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Rheumatoid arthritis (RA), a symmetric polyarticular arthritis, has long been feared as 

one of the most disabling forms of arthritis. Identi�cation of gene signatures associated 

with RA onset and progression would lead toward development of novel diagnostics and 

therapeutic interventions. This study was undertaken to identify unique gene signatures 

of RA patients through large-scale meta-pro�ling of a diverse collection of gene expres-

sion data sets. We carried out a meta-analysis of 8 publicly available RA patients’ (107 

RA patients and 76 healthy controls) gene expression data sets and further validated 

a few meta-signatures in RA patients through quantitative real-time PCR (RT-qPCR). 

We identi�ed a robust meta-pro�le comprising 33 differentially expressed genes, which 

were consistently and signi�cantly expressed across all the data sets. Our meta-analysis 

unearthed upregulation of a few novel gene signatures including PLCG2, HLA-DOB, 

HLA-F, EIF4E2, and CYFIP2, which were validated in peripheral blood mononuclear cell 

samples of RA patients. Further, functional and pathway enrichment analysis reveals 

perturbation of several meta-genes involved in signaling pathways pertaining to in�am-

mation, antigen presentation, hypoxia, and apoptosis during RA. Additionally, PLCG2 

(phospholipase Cγ2) popped out as a novel meta-gene involved in most of the pathways 

relevant to RA including in�ammasome activation, platelet aggregation, and activation, 

thereby suggesting PLCG2 as a potential therapeutic target for controlling excessive 

in�ammation during RA. In conclusion, these �ndings highlight the utility of meta-analysis 

approach in identifying novel gene signatures that might provide mechanistic insights 

into disease onset, progression and possibly lead toward the development of better 

diagnostic and therapeutic interventions against RA.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic, progressive, and in�ammatory autoimmune disease, which 
continues to cause global disability having a worldwide prevalence of 1% (1). �e disease is classi-
�ed primarily by clinical phenotype and predominantly associated with articular, extra-articular, 
and systemic complications including anemia, cardiovascular diseases, osteoporosis, fatigue, and 
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TABLE 1 | GEO data sets and samples summary.

Data 

set 

ID

GEO 

accession

Sample source Rheumatoid 

arthritis 

samples

Healthy 

samples

1 GSE1919 Synovial tissue  5  5

2 GSE12021 Synovial tissue 13 24

3 GSE25160 Peripheral blood mononuclear 

cells (PBMCs)

13  4

4 GSE42296 PBMCs 19  4

5 GSE48780 Synovial tissue 27  6

6 GSE55235 Synovial tissue 10 10

7 GSE55457 Synovial tissue 10 13

8 GSE55584 Synovial tissue 10 10
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depression (2, 3). �ere exists a considerable geographical and 
temporal variability as well as unpredictability based on severity 
and manifestations in the occurrence of RA within populations 
(4). RA is characterized by synovial in�ammation [excessive 
in�ltration and activation of neutrophils, mononuclear cells 
including T cells, B cells, plasma cells, and mast cells (5), as 
well as complement factors such as C5a at rheumatoid joints 
(6)], autoantibody generation (rheumatoid factor and anti-
citrullinated protein antibody) (3) and degradation of bones and 
cartilage leading to bone deformity (5). �e etiology or cause of 
RA remains elusive. However, various studies have illustrated a 
convoluted interplay between genetic factors and environmental 
exposures in most of the disease cases (3, 7). Unprecedented 
e�orts have been made to identify multitude of factors that 
have foremost allusions in RA pathogenesis including pro-
in�ammatory cytokines (TNF-α, IL-6, IL-17, and IL-1) (8) as the 
orchestrator of vital processes during RA progression involving 
synovitis (9), angiogenesis (production of pro- angiogenic fac-
tors particularly VEGF) (10, 11), osteoclastogenesis (increased 
production of macrophage colony-stimulating factor and RANK 
ligand) (12), cartilage degradation (enhanced secretion of 
MMPs into synovial �uid at the joints) (9, 13), and acute-phase 
proteins production such as CRP (exacerbates RA-related tissue 
damage) (14).

On the genetic front, the strongest link in RA has been 
ascribed to the third hypervariable region of the HLA-DRβ 
chains (aa. 70–74) within MHC. �e active epitope within the 
area, glutamine–leucine–arginine–alanine–alanine (QKRAA) 
or QRRAA has been found to be associated with multiple RA 
allied DR genes including DR1, DR4, and DR14 (15). �e loca-
tion of the epitope within HLA-DR determines the speci�city 
of the peptides presented to CD4+ T-cells. However, the speci�c 
peptides that bind to DR proteins in RA patients have not yet 
been identi�ed (6). �e abundance of e�ector T cells and IL-17-
producing �17 cells in the synovial milieu emphasize the critical 
role of these cells in RA pathogenesis. �e activation of T-cells 
through HLA-DR4 (present on APCs) mediated presentation of 
speci�c peptides during RA initiates an array of complex immune 
responses including T-cell oligoclonality, germinal center 
reactions, and B-cell hypermutation highlighting local antigen-
speci�c T-cell-mediated B-cell responses (3). �e appropriate 
interconversion between �1/2/17/Treg phenotypes has crucial 
implication toward RA outcome (16). In particular, an imbalance 
between �17 and Treg cells has an impact on local TNF levels in 
the synovial �uid that blocks the di�erentiation of Treg cells and 
along with IL-17, macrophage, and dendritic cells derived TGF-β 
and IL-1β, shi�s the T-cell homeostasis toward in�ammation 
(17). �e importance of B-cells in RA have been highlighted in 
autoantigen presentation and cytokine production (IL-6, TNF, 
and lymphotoxin-β) (3). Apart from acting as the precursor 
for autoantibody-generating plasma cells, B-cells are the only 
antigen-presenting cells supporting the activation of autoreactive 
T-cells during RA (18).

Although several factors have been identi�ed, yet there 
is a dearth of knowledge about the complex gene networks 
associated with the disease. Over the last two decades, DNA 
microarray technology allowed us to interrogate thousands of 

genes simultaneously enrooting the discovery of disease-relevant 
genes. Multiple microarray experiments have been conducted to 
identify potential gene signatures that are responsible for the 
pathogenesis of various diseases. �e analyses of these experi-
ments usually generate hundreds of di�erentially expressed 
genes (DEGs), making it di�cult to generate a convincing 
transcriptome pro�le of a particular disease condition. To 
address this issue, we implemented a meta-analysis method to 
extract a global transcriptional pro�le of RA patients available 
on public databases. Our gene expression meta-analysis revealed 
some credible gene signatures that have shown relevance to RA 
condition. Finally, we went a step further to validate these gene 
signatures in RA patient samples obtained clinically. In conclu-
sion, this meta-analysis approach of publicly available microarray 
data suggests us to generate a signi�cant gene expression pro�le 
that might represent an early step toward enhancement in the 
detection, treatment, and prevention of RA.

MATERIALS AND METHODS

Data Sets Review
A comprehensive search was administered for RA gene expression 
data sets available on Gene Expression Omnibus (GEO) database. 
Independent of age, gender, race, and region, two sample groups, 
i.e., RA patients and healthy controls (HCs) were considered for 
this study. A�er a thorough search, we identi�ed eight data sets, 
out of which two data sets (GSE25160, GSE42296) (19, 20) had 
a sample source of peripheral blood mononuclear cells (PBMCs) 
and six data sets (GSE1919, GSE12021, GSE48780, GSE55235, 
GSE55457, GSE55584) (21–24) had a sample source of synovial 
tissue. �ese eight data sets were subjected to independent dif-
ferential gene expression analysis followed by a meta-analysis. 
�e GEO accession IDs and samples information in each data set 
is summarized in Table 1.

Data Sets Analyses
�e raw data (.CEL �les) of each data set was downloaded from 
GEO accession links. As the eight data sets were of A�ymetrix 
platform, a single normalization method (RMA) was performed 
on the raw data. Samples of each data set were categorized into 
two groups; RA patients and HCs. �e di�erential expression of 
genes between the two groups (RA vs. HC) was calculated using a 
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moderated T-test, assigning a speci�c threshold (p-value < 0.05). 
To bypass the multiple testing problems, we adjusted the p-values 
using an optimized false discovery rate (25). Genes with q-values 
(adjusted p-values) less than 0.05 were considered as DEGs. �e 
DEGs of each data set were annotated with Entrez IDs, o�cial 
gene symbols, and gene names. All the analyses were performed 
in R using various Bioconductor packages (26, 27).

Meta-analysis
Consequent to the individual data sets analyses, eight sets of 
DEGs were obtained and assigned to the meta-analysis study. 
�e primary task of our meta-analysis method was to extract 
the intersected DEGs among the set of DEGs. �e step by step 
automated meta-analysis method was as follows: (i) extract the 
intersected genes (meta-genes), (ii) exclude genes with inconsist-
ent expression, and (iii) check for signi�cance by combining 
adjusted p-values of each gene from all the data sets. �e weighted 
Z-method was used to combine the individual q-values of each 
gene, where each test was assigned as weight (wi) and imple-
mented using survcomp, an R package (28).
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�e meta-analysis algorithm was implemented in R.

GO Functional and Pathway Enrichment
�e obtained 33 meta-genes were subjected to GO functional and 
pathway enrichment analysis. Biological processes and molecular 
functions of meta-genes were generated using Enrichr (http://
amp.pharm.mssm.edu/Enrichr/), a web-based online tool (29). 
Pathway enrichment analysis of meta-genes was performed using 
ReactomeFIViz (30), a Cytoscape plug-in based on Reactome 
pathway database (31).

Specimen Collection
Blood samples were collected from the individuals clinically 
diagnosed with RA reporting to Owaisi Hospital and Research 
Centre, Hyderabad, India. �e procedure of the entire study was 
carried out by the protocols approved by the Institute Ethics 
Committee, University of Hyderabad. Written informed consent 
was taken from each patient, and the complete clinical informa-
tion and medical history was well documented.

PBMCs Isolation
For PBMCs isolation, blood samples were collected in the sterile 
EDTA Vacutainer blood collection tubes. PBMCs from the 
whole blood of HCs and RA patients were isolated using Ficoll 
Histopaque (Sigma Aldrich Company, UK) density gradient 
method as described earlier (32). Brie�y, 1.5 ml of whole blood 
was diluted with 1× PBS-EDTA in a 1:1 ratio, was layered upon 
1 ml Ficoll, and centrifuged at 400 × g for 30 min. �e bu�y layer 
was carefully removed and washed with 1× PBS-EDTA twice at 
200 × g for the removal of blood platelets. Isolated PBMCs were 
suspended in TRIZOL (Invitrogen, Life Technologies) reagent for 
RNA extraction.

Quantitative Real-Time PCR (RT-qPCR)
Total RNA from isolated PBMCs was extracted using TRIZOL 
reagent. RNA was reverse transcribed into cDNA using VERSO 
cDNA synthesis kit (�ermo Scienti�c) according to manufac-
turer’s instructions. As template, approximately 30 ng cDNA was 
used for RT-qPCR and the signals were detected using real-time 
PCR system. Quantitative real-time PCR was performed using 
Mastercycler ep realplex (Eppendorf). �e cDNA was ampli�ed 
using SYBR Green Mix (Kapa Biosystems) with gene-speci�c 
primers (Table S4 in Supplementary Material). �e thermal cycler 
parameters followed are as follows: one cycle of 94°C for 2 min fol-
lowed by 40 cycles of 30 s at 94°C, 30 s annealing at 56°C and 40 s at 
68°C. �e relative mRNA expression of each gene was calculated 
using housekeeping gene β-actin as the reference gene (33).

RESULTS

Computational Analysis
Preliminary Analyses
Followed by a complete systemic review of RA data sets available 
on GEO database, we downloaded raw data of eight data sets. 
Sample source of six data sets was of synovial tissue, and the 
remaining two data sets were of PBMCs (Table 1). In total, the 
study included 107 RA patients and 76 HCsamples. Before the 
meta-analysis study, we analyzed and generated the results of 
individual data sets to obtain eight set of DEGs. �e raw data 
of each data set were normalized using RMA method. Later, the 
di�erential expression of each gene in each study was calculated 
for patients group with respect to the healthy group using a 
T-test statistic. Genes with p-values less than 0.05 were assigned 
as DEGs. Adjusted p-values (q-values) were calculated using 
Benjamini Hochberg’s method (25) to eliminate the false posi-
tives that arise due to multiple testing. �e DEGs of each study 
were annotated with Entrez IDs, o�cial gene symbols, and gene 
names. A total of 245,672 were measured, out of which 84,436 
have shown a signi�cant change in expression. We obtained eight 
sets of DEGs that were assigned for our meta-analysis study. �e 
schematic representation of the analyses method is shown in 
Figure 1.

Meta-analysis
�e purpose of performing meta-analysis was to elicit the inter-
section of signi�cant gene signatures (meta-pro�le) from the 
sets of DEGs obtained during our preliminary analyses. Despite 
the availability of various established microarray meta-analysis 
methods for the detection of common DEGs (meta-genes) (34), 
we sought to use a speci�c meta-analysis approach, where we 
combined the statistical parameters (q-values) obtained from 
di�erential gene expression analysis of individual data sets. A�er 
our preliminary analyses, we extracted DEGs that were commonly 
expressed across all data sets. We identi�ed 78 genes that were 
commonly expressed in all eight data sets (Figure  2A), out of 
which 33 genes were consistently expressed (either upregulated or 
downregulated) in at least seven out of eight data sets (Figure 2B). 
In contrast, 34 out of remaining 45 genes have shown a consistent 
reverse expression between PBMCs and synovial tissue data sets 
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FIGURE 1 | Schematic representation of individual data set analysis followed by meta-analysis method.
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(Figure S1 in Supplementary Material). �is variation might be 
possible due to the di�erence in cellular tropism and secretion 
of various kinds of chemokines and cytokines in the synovium 
as compared to PBMCs. Also, the overall systemic responses 
occurring in blood against the localized responses generated in 
synovium might in�uence the expression level of a particular 
gene in both these areas. In the next step, we computed com-
bined p-values of consistently expressed genes using weighted 
Z-method from the obtained independent q-values of each data 
set. �e genes were ranked based on the combined p-values, thus 
evaluating the signi�cance level of each gene. Also, a weighted 
log-fold change score was calculated for the list of genes and were 
plotted against the combined p-values (Figure 2C). In total, we 

observed 7 downregulated and 26 upregulated genes in the list of 
consistently expressed genes that were �nally assigned as our can-
didate meta-signatures. As an adjunct analysis, a meta-analysis 
was performed for seven data sets (excluding the data set with 
least number of DEGs, i.e., data set 1) to obtain additional num-
ber of common DEGs (Figure S2 in Supplementary Material).

GO Enrichment Analysis
We performed a GO enrichment analysis to the 33 meta-signa-
tures using Enrichr (29), an online tool based on Gene Ontology. 
Enrichment analysis was performed for two GO categories: 
biological process and molecular function. �e top enriched GO 
terms for biological process were: regulation of B cell receptor 
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FIGURE 2 | Common differentially expressed genes (common DEGs). (A) 78 genes commonly expressed across eight data sets. (B) 33 consistently 
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−log 10 (combined p-values).
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(BCR) signaling pathway (GO: 0050855), cellular calcium ion 
homeostasis (GO: 0006874), mast cell activation (GO: 0045576), 
leukocyte activation (GO: 0045321), positive regulation of 
T cell-mediated cytotoxicity (GO: 0001916), cytolysis (GO: 

0019835), immune response-regulating cell surface receptor 
signaling pathway (GO: 0002768), and regulation of protein 
oligomerization (GO: 0032459). �e top enriched GO terms for 
molecular functions included peptide binding (GO: 0042277), 
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amide binding (GO: 0033218), translation factor activity, nucleic 
acid binding (GO: 0008135), type 1 angiotensin receptor binding 
(GO: 0031702), angiotensin receptor binding (GO: 0031701), 
MHC class II receptor activity (GO: 0032395), and RNA cap 
binding (GO: 0000339). Detailed enrichment tables are provided 
in Tables S1 and S2 in Supplementary Material.

Pathway Enrichment Analysis
We performed pathway enrichment using ReactomeFiViz plug-
in based on Reactome pathways database. A total of 20 out of 
33 genes were involved in various pathways. �e hit genes list 
comprised AIM2, ALOX5, CYFIP2, EDNRB, EEF1D, EIF4E2, 
GSN, HLA-DOB, HLA-F, IL2RG, MAFF, MYH11, PLCG2, 
PPAP2B, PRKCB, PSME2, PTPRC, RASGRP1, RHOH, and 
ST6GAL1. Various immune system pathways such as platelet 
activation, signaling and aggregation, the AIM2 in�ammasome, 
downstream signaling events of BCR, signaling by the BCR, 
ER-phagosome pathway, and antigen processing cross presenta-
tion were enriched. �e other distinct pathways include platelet 
activation, signaling and aggregation, GPVI-mediated activation 
cascade, hemostasis, synthesis of lipoxins (LX), synthesis of 
5-eicosatetraenoic acids, disinhibition of SNARE formation, and 
signaling by VEGF. Top enriched pathway table is provided in 
Table S3 in Supplementary Material.

Validation of Meta-analysis Data
RT-qPCR Analysis of Selected Genes
Pathway enrichment analysis of the meta-gene pro�le revealed 
a total of 20 genes involved in distinct pathways. Eight of the 
pathways associated genes (PLCG2, AIM2, ALOX-5, HLA-DOB, 
HLA-F, EIF4E2, PRKCB, and CYFIP2) were further studied 
by quantitative real-time PCR to validate the results obtained 
through the meta-analysis of publicly available RA patient’s 
microarray data sets. �e genes for this in-depth study were 
selected by their diverse cellular functions, the magnitude of 
their di�erential expression, novelty (genes with unknown or less 
known functions), and for their potential relevance to disease. 
Quantitative RT-PCR for the genes quoted above was carried out 
using 19 patients clinically diagnosed with RA, and eight healthy 
volunteers were taken as HCs. Although the number of samples 
analyzed in the meta-analysis study and real-time PCR are lim-
ited, our results demonstrate that the relative expression levels 
analyzed through RT-qPCR for all the eight genes mentioned 
above were signi�cantly upregulated in RA patient’s PBMCs as 
compared to HCs (Figures 3A–H). Of note, AIM2 (Figure 3B) 
and CYFIP2 (Figure  3H) were the two genes that were most 
signi�cantly upregulated in PBMC samples of RA patients as 
compared to HCs. Overall, the RT-qPCR results were concordant 
with our meta-analysis study, suggesting the role of meta-analysis 
approach as a stupendous tool to identify di�erentially expressed 
gene signatures that might act as novel candidates to develop new 
therapeutic interventions against RA. Further, pathway networks 
of these validated candidate signatures were generated using 
Pathway Commons (31, 35–58) (www.pathwaycommons.org), a 
web resource for biological pathway data, and visualized using 
Cytoscape so�ware (59) (Figures 4 and 5).

DISCUSSION

�e etiology of RA like most of the immune-mediated disorders 
is multifactorial, which is in�uenced by genetic, environmental, 
hormonal, and immunological factors. However, genes, gene net-
works associated with RA onset and progression are not clearly 
de�ned. Our meta-analysis of RA gene expression data identi�ed 
a robust meta-gene pro�le comprising 33 DEGs, which showed a 
consistent and signi�cant up-or downregulation across all the data 
sets. To further understand the signi�cance of these meta-genes 
in RA pathogenesis, we performed a GO functional and pathway 
enrichment analysis, which led to the identi�cation of novel gene 
signatures that went unnoticed in previous RA studies. �ese 
genes include PLCG2, HLA-DOB, HLA-F, EIF4E2, and CYFIP2, 
which have been previously implicated in in�ammation, antigen 
presentation, hypoxia, and apoptosis. Interestingly, expressions 
of these genes were also found to be signi�cantly upregulated in 
PBMCs of clinical RA patients. It has been well established that 
the severity of RA is majorly dictated by the production of an 
array of pro-in�ammatory cytokines in the synovial joint par-
ticularly cytokines like TNF and IL-1β, which triggers multiple 
cellular and immunological interactions as a result of excessive 
in�ammation. Although biological therapies against TNF and 
other pro-in�ammatory cytokines o�er momentary clinical 
bene�ts, they are o�en associated with severe side e�ects (60). 
�erefore, it is decisive to identify and quantify combination of 
other genes, which might be helpful in controlling the massive 
in�ammatory responses occurring during RA progression. Our 
meta-analysis study exempli�es the involvement of few in�am-
matory genes (PLCG2, AIM2, and ALOX-5), which might act 
as novel candidates for controlling in�ammation during the 
disease condition (Figure 2B). Additionally, we have identi�ed a 
previously unnoticed in�ammatory gene, PLCG2 (phospholipase 
C-gamma 2), which has been found to be upregulated in all the 
microarray data sets as well in the clinical RA patients (Figures 2B 
and 3A). PLCG2, a transmembrane signaling enzyme, catalyzes 
the conversion of membrane phospholipid, phosphatidylinositol 
4,5 bisphosphate into second messenger molecules inositol 
trisphosphate (IP3) and diacylglycerol (DAG) using calcium as 
the cofactor, thereby activating NLRP3 in�ammasome. A gain of 
function mutation in PLCG2 gene is associated with phospholi-
pase Cγ2 (PLCγ2)-associated antibody de�ciency and immune 
dysregulation (APLAID), dominant inherited disorder, and 
auto-in�ammation (61), thereby suggesting that PLCG2 might 
be a potential therapeutic target for controlling in�ammation 
during RA pathogenesis. In consent with previous studies that 
have highlighted the role of AIM2 (absent in melanoma 2) and 
ALOX-5 (arachidonate 5-lipoxygenase) genes in RA pathogen-
esis, our study also demonstrated the enhanced expression of 
these genes in RA patients as compared to HCs (Figures 3B,C). 
AIM2 is known to induce the formation of caspase-1-activating 
in�ammasome, thereby controlling the proteolytic maturation of 
pro-in�ammatory cytokines IL-1β and IL-18 (62). Conditional 
deletion of AIM2 in RA mice model shows reduced in�ammatory 
responses suggesting the role of AIM2 in controlling in�amma-
tion during RA (62). ALOX-5 is expressed basically in mature 
myeloid cells and developing/memory B-lymphocytes and is 
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FIGURE 3 | Relative quanti�cation of transcription of eight candidate genes (PLCG2, AIM2, ALOX-5, HLA-DOB, HLA-F, EIF4E2, PRKCB, and CYFIP2) 

in rheumatoid arthritis (RA) patient samples. Quantitative real-time polymerase chain reaction (RT-qPCR) was carried out to quantify the relative expression of 

the above mentioned candidate genes in RA patients (n = 19) peripheral blood mononuclear cells compared to healthy controls (HCs) (n = 8). The relative 

expression of each gene (A–H) PLCG2, AIM2, ALOX-5, HLA-DOB, HLA-F, EIF4E2, PRKCB, and CYFIP2 was normalized to housekeeping gene β-actin. 

Experiments were carried out at least in triplicates. Error bars represent the SEM. p values were determined based on comparison with HCs. Statistical analysis was 

performed using non-parametric Student’s t-test to identify signi�cance using GraphPad Prism5 software. ***p < 0.001, **p < 0.01, and *p < 0.05 were considered 

statistically signi�cant.

7

Afroz et al. Meta-analysis of Rheumatoid Arthritis Microarray Data

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 74

responsible for the generation of excessive leukotrienes (LTB4, 
LTC4, LTD4, and LTE4) in the synovial �uid of RA patients 
(63). Inhibitors of ALOX5 gene dampen TNF-α-induced NF-κβ, 
thereby abrogating synovial in�ammation (63). ALOX5 in 
coordination with 5-LO-activating protein (FLAP) leads to the 
synthesis of LTA4, one of the critical intermediates of leukotrienes 
synthesis pathway (64). �e long association of human leukocytic 
antigen (HLA) is con�rmed in patients positive for rheumatoid 
factor. Appropriate antigen presentation or alteration in peptide 
a�nity play a crucial role in promoting autoreactive adaptive 
immune responses (3). Intriguingly, our study for the �rst time 
has documented gene signatures HLA-DOB and HLA-F, which 

were found to be upregulated across all RA patient’s microar-
ray data sets as well as in RA patients’ PBMCs (Figures 3D,E). 
HLA-DOB, a B-cell lineage, MHC-II-related molecule has been 
reported to have strong immunogenicity for human T-cells, one 
of its identi�ed CTL epitopes HLA-DOB232–240 acts as a resilient 
immunotherapeutic candidate for targeting multiple myeloma 
(65). HLA-F, a non-classical MHC-I molecule, is currently 
enigmatic of all the HLA molecules; hence, its precise function 
remains elusive. Recent studies have demonstrated enhanced 
HLA-F expression in cancer stroma in the case of both breast 
and gastric cancers (66). HLA-F on B-cells was found to induce 
immune tolerance in tumor cells by interacting with inhibitory 

http://www.frontiersin.org/Immunology/
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on Cytoscape.
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receptor ILT-2 and ILT-4 of the natural killer or CTLs, thereby 
blocking their cytotoxicity for the tumor cells (67). �ese �ndings 
categorically depict the immunological relevance of HLA gene 

signatures in multiple cancers; however, their abundance in RA 
patients and correlation with RA onset and progression needs to 
be completely deciphered.
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FIGURE 5 | Pathway networks of (A) EIF4E2, (B) PLCG2, (C) HLA-F, and (D) PRKCB.
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Angiogenesis is one of the critical events in the perpetuation 
of RA (68). One of the important signals required for triggering 
angiogenesis during RA is hypoxia, which is created majorly as a 
result of synovial hyperplasia (10). Our meta-analysis study for 
the �rst time has identi�ed EIF4E2 gene (eukaryotic initiation 
factor 4E2) encoding eIF4E2 protein, an mRNA cap binding 
homolog of eIF4E, which was found to be upregulated across 
all RA microarray data sets considered in our meta-analysis 
study as well as through RT-qPCR in RA patients (Figure 3F). 

eIF4E2 was found to be an inhibitor of translation in normal 
cells (69), while it binds with HIF-2α-RBM4 complex and drives 
the translation of proteins under hypoxic (low oxygen tension) 
conditions. Cancer cells exploit the eIF4E2-mediated protein 
synthesis to sustain hypoxic conditions and consequently grow 
to signi�cant sizes (70). Perhaps, eIF4E2 might play a critical 
role in driving hypoxia-induced angiogenesis during RA, hence 
can act as a valuable pharmacological candidate for controlling 
RA. Further, our study also depicts the involvement of previously 
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unnoticed genes such as protein kinase C-β, PRKCB (a negative 
regulator of BCR signaling) and cytoplasmic FMR1-interacting 
protein 2, CYFIP2 (inducer of p53 mediated apoptosis), which 
were also upregulated in all data sets and clinical RA patients 
(Figures 3G,H). CYFIP2 gene has a p53 responsive element that 
confers binding of p53 as well as the activation of some heter-
ologous reporter. Inducible expression of CYFIP2 is responsible 
for caspase activation and cellular apoptosis (71). Although 
these novel immune signatures are abundantly expressed in 
RA patients, which categorically suggests the involvement of 
these gene/pathways in RA pathogenesis, still their functional 
relevance in terms of gene expression and disease outcome need 
to be deciphered. Nevertheless, identi�cation of these novel 
gene signatures might provide a unique prospective to de�ne 
novel molecular diagnostic candidates and ascertain potential 
pharmacological targets for the development of therapeutic 
interventions against RA.
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