𝑑

𝑑𝜉

[

𝐿
∏

𝑙=0

PMh
out (𝛾𝑙; 𝜉)

]

=

𝐿
∑

𝑙=0

[

𝑓𝛾𝑙
(𝜉)

𝐿
∏

𝑘=0

PMh
out (𝛾𝑘 ∕=𝑙; 𝜉)

] (12)

Furthermore, from (12), ABEP and EC can be computed as
as shown in (13) and (14) on top of this page, respectively.

2) Maximal Ratio Combining (MRC): By still assuming
that the signals received in every diversity branch are inde-
pendent from each other, the MGF for MRC diversity can
be written as shown in (15) on top of the next page. From
(15), the PDF of 𝛾𝑀𝑅𝐶 is computed via inverse Laplace
transform operations as shown in (16) on top of the next page.
Furthermore, ABEP, Pout, and EC are shown in (17)–(19) on
top of the next page, respectively.

Although, for the sake of conciseness, just SC and MRC
combining schemes are here analyzed, the reader may use a
similar development for other diversity methods [2].

IV. I-SY METHOD FOR PERFORMANCE ANALYSIS

The framework developed in Section III provides very
accurate results, and for most system setups it represents a
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𝑀𝛾𝑀𝑅𝐶
(𝑠) =

𝐿
∏

𝑙=0

𝑀𝛾𝑙
(𝑠) =

𝐿
∏

𝑙=0

⎧

⎨

⎩

𝑁𝑝
∑

𝑝1,𝑙=1

𝑁𝑝
∑

𝑝2,𝑙=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙,𝑙
=1

[

Π𝑙 (p𝑙) exp

(

− 𝑠

Ω𝑙 (p𝑙)

)]

⎫

⎬

⎭

=

𝑁𝑝
∑

𝑝1,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁0,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝1,𝐿=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝐿,𝐿=1

{[

𝐿
∏

𝑙=0

Π𝑙 (p𝑙)

]

exp

(

−𝑠

𝐿
∑

𝑙=0

1

Ω𝑙 (p𝑙)

)}

(15)

𝑓𝛾𝑀𝑅𝐶
(𝜉) =

𝑁𝑝
∑

𝑝1,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁0,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝1,𝐿=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝐿,𝐿=1

{[

𝐿
∏

𝑙=0

Π𝑙 (p𝑙)

]

𝛿

(

𝜉 −
𝐿
∑

𝑙=0

1

Ω𝑙 (p𝑙)

)}

(16)

ABEPMRC (𝛾𝑀𝑅𝐶 ; 𝑎, 𝑏) = 𝑏

𝑁𝑝
∑

𝑝1,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁0,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝1,𝐿=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝐿,𝐿=1

⎧

⎨

⎩

[

𝐿
∏

𝑙=0

Π𝑙 (p𝑙)

]

𝑄

⎛

⎝𝑎

√

√

√

⎷

𝐿
∑

𝑙=0

1

Ω𝑙 (p𝑙)

⎞

⎠

⎫

⎬

⎭

(17)

PMRC
out (𝛾𝑀𝑅𝐶 ;𝑉𝑇 ) =

𝑁𝑝
∑

𝑝1,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁0,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝1,𝐿=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝐿,𝐿=1

⎧

⎨

⎩

[

𝐿
∏

𝑙=0

Π𝑙 (p𝑙)

]

⋅ 1{

𝐿
∑

𝑙=0

Ω−1

𝑙
(p𝑙)≤𝑉𝑇

}

⎫

⎬

⎭

(18)

ECMRC (𝛾𝑀𝑅𝐶 ;𝑀 + 1) =
1

𝑀 + 1

𝑁𝑝
∑

𝑝1,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁0,0=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝1,𝐿=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝐿,𝐿=1

{[

𝐿
∏

𝑙=0

Π𝑙 (p𝑙)

]

log2

(

1 +

𝐿
∑

𝑙=0

1

Ω𝑙 (p𝑙)

)}

(19)

ABEPSC,I−SY (𝛾𝑆𝐶 ; 𝑎, 𝑏) ∼=
𝑏√
𝜋

𝐿
∑

𝑙=0

𝑁𝑝
∑

𝑝=1

{

𝐻𝑝𝑄

(

𝑎

√

10(
√
2�̃�𝑌𝑙

𝑥𝑝−�̃�𝑌𝑙)/10

)

[

𝑄
(√
2𝑥𝑝

)]𝐿

}

(26)

ECSC,I−SY (𝛾𝑆𝐶 ;𝑀 + 1) ∼= 1√
𝜋 (𝑀 + 1)

𝐿
∑

𝑙=0

𝑁𝑝
∑

𝑝=1

{

𝐻𝑝 log2

(

1 + 10(
√
2�̃�𝑌𝑙

𝑥𝑝−�̃�𝑌𝑙)/10
) [

𝑄
(√
2𝑥𝑝

)]𝐿
}

(27)

𝑀 I−SY
𝛾𝑀𝑅𝐶

(𝑠) ∼=
(

1√
𝜋

)𝐿+1 𝑁𝑝
∑

𝑝0=1

𝑁𝑝
∑

𝑝1=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝐿=1

[(

𝐿
∏

𝑙=0

𝐻𝑝𝑙

)

exp

(

−𝑠

𝐿
∑

𝑙=0

10(
√
2�̃�𝑌𝑙

𝑥𝑝𝑙
−�̃�𝑌𝑙)/10

)]

(29)

very flexible and accurate means for performance analysis and
system optimization (e.g., for routing optimization based on
ABEP, Pout, or EC cost functions, and for optimal power
allocation of relays). However, it also shows some limitations,
which may ask for a simpler solution to be computed and used
for system optimization, and which, even being less accurate
than the framework in Section III, may still be reasonably
accurate in the vast majority of system setups. For example,
the framework in Section III may suffer these problems: i) the
computation of Pout (see, e.g., (9)) involves a function (i.e.,
1{⋅}) that is not smooth, and may require a large number (e.g.,
> 100) of points 𝑁𝑝 to provide accurate results, ii) when
SC diversity is concerned, 𝐿 terms related to Pout have to
be computed, which may make the framework computational
demanding, and iii) when MRC diversity is considered, the
framework may be as computational complex as the SC
case due to the number of fold summations involved in the
computation. So, for those scenarios (typically when both the

number of hops and diversity branches is large) where the
computational complexity of the framework in Section III is
high, we propose in this section various approximations with
a different complexity, which may be used as an alternative
to it.

The approximations proposed in this section are all based
on a method that we call, in this contribution, Improved
Schwartz–Yeh (I–SY) approximation. This approach has been
recently proposed, as a byproduct of the analysis, in [27],
which aimed at considering more complicated (i.e., non–
Log–Normal) and accurate approximation techniques for Log–
Normal power–sum (i.e., Pearson Type IV approximation)4.
In particular, the method retains the main features of SY
approach [37], i.e., i) the Log–Normal power–sum is ap-

4In this contribution, we do not consider these advanced and non–Log–
Normal methods because the I–SY method already offers good accuracies,
and the required flexibility to elaborate further the obtained approximating
formulas for system optimization.
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proximated by a Log–Normal RV, and ii) the parameters of
the approximating distribution are obtained via a moment
matching in the logarithmic domain. However, it shows an
important difference: the log–moments are obtained without
resorting to recursive numerical methods (in SY method
they are obtained via a recursive Log–Normal approximation,
which introduces errors in every recursive step). We use this
approach to develop several approximations with different
complexities and accuracies. Given that in [27] the I–SY
method has been proposed for independent summands, in
Appendix II we summarize the main steps to generalize it
to the power–sum of correlated Log–Normal RVs5.

A. Multi-Hop Networks - No Diversity

For multi–hop systems, the I–SY method foresees to ap-
proximate the power sum 𝑌𝑙 =

∑𝑁𝑙

𝑛=1 𝑌𝑙,𝑛, i.e., the inverse of
a SNR, with a Log–Normal RV, i.e., 𝑌𝑙 ∼ 𝐿𝑜𝑔𝑁 (�̃�𝑌𝑙

, �̃�𝑌𝑙
),

where �̃�𝑌𝑙
and �̃�𝑌𝑙

are the parameters (in dB) of the approxi-
mating PDF. Using [27] and Appendix II, the latter parameters

are �̃�𝑌𝑙
= �̃�

(1)
𝑌𝑙

and �̃�𝑌𝑙
=

√

�̃�
(2)
𝑌𝑙

−
(

�̃�
(1)
𝑌𝑙

)2

, where:

�̃�
(𝑞)
𝑌𝑙
=

(

10

ln (10)

)𝑞 𝑁𝑝
∑

𝑝1=1

𝑁𝑝
∑

𝑝2=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝑙
=1

Π𝑙 (p) {ln [Ω𝑙 (p)]}𝑞

(20)

Thus, the end–to–end SNR 𝛾𝑙 can be approximated with a
Log–Normal distribution (when 𝑙 = 0 the SNR is actually
Log–Normal distributed), i.e., 𝛾𝑙 ∼ 𝐿𝑜𝑔𝑁 (−�̃�𝑌𝑙

, �̃�𝑌𝑙
). In

what follows, we denote by 𝑓 I−SY
𝛾𝑙

(⋅) this approximating PDF.
By relying on the I–SY method, ABEP, Pout and EC are as
follows:

ABEPMh,I−SY (𝛾𝑙; 𝑎, 𝑏)

∼= 𝑏√
𝜋

𝑁𝑝
∑

𝑝=1

𝐻𝑝𝑄

(

𝑎

√

10(
√
2�̃�𝑌𝑙

𝑥𝑝−�̃�𝑌𝑙)/10

)

(21)

PMh,I−SY
out (𝛾𝑙;𝑉𝑇 ) ∼= 𝑄

(

−10 log10 (𝑉𝑇 ) + �̃�𝑌𝑙

�̃�𝑌𝑙

)

(22)

ECMh,I−SY (𝛾𝑙;𝑁𝑙)

∼= 1√
𝜋𝑁𝑙

𝑁𝑝
∑

𝑝=1

𝐻𝑝 log2

(

1 + 10(
√
2�̃�𝑌𝑙

𝑥𝑝−�̃�𝑌𝑙)/10
) (23)

By carefully looking at the obtained results, we observe that,
in this case, computing Pout is very simple, and the numerical
problems described above have disappeared.

5Note that a comprehensive analysis of the best Log–Normal or non–
Log–Normal approximation method for approximating the power–sum of
un–correlated and correlated Log–Normal RVs in the context of cooperative
multi–hop wireless systems is out of the scope of the present contribution.
The aim of the paper is to show that a particular approximation method (i.e.,
the I–SY) has the desired degree of flexibility and accuracy to be used in
this context. The comparison of various approximation approaches, and the
analysis of their advantages and disadvantages is left to a future contribution.

B. Multi-Branch Multi-Hop Networks - Selection Combining

The I–SY approximation can be extended to SC diversity.
In particular, Pout and 𝑓 I−SY

𝛾𝑆𝐶
(⋅) are:

PSC,I−SY
out (𝛾𝑆𝐶 ;𝑉𝑇 ) ∼=

𝐿
∏

𝑙=0

PMh,I−SY
out (𝛾𝑙;𝑉𝑇 )

=

𝐿
∏

𝑙=0

𝑄

(

−10 log10 (𝑉𝑇 ) + �̃�𝑌𝑙

�̃�𝑌𝑙

)

(24)

𝑓 I−SY
𝛾𝑆𝐶

(𝜉) ∼= 𝑑

𝑑𝜉

[

𝐿
∏

𝑙=0

PMh,I−SY
out (𝛾𝑙; 𝜉)

]

=

𝐿
∑

𝑙=0

[

𝑓 I−SY
𝛾𝑙

(𝜉)

𝐿
∏

𝑘=0

PMh,I−SY
out (𝛾𝑘 ∕=𝑙; 𝜉)

] (25)

Then, by using (25), ABEP and EC can be obtained with
simple algebraic manipulations as shown in (26) and (27) on
top of the previous page, respectively.

C. Multi-Branch Multi-Hop Networks - Maximal Ratio Com-

bining

When the I–SY method is used in multi–branch multi–hop
relay networks with MRC diversity, there exist several possi-
bilities to use it, each one leading to a different framework
with its own accuracy and complexity. The aim of this sub-
section is to analyze various possibilities, and compare them
in terms of complexity (see Section V) and accuracy (see
Section VI).

1) Maximal Ratio Combining - Method 1: The first method
foresees two main steps: i) first of all, 𝛾𝑙 is approximated
with a Log–Normal RV using the I–SY method, i.e., 𝛾𝑙 ∼
𝐿𝑜𝑔𝑁 (−�̃�𝑌𝑙

, �̃�𝑌𝑙
), and ii) then, ABEP, Pout and EC are

computed using the MGF–based approach for performance
analysis of digital communication systems [2].

Accordingly, by relying on the Log–Normal approximation
for 𝛾𝑙, its MGF is [2]:

𝑀 I−SY
𝛾𝑙

(𝑠) ∼= 1√
𝜋

𝑁𝑝
∑

𝑝=1

𝐻𝑝 exp
(

−10(
√
2�̃�𝑌𝑙

𝑥𝑝−�̃�𝑌𝑙)/10𝑠
)

(28)
and, the MGF of 𝛾𝑀𝑅𝐶 becomes 𝑀 I−SY

𝛾𝑀𝑅𝐶
(𝑠) ∼=

∏𝐿

𝑙=0𝑀
I−SY
𝛾𝑙

(𝑠) shown in (29) on top of the previous
page.

Using (29), the ABEP can be computed using the Craig’s
formula [2] as shown in (30) on top of the next page. Similarly,
Pout can be computed using the Euler–Sum based framework
described in [2], whose final expression is not reported here for
the sake of conciseness. While, to the authors’ best knowledge,
it does not exist to date a general formula to compute EC,
which exploits the MGF–based approach developed in [2].
However, in Theorem 1 we propose a new and general result
that can be used to compute EC from the MGF of the end–
to–end SNR.

Theorem 1: Let the MGF of a positive RV 𝑋 , the MGF
of RV 𝑌 = log2 (1 +𝑋) is given by the following integral
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ABEPMRC,I−SY (𝛾𝑀𝑅𝐶 ; 𝑎, 𝑏) ∼=
(

1√
𝜋

)𝐿+1

𝑏

𝑁𝑝
∑

𝑝0=1

𝑁𝑝
∑

𝑝1=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝐿=1

⎡

⎣

(

𝐿
∏

𝑙=0

𝐻𝑝𝑙

)

𝑄

⎛

⎝𝑎

√

√

√

⎷

𝐿
∑

𝑙=0

10(
√
2�̃�𝑌𝑙

𝑥𝑝𝑙
−�̃�𝑌𝑙)/10

⎞

⎠

⎤

⎦ (30)

ECMRC,I−SY (𝛾𝑀𝑅𝐶 ;𝑀 + 1) ∼= 1

𝑀 + 1

(

1√
𝜋

)𝐿+1 𝑁𝑝
∑

𝑝0=1

𝑁𝑝
∑

𝑝1=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝐿=1

[(

𝐿
∏

𝑙=0

𝐻𝑝𝑙

)

log2

(

1 +

𝐿
∑

𝑙=0

10(
√
2�̃�𝑌𝑙

𝑥𝑝𝑙
−�̃�𝑌𝑙)/10

)]

(32)

�̃�(𝑞)
𝛾𝑀𝑅𝐶

=

(

10

ln (10)

)𝑞 𝑁𝑝
∑

𝑝0,1=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁0,1=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝1,𝐿=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝑁𝐿,𝐿=1

{[

𝐿
∏

𝑙=0

Π𝑙 (p𝑙)

][

ln

(

𝐿
∑

𝑙=0

1

Ω𝑙 (p𝑙)

)]𝑞}

(33)

�̃�(𝑞)
𝛾𝑀𝑅𝐶

=

(

10

ln (10)

)𝑞 (
1√
𝜋

)𝐿+1 𝑁𝑝
∑

𝑝0=1

𝑁𝑝
∑

𝑝1=1

⋅ ⋅ ⋅
𝑁𝑝
∑

𝑝𝐿=1

{(

𝐿
∏

𝑙=0

𝐻𝑝𝑙

)[

ln

(

𝐿
∑

𝑙=0

10(
√
2�̃�𝑌𝑙

𝑥𝑝−�̃�𝑌𝑙)/10

)]𝑞}

(34)

relation:

𝑀𝑌 (𝑠) = 𝐸
{

𝑒−𝑠𝑌
}

=
1

ln (2)

1

Γ (𝑠)

+∞
∫

0

𝜉𝑠−1𝑒−𝜉𝑀𝑋 (𝜉) 𝑑𝜉

(31)

Proof: Theorem 1 follows from [34, Vol. 4, Eq. (1.1.3.4)]
and some algebraic manipulations.

Using Theorem 1, the MGF of C (𝛾𝑀𝑅𝐶 ;𝑀 + 1) can
be computed by first putting (29) into (31), and then
solving the related integral. Then, EC, i.e., the statis-
tical expectation of 𝐶 (⋅; ⋅), can be obtained via sim-
ple differentiation [2], i.e, ECMRC,I−SY (𝛾𝑀𝑅𝐶 ;𝑀 + 1) ∼=
− 𝑑𝑀 I−SY

𝐶(𝛾𝑀𝑅𝐶 ;𝑀+1) (𝑠)
/

𝑑𝑠
∣

∣

∣

𝑠=0
, as shown in (32) on top of

this page.
2) Maximal Ratio Combining - Method 2: The second

method foresees to approximate, in a single step, the end–
to–end SNR 𝛾𝑀𝑅𝐶 with a Log–Normal RV, i.e., 𝛾𝑀𝑅𝐶 ∼
𝐿𝑜𝑔𝑁 (�̃�𝛾𝑀𝑅𝐶

, �̃�𝛾𝑀𝑅𝐶
), where �̃�𝛾𝑀𝑅𝐶

and �̃�𝛾𝑀𝑅𝐶
are ob-

tained by applying the I–SY method using (15) and Appendix
II. Accordingly, we have �̃�𝛾𝑀𝑅𝐶

= �̃�
(1)
𝛾𝑀𝑅𝐶 and �̃�𝛾𝑀𝑅𝐶

=
√

�̃�
(2)
𝛾𝑀𝑅𝐶 −

(

�̃�
(1)
𝛾𝑀𝑅𝐶

)2

, with �̃�
(𝑞)
𝛾𝑀𝑅𝐶 being defined in (33)

shown on top of this page. Finally, ABEP, Pout and EC are
computed from (21)–(23) by setting �̃�𝑌𝑙

= −�̃�𝛾𝑀𝑅𝐶
and

�̃�𝑌𝑙
= �̃�𝛾𝑀𝑅𝐶

.
3) Maximal Ratio Combining - Method 3: Similar to the

first approximation method, also the third one foresees two
main steps: i) 𝛾𝑙 is approximated by using the I–SY method,
i.e., 𝛾𝑙 ∼ 𝐿𝑜𝑔𝑁 (−�̃�𝑌𝑙

, �̃�𝑌𝑙
), and ii) then, a second Log–

Normal approximation is applied to the resulting Log–Normal
power–sum, i.e., 𝛾𝑀𝑅𝐶 ∼ 𝐿𝑜𝑔𝑁 (�̃�𝛾𝑀𝑅𝐶

, �̃�𝛾𝑀𝑅𝐶
). So, while

methods 1 and 2 foresee a single Log–Normal approximation,
method 3 applies the I–SY method twice.

From the analytical point of view, the performance metrics
of method 3 can be derived from the analysis developed
for method 2. In particular, while to compute �̃�𝛾𝑀𝑅𝐶

and
�̃�𝛾𝑀𝑅𝐶

in (33) we have used the MGF in (15), now these

TABLE I
COMPUTATIONAL COMPLEXITY,O(⋅), OF THE PROPOSED METHODS FOR

ESTIMATING Pout . 𝑄 AND 𝑁 ARE PARAMETERS OF THE EULER–SUM

BASED FRAMEWORK IN [2].

Method Complexity O(⋅)

GQR (SC)
∑𝐿

𝑙=0𝑁
𝑁𝑙
𝑝 + 𝐿+ 1

GQR (MRC) 𝑁
∑

𝐿
𝑙=0

𝑁𝑙

𝑝

I–SY (SC)
∑𝐿

𝑙=0𝑁
𝑁𝑙
𝑝 + 𝐿+ 1

I–SY (MRC 1)
∑𝐿

𝑙=0 𝑁
𝑁𝑙
𝑝 +𝑁𝐿+1

𝑝 +𝑄𝑁

I–SY (MRC 2) 𝑁
∑

𝐿
𝑙=0

𝑁𝑙

𝑝

I–SY (MRC 3)
∑𝐿

𝑙=0𝑁
𝑁𝑙
𝑝 +𝑁𝐿+1

𝑝

parameters can be obtained from the MGF in (29). After
some algebraic manipulations, we have �̃�𝛾𝑀𝑅𝐶

= �̃�
(1)
𝛾𝑀𝑅𝐶 and

�̃�𝛾𝑀𝑅𝐶
=

√

�̃�
(2)
𝛾𝑀𝑅𝐶 −

(

�̃�
(1)
𝛾𝑀𝑅𝐶

)2

, where �̃�
(𝑞)
𝛾𝑀𝑅𝐶 is defined

in (34) on top of this page. Finally, ABEP, Pout and EC can
be still obtained using the same formulas as for method 2.

V. COMPUTATIONAL COMPLEXITY OF THE PROPOSED

METHODS

In this section, we analyze the computational complexity
of all methods proposed for performance analysis of cooper-
ative multi–hop wireless networks over Log–Normal fading
environments. The aim is to show that, in general, the I–
SY method allows to reduce the computational effort for
estimating important performance metrics.

In particular, Table I shows an approximate analysis of the
computational complexity for estimating Pout for all system
setups analyzed in the manuscript. Similar computational
complexities can be obtained for other performance metrics.
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We emphasize that to get insightful information about the
computational effort required by each method, the results in
Table I have to be analyzed carefully. In what follows, we will
provide some guidelines to interpret them correctly.

Let us start by comparing the complexity of the GQR–
based and I–SY methods when SC diversity is considered.
From Table I, we can observe that both approaches seem to
have the same computational complexity in terms of number
of points 𝑁𝑝. However, this result must be analyzed with
further attention. As a matter of fact, in general, the number
of points 𝑁𝑝 to get the desired accuracy is significantly
different for GQR–based and I–SY methods. As mentioned
in Section III, using the GQR–based method to compute Pout
(as well as other performance metrics) may require a very
large number of points (e.g., > 100), as it will be shown
in Section VI. On the contrary, the I–SY approximation just
foresees to compute the log–moments of the power–sum of
correlated Log–Normal RVs, which needs a number of points
5 < 𝑁𝑝 < 10 [27] to get good estimates (see Section VI).
In conclusion, when comparing, in Table I, GQR–based and
I–SY methods we should also take into consideration that
𝑁𝐺𝑄𝑅

𝑝 ≫ 𝑁 𝐼−𝑆𝑌
𝑝 when computing Pout. A similar comment

holds when comparing the performance of MRC diversity (in
particular for method 2).

Let us now compare GQR–based and I–SY methods when
MRC diversity is considered. We observe that the simplest
approximation is method 3, while the most complicated is
method 2. Similar to the SC case, the three I–SY approxima-
tion methods are, in general, much simpler to be computed
than GQR–based method. We can also observe that methods
1 and 3 have similar computational complexities. However,
numerical results will indicate (see Section VI) that the first
one is more accurate as only one Log–Normal approximation
is needed. However, method 3 is the only one that can
be readily generalized to reference scenarios with correlated
diversity branches.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we provide some numerical and simulation
results to validate the accuracy of the proposed frameworks.
In particular, the following system setup is considered: i) we
assume that every relay channel is Log–Normal distributed
with mean 𝜇 = 𝜇𝑙,𝑛 = 0 dB, and standard deviation
uniformly and independently (for every hop) distributed within
the range [3, 9] dB6, ii) independent fading is assumed
among the branches and hops, iii) for blind relays we assume
𝐺 = 𝐺𝑙,𝑛 = 1, iv) for the sake of simplicity, the direct link
is assumed to be very week in the simulation scenario and,
without loss of generality, is neglected from the analysis, and

6While the accuracy of the framework in Section III is almost insensitive
to the parameters of Log–Normal RVs, the accuracy of the I–SY method
may depend on these parameters. Although it is very hard to analyze the
accuracy of an approximation for every system parameter setup, we consider
here one of worst reference scenarios for Log–Normal approximation. In fact,
the reference scenario composed by Log–Normal summands with zero mean
and different dB spreads leads to the worst accuracy when a Log–Normal
RV is used to approximate the Log–Normal power–sum [38]. We have also
verified by simulation that the accuracy of the I–SY method improves when
either the dB spreads are the same or when the dB spreads are smaller than
3 dB.
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Monte Carlo: SC, L=2, N=2

Model: SC, L=2, N=2

Monte Carlo: MRC, L=2, N=2

Model: MRC, L=2, N=2

Monte Carlo: MRC, L=2, N=3

Model: MRC, L=2, N=3

Fig. 1. Average Bit Error Probability (framework in Section III) for
blind relays (Binary Phase Shift Keying modulation, i.e., 𝑏 = 1, 𝑎 = 2).
Comparison of analysis (𝑁𝑝 = 10 for MRC and 𝑁𝑝 = 200 for SC) and
Monte Carlo simulation (𝑁 = 𝑁𝑙 ∀𝑙).

v) the number of GQR points 𝑁𝑝 is chosen according to the
guidelines given in Section V (see the captions of the figures
for specific values), and Monte Carlo simulation results are
obtained by averaging over 106 points.

In Figs. 1–3, we compare Monte Carlo simulation and
GQR–based approximation for blind relays. We observe that
the proposed method almost overlaps with Monte Carlo simu-
lations, thus substantiating the correctness and accuracy of the
developed formulas. In Figs. 4–8, we analyze the accuracy of
the I–SY approximation for blind relays as well. In particular,
SC diversity is analyzed in Figs. 4, 5. We observe that
reasonably accurate estimates of the ABEP can be obtained,
and the approximation does not introduce error floors for high
𝐸𝑠/N0 values. We also observe that very accurate results are
obtained when estimating EC. This is a general result: the
proposed I–SY framework can predict EC in a very accurate
way, and, in general, the number of points 𝑁𝑝 required for
approximating it is small (less than 10). We also note that, in
general, the approximation accuracy gets worse as 𝐿 increases,
while it does not change significantly with 𝑁𝑙. This is because
a Log–Normal approximation is used in every diversity branch
and, so, approximation errors may accumulate for large 𝐿.
However, the overall error is less than 1.5 dB for very small
values of ABEP. In Figs. 6–8, we analyze the accuracy of I–
SY method for MRC diversity. We observe that methods 1 and
2 provide almost the same accuracy, with the former method
being simpler than the latter to be computed. Also method
3, the simplest one to be computed, offers a good accuracy
without error floors for high 𝐸𝑠/N0, but, as expected, since
the Log–Normal approximation is applied twice, it provides
less accurate estimates, even though the error is, in general,
tolerable. From this analysis, we can conclude that method 1
provides the required trade–off between accuracy and compu-
tational simplicity to be used as a fast, simple, yet accurate
approach for performance prediction of cooperative multi–hop
networks over Log–Normal channels and MRC diversity.

Furthermore, we observe, e.g., in Fig. 4 and Figs. 6–8, that
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Monte Carlo: SC, L=2, N=2

Model: SC, L=2, N=2

Monte Carlo: MRC, L=2, N=2

Model: MRC, L=2, N=2
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Model: MRC, L=2, N=3

Fig. 2. Ergodic (Shannon) Capacity (framework in Section III) for blind
relays. Comparison of analysis (𝑁𝑝 = 10 for MRC and 𝑁𝑝 = 200 for SC)
and Monte Carlo simulation (𝑁 = 𝑁𝑙 ∀𝑙). Note that, for ease of illustration,
the Ergodic Capacity shown in the figure is multiplied by the scaling factor
𝑀+1, which accounts for the number of time slots required by the repetition–
based cooperative diversity scheme assumed in this paper.
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Fig. 3. Outage Probability (framework in Section III) for blind relays (𝑉𝑇 =
−5 dB). Comparison of analysis (𝑁𝑝 = 200) and Monte Carlo simulation
(𝑁 = 𝑁𝑙 ∀𝑙).

the accuracy of our approximations gets, in general, worse in
the high–SNR region. Our empirical trials have shown that this
effect is mainly due to the used Log–Normal approximation
rather than to the number of points 𝑁𝑝 required to compute
the log–moments needed for the approximation. As a matter
of fact, the number of points used for these numerical results
is either 𝑁𝑝 = 10 or 𝑁𝑝 = 5 (only in Fig. 7 for 𝐿 = 3 and
𝑁 = 3 for reducing the computational complexity), which, as
shown in [27], provide, in general, almost exact estimates.
This conclusion is also substantiated by the fact that the
computation of EC does not show this problem.

In Figs. 9–11, we analyze the accuracy of the frameworks
when CSI–assisted relays are considered. In particular, in
Fig. 9 we study the accuracy of GQR–based method (see
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Monte Carlo: SC, L=1, N=2

Model: SC, L=1, N=2

Monte Carlo: SC, L=1, N=4

Model: SC, L=1, N=4

Monte Carlo: SC, L=3, N=2
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Monte Carlo: SC, L=3, N=4

Model: SC, L=3, N=4

Fig. 4. Average Bit Error Probability (framework in Section IV–B) for
blind relays (Binary Phase Shift Keying modulation, i.e., 𝑏 = 1, 𝑎 = 2).
Comparison of analysis (𝑁𝑝 = 10 in (20)) and Monte Carlo simulation
(𝑁 = 𝑁𝑙 ∀𝑙).

Appendix I) for 𝛾F−CSI−R
𝑙 . We observe that the framework

is very accurate, and the results also show that the simpler
formulas developed for 𝛾F−CSI−I

𝑙 provide a tight lower bound
for performance prediction (ABEP) of 𝛾F−CSI−R

𝑙 as well.
Furthermore, in Figs. 10, 11 we study the accuracy of the I–
SY method when used to estimate EC and ABEP, respectively
(𝛾F−CSI−I

𝑙 system setup). We observe that also in this case a
good accuracy is retained, and the framework can be used for
performance analysis of this scenario as well. In Fig. 12 we
investigate the accuracy of I–SY method for semi–blind relays.
In particular, simulated and analytical Pout are compared for
SC diversity and several system setups. We observe a good
overlapping between model and simulation.

Finally, in Fig. 13 we analyze the accuracy of the proposed
I–SY approximation for a large number of hops and branches.
The figure shows the results when the F–CSI–I system setup
is considered, and for cooperative networks formed by up to
90 relays (i.e., 𝐿 = 10 and 𝑁 = 𝑁𝑙 = 10 ∀𝑙). We can see
a very good overlapping between the curves. In particular,
with the aim to show that the fading parameters chosen in the
previous figures are very challenging from the approximation
point of view, we have considered smaller values of the fading
standard deviation. We can observe that in this case a good
approximation is retained for a very small number of GQR
points, i.e., 𝑁𝑝 = 3, which results in a very simple I–SY
analytical framework for performance analysis and design.

In summary, the obtained results confirm that the proposed
framework is general enough and simple for a sound system
design and optimization of cooperative systems over Log–
Normal fading channels, and for various system settings and
relay strategies. Depending on the designer’s requirements,
the appropriate method for performance prediction may be
used to meet the desired targets of accuracy, simplicity,
and flexibility. In particular, both computational complexity
analysis in Section V and numerical results in Section VI lead
to the following conclusions when comparing GQR–based and
I–SY methods: in general, i) when SC diversity is considered
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Fig. 5. Ergodic (Shannon) Capacity (framework in Section IV–B) for blind
relays. Comparison of analysis (𝑁𝑝 = 10 in (20)) and Monte Carlo simulation
(𝑁 = 𝑁𝑙 ∀𝑙). Note that, for ease of illustration, the Ergodic Capacity shown
in the figure is multiplied by the scaling factor 𝑀+1, which accounts for the
number of time slots required by the repetition–based cooperative diversity
scheme assumed in this paper.
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Fig. 6. Average Bit Error Probability (framework in Section IV–C, Method 1)
for blind relays (Binary Phase Shift Keying modulation, i.e., 𝑏 = 1, 𝑎 = 2).
Comparison of analysis (𝑁𝑝 = 10 in (20)) and Monte Carlo simulation
(𝑁 = 𝑁𝑙 ∀𝑙).

the I–SY framework allows to reduce the number of points 𝑁𝑝

required to compute all performance metrics of interest, while

keeping the same number of fold summations; and ii) when

MRC diversity is considered the I–SY framework (i.e., method

1) allows to reduce the number of fold summations required

to compute all performance metrics of interest, while keeping

the same number of 𝑁𝑝 points.

VII. CONCLUSIONS

In this paper, we have developed a comprehensive frame-
work for computing the performance of cooperative multi–hop
systems over Log–Normal fading channels. In particular, two
main frameworks have been proposed. The first one, which
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Fig. 7. Average Bit Error Probability (framework in Section IV–C, Method 2)
for blind relays (Binary Phase Shift Keying modulation, i.e., 𝑏 = 1, 𝑎 = 2).
Comparison of analysis (𝑁𝑝 = 10 in (20), and 𝑁𝑝 = 5 in (20) for 𝐿 = 3
and 𝑁 = 3 for reducing the computational complexity) and Monte Carlo
simulation (𝑁 = 𝑁𝑙 ∀𝑙).
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Fig. 8. Average Bit Error Probability (framework in Section IV–C, Method 3)
for blind relays (Binary Phase Shift Keying modulation, i.e., 𝑏 = 1, 𝑎 = 2).
Comparison of analysis (𝑁𝑝 = 10 in (20)) and Monte Carlo simulation
(𝑁 = 𝑁𝑙 ∀𝑙).

is based on the accurate GQR representation of the MGF
of a Log–Normal RV, may provide very accurate estimates
for important performance indexes, but its computational
complexity may become high when both the number of hops
and diversity branches get large. The second one, which is
based on the I–SY approximation technique, provides, in
general, less accurate results than the first framework, but
with a significant reduction in computational complexity. In
summary, the results confirm that the I–SY method can be
efficiently used for performance analysis and system design of
cooperative multi–hop wireless systems in the vast majority of
system setups of practical interest, and may be exploited for
further analysis and system optimization of upper layers of the
protocol stack. On the other hand, when either the number of
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Fig. 9. Average Bit Error Probability (framework in Section III and Appendix
A) for CSI–assisted relays: ideal (𝛾F−CSI−I

𝑙
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) relay

gains (Binary Phase Shift Keying modulation, i.e., 𝑏 = 1, 𝑎 = 2). Comparison
of analysis (𝑁𝑝 = 30) and Monte Carlo simulation (𝑁 = 𝑁𝑙 ∀𝑙).
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Fig. 10. Ergodic (Shannon) Capacity (framework in Section IV, Selection
Combining) for CSI–assisted relays (𝛾F−CSI−I

𝑙
system setup). Comparison

of analysis (𝑁𝑝 = 10 in (20)) and Monte Carlo simulation (𝑁 = 𝑁𝑙 ∀𝑙).
Note that, for ease of illustration, the Ergodic Capacity shown in the figure
is multiplied by the scaling factor 𝑀 + 1, which accounts for the number
of time slots required by the repetition–based cooperative diversity scheme
assumed in this paper.

hops or diversity branches is small, the GQR–based method
represents a very accurate yet flexible tool for system analysis
and optimization.

APPENDIX A
CASE STUDY FOR THE ANALYSIS OF 𝛾F−CSI−R

𝑙

The aim of this Appendix is to show that even the com-
plicated SNR 𝛾F−CSI−R

𝑙 defined in Section II can be easily
written as the power–sum of generically correlated Log–
Normal RVs.

First of all, let us re–write 𝛾F−CSI−R
𝑙 in an alternative form,

as shown in (35) on top of the next page. Then, by relying
on the closure property of Log–Normal RVs, it can be easily
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Fig. 11. Average Bit Error Probability (framework in Section IV, Selection
Combining) for CSI–assisted relays (𝛾F−CSI−I

𝑙
system setup). Comparison

of analysis (𝑁𝑝 = 10 in (20)) and Monte Carlo simulation (𝑁 = 𝑁𝑙 ∀𝑙).
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Fig. 12. Outage Probability (framework in Section IV, Selection Combining)
for semi–blind relays (𝑉𝑇 = 10 dB). Comparison of analysis (𝑁𝑝 = 10 in
(20)) and Monte Carlo simulation (𝑁 = 𝑁𝑙 ∀𝑙).

argued from (35) that 𝛾F−CSI−R
𝑙 is given by the power–sum

of correlated Log–Normal RVs. For the sake of simplicity, let
us consider, as an example, the scenario with 𝑁𝑙 = 3. The
interested reader may use the same development for whatever
number of hops. In such a case, (35) simplifies as follows
(subscript 𝑙 is neglected for simplicity):
(

𝛾F−CSI−R
𝑙

)−1
= 𝛾−1

1 + 𝛾−1
2 + 𝛾−1

3 + 𝛾−1
1 𝛾−1

2

+ 𝛾−1
1 𝛾−1

3 + 𝛾−1
2 𝛾−1

3 + 𝛾−1
1 𝛾−1

2 𝛾−1
3

(36)

The SNR in (36) is given by the summation of 7 correlated
Log–Normal RVs, i.e., 𝑌 =

∑7
𝑛=1 𝑌𝑛 with {𝑌𝑛}7𝑛=1 given in
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(

𝛾P−CSI−R
𝑙

)−1
= (1!)

−1
𝑁𝑙
∑

𝑛=1

(

𝛾−1
𝑙,𝑛

)

+ (2!)
−1

𝑁𝑙
∑

𝑛1=1

𝑁𝑙
∑

𝑛2 ∕=𝑛1=1

(

𝛾−1
𝑙,𝑛1

⋅ 𝛾−1
𝑙,𝑛2

)

+ ⋅ ⋅ ⋅+ (𝑁𝑙!)
−1

𝑁𝑙
∑

𝑛1=1

𝑁𝑙
∑

𝑛2 ∕=𝑛1=1

⋅ ⋅ ⋅
𝑁𝑙
∑

𝑛𝑁𝑙
∕=𝑛𝑁𝑙−1 ∕=...∕=𝑛1=1

(

𝛾−1
𝑙,𝑛1

⋅ 𝛾−1
𝑙,𝑛2

⋅ . . . ⋅ 𝛾−1
𝑙,𝑛𝑁𝑙

)

(35)
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Fig. 13. Average Bit Error Probability (framework in Section IV–C, Method
1) for CSI–assisted relays (𝛾F−CSI−I

𝑙
system setup). Comparison of analysis

(𝑁𝑝 = 3 in (20)) and Monte Carlo simulation (𝑁 = 𝑁𝑙 ∀𝑙). Setup:
𝜇 = 𝜇𝑙,𝑛 = 0 dB, and 𝜎𝑙,𝑛 uniformly and independently (for every hop)
distributed within the range [3, 6] dB.

(37) and 𝜙 = 10 log10 (𝐸𝑠/N0).
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𝑌1 = (𝛾1)
−1 ∼ 𝐿𝑜𝑔𝑁 (−𝜇1 − 𝜙, 𝜎1)

𝑌2 = (𝛾2)
−1 ∼ 𝐿𝑜𝑔𝑁 (−𝜇2 − 𝜙, 𝜎2)

𝑌3 = (𝛾3)
−1 ∼ 𝐿𝑜𝑔𝑁 (−𝜇3 − 𝜙, 𝜎3)

𝑌4 = (𝛾1𝛾2)
−1 ∼ 𝐿𝑜𝑔𝑁

(

−𝜇1 − 𝜇2 − 2𝜙,
√

𝜎21 + 𝜎22

)

𝑌5 = (𝛾1𝛾3)
−1 ∼ 𝐿𝑜𝑔𝑁

(

−𝜇1 − 𝜇3 − 2𝜙,
√

𝜎21 + 𝜎23

)

𝑌6 = (𝛾2𝛾3)
−1 ∼ 𝐿𝑜𝑔𝑁

(

−𝜇2 − 𝜇3 − 2𝜙,
√

𝜎22 + 𝜎23

)

𝑌7 = (𝛾1𝛾2𝛾3)
−1

∼ 𝐿𝑜𝑔𝑁

(

−𝜇1 − 𝜇2 − 𝜇3 − 3𝜙,
√

𝜎21 + 𝜎22 + 𝜎23

)

(37)

Accordingly, to use the frameworks developed in Sec-
tions III and IV, we need to just compute the mean vector
(𝝁𝑌 ), and the covariance matrix (Σ𝑌 ) of the set of RVs
{𝑌𝑛}7𝑛=1. These parameters can be readily computed from
[1]. For the sake of conciseness, they are not reported in the
present manuscript.

In conclusion, also for this system setup similar frameworks
to those developed in Sections III and IV can be developed and
accurate performance metrics for 𝛾F−CSI−R

𝑙 can be computed
as well.

APPENDIX B
I-SY METHOD FOR CORRELATED LOG–NORMAL RVS

The I–SY method is, in principle, similar to the SY method
[37], but the parameters of the approximation are computed
without resorting to recursive approximations. In particular,
the I–SY method foresees to approximate the power–sum of
generically correlated Log–Normal RVs with another Log–
Normal RV, whose parameters can be obtained from the
logarithmic moments of the power–sum [27]. Let us use,
for illustrative purposes, the following notation: i) 𝑆 is a
generic power–sum of correlated Log–Normal RVs, ii) 𝑆dB =
10 log10 (𝑆), and iii) �̃�(𝑞)

𝑆 is the 𝑞–th non–central log–moment
of RV 𝑆, i.e., �̃�(𝑞)

𝑆 = 𝐸 {𝑆𝑞
dB} = 𝐸 {[10 log10 (𝑆)]𝑞}.

The I–SY method works as follows:

∙ RV 𝑆 is approximated by a Log–Normal RV, i.e., 𝑆 ∼
𝐿𝑜𝑔𝑁 (�̃�𝑆 , �̃�𝑆), where �̃�𝑆 and �̃�𝑆 are the parameters (in
dB) of the approximating PDF.

∙ �̃�𝑆 and �̃�𝑆 are computed from �̃�
(𝑞)
𝑆 as follows: �̃�𝑆 =

�̃�
(1)
𝑆 and �̃�𝑆 =

√

�̃�
(2)
𝑆 −

(

�̃�
(1)
𝑆

)2

.

So, the I–SY approximation method boils down to the
computation of �̃�

(𝑞)
𝑆 . This is done in two steps:

1) First, the MGF, 𝑀𝑆dB
(⋅), of RV 𝑆dB is computed from

the MGF of 𝑆 as follows [27, Eq. (6)]: 𝑀𝑆dB
(𝑝) =

[Γ (𝑝)]
−1 ∫ +∞

0 𝑧𝑝−1𝑀𝑆 (𝑧) 𝑑𝑧.
2) Second, the log–moments are computed via differentia-

tion: �̃�(𝑞)
𝑆 = (−1)𝑞 𝑑𝑞𝑀𝑆dB

(𝑝)/𝑑𝑝𝑞∣𝑝=0.

An explicit closed–form expression of �̃�
(𝑞)
𝑆 requires the

MGF of 𝑆 to be known in closed–form. Such an expression
can be found in [32, Eq. (17)] using GQR integration. So,
using [32], and steps 1 and 2 above, as well as simple algebraic
manipulations described in [27], the log–moments �̃�

(𝑞)
𝑆 can

be readily written as shown in (20).
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