A comprehensive haplotype analysis of *CYP19* and breast cancer risk: the Multiethnic Cohort

Christopher A. Haiman^{1,*}, Daniel O. Stram¹, Malcolm C. Pike¹, Laurence N. Kolonel², Noel P. Burtt³, David Altshuler^{3,4,5,6}, Joel Hirschhorn^{3,6,7} and Brian E. Henderson¹

¹Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA, ²Cancer Etiology Program, Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI 96813, USA, ³Whitehead/MIT Center for Genome Research, Cambridge, MA 02139, USA, ⁴Department of Medicine, Harvard Medical School, Boston, MA 02115, USA, ⁵Department of Molecular Biology and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA, ⁶Department of Genetics, Harvard Medical School, Boston, MA 02115, USA and ⁷Division of Endocrinology, Children's Hospital and Department of Pediatrics, Boston, MA 02115, USA

Received June 18, 2003; Revised and Accepted August 16, 2003

The CYP19 gene encodes for aromatase (P450arom), a key steroidogenic enzyme that catalyzes the final step of estrogen biosynthesis. Apart from rare mutations in CYP19 which result in severe phenotypes associated with estrogen insufficiency, little is known about whether common variation in CYP19 is associated with risk of hormone-related diseases. In this study, we employed a haplotype-based approach to search for common disease-associated variants in this candidate breast cancer susceptibility gene among African-American, Hawaiian, Japanese, Latina and White women in the Multiethnic Cohort Study (MEC). We utilized 74 densely spaced single-nucleotide polymorphisms (SNPs) (one every ~2.6 kb) spanning 189.4 kb of the CYP19 locus to characterize linkage disequilibrium (LD) and haplotype patterns among 69-70 individuals from each ethnic population. We detected four regions of strong LD (blocks 1-4) that were guite closely conserved across populations. Within each block there was a limited diversity of common haplotypes (5 to 10 with a frequency >5%) and most haplotypes were observed to be shared across populations. Twenty-five haplotype-tagging SNPs (htSNPs) were selected to predict the common haplotypes with high probability (average $R_{h}^{2} = 0.92$) and genotyped in a breast cancer case-control study in the MEC (cases, n=1355; controls, n=2580). We first performed global tests for differences in risk according to the common haplotypes and observed significant haplotype-effects in block 2 [P=0.01; haplotypes 2b (OR=1.23; 95% Cl, 1.07-1.40), 2d (OR=1.28; 95% Cl, 1.01–1.62)]. We also found a common long-range haplotype comprised of block-specific haplotypes 2b and 3c to be associated with increased risk of breast cancer (haplotype 2b–3c: OR = 1.31; 95% Cl, 1.11–1.54). Our findings suggest the hypothesis that women with the long-range CYP19 haplotype 2b–3c may be carriers of a predisposing breast cancer susceptibility allele.

INTRODUCTION

Estrogens stimulate breast cell division and have an established role in breast carcinogenesis (1). Among postmenopausal woman, greater endogenous estrogen levels have been consistently associated with increased breast cancer risk (2,3). Prior to menopause, estrogens are primarily produced in the ovaries, while among postmenopausal women most circulating estrogens are synthesized from adrenal androgens in adipose tissue. C_{19} androgens, androstenedione and testosterone, are converted to C_{18} estrogens, estrone and estradiol, respectively, by the cytochrome P450 enzyme, aromatase. In humans, aromatase is expressed in the gonads as well as various other extragonadal sites, including adipose, placenta, skin, brain and bone. Aromatase is encoded by the *CYP19* gene which is located at 15q21.1 and spans ~123 kb. The gene comprises nine coding exons (II–X) covering ~30 kb, with multiple untranslated first exons localized within ~90 kb 5' of

*To whom correspondence should be addressed at: Department of Preventive Medicine, University of Southern California, USC/Norris Comprehensive Cancer Center, 1441 Eastlake Ave, Rm 4441, Los Angeles, CA 90089-9175, USA. Tel: +1 3238650429; Fax: +1 3238650127; Email: haiman@usc.edu

the coding region that are regulated by tissue-specific promoters (4-6).

Studies suggest that aromatase has a direct effect on *in situ* estrogen synthesis in the breast and implicate the transcriptional regulation of *CYP19* in the development and progression of breast cancer (7–10). Among postmenopausal women, estradiol levels in malignant breast tissue have been observed to be higher than in non-malignant breast tissue and in the circulation (11). Elevated levels of aromatase expression have also been observed in breast tumors and adjacent tissue, relative to normal breast tissue (8). The heightened aromatase expression is accompanied by a change in *CYP19* promoter utilization, from the adipose-specific glucocorticoid-stimulated promoter I.4 to proximal promoter II which drives aromatase expression in the ovary and promoter I.3, which is a minor promoter used in adipose tissue (12,13).

The importance of the aromatase enzyme in the pathogenesis of breast cancer has also been clearly demonstrated in the clinical setting, as steroidal and nonsteroidal inhibitors of the enzyme have been used as second-line therapy following tamoxifen treatment for postmenopausal women with advanced breast cancer (14). Current studies also suggest that aromatase inhibitors (letrozole and anastrozole) may be equally or more effective than modulators of the estrogen receptor in slowing tumor progression, and support their use as first-line treatment for women with hormone receptor-positive breast cancer (15–17).

Aside from mutations in key breast cancer susceptibility genes BRCA1 and BRCA2, which are highly penetrant but explain only a relatively small percentage of breast cancer in the general population (<5%), the genetic risk factors contributing to sporadic breast cancer are as yet not known. Based on the evidence implicating aromatase in the underlying pathogenesis of breast cancer, we selected *CYP19* as a candidate gene to evaluate in relationship with breast cancer risk. Previous studies evaluating genetic variation in *CYP19* have examined relatively few polymorphic sites. The most well-studied polymorphism is the tetranucleotide (*TTTA*)_n repeat in intron 4, but for the most part, associations between specific repeat alleles and breast cancer risk have been inconsistent (18–22). No comprehensive study of the role of this gene in breast cancer has been performed.

Haplotype-based association studies have been proposed as a powerful comprehensive approach to identify causal genetic variation underlying complex diseases (23,24). Recently, studies have shown that the human genome is comprised of genomic segments (blocks) that display little evidence of historical recombination and low haplotype diversity (23-25). Due to the high degree of linkage disequilibrium (LD) observed between single-nucleotide polymorphisms (SNPs) within these blocks, ancestral disease variants may be uncovered through evaluation of the underlying haplotypes. This methodology does not require the causal variant to be identified and tested directly, but rather has the potential to highlight physical regions that harbor putative diseaseassociated variants. In the present study, we have employed a genetic haplotype approach to examine the contribution of common variation at the CYP19 locus to breast cancer risk among African-American, Hawaiian, Japanese, Latina and white women in the Multiethnic Cohort Study (MEC). In this

study, we first defined LD blocks and constructed genetic haplotypes across the *CYP19* locus in a multiethnic panel. A reduced set of haplotype tagging SNPs (htSNPs) was selected that allow high predictability of the haplotypes within each block, and we evaluated these haplotypes in relationship with breast cancer risk in a large nested case–control study within the MEC. We also evaluated the independent effects of known missense variants.

RESULTS

LD and haplotype structure of the *CYP19* locus in the multiethnic panel

We assembled a high-density SNP map across the CYP19 locus to determine LD block and haplotype structure (Fig. 1A); 74 SNPs were selected using an iterative strategy (see Methods) and the average distance between SNPs across the 189.4 kb region was 2.6 kb. We determined the CYP19 locus to contain five blocks of LD (Fig. 1B; see Methods for block partitioning criteria): block 1 (SNPs 4-22) covered 38kb, spanning exons I.1, 2a and I.4; block 2 (SNPs 24-36) spanned 32kb, and encompassed exons I.5, I.7 and I.f: block 3 (SNPs 37-43) covered 13 kb and was located between exons I.f and I.2; and block 4 (SNPs 44-66) covered 50 kb and spanned the entire coding region, exons/promoters I.6, I.3 and PII through 5.8 kb downstream of exon 10. Block 5 was well downstream of CYP19 and was not analyzed (see Methods). The linkage disequilibrium plot for the multiethnic sample is provided in Fig. 2. With this high-density SNP map we were able to narrow the intervals between blocks. The distances between blocks 1 and 2, 2 and 3. and 3 and 4 were \sim 7, 6 and 4 kb, respectively (Fig. 1B). The LD pattern across the locus was similar among Hawaiians. Japanese, Latinas and whites. For African-Americans, the size of most blocks was modestly reduced (block 1, SNPs 4-21, 35 kb; block 2, SNPs 24-35, 30 kb; and block 4, SNPs 44-65, 45 kb) and consequently distances between blocks were slightly greater.

Within each block, we observed low haplotype diversity (Fig. 1B) and, further, the majority of common haplotypes (i.e. \geq 5% frequency) were shared across multiple ethnic groups (Table 1). For block 1, we observed eight common haplotypes (1a-1h) that could be predicted by six htSNPs. Block 2 was represented by five common haplotypes (2a-2e) that we could distinguish by six htSNPs, and block 3 contained six haplotypes (3a–3f) which may be described by five htSNPs. The fourth block was the largest and contained 10 common haplotypes (4a-4i) that could be defined by eight htSNPs. Within block 1, five of the eight common haplotypes (63%) were observed in more than one ethnic group, five of five in block 2 (100%), three of six in block 3 (50%), and seven of 10 in block 4 (70%). As expected, African-Americans displayed greater haplotype diversity, and four htSNPs (SNPs 14, 40, 41 and 52) were required only to distinguish African-American specific haplotypes (24). For each ethnic group, the common haplotypes (\geq 5%) comprised 85–100% of the total predicted haplotype variation within a defined block, and the average R_h^2 (see Methods) to predict the common haplotypes in the multiethnic panel was 0.92 (range 0.72-1.00; Table 1).

Figure 1. The genomic organization of *CYP19*. (**A**) The 74 SNPs used in the haplotype analysis. SNP location is based on the April 2003 freeze of chromosome 15 (contig NT_010194, http://genome.ucsc.edu). htSNPs for each block are indicated in red. (**B**) LD block and haplotype patterns across *CYP19*. Presented are the common haplotypes (\geq 5%) estimated using all SNPs and the htSNPs among all ethnic groups combined. The lines between blocks link haplotypes that are transmitted with \geq 2.5% frequency across blocks. The numbers for each SNP correspond to the nucleotide at that position (1 = A, 2 = C, 3 = G, 4 = T).

Breast cancer case-control analysis

Among all women, the mean age of the cases and controls was 64.3 and 63.4 years, respectively, and the mean age was similar for cases and controls within each ethnic group (Table 2). The distributions of established breast cancer risk factors were generally consistent with expectation, and were similar to what we observed in the overall cohort (26). Compared with controls, cases were more likely to be a current user of hormone replacement therapy and have a first-degree family history of breast cancer. Cases were also more likely to be nulliparous and to have had children at a later age. These associations were generally consistent across all ethnic groups.

The frequency of the common haplotypes (\geq 5%) predicted by the htSNPs in the multiethnic panel were nearly identical to those observed in the larger sample of cases and controls (Tables 1, 3 and 4). Three haplotypes that were observed at \geq 5% frequency in at least one ethnic group in the multiethnic panel were <5% among cases and controls in each group and were not further evaluated in the case–control analysis (haplotypes 2e, 3f and 4j).

Tests of haplotype associations

We first performed global tests for differences in risk according to the common haplotypes and observed marginally significant haplotype-effects in block 2 (P = 0.01), but not in blocks 1 (P = 0.45), 3 (P = 0.14) or 4 (P = 0.45). Within each block, we observed positive associations with individual haplotypes in an ethnic stratified analysis using all ethnic groups combined

(Tables 3 and 4). In block 4, which spans the entire coding region of CYP19, we observed a non-significant positive association with haplotype 4c (OR = 1.13; 95% CI, 0.95–1.34; Table 3). In block 1, we observed a suggestive association with haplotype 1d (OR = 1.21; 95% CI, 1.02-1.43; Table 4), and in block 2, positive associations were noted with haplotypes 2b (OR = 1.23; 95% CI, 1.07–1.40) and 2d (OR = 1.28; 95% CI, 1.01–1.62). Within block 2, where the global test was statistically significant, the test for differences in risk between ethnic groups associated with haplotypes 2b and 2d was not significant (P = 0.09). In block 3, we also observed haplotype 3c to be associated with elevated risk (OR = 1.21; 95% CI, 1.05-1.39). When limiting the analysis to women with advanced disease (cases, n = 342) the associations with haplotypes 4c, 1d, 2d and 3c remained (data not shown), and for haplotype 2b, the strength of the association increased (OR = 1.41; 95% CI, 1.13–1.76).

Evaluation of long-range haplotype patterns

Limited inter-block recombination may result in long-range LD, i.e. associations between haplotypes in adjacent blocks. In attempt to localize the signal in this region, we evaluated whether there was a long-range haplotype comprised of a subset of the common block-specific haplotypes (1d, 2b, 3c and 4c) that were associated with risk within each block. If a disease variant arose on a long-range haplotype then we would expect that the risk associated with this haplotype would be greater than the risk observed with each block-specific haplotype. The extent of coupling between haplotypes in

Figure 2. The linkage disequilibrium plot of CYP19 for all ethnic groups combined. LD strength between the 74 SNPs, as indicated by the color scheme, was measured using a combination of the statistic D' and LOD scores.

adjacent blocks varied considerably among the ethnic groups (Table 5). In analyses among all ethnic groups combined, we observed a strong association with the long-range haplotype 2b-3c (OR = 1.31; 95% CI, 1.11–1.54; Table 5) that was nominally greater than the associations observed with any block-specific haplotypes. The addition of haplotypes 1d and 4c to the long-range haplotype 2b–3c resulted in numerous less frequent haplotypes containing 2b-3c, especially among the African-Americans where 2b and 3c were more common, and did not increase the ORs. Therefore, the addition of 1d and 4c did not partition the 2b-3c haplotype in defining a common long-range haplotype 2b-3c alone.

Previously studied SNPs

Among the common haplotypes, the Cys264 allele of the previously reported Arg264Cys polymorphism in exon 7 (27) is unique to haplotype 4c and, when evaluating this variant independently, we observed a modest non-significant positive

association between the *Cys264* allele and breast cancer risk among all groups combined (OR = 1.18; 95% CI, 0.99–1.42; Table 6). The selection of this SNP as an htSNP in the multiethnic panel was not essential to define haplotype 4c, and thus we are unable to distinguish the effects of this SNP from haplotype 4c. We also evaluated two other well-studied SNPs in *CYP19*, the *Trp39Arg* missense variant in exon 2 (28,29) and a SNP in the 3'-UTR of exon 10 (30,31). The *Arg39* allele was only detected among the Hawaiians (2.1%) and the Japanese (2.9%) and was noted to travel exclusively on haplotype 4b. We observed little evidence of an association between the *Arg39* allele or the exon 10 variant and breast cancer risk (Table 6).

DISCUSSION

In this study we have implemented an efficient stepwise approach that we are currently using to search for common disease alleles in candidate cancer susceptibility genes in the MEC. These studies are initiated by surveying variation across each gene in a multiethnic panel of subjects. This preliminary

Haplotypes ^b	Haplotypes frequencies in the multiethnic panel (%)								
	African- Americans	Hawaiians	Japanese	Latinas	Whites				
Block 1 (SNPs	4–22) htSNPs	: 4,11,14,15,20),21						
1a 134431	12	58	38	42	52				
1b 134211	22	12	10	33	29				
1c 434231		12	32						
1d 422214	9	5	12	7	7				
1e 422211	15	7	5	5					
1f 134231	13								
1g 432231	14								
1h 424231				6					
Total ^c	85	94	97	93	88				
$R_h^{2 d}$	0.85	0.91	0.93	0.97	0.89				
Block 2 (SNPs	24–36) htSNP	s: 24.25.26.28.	34.35						
2a 133423	34	80	67	86	82				
2b 232241	38	6	21	6	6				
2c 233241	8	9	5						
2d 143243	6			5	8				
2e 233243	6		6						
Total	92	95	99	97	96				
R_h^2	0.85	0.73	0.96	1.00	0.72				
Block 3 (SNPs .	37–43) htSNP	s: 39,40,41,42,	43						
3a 34233	15	43	40	57	37				
3b 12311	24	42	35	26	45				
3c 34231	38	7	21	9	14				
3d 12231	16								
3e 12331		8							
3f 14231	6								
Total	99	100	96	92	96				
R_h^2	0.94	1.00	1.00	0.98	1.00				
Block 4 (SNPs	44–66) htSNP	s: 44,48,50,52,	59,60,63,64						
4a 31123312	11	43	36	28	47				
4b 12343331	14	35	28	23	19				
4c 11321332	16		25						
4d 12343332		6		18	13				
4e 11323131	6			16	9				
4f 11323312	7	7							
4g 11323332	15								
4h 11123312	5			5					
4i 11343332	9								
4j 11323331	5								
Total	88	91	89	90	88				
R_h^2	0.86	1.00	0.96	0.89	1.00				

 Table 1. Common haplotypes in blocks 1–4 of CYP19 among African-Americans, Hawaiians, Japanese, Latinas and whites in the multiethnic panel^a

^aHaplotypes observed with \geq 5% frequency in at least on ethnic group in the multiethnic panel.

^bHaplotype order is based on the frequency as predicted by the htSNPs among all groups combined.

^cThe percentage of all chromosomes accounted for by the common haplotypes. ^dThe R_h^2 that is given is the minimum R_h^2 of the common haplotypes in each ethnic group.

step allows us to determine which SNPs are polymorphic and assess allele frequencies in the different populations. This information is then used to establish the LD block structure, reconstruct haplotypes and select htSNPs that predict the common haplotypes in different ethnic populations.

Linkage disequilibrium blocks are regions that display little evidence of historical recombination and are characterized by low haplotype diversity (23–25). A previous study has demonstrated that, within LD blocks, more than 90% of the diversity

of common haplotypes (>5%) may be captured by six to eight common SNPs (>10%), and that these common haplotypes explain the vast majority of genetic variation contributed by unmeasured or undiscovered SNPs (24). We based our haplotype discovery and htSNP selection on this observation. In the present study, we selected a subset (n = 74) of all available SNPs (>250) from the private and public SNP databases to define LD blocks and reconstruct haplotypes across the CYP19 gene. This process of defining LD blocks prior to haplotype estimation differs from other haplotypebased approaches where haplotypes are estimated without regard for the nature of LD across the candidate gene. The initial identification of LD blocks using a high-density set of available SNPs guarantees that common variation across each LD block is captured, which may not be the case when only a handful of SNPs are chosen based on convenience. In addition, picking htSNPs to predict the haplotypes within defined LD blocks results in a substantial reduction in genotyping required to study common variation across a candidate gene locus.

The LD block structure and haplotype diversity across CYP19 was compatible with other studies that have explored more expansive regions of the human genome and consistent with prior observations of population differences in genetic diversity (24,32). In general, African-Americans were observed to have smaller LD blocks and a greater diversity of common haplotypes than the Hawaiians, Japanese, Latinas and whites. The ramifications for only using the available SNPs in the public and Celera databases in haplotype-based association studies in a multiethnic population are unclear. For example, it is estimated that only 80% of all common SNPs (>10%) among European Americans and 50% among African-Americans are in high correlation with SNPs in dbSNP, and it has been argued that the resequencing of candidate genes to uncover common ethnic-specific SNPs will be required for genetic LD association studies among African-Americans and other genetically diverse populations (33,34). Within LD blocks, however, a low haplotype diversity is observed which is not a consequence of genotyping only a subset of all available markers, but rather that recombination in the region is low so that SNPs are redundant in defining the common haplotypes. Using a high-density set of 74 common SNPs, spaced every 2.6 kb on average, we identified four LD blocks spanning the CYP19 gene. To ensure adequate characterization of the common haplotypes, we obtained at least seven SNPs with frequencies $\geq 10\%$ within an LD block. Within each block, more than 80% of the haplotype diversity could be accounted for by 5 to 10 common haplotypes and the majority of these haplotypes were observed to be shared across populations. It remains plausible that undiscovered ethnicspecific SNPs that are common may create subtypes of the major haplotype patterns which we have identified within the LD blocks. However, because we over-sampled SNPs within LD blocks, this is unlikely, and we feel confident that we were able to delineate the common haplotypes, especially within block 4, which spans the coding region, as we obtained 22 SNPs that were common among all ethnic groups.

In haplotype-based studies, the misclassification of rare haplotypes by grouping them with the more common haplotypes one is interested in evaluating may lead to the underestimation of haplotype-specific effects. In this study, we utilized

African-A	mericans	Harriana							
C		Hawaiians		Japanese		Latinas		Whites	
Cases $(n=278)$	Controls $(n = 672)$	Cases $(n=92)$	Controls $(n=311)$	Cases $(n=358)$	Controls $(n = 429)$	Cases $(n=272)$	Controls $(n = 706)$	Cases $(n=355)$	Controls $(n = 462)$
Age (mean) 64.1	64.3	60.7	59.5	64.4	64.2	63.9	62.8	64.7	62.3
Menopausal status (%)									
Premenopausal 14	11	17	27	13	21	10	11	8	20
Postmenopausal ^a 55	56	58	52	67	62	66	61	66	61
Simple hysterectomy 19	23	13	14	10	10	14	19	17	14
Missing 11	10	12	7	11	8	10	9	8	5
HRT use (%) ^{a,b}									
Never 47	48	40	39	28	29	44	48	28	34
Past 29	23	15	23	16	15	21	19	17	17
Current 21	26	43	36	56	53	31	28	55	48
Age at menarche $(\%)^{b}$									
<12 54	46	57	59	56	50	48	49	55	48
13–14 34	39	28	29	32	35	37	39	35	44
15+ 12	14	11	11	9	14	13	11	8	8
Number of children (%) ^b									
0 12	11	9	9	16	11	10	7	18	16
1 20	16	3	10	11	10	8	6	11	9
2 or 3 40	40	48	39	54	60	36	36	51	53
4+ 25	32	40	42	17	18	45	50	19	22
Age at first birth (%) ^{b,c}									
<20 46	50	43	39	8	11	35	41	23	23
21–30 44	41	52	50	74	75	53	52	66	63
31+ 8	5	0	7	14	12	9	4	10	12
First degree family history of breast c	ancer (%) ^b								
Yes 23	12	15	14	18	11	17	10	15	9
No 72	82	80	82	77	87	75	83	81	88
Average alcohol consumption (drinks/	day) ^b								
0 51	53	66	57	72	75	54	53	31	39
<1 29	30	17	30	19	17	32	33	39	40
≥ 1 10	10	11	9	5	3	5	6	22	18

Table 2. Descriptive characteristics among breast cancer cases (n = 1355) and controls (n = 2580) in the Multiethnic Cohort Study

^aWomen reporting natural menopause or having had a bilateral oophorectomy.

^bNumbers do not add to 100% because of missing data.

a formal measure, R_{h}^2 to select the htSNPs for predicting the common haplotypes (35). This approach optimizes one's ability to identify a specific haplotype and not merely distinguish different clades (groups of related haplotypes). This high degree of predictability reduces the potential bias incurred from haplotype misclassification. In this study, the average R_h^2 for defining the common haplotypes was 0.92. With our sample size and assuming a dominant inheritance model, we had more than 90% power to detect relative risks as low as 1.27 for a common haplotype (25% frequency) that was shared across populations.

Rare mutations in *CYP19* that result in substantial reductions in enzyme activity have been reported in patients with aromatase deficiency (36). More common variation in *CYP19* has been hypothesized to contribute to phenotypes associated with estrogen and androgen exposure such as breast and prostate cancer (37). In this study, we observed modest associations between block-specific haplotypes of *CYP19* and increased breast cancer risk. These associations were not observed consistently across the groups, although we had limited power to detect ethnic-specific risks because of low haplotype frequencies in some groups. We studied the long-range haplotype patterns across LD blocks in an attempted to localize the region containing a putative disease variant. Our data suggest that a susceptibility allele may have arisen on a particular longrange haplotype that contains haplotypes 2b and 3c, but additional studies will be required to confirm these findings before undertaking a resequencing of this region among individuals with this haplotype combination.

Previous association studies have focused on a limited set of polymorphisms at the *CYP19* locus. The most well-studied polymorphism in *CYP19* has been the tetranucleotide $(TTTA)_n$ repeat in intron 4, and positive associations have been noted for the rare 10 and 12 repeat alleles (18,21). Based on the location of this repeat polymorphism, it is not likely to be functional, and if it is a marker of risk it is probably because it is in LD with functional variants elsewhere in the gene. Further work will be required to determine whether these repeat alleles mark the haplotypes that we observed to be associated with greater risk. Studies in Asian populations have provided little support for

^cAmong parous women.

Haplotypes ^a	Haplotype	Haplotype frequencies										
Block 4	African-An	nericans		Hawaiians			Japanese					
	Cases $(n=266)$	Controls $(n = 651)$	OR ^b (95% CI)	Cases $(n = 78)$	Controls $(n=295)$	OR ^b (95% CI)	Cases $(n=347)$	Controls $(n = 420)$	OR ^b (95% CI)			
4a 31123312 4b 12343331 4c 11321332 4d 12343332 4e 11323131	13.2 20.3 15.1	12.9 16.9 14.3	Ref 1.17 (0.80–1.69) 1.03 (0.70–1.51) 0.91 (0.56–1.49)	42.9 28.9 6.4 6.4	40.4 35.2 3.6 4.2	Ref 0.78 (0.50–1.21) 1.70 (0.77–3.76) 1.52 (0.66–3.47)	31.3 23.1 29.7	36.4 24.8 25.7	Ref 1.05 (0.81–1.37) 1.31 (1.02–1.68)			
4f 11323312 4g 11323312 4h 11123312 4i 11343332 4j 11323331	4.7 12.5 5.5 8.9	5.5 12.8 6.8 9.0	$\begin{array}{c} 0.51 & (0.50-1.49) \\ 0.84 & (0.49-1.43) \\ 0.96 & (0.64-1.44) \\ 0.79 & (0.47-1.33) \\ 0.96 & (0.61-1.50) \end{array}$	5.7	6.3	0.80 (0.36–1.77)	8.6	6.6	1.46 (0.97–2.20)			
Haplotypes ^a Block 4	Haplotype : Latinas Cases (n = 254)	frequencies Controls $(n = 673)$	OR ^b (95% CI)	Whites Cases $(n = 342)$	Controls $(n = 443)$	OR ^b (95% CI)	All groups OR ^c (95% CI)	combined				
4a 31123312 4b 12343331 4c 11321332 4d 12343332 4e 11323131 4f 11323312	24.4 29.0 5.3 11.5 14.9	26.2 22.5 4.3 14.4 18.5	Ref 1.35 (1.02–1.79) 1.25 (0.75–2.07) 0.83 (0.57–1.20) 0.88 (0.64–1.21)	44.5 17.2 15.9 7.9	39.9 18.8 14.7 10.3	Ref 0.79 (0.59–1.05) 0.98 (0.72–1.32) 0.71 (0.49–1.03)	Ref 1.05 (0.91- 1.13 (0.95- 0.97 (0.79- 0.81 (0.66- 1.07 (0.84-	-1.20) -1.34) -1.19) -0.99) -1.36)				
4g 11323332 4h 11123312 4i 11343332 4j 11323331	3.9	5.3	0.85 (0.50–1.47)	6.7	5.3	1.15 (0.73–1.80)	0.99 (0.74- 0.95 (0.73- 1.03 (0.73-	-1.33) -1.23) -1.44)				

Table 3. Associations between haplotypes in LD block 4 of CYP19 and breast cancer risk

^aHaplotypes observed with \geq 5% frequency among cases or controls in at least on ethnic group are shown.

^bORs are estimated using unconditional logistic regression adjusted for age.

^cORs are estimated using unconditional logistic regression adjusted for age and ethnicity.

the *Cys264* allele as a breast cancer risk factor (28,38,39). In our study, the *Cys264* allele was more common among the Japanese and African-Americans (>14%) and was only modestly associated with increased risk. Combining the data from the previous three studies, the OR for the *Cys264* allele is OR = 1.03 (95% CI, 0.83–1.28) and the 95% confidence interval is compatible with the effect we observed. In addition, our findings do not support previous reports suggesting that carriers of the *Arg39* allele are at lower risk of breast cancer (28,29).

A strength of the present study is the large sample size among each of five ethnic populations. This study design enables the reproducibility of an association to be evaluated across multiple ethnic groups, providing more convincing support for an underlying relationship between a genetic marker and breast cancer risk. Our sample size within each ethnic group however, is not large enough to definitively evaluate ethnic-specific risks. In addition, our findings must be interpreted with caution as numerous statistical tests were conducted separately for multiple block-specific haplotypes and long-range haplotype combinations.

This comprehensive genetic analysis provides a framework for haplotype-based studies of *CYP19* in relationship with other phenotypes for which steroid hormones have been implicated, such as stature, obesity and diabetes (40). Although these data provide little support for there being a strong breast cancer susceptibility allele at the *CYP19* locus that is common in the general population, they do suggest that individuals with the long-range haplotype 2b–3c may harbor a variant that modestly increases risk.

MATERIALS AND METHODS

The Multiethnic Cohort

The MEC consists of over 215 000 men and women in Hawaii and Los Angeles (with additional African-Americans from elsewhere in California) and has been described in detail elsewhere (41). In brief, the cohort is comprised predominantly of Hawaiians, Japanese and whites in Hawaii, and African-Americans, Japanese and Latinos in Los Angeles. Between 1993 and 1996, participants entered the MEC by completing a 26-page self-administered mail questionnaire that asked detailed information about dietary habits, demographic factors (ethnicity, education and migrant status), personal behaviors (smoking, sun exposure and physical activity), history of prior medical conditions (e.g. heart attack, diabetes and cancer), family history of common cancers, and for women, reproductive history and exogenous hormone use. Potential cohort members were identified through the Department of Motor Vehicles drivers' license files, and additionally for African-Americans, Health Care Financing Administration data files. The participants were between the ages 45 and 75 when they entered the cohort.

.

.. .

Table 4. Associations between haplotypes in LD blocks 1-3 of CYP19 and breast cancer risk

Haplotypes ^a Block 1	Haplotype African-An Cases (n = 266)	frequencies mericans Controls (n = 651)	OR ^b (95% CI)	Hawaiians Cases (n = 78)	Controls $(n=295)$	OR ^b (95% CI)	Japanese Cases (n = 347)	Controls $(n = 420)$	OR ^b (95% CI)
1a 134431	17.3	17.1	Ref	51.6	56.1	Ref	34.6	39.0	Ref
1b 134211	20.1	20.6	0.98 (0.70-1.36)	8.3	10.8	0.77 (0.40-1.51)	14.8	12.8	1.29 (0.94-1.79)
1c 434231	5.8	4.6	1.30 (0.77-2.20)	16.1	15.6	1.10 (0.67–1.81)	19.5	22.2	0.97 (0.74-1.29)
1d 422214	4.9	6.3	0.78 (0.48-1.27)	10.9	7.6	1.66 (0.91-3.02)	19.4	15.3	1.44 (1.07-1.93)
1e 422211	12.2	12.9	0.95 (0.65-1.38)	7.0	5.1	1.77 (0.81-3.89)	5.9	5.8	1.13 (0.72-1.76)
1f 134231	11.8	11.5	1.00 (0.67–1.49)						```
1g 432231 1h 424231	15.8	15.0	1.04 (0.73–1.49)						

Haplotypes ^a	Haplotype f	requencies		33.71 .			All groups combined
BIOCK 1	Latinas Cases (n = 254)	Controls $(n = 673)$	OR ^b (95% CI)	Cases $(n = 342)$	Controls $(n = 443)$	OR ^b (95% CI)	OR ^e (95% CI)
1a 134431	42.1	37.5	Ref	47.2	49.7	Ref	Ref
1b 134211	28.3	31.9	0.81 (0.63-1.04)	29.2	27.6	1.14 (0.89-1.46)	1.02 (0.89–1.16)
1c 434231							1.00 (0.83–1.22)
1d 422214	12.5	10.4	1.09 (0.78-1.52)	9.6	8.3	1.24 (0.86-1.78)	1.21 (1.02–1.43)
1e 422211	3.1	5.3	0.54 (0.30-0.95)				0.93 (0.75–1.15)
1f 134231			. , ,				0.92 (0.70–1.19)
1g 432231							1.08 (0.82–1.42)
1ĥ 424231	5.5	5.9	0.84 (0.53–1.35)	4.7	5.6	0.90 (0.56–1.45)	1.15 (0.88–1.49)

Haplotypes" Block 2	African-An	trequencies nericans		Hawaiians			Japanese		
	Cases $(n=266)$	Controls $(n = 651)$	OR ^b (95% CI)	Cases $(n = 78)$	Controls $(n=295)$	OR ^b (95% CI)	Cases $(n=347)$	Controls $(n = 420)$	OR ^b (95% CI)
2a 133423	40.2	41.0	Ref	72.4	77.6	Ref	53.9	61.3	Ref
2b 232241	36.6	31.8	1.20 (0.95-1.51)	11.0	10.0	1.17 (0.65-2.09)	29.5	23.3	1.42 (1.13-1.80)
2c 233241	3.9	7.0	0.56 (0.34-0.94)	6.9	7.1	0.96 (0.46-2.00)	13.2	10.5	1.43 (1.03-1.98)
2d 143243	9.8	7.9	1.29 (0.89-1.87)						
2e 233243									

Haplotypes ^a Block 2	Haplotype fr Latinas Cases (n = 254)	equencies Controls (n = 673)	OR ^b (95% CI)	Whites Cases $(n = 342)$	Controls $(n = 443)$	OR ^b (95% CI)	All groups combined OR ^c (95% CI)
2a 133423	78.6	83.5	Ref	85.5	83.3	Ref	Ref
2b 232241	11.1	8.9	1.29 (0.93-1.79)	3.6	5.9	0.58 (0.35-0.96)	1.23 (1.07–1.40)
2c 233241						· · · · · ·	1.06 (0.84–1.34)
2d 143243	5.0	3.3	1.66 (0.98-2.79)	6.2	6.0	1.02 (0.66-1.58)	1.28 (1.01–1.62)
2e 233243						· · · · · ·	

Haplotypes ^a	Haplotype	frequencies		Horraiiona			Innonaca		
BIOCK 5	Cases $(n = 266)$	Controls $(n = 651)$	OR ^b (95% CI)	Cases $(n = 78)$	Controls $(n=295)$	OR ^b (95% CI)	Cases $(n = 347)$	Controls $(n = 420)$	OR ^b (95% CI)
3a 34233	20.5	20.9	Ref	38.3	42.1	Ref	29.9	32.5	Ref
3b 12311	26.4	26.0	1.04 (0.78-1.41)	43.5	42.1	1.14 (0.76-1.69)	26.8	32.3	0.90 (0.72-1.19)
3c 34231 3d 12231	35.6 12.2	32.1 14.7	1.14 (0.86–1.51) 0.85 (0.59–1.21)	10.9	7.8	1.59 (0.82–3.05)	30.0	23.5	1.40 (1.07–1.83)
3e 12331 3f 14231				5.2	6.4	0.90 (0.40-2.06)	7.7	6.4	1.35 (0.88–2.06)

Table 4. (Continued)

Haplotypes ^a Block 3	Haplotype f Latinas Cases (n = 254)	frequencies Controls (n = 673)	OR ^b (95% CI)	Whites Cases $(n = 342)$	Controls $(n = 443)$	OR ^b (95% CI)	All groups combined OR ^c (95% CI)	
3a 34233 3b 12311 3c 34231 3d 12231 3e 12331 3f 14231	51.4 27.0 13.2	54.9 28.1 10.5	Ref 1.02 (0.80–1.30) 1.34 (0.96–1.86)	41.7 43.8 11.5	43.3 38.8 15.0	Ref 1.19 (0.95–1.49) 0.81 (0.59–1.11)	Ref 1.06 (0.94–1.19) 1.21 (1.05–1.39) 0.95 (0.71–1.27) 1.11 (0.83–1.49)	

^aHaplotypes observed with \geq 5% frequency among cases or controls in at least on ethnic group are shown.

^bORs are estimated using unconditional logistic regression adjusted for age.

^cORs are estimated using unconditional logistic regression adjusted for age and ethnicity.

Table 5. Associations of long-range CYP19 haplotypes and breast cancer risk

				Haploty	pe frequenc	ies								
Haplotypes ^a		African- Americans		Hawaiia	Hawaiians		Japanese		Latinas			All groups combined OR (95% CI) ^b		
Block 1	2	3	4	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls	
1d				4.9	6.3	10.9	7.6	19.4	15.3	12.5	10.4	9.6	8.3	1.21 (1.02–1.43)
	2b			36.6	31.8	11.0	10.0	29.5	23.3	11.1	8.9	3.6	5.9	1.23 (1.07-1.40)
		3c		35.6	32.1	10.9	7.8	30.0	23.5	13.2	10.5	11.5	15.0	1.21 (1.05-1.39)
			4c	15.1	14.3	6.4	3.6	29.7	25.7	5.3	4.3			1.13 (0.95–1.34)
1d	2b			3.3	3.8	4.1	3.9	16.6	13.0	5.5	3.9			1.23 (0.99-1.55)
	2b	3c		27.7	23.3	7.4	4.7	28.9	22.3	6.1	4.7	2.5	4.2	1.31 (1.11–1.54)
		3c	4c	12.5	10.2	5.7	2.9	26.4	21.0	4.5	3.8	2.2	3.7	1.26 (1.05-1.52)
	2b	3c	4c	11.3	9.3	5.8	2.6	26.1	20.5	4.3	3.6	2.2	3.5	1.31 (1.08-1.58)
1d	2b	3c		3.1	3.2	3.7	3.1	16.2	12.3					1.28 (0.97–1.69)

^aHaplotypes observed with \geq 5% frequency among cases or controls in at least one ethnic group (haplotypes \geq 2.5% among cases or controls are shown). ^bORs are estimated using unconditional logistic regression adjusted for age and ethnicity.

Incident cancers in the MEC are identified by cohort linkage to population-based cancer Surveillence, Epidemiology and End Results (SEER) registries covering Hawaii and Los Angeles County, and to the California State cancer registry covering all of California. Case ascertainment in the SEER program is 98% (http://seer.cancer.gov/about/quality.html). Information on stage of disease at the time of diagnosis is also collected from the cancer registries. Women were classified as having advanced, high stage disease if they had non-localized breast cancer.

Beginning in 1994, blood samples were collected from incident breast cancer cases. At this time, blood collection was also initiated in a random sample of MEC participants to serve as a control pool for genetic analyses in the cohort. The participation rates for providing a blood sample were 74 and 66% for cases and controls, respectively; the difference in participation rates between cases with high and low stage disease was <10%. Eligible cases in this nested breast cancer case–control study consisted of women with incident breast cancer (including second primaries) diagnosed after enrollment in the MEC through May 2002. Controls were women without breast cancer prior to entry into the cohort and without a diagnosis up to May 2002. The breast cancer case–control study consists of 1355 breast cancer cases and 2580 controls.

This study was approved by the Institutional Review Boards at the University of Southern California and at the University of Hawaii.

SNP selection and genotyping in the multiethnic panel

We surveyed genetic variation across 189.4 kb spanning the *CYP19* locus, from 30.8 kb upstream of exon I.1 (the furthest 5' first exon) through 29.4 kb downstream of the transcribed region. We attempted to select SNPs every 3-5 kb across the locus to ensure a high density of markers of moderate allele frequency and to provide adequate characterization of genetic haplotype diversity within defined LD blocks. SNPs were selected in an iterative manner and added until we had six to eight common SNPs (≥10%) per LD block and the distance between adjacent blocks was <10 kb. We included all known SNPs in the coding region. We selected 73 SNPs from the National Center for Biotechnology Information SNP database (www.ncbi.nlm.nih.gov/SNP/), 28 from the Celera database (www.celera.com) and two from the literature (19). SNPs were genotyped in a sample of 349 women in the MEC without a history of cancer: African-American (n = 70), Hawaiian (n = 69), Japanese (n = 70), Latina (n = 70) and

Table 6. Associations between	SNPs in CI	P19 and breast	cancer risk
-------------------------------	------------	----------------	-------------

	African-Americans	Hawaiians	Japanese	Latinas	Whites	All groups ^b
<i>Trp39Arg</i> (rs2236722) <i>Arg</i> allele frequency among controls		2.1	2.9			
Arg/Trp versus Trp/Trp genotypes OR (95% CI) ^a		0.39 (0.05–3.06)	1.39 (0.79–2.46)			1.34 (0.81–2.24)
Arg264Cys: SNP59 (rs700519)						
<i>Cys</i> allele frequency among controls	14.8	3.4	26.7	4.5	4.1	
Cys/Cys + Cys/Arg versus Arg/Arg OR (95% CI) ^a	1.09 (0.80–1.50)	2.40 (1.04–5.49)	1.42 (1.06–1.89)	1.19 (0.73-1.92)	0.52 (0.28–0.97)	1.18 (0.99–1.42)
Exon 10, 3'-UTR: SNP63 (rs10046)						
<i>T</i> allele frequency among controls	26.2	49.6	44.1	34.9	47.8	
<i>TC</i> versus <i>CC</i> OR (95% CI) ^a	0.90 (0.66–1.22)	1.39 (0.72–2.68)	0.87 (0.63–1.21)	0.81 (0.59–1.10)	1.18 (0.82–1.70)	0.93 (0.79–1.08)
TT versus $CCOR (95% CI)a$	0.80 (0.44–1.45)	1.17 (0.54–2.52)	0.83 (0.55–1.23)	0.95 (0.60-1.50)	1.70 (1.12–2.59)	1.04 (0.84–1.28)
P-trend	0.35	0.71	0.32	0.45	0.01	

^aAdjusted for age.

^bAdjusted for age and ethnicity.

white (n = 70). This sample size guaranteed that any haplotype with a frequency of $\geq 5\%$ will be represented at least once among the 140 chromosomes with probability >99%. The following SNPs were removed from the haplotype analysis: eight that were monomorphic or had minor allele frequencies <5% in all ethnic groups, 16 assays that provided poor genotyping results and five SNPs that appeared to have been mis-mapped during genome assembly based on LD relationships with other SNPs, leaving 74 SNPs with minor allele frequencies >5% in at least one ethnic group to include in the haplotype analysis (Fig. 1A, Table 7). We tested for Hardy-Weinberg equilibrium using the χ^2 test with 1 d.f.; the observed genotype distributions based on allele frequencies for all 74 SNPs were consistent with Hardy-Weinberg equilibrium in at least four of the five ethnic groups. Two SNPs, 72 and 74, were not in Hardy-Weinberg equilibrium among the Japanese. These SNPs were not included in the haplotype analysis because they were located in block 5, which was not evaluated (see below).

DNA for the multiethnic panel was extracted from white blood cell fractions using the Qiagen Blood Kit (Qiagen, Chatsworth, CA, USA). Genotyping was performed by timeof-flight mass spectrometry (MALDI-TOF) using the Sequenom platform at the Whitehead Institute/MIT Center for Genome Research. Replicate blinded quality control samples (10%) were included to assess reproducibility of the genotyping procedure; less than 0.2% (4/2625) of the matched quality control pairs were discordant.

Haplotype block determination

The D' statistic was used as a pair-wise measure of linkage disequilibrium between the 74 SNPs used in the haplotype analysis (42). LD block structure was examined using the criteria of

Gabriel et al. (24), which utilizes the 90% confidence bounds of D' to define sites of historical recombination between SNPs (24). Block structure was assessed using SNPs with minor allele frequencies >10%. Blocks were initially defined following alignment across ethnic groups; borders were characterized by SNPs at the extreme ends of the block in any one ethnic group, except for African-Americans, whose block sizes (extent of LD), as expected, were modestly smaller than the other groups. We tested the suitability of this block definition by evaluating whether SNPs surrounding presumed block borders modified the number or identity of common haplotypes estimated within the blocks; changes in the number of haplotypes and the introduction of recombinant haplotypes would indicate whether SNPs were spanning a potentially important site of historical recombination and guided us in redefining a block boundary. We included SNPs with minor allele frequencies as low as 5% to both extend block boundaries defined using the criteria of Gabriel et al. (24) as well as to fully describe the diversity of the underlying common haplotypes in each ethnic group. Based on this information we determined that the CYP19 locus could be parsed into four or five haplotype blocks depending on ethnicity. For African-Americans and Latinos, a clear site of recombination was observed between SNPs 43 and 44 that was not as evident among Hawaiians, Japanese or whites. This resulted in two distinct blocks (3 and 4) that were evaluated independently for all groups. The shared LD block structure between African-Americans and Latinas most likely reflects the recent admixture between these populations. Block 5 was located 14 kb from block 4 and greater than 20 kb 3' of the transcribed region. This fifth block is less likely to contain a variant relevant to CYP19 and was not further examined in the casecontrol haplotype analysis.

African-Americans Japanes Latinas Wiles 2 n244731 4032388 G 0.02 0.09 0.08 0.09 2 n244731 4032388 G 0.02 0.09 0.08 0.01 0.19 4 n2246405 4022795 G 0.02 0.02 0.05 0.03 5 n2270162 4022057 G 0.02 0.13 0.19 0.06 0.05 7 n245711 42114969 C 0.22 0.13 0.13 0.09 0.05 10 n864875 49215952 C 0.25 0.14 0.33 0.09 0.05 11 n2445764 49214916 C 0.29 0.11 0.16 0.18 0.12 0.05 12 n107195 49198276 C 0.05 0.02 0.01 0.18 0.13 0.55 13 n2447014 49198276 C 0.05 0.02 0.01	SNP no.	SNP ID	Position ^a	Minor allele	Minor allele frequency				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					African-Americans	Hawaiians	Japanese	Latinas	Whites
2 n2447781 4922398 G 0.42 0.99 0.88 0.40 0.22 4 n2444605 4922391 A 0.09 0.22 0.56 0.76 0.87 5 n2471162 49227917 G 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.05 0.05 7 n2524771 49217697 G 0.29 0.15 0.33 0.09 0.05 9 n8770164 4921869 C 0.22 0.11 0.18 0.18 0.19 0.15 11 n2445765 4921849 C 0.29 0.11 0.18 0.18 0.19 12 n2447164 4921841 C 0.29 0.11 0.18 0.18 0.19 0.15 0.21 0.19 0.14 0.13 0.18 0.16 0.17 0.16 11 n2447145 4919257 C 0.05 0.02 0.18 0.41 0.55 <td>1</td> <td>rs764531</td> <td>49240734</td> <td>Т</td> <td>0.09</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td>	1	rs764531	49240734	Т	0.09	0.00	0.00	0.00	0.00
3 n:2124874 4922735 A 0.09 0.25 0.56 0.21 0.19 5 n:25470162 49222703 G 0.02 0.02 0.02 0.03 0.03 6 n:1554651 49222703 G 0.02 0.12 0.12 0.13 0.19 0.05 8 n:25470164 49217979 C 0.12 0.12 0.13 0.13 0.09 0.05 11 n:2447765 49215899 C 0.29 0.11 0.16 0.18 0.12 0.18 0.12 0.18 0.12 0.18 0.12 0.18 0.12 0.11 0.14 0.13 0.14 0.13 0.14 0.15 0.12 0.11 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.14 0.16 0.14 0.15 0.14 0.16 0.15 0.14 0.16 0.15 0.14 0.15 0.14 0.	2	rs2445781	49232398	G	0.42	0.09	0.08	0.40	0.22
4 sc2446405 9222331 A 0.47 0.72 0.50 0.65 0.87 5 sc370162 92223705 G 0.02 0.02 0.02 0.02 0.02 0.03 0.017 0.08 7 sc34771 0.491999 C 0.22 0.12 0.13 0.019 0.05 9 sc370142 9211959 C 0.25 0.14 0.15 0.03 0.09 0.05 11 sc344575 4921490 C 0.25 0.14 0.13 0.18 0.12 0.08 13 sc3445751 492149157 C 0.29 0.10 0.62 0.38 0.41 0.57 14 sc370143 49302783 A 0.12 0.61 0.38 0.41 0.55 15 sc370144 4930361 C 0.12 0.61 0.38 0.41 0.55 16 sc370143 49193541 C 0.12 0.61	3	rs2124874	49227735	А	0.09	0.25	0.56	0.21	0.19
5 n=2470162 492220587 T 0.49 0.13 0.13 0.14 0.05 7 n=21445711 49219497 G 0.29 0.13 0.13 0.14 0.15 8 n=2144571 49219497 G 0.29 0.14 0.13 0.13 0.14 0.15 10 n=564475 4921950 C 0.29 0.11 0.16 0.19 0.09 12 n=1071955 4921406 C 0.29 0.10 0.18 0.12 0.08 13 n=244410 4920451 T 0.12 0.83 0.42 0.51 14 n=1870049 4920451 T 0.12 0.58 0.02 0.01 0.07 0.44 13 n=2470143 4920463 T 0.12 0.58 0.02 0.01 0.07 0.44 14 n=1870049 49192667 G 0.46 0.76 0.72 0.61 0.61 <t< td=""><td>4</td><td>rs2446405</td><td>49225931</td><td>А</td><td>0.47</td><td>0.72</td><td>0.50</td><td>0.76</td><td>0.87</td></t<>	4	rs2446405	49225931	А	0.47	0.72	0.50	0.76	0.87
6 rs1551656 49220887 T 0.49 0.13 0.19 0.08 7 rs2470144 49217899 C 0.12 0.05 0.33 0.42 0.58 8 rs2470144 49217899 C 0.12 0.05 0.33 0.042 0.58 10 rs686475 49214906 C 0.22 0.11 0.16 0.18 0.12 0.05 11 rs644575 49214906 C 0.29 0.10 0.18 0.12 0.05 15 rs7446410 4920783 A 0.10 0.62 0.39 0.43 0.57 16 rs2470147 49930763 C 0.12 0.03 0.04 0.04 0.03 0.04 0.05 10 rs170451 4993204 C 0.13 0.06 0.38 0.41 0.55 20 rs1004384 49192067 G 0.46 0.76 0.72 0.51 0.61 <	5	rs2470162	49222705	G	0.02	0.02	0.02	0.05	0.03
7 n244571 49217699 G 0.29 0.15 0.33 0.09 0.05 9 n137003 49217699 C 0.12 0.62 0.33 0.42 0.38 9 n137003 49214036 C 0.042 0.11 0.33 0.49 0.05 11 n5245755 49214036 C 0.29 0.11 0.36 0.18 0.12 0.06 12 ns1071955 4921783 A 0.10 0.62 0.99 0.43 0.57 15 nc370144 49204861 C 0.44 0.13 0.04 0.38 0.41 0.59 16 ns1370048 4919474 T 0.14 0.59 0.38 0.41 0.59 17 r2445761 4919474 T 0.14 0.59 0.38 0.41 0.55 10 n1491576 C 0.35 0.72 0.51 0.51 0.34 0.10 0.66 0.22 </td <td>6</td> <td>rs1551656</td> <td>49220587</td> <td>Т</td> <td>0.49</td> <td>0.13</td> <td>0.19</td> <td>0.17</td> <td>0.08</td>	6	rs1551656	49220587	Т	0.49	0.13	0.19	0.17	0.08
8 n2470164 49215689 C 0.12 0.62 0.93 0.42 0.058 10 ns664275 49215682 C 0.04 0.15 0.33 0.09 0.051 112 ns171055 49215582 C 0.29 0.14 0.13 0.09 0.051 13 ns2446410 49217583 A 0.10 0.62 0.39 0.43 0.051 15 ns2470144 49204561 C 0.044 0.13 0.18 0.12 0.010 15 ns2470144 49198276 C 0.055 0.02 0.01 0.07 0.044 18 ns2470147 49193301 A 0.12 0.60 0.38 0.41 0.55 19 ns1902585 49193301 A 0.12 0.60 0.38 0.41 0.55 19 ns1902583 49192670 C 0.38 0.15 0.31 0.07 0.41 0.22 0.02 0.00	7	rs2445771	49219497	G	0.29	0.15	0.33	0.09	0.05
9 n1870050 4921599 C 0.04 0.15 0.33 0.09 0.03 110 n5844753 49214505 C 0.23 0.11 0.16 0.13 0.10 111 n51445763 49214505 C 0.23 0.11 0.16 0.13 0.13 114 n5137049 4920563 T 0.12 0.58 0.38 0.43 0.57 115 ns1470144 4919276 C 0.05 0.02 0.01 0.07 0.04 116 ns2470147 4919378 T 0.14 0.59 0.38 0.41 0.55 121 n1902585 4919304 C 0.13 0.60 0.38 0.41 0.55 121 n1902585 49190792 T 0.09 0.05 0.12 0.07 0.37 0.34 0.10 0.05 0.12 0.07 0.36 0.09 0.35 0.12 0.13 0.14 0.15 0.44	8	rs2470164	49217699	C	0.12	0.62	0.39	0.42	0.58
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	rs1870050	49215689	C	0.04	0.15	0.33	0.09	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	rs868475	49215592	C	0.25	0.14	0.33	0.09	0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	rs2445/65	49214036	C	0.29	0.11	0.16	0.18	0.10
13 12 124 123 14 123 14 123 14 123 14 133 14 133 14 133 14 133 14 133 14 133 14 133 14 14 133 14 </td <td>12</td> <td>rs10/1955</td> <td>49511950</td> <td></td> <td>0.29</td> <td>0.10</td> <td>0.18</td> <td>0.12</td> <td>0.08</td>	12	rs10/1955	49511950		0.29	0.10	0.18	0.12	0.08
14 15 15 16 17 18 0.18 0.18 0.19 0.10 15 12 2010145 40198276 C 0.05 0.02 0.018 0.04 0.04 17 12 2245761 40198276 C 0.15 0.02 0.038 0.41 0.56 18 re3240147 40191267 G 0.46 0.76 0.72 0.51 0.61 19 re31902585 40190267 G 0.46 0.76 0.72 0.51 0.61 0.77 0.07 0.77 0.78 0.72 21 re1902585 4918759 C 0.38 0.15 0.14 0.05 22 re1902583 49187979 T 0.05 0.02 0.00 0.05 0.02 23 re3470151 49186207 C 0.44 0.83 0.68 0.91 0.93 24 htt/t64175 4917491 C 0.41 0.09	13	rs2446410	4920/583	A	0.10	0.62	0.39	0.43	0.57
13 15 0.12 0.36 0.37 0.42 0.11 15 p.24470147 49193701 A 0.12 0.60 0.38 0.41 0.55 18 p.24470147 49193701 A 0.12 0.60 0.38 0.41 0.55 20 p.1004984 49190792 T 0.09 0.05 0.12 0.07 0.07 21 p.1902584 49190792 T 0.09 0.05 0.12 0.07 0.07 22 p.1902584 49197997 C 0.48 0.77 0.53 0.78 0.75 23 p.2470151 49178979 T 0.05 0.02 0.00 0.05 0.08 25 p.2447593 4917035 G 0.09 0.03 0.00 0.05 0.11 28 p.2470153 4917035 G 0.09 0.03 0.00 0.05 0.11 30 p.2470153 49165373 A	14	rs18/0049	49204301	C T	0.44	0.13	0.18	0.15	0.10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	rs2470144 rs2470145	49200805	I C	0.12	0.38	0.38	0.42	0.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	rs24/0145	49198270	C T	0.03	0.02	0.01	0.07	0.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	rs2445701 rs2470147	49194734	1	0.14	0.59	0.38	0.43	0.50
20 n:10049841 401932647 G 0.46 0.76 0.72 0.51 0.61 21 n:1902584 40197592 T 0.09 0.05 0.12 0.07 0.07 22 n:1902584 40187589 C 0.38 0.15 0.34 0.10 0.06 23 n:2445759 40180279 A 0.44 0.83 0.68 0.91 0.93 24 hCV1664175 40175401 C 0.41 0.09 0.01 0.06 0.05 25 n:24470153 40170342 T 0.36 0.80 0.68 0.86 0.82 27 n:2470184 40167333 A 0.15 0.04 0.00 0.05 0.11 30 n:2470177 40164123 A 0.15 0.04 0.00 0.05 0.11 31 n:936306 49158736 C 0.36 0.80 0.84 0.86 0.82 33 n:2470176 </td <td>10</td> <td>rs1002585</td> <td>49193301</td> <td>C C</td> <td>0.12</td> <td>0.60</td> <td>0.38</td> <td>0.41</td> <td>0.50</td>	10	rs1002585	49193301	C C	0.12	0.60	0.38	0.41	0.50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	rs1004984	49192667	G	0.46	0.76	0.72	0.51	0.55
22 n:1902583 40187259 C 0.38 0.15 0.44 0.04 0.06 23 n:2470151 40180279 A 0.44 0.85 0.68 0.91 24 h:CV1664178 40180279 A 0.44 0.85 0.02 0.00 0.05 0.08 25 n:2445759 40170412 T 0.05 0.02 0.00 0.05 0.08 26 h:CV1664175 40170342 T 0.36 0.80 0.68 0.86 0.82 29 h:CV3660059 4016951 C 0.14 0.03 0.00 0.05 0.11 31 n:s936309 49166517 A 0.38 0.04 0.06 0.86 0.86 0.82 33 rs2470176 49166307 A 0.38 0.81 0.68 0.86 0.82 35 h:CV1164457 4914220 G 0.47 0.80 0.74 0.87 0.82 36 <td>20</td> <td>rs1902584</td> <td>49190792</td> <td>Т</td> <td>0.09</td> <td>0.05</td> <td>0.12</td> <td>0.07</td> <td>0.01</td>	20	rs1902584	49190792	Т	0.09	0.05	0.12	0.07	0.01
23 is2470151 49188207 C 0.48 0.77 0.53 0.78 0.79 24 isCV1664178 49180279 A 0.44 0.83 0.68 0.91 0.93 25 is2445759 49179797 T 0.05 0.02 0.00 0.05 0.08 26 isCV1664175 49178491 C 0.41 0.09 0.03 0.00 0.05 0.11 28 isT30154 49170355 G 0.04 0.05 0.01 0.05 0.11 30 isCV3060059 49166317 A 0.35 0.79 0.48 0.86 0.82 23 rs2470176 49165317 A 0.38 0.81 0.48 0.66 0.83 35 isCV1164175 A 0.38 0.81 0.48 0.66 0.83 36 isCV164175 49164517 A 0.38 0.81 0.48 0.66 0.83 37 isCV164163	21	rs1902583	49187589	Ċ	0.38	0.15	0.12	0.10	0.07
24 bCV1664178 49180279 A 0.44 0.83 0.68 0.91 0.03 25 b2465759 49178491 C 0.41 0.09 0.21 0.06 0.05 26 bCV1664175 49170525 G 0.09 0.03 0.00 0.05 0.11 28 rs720154 49170542 T 0.36 0.80 0.68 0.86 0.82 29 hCV3060059 49169551 C 0.14 0.03 0.00 0.05 0.11 30 rs2470176 49166317 A 0.15 0.04 0.00 0.05 0.11 31 rs936306 4916377 A 0.38 0.81 0.68 0.86 0.82 35 hCV16445425 49148151 C 0.47 0.80 0.74 0.91 0.94 36 hCV1645422 4914220 G 0.43 0.51 0.38 0.33 0.49 37 hCV46445422 </td <td>23</td> <td>rs2470151</td> <td>49186207</td> <td>C</td> <td>0.48</td> <td>0.77</td> <td>0.53</td> <td>0.78</td> <td>0.75</td>	23	rs2470151	49186207	C	0.48	0.77	0.53	0.78	0.75
25 m244579 49179079 T 0.05 0.02 0.00 0.05 0.08 26 kV1164175 49172055 G 0.09 0.03 0.00 0.05 0.08 27 m2470154 49170355 G 0.09 0.03 0.00 0.05 0.11 28 m5730154 49170351 C 0.14 0.03 0.00 0.05 0.11 30 ms2470178 49167333 A 0.15 0.04 0.00 0.05 0.11 31 ms936309 4916617 A 0.35 0.79 0.34 0.88 0.86 0.86 0.86 0.82 33 ms2470176 49164123 A 0.19 0.12 0.12 0.07 0.12 34 ms936306 4918736 C 0.36 0.86 0.86 0.86 0.86 35 hCV1148467 49148151 C 0.47 0.80 0.74 0.87 0.82 </td <td>24</td> <td>hCV1664178</td> <td>49180279</td> <td>A</td> <td>0.44</td> <td>0.83</td> <td>0.68</td> <td>0.91</td> <td>0.93</td>	24	hCV1664178	49180279	A	0.44	0.83	0.68	0.91	0.93
26 bCV1664175 49178491 C 0.41 0.09 0.21 0.06 0.05 27 rs2470153 49170342 T 0.36 0.80 0.68 0.86 0.85 29 hCV3060059 49169551 C 0.14 0.03 0.00 0.05 0.11 30 rs2470158 49167533 A 0.15 0.04 0.00 0.05 0.11 31 rs936306 4916517 A 0.35 0.79 0.34 0.85 0.78 32 rs2470176 49163077 A 0.38 0.81 0.68 0.86 0.82 34 rs936306 4918736 C 0.36 0.80 0.74 0.91 0.94 36 hCV1164153 49148151 C 0.47 0.85 0.74 0.91 0.94 36 hCV1464153 49142230 G 0.43 0.51 0.38 0.33 0.49 37 hCV445425	25	rs2445759	49179979	T	0.05	0.02	0.00	0.05	0.08
27 rs2470153 49172055 G 0.09 0.03 0.00 0.05 0.11 28 rs730154 49170352 T 0.36 0.03 0.00 0.05 0.11 30 rs2470158 49167533 A 0.15 0.04 0.00 0.05 0.11 31 rs336309 49166517 A 0.35 0.79 0.34 0.85 0.78 32 rs2470177 49164123 A 0.19 0.12 0.12 0.07 0.12 33 rs2470176 49164077 A 0.38 0.81 0.68 0.86 0.82 34 rs95306 49145736 C 0.36 0.80 0.68 0.85 0.83 35 hCV11644674 49149191 C 0.47 0.51 0.38 0.33 0.49 36 hCV1644133 49141214 T 0.44 0.51 0.38 0.33 0.47 41 hCV1138375 49136395 C 0.41 0.51 0.33 0.33 0.47	26	hCV1664175	49178491	Ĉ	0.41	0.09	0.21	0.06	0.05
28 r730154 49170342 T 0.36 0.68 0.68 0.82 29 hCV3060059 49167533 A 0.15 0.04 0.00 0.05 0.11 30 rs2470178 4916617 A 0.35 0.79 0.34 0.85 0.78 32 rs2470177 49166177 A 0.38 0.81 0.68 0.86 0.82 33 rs2470176 49163077 A 0.36 0.80 0.86 0.86 0.82 34 r936306 49158736 C 0.36 0.80 0.74 0.91 0.94 36 hCV1164153 4914151 C 0.47 0.85 0.74 0.91 0.94 37 hCV4445425 49142230 G 0.43 0.51 0.38 0.33 0.49 38 rs2899474 4914214 T 0.44 0.51 0.33 0.47 0.43 40 hCV1203877 49130484 <td>27</td> <td>rs2470153</td> <td>49172055</td> <td>G</td> <td>0.09</td> <td>0.03</td> <td>0.00</td> <td>0.05</td> <td>0.11</td>	27	rs2470153	49172055	G	0.09	0.03	0.00	0.05	0.11
29 bC V3060059 49169551 C 0.14 0.03 0.00 0.05 0.11 30 rs2470158 4916753 A 0.15 0.04 0.00 0.05 0.11 31 rs36309 49166317 A 0.35 0.79 0.34 0.85 0.78 32 rs2470176 49163077 A 0.38 0.81 0.68 0.86 0.86 0.86 0.83 35 hCV11484670 4914991 G 0.49 0.85 0.74 0.91 0.94 36 hCV1644522 4914220 G 0.43 0.51 0.38 0.33 0.49 37 hCV945422 4914230 G 0.47 0.51 0.38 0.33 0.49 38 rs2899474 49141214 T 0.44 0.51 0.38 0.33 0.47 41 hCV120837 4913689 C 0.23 0.43 0.30 0.40 0.29 0.44	28	rs730154	49170342	T	0.36	0.80	0.68	0.86	0.82
30 rs2470178 49167533 A 0.15 0.04 0.00 0.05 0.11 31 rs936309 49166517 A 0.35 0.79 0.34 0.85 0.78 32 rs2470177 49164123 A 0.19 0.12 0.12 0.07 0.12 33 rs2470176 49163077 A 0.38 0.81 0.68 0.86 0.86 0.82 34 rs936306 49183736 C 0.36 0.82 0.74 0.91 0.94 35 hCV164153 49148151 C 0.47 0.80 0.74 0.87 0.82 36 rs2899474 49141214 T 0.44 0.51 0.38 0.33 0.49 39 rs749292 49137669 A 0.47 0.51 0.38 0.33 0.47 40 hCV13837 49136395 C 0.41 0.51 0.38 0.33 0.47 41 hCV138375 4912877 G 0.15 0.43 0.40 0.60 0.38	29	hCV3060059	49169551	С	0.14	0.03	0.00	0.05	0.11
31 rs936309 49166517 A 0.35 0.79 0.34 0.85 0.78 32 rs2470176 49163077 A 0.38 0.81 0.68 0.86 0.82 33 rs936306 49158736 C 0.36 0.80 0.68 0.86 0.82 34 rs936306 49158736 C 0.36 0.80 0.68 0.86 0.83 35 hCV11644153 49149991 G 0.47 0.80 0.74 0.87 0.82 36 hCV1664153 49142230 G 0.43 0.51 0.38 0.33 0.49 38 rs2899474 49137869 A 0.47 0.51 0.37 0.34 0.49 40 hCV1203837 49136395 C 0.41 0.51 0.38 0.33 0.47 41 hCV138077 49128972 A 0.23 0.43 0.38 0.27 0.46 43 rs1008805 49128737 G 0.15 0.43 0.39 0.28 0.49	30	rs2470158	49167533	А	0.15	0.04	0.00	0.05	0.11
32 rs247017 49164123 A 0.19 0.12 0.12 0.12 0.07 0.12 33 rs2470176 49163077 A 0.38 0.81 0.68 0.86 0.82 34 rs936306 49158736 C 0.36 0.80 0.68 0.86 0.83 35 hCV1164153 49149991 G 0.49 0.85 0.74 0.91 0.94 36 hCV1664153 49148151 C 0.43 0.51 0.38 0.33 0.49 37 hCV9445425 4914214 T 0.44 0.51 0.38 0.33 0.49 38 rs289474 4914214 T 0.44 0.51 0.38 0.33 0.47 41 hCV1203837 4913695 C 0.41 0.51 0.38 0.33 0.47 42 hCV8234971 49128972 A 0.13 0.43 0.39 0.28 0.49 44 hCV8234973 49124592 G 0.15 0.43 0.39 0.31 0.52	31	rs936309	49166517	А	0.35	0.79	0.34	0.85	0.78
33 rs2470176 49163077 A 0.38 0.81 0.68 0.86 0.83 34 rs936306 49158736 C 0.36 0.80 0.68 0.86 0.83 35 hCV11484670 49149991 G 0.49 0.80 0.74 0.91 0.94 36 hCV1664153 49148151 C 0.47 0.80 0.74 0.87 0.82 37 hCV9454224 49142230 G 0.43 0.51 0.38 0.33 0.49 38 rs289474 49136395 C 0.41 0.51 0.38 0.33 0.49 40 hCV1203837 49136395 C 0.41 0.51 0.38 0.33 0.47 41 hCV138075 49136395 C 0.41 0.51 0.38 0.33 0.47 42 hCV8234974 4912872 A 0.23 0.43 0.39 0.28 0.49 45 hCV8234974 4912492 G 0.15 0.43 0.39 0.28 0.49	32	rs2470177	49164123	А	0.19	0.12	0.12	0.07	0.12
34 rs936306 49158736 C 0.36 0.80 0.68 0.86 0.83 35 hCV11484767 4914991 G 0.49 0.85 0.74 0.91 0.94 36 hCV164153 4914121 C 0.47 0.80 0.74 0.87 0.82 37 hCV9445425 4914224 T 0.44 0.51 0.38 0.33 0.49 38 rs289474 49141214 T 0.44 0.51 0.38 0.33 0.49 30 rs742922 49137869 A 0.47 0.51 0.38 0.33 0.49 41 hCV1203817 49136395 C 0.41 0.51 0.38 0.33 0.47 42 hCV8234971 4912872 A 0.23 0.43 0.39 0.28 0.49 45 hCV823495 49124792 G 0.15 0.43 0.40 0.60 0.38 46 rs76719 49114550 C 0.15 0.43 0.39 0.28 0.49	33	rs2470176	49163077	А	0.38	0.81	0.68	0.86	0.82
35 hCV11484670 49149991 G 0.49 0.85 0.74 0.91 0.94 36 hCV1664153 49142230 G 0.43 0.51 0.38 0.35 0.49 37 hCV945425 4914224 T 0.44 0.51 0.38 0.33 0.49 38 rs2899474 4914214 T 0.44 0.51 0.38 0.33 0.49 30 rs749292 49137869 A 0.47 0.51 0.38 0.33 0.47 41 hCV1203837 49136395 C 0.41 0.51 0.38 0.33 0.47 42 hCV8234971 4912872 A 0.23 0.43 0.40 0.60 0.38 44 hCV8234947 49124592 G 0.15 0.43 0.39 0.31 0.52 46 rs767199 49119525 A 0.13 0.44 0.37 0.31 0.52 47 hCV1301451 49115160 T 0.15 0.45 0.36 0.32 0.50	34	rs936306	49158736	С	0.36	0.80	0.68	0.86	0.83
36 hCV1664153 49148151 C 0.47 0.80 0.74 0.87 0.82 37 hCV9444225 49142230 G 0.43 0.51 0.38 0.33 0.49 38 rs2899474 49141214 T 0.44 0.51 0.37 0.34 0.49 39 rs749292 49137869 A 0.47 0.51 0.37 0.34 0.49 41 hCV1203837 49136484 G 0.25 0.50 0.40 0.29 0.49 42 hCV8234971 49128737 G 0.15 0.43 0.38 0.27 0.46 43 rs1008805 49128737 G 0.15 0.43 0.39 0.23 0.49 44 hCV8234947 49124592 G 0.15 0.43 0.39 0.21 0.52 45 hCV8234935 49120798 A 0.13 0.44 0.37 0.31 0.52 46 rs767199 49119525 A 0.16 0.42 0.32 0.42 0.33	35	hCV11484670	49149991	G	0.49	0.85	0.74	0.91	0.94
37 hCV9445425 49142230 G 0.43 0.51 0.38 0.35 0.49 38 rs2890474 49141214 T 0.44 0.51 0.38 0.33 0.49 39 rs749292 49137869 A 0.47 0.51 0.37 0.34 0.49 40 hCV1120837 49136395 C 0.41 0.51 0.38 0.33 0.47 41 hCV113075 49130484 G 0.25 0.50 0.40 0.29 0.49 42 hCV8234971 49128727 G 0.15 0.43 0.38 0.27 0.46 43 rs100805 49128737 G 0.15 0.43 0.39 0.28 0.49 44 hCV8234947 49124592 G 0.15 0.43 0.39 0.28 0.49 45 hCV8234935 49120798 A 0.13 0.44 0.37 0.31 0.52 46 rs767199 4911568 C 0.16 0.42 0.32 0.42 0.33	36	hCV1664153	49148151	С	0.47	0.80	0.74	0.87	0.82
38 rs2899474 49141214 T 0.44 0.51 0.38 0.33 0.49 39 rs74922 49137869 A 0.47 0.51 0.37 0.34 0.49 40 hCV1203837 49136395 C 0.41 0.51 0.38 0.33 0.47 41 hCV1138075 49130484 G 0.225 0.50 0.40 0.29 0.49 42 hCV8234971 49128972 A 0.23 0.43 0.38 0.27 0.46 43 rs1008805 4912872 G 0.15 0.43 0.40 0.60 0.38 44 hCV8234935 49120798 A 0.13 0.44 0.37 0.31 0.52 45 hCV8234935 49120798 A 0.13 0.44 0.37 0.31 0.52 46 rs767199 4911560 T 0.15 0.45 0.36 0.32 0.50 48 rs724797 491131685 C 0.16 0.42 0.32 0.42 0.33	37	hCV9445425	49142230	G	0.43	0.51	0.38	0.35	0.49
39 rs749292 49137869 A 0.47 0.51 0.37 0.34 0.49 40 hCV1203837 49136395 C 0.41 0.51 0.38 0.33 0.47 41 hCV1138075 49130484 G 0.25 0.50 0.40 0.29 0.49 42 hCV8234971 49128772 A 0.23 0.43 0.38 0.27 0.46 43 rs1008805 49128737 G 0.15 0.43 0.40 0.60 0.38 44 hCV8234947 49124592 G 0.15 0.43 0.40 0.60 0.38 45 hCV8234935 49120798 A 0.13 0.44 0.37 0.31 0.52 46 rs767199 49119525 A 0.15 0.45 0.36 0.32 0.50 47 hCV11301451 49113193 T 0.17 0.42 0.32 0.42 0.33 50 rs2414096 49108917 A 0.17 0.45 0.38 0.34 0.52	38	rs2899474	49141214	Т	0.44	0.51	0.38	0.33	0.49
40 hCV1203837 49136395 C 0.41 0.51 0.38 0.33 0.47 41 hCV113075 49130484 G 0.25 0.50 0.40 0.29 0.49 42 hCV8234971 49128972 A 0.23 0.43 0.38 0.27 0.46 43 rs1008805 49128737 G 0.15 0.43 0.39 0.28 0.49 44 hCV8234947 49124592 G 0.15 0.43 0.39 0.28 0.49 45 hCV8234935 49120798 A 0.13 0.45 0.39 0.31 0.52 46 rs767199 49115160 T 0.15 0.45 0.36 0.32 0.50 47 hCV1301451 49115160 T 0.17 0.42 0.32 0.42 0.33 50 rs72479 4913085 C 0.16 0.42 0.32 0.42 0.33 51 rs700518 49108917 A 0.17 0.44 0.38 0.34 0.52	39	rs749292	49137869	A	0.47	0.51	0.37	0.34	0.49
41 hCV1138075 49130484 G 0.25 0.50 0.40 0.29 0.49 42 hCV8234971 49128737 G 0.15 0.43 0.38 0.27 0.46 43 rs1008805 49128737 G 0.15 0.43 0.39 0.28 0.49 44 hCV8234947 49124592 G 0.13 0.44 0.37 0.31 0.52 45 hCV8234935 49120798 A 0.13 0.44 0.37 0.31 0.52 46 rs767199 49119525 A 0.13 0.44 0.37 0.31 0.52 47 hCV11301451 49113650 T 0.15 0.45 0.36 0.32 0.42 0.31 48 rs727479 4911385 C 0.17 0.42 0.32 0.42 0.33 50 rs700518 49108250 C 0.17 0.44 0.38 0.34 0.52 51 rs700518 49108250 C 0.17 0.44 0.38 0.34 0.5	40	hCV1203837	49136395	C	0.41	0.51	0.38	0.33	0.47
42 hCV82349/1 491289/2 A 0.23 0.43 0.38 0.27 0.46 43 rs1008805 49128737 G 0.15 0.43 0.40 0.60 0.38 44 hCV8234935 49124592 G 0.15 0.43 0.39 0.28 0.49 45 hCV8234935 49129798 A 0.13 0.44 0.37 0.31 0.52 46 rs767199 49115160 T 0.15 0.45 0.36 0.32 0.50 47 hCV11301451 49115160 T 0.17 0.42 0.32 0.42 0.31 49 hCV8234874 49113193 T 0.17 0.42 0.32 0.42 0.33 50 rs2141096 49108250 C 0.19 0.47 0.40 0.37 0.54 51 rs700518 49108250 C 0.17 0.44 0.38 0.34 0.53 53 rs1065778 49099344 C 0.17 0.44 0.32 0.41 0.33	41	hCV1138075	49130484	G	0.25	0.50	0.40	0.29	0.49
43 rs1008805 49128737 G 0.15 0.43 0.40 0.60 0.38 44 hCV8234947 49124592 G 0.15 0.43 0.39 0.28 0.49 45 hCV8234935 49120798 A 0.13 0.44 0.37 0.31 0.52 46 rs767199 49119525 A 0.13 0.44 0.37 0.31 0.52 47 hCV11301451 49115160 T 0.15 0.45 0.36 0.32 0.42 0.31 49 hCV8234874 49113193 T 0.17 0.42 0.32 0.42 0.33 50 rs2414096 49108917 A 0.17 0.45 0.38 0.34 0.52 51 rs700518 49108250 C 0.17 0.44 0.38 0.34 0.53 52 hCV8234834 49104311 T 0.29 0.42 0.32 0.41 0.33 53 rs106577 49099344 C 0.17 0.44 0.38 0.34 0	42	hCV8234971	49128972	A	0.23	0.43	0.38	0.27	0.46
44 nC x 8234947 49124592 G 0.15 0.43 0.59 0.28 0.49 45 hC x 8234935 49120798 A 0.13 0.445 0.39 0.31 0.52 46 rs 767199 49119525 A 0.13 0.445 0.36 0.32 0.50 47 hCV 11301451 49115160 T 0.15 0.45 0.36 0.32 0.42 0.31 48 rs 727479 49113685 C 0.16 0.42 0.32 0.42 0.33 50 rs 2414096 49108917 A 0.17 0.45 0.38 0.34 0.52 51 rs 700518 49108250 C 0.17 0.44 0.38 0.34 0.52 52 hC V 8234834 49104311 T 0.29 0.42 0.32 0.42 0.33 54 hC V 8234792 49099344 C 0.17 0.44 0.38 0.34 0.53 55 hC V 8234791 49090066 C 0.23 0.52 0.40 0.3	43	rs1008805	49128/3/	G	0.15	0.43	0.40	0.60	0.38
45 nCV8234935 49120/98 A 0.13 0.45 0.39 0.31 0.52 46 rs767199 49119525 A 0.13 0.44 0.37 0.31 0.52 47 hCV11301451 49115160 T 0.15 0.45 0.36 0.32 0.52 48 rs727479 49113685 C 0.16 0.42 0.32 0.42 0.31 49 hCV8234874 49113193 T 0.17 0.45 0.38 0.34 0.52 50 rs2414096 49108917 A 0.17 0.44 0.38 0.34 0.52 51 rs700518 49108250 C 0.17 0.44 0.38 0.34 0.53 52 hCV8234804 49090528 T 0.29 0.43 0.32 0.41 0.33 55 hCV8234791 49090066 C 0.23 0.52 0.40 0.36 0.56 57 rs1143704 49089840 A 0.23 0.52 0.40 0.36 0.57	44	hCV823494/	49124592	G	0.15	0.43	0.39	0.28	0.49
460 $r_{1}^{7}(r_{1}^{7})^{9}$ 4911523A0.130.440.370.510.5247hCV1130145149115160T0.150.450.360.320.5048 $r_{5}727479$ 49113685C0.160.420.320.420.3149hCV823487449113193T0.170.450.380.340.5250 $r_{5}2414096$ 49108250C0.190.470.400.370.5451 $r_{5}700518$ 49009344C0.170.440.380.340.5252hCV823483849104311T0.290.420.320.420.3353r_{51065778}49099344C0.170.440.380.340.5354hCV823479249091802G0.240.520.400.380.5655hCV82347914909006C0.230.520.400.360.5656hCV823479149089840A0.230.520.400.360.5759r_5105194908712A0.060.010.010.170.0961hCV82347574908131C0.210.510.400.360.5762hCV823475449087012A0.240.520.390.360.5763r_8104649081982A0.240.520.400.360.5664r_8464649081982 <td< td=""><td>45</td><td>nC V 8234935</td><td>49120798</td><td>A</td><td>0.13</td><td>0.45</td><td>0.39</td><td>0.31</td><td>0.52</td></td<>	45	nC V 8234935	49120798	A	0.13	0.45	0.39	0.31	0.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	18/0/199 hCV11301451	49119323	A T	0.15	0.44	0.37	0.31	0.52
49 hCV8234874 4911303 T 0.17 0.42 0.32 0.42 0.33 50 rs2414096 49108917 A 0.17 0.45 0.38 0.34 0.52 51 rs700518 49108250 C 0.19 0.47 0.40 0.37 0.54 52 hCV8234838 49104311 T 0.29 0.42 0.32 0.42 0.33 53 rs1065778 49099344 C 0.17 0.44 0.38 0.34 0.53 54 hCV8234804 49096238 T 0.29 0.43 0.32 0.41 0.33 55 hCV8234792 49091802 G 0.24 0.52 0.40 0.36 0.56 56 hCV8234791 49089006 C 0.23 0.52 0.40 0.36 0.56 57 rs1143704 49089840 A 0.23 0.52 0.40 0.36 0.56 58 rs20463 49087012 A 0.06 0.01 0.01 0.17 0.09	47	rs727470	49113100	ſ	0.15	0.42	0.30	0.32	0.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	hCV8234874	49113083	т	0.17	0.42	0.32	0.42	0.31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	rs2414096	49108917	Δ	0.17	0.45	0.32	0.42	0.53
b) b) <td< td=""><td>51</td><td>rs700518</td><td>49108250</td><td>C</td><td>0.19</td><td>0.47</td><td>0.50</td><td>0.37</td><td>0.52</td></td<>	51	rs700518	49108250	C	0.19	0.47	0.50	0.37	0.52
53 rs1065778 49099344 C 0.17 0.44 0.32 0.41 0.33 54 hCV8234804 49096238 T 0.29 0.43 0.32 0.41 0.33 55 hCV8234792 49091802 G 0.24 0.52 0.40 0.38 0.56 56 hCV8234791 4909006 C 0.23 0.52 0.40 0.36 0.56 57 rs1143704 49089840 A 0.23 0.52 0.40 0.36 0.56 58 rs230463 49087258 C 0.22 0.53 0.40 0.36 0.57 59 rs700519 49087106 A 0.16 0.04 0.27 0.04 0.03 60 int7_14A 49087012 A 0.06 0.01 0.01 0.17 0.09 61 hCV8234767 49085131 C 0.25 0.52 0.39 0.36 0.57 62 hCV8234755 49083949 C 0.25 0.52 0.40 0.36 0.56	52	hCV8234838	49104311	Т	0.29	0.42	0.32	0.42	0.33
54 hCV823480449096218T0.290.430.320.410.33 55 hCV823479249091802G0.240.520.400.380.56 56 hCV82347914909006C0.230.520.400.360.56 57 rs114370449089840A0.230.520.400.360.56 58 rs23046349087258C0.220.530.400.360.57 59 rs70051949087106A0.160.040.270.040.03 60 int7_14A49087012A0.060.010.010.170.09 61 hCV823476749085131C0.210.510.400.370.57 62 hCV823475549083949C0.250.520.400.360.56 63 rs1004649081224A0.240.520.400.360.56 64 rs464649081982A0.300.370.320.410.28 65 rs25519249079973T0.370.100.280.220.16 66 rs93463249074968A0.220.370.310.240.20 67 rs87904649071401C0.440.990.000.990.00	53	rs1065778	49099344	Ċ	0.17	0.44	0.38	0.34	0.53
55 hCV8234792 49091802 G 0.24 0.52 0.40 0.38 0.56 56 hCV8234791 49090006 C 0.23 0.52 0.40 0.36 0.56 57 rs1143704 49089840 A 0.23 0.52 0.40 0.36 0.56 58 rs230463 49087258 C 0.22 0.53 0.40 0.36 0.57 59 rs700519 49087012 A 0.06 0.01 0.01 0.17 0.09 61 hCV8234767 49085131 C 0.25 0.52 0.40 0.36 0.57 62 hCV8234767 49085131 C 0.21 0.51 0.40 0.37 0.57 63 rs10046 49082124 A 0.24 0.52 0.40 0.36 0.56 64 rs4646 49081982 A 0.24 0.52 0.40 0.36 0.56 65 rs255192 49079973 T 0.37 0.31 0.24 0.20 66	54	hCV8234804	49096238	T	0.29	0.43	0.32	0.41	0.33
56 hCV8234791 49090006 C 0.23 0.52 0.40 0.36 0.56 57 rs1143704 49089840 A 0.23 0.52 0.40 0.36 0.56 58 rs230463 49087258 C 0.22 0.53 0.40 0.36 0.57 59 rs700519 49087106 A 0.16 0.04 0.27 0.04 0.03 60 int7_14A 49087012 A 0.06 0.01 0.01 0.17 0.09 61 hCV8234767 49085131 C 0.25 0.52 0.39 0.36 0.57 62 hCV8234755 49083949 C 0.25 0.52 0.39 0.36 0.57 63 rs10046 49082124 A 0.24 0.52 0.40 0.36 0.57 64 rs4646 49081982 A 0.30 0.37 0.32 0.41 0.28 65 rs255192 49079973 T 0.37 0.31 0.24 0.20 66	55	hCV8234792	49091802	G	0.24	0.52	0.40	0.38	0.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	hCV8234791	49090006	Č	0.23	0.52	0.40	0.36	0.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	rs1143704	49089840	Ā	0.23	0.52	0.40	0.36	0.56
59rs70051949087106A0.160.040.270.040.0360int7_14A49087012A0.060.010.010.170.0961hCV823476749085131C0.210.510.400.370.5762hCV823475549083949C0.250.520.390.360.5763rs1004649082124A0.240.520.400.360.5664rs464649081982A0.300.370.320.410.2865rs225519249079973T0.370.100.280.220.1666rs93463249074968A0.220.370.310.240.2067rs87904649071401C0.440.990.000.990.00	58	rs230463	49087258	С	0.22	0.53	0.40	0.36	0.57
60 int7_14A 49087012 A 0.06 0.01 0.01 0.17 0.09 61 hCV8234767 49085131 C 0.21 0.51 0.40 0.37 0.57 62 hCV8234755 49083949 C 0.25 0.52 0.39 0.36 0.57 63 rs10046 49082124 A 0.24 0.52 0.40 0.36 0.56 64 rs4646 49081982 A 0.30 0.37 0.32 0.41 0.28 65 rs255192 49079973 T 0.37 0.10 0.28 0.22 0.16 66 rs934632 49074968 A 0.22 0.37 0.31 0.24 0.20 67 rs879046 49071401 C 0.44 0.99 0.00 0.99 0.00	59	rs700519	49087106	А	0.16	0.04	0.27	0.04	0.03
61hCV823476749085131C0.210.510.400.370.5762hCV823475549083949C0.250.520.390.360.5763rs1004649082124A0.240.520.400.360.5664rs464649081982A0.300.370.320.410.2865rs225519249079973T0.370.100.280.220.1666rs93463249074968A0.220.370.310.240.2067rs87904649071401C0.440.990.000.990.00	60	int7_14A	49087012	А	0.06	0.01	0.01	0.17	0.09
62hCV823475549083949C0.250.520.390.360.5763rs1004649082124A0.240.520.400.360.5664rs464649081982A0.300.370.320.410.2865rs225519249079973T0.370.100.280.220.1666rs93463249074968A0.220.370.310.240.2067rs87904649071401C0.440.990.000.990.00	61	hCV8234767	49085131	С	0.21	0.51	0.40	0.37	0.57
63rs1004649082124A0.240.520.400.360.5664rs464649081982A0.300.370.320.410.2865rs225519249079973T0.370.100.280.220.1666rs93463249074968A0.220.370.310.240.2067rs87904649071401C0.440.990.000.990.00	62	hCV8234755	49083949	С	0.25	0.52	0.39	0.36	0.57
64rs464649081982A0.300.370.320.410.2865rs225519249079973T0.370.100.280.220.1666rs93463249074968A0.220.370.310.240.2067rs87904649071401C0.440.990.000.990.00	63	rs10046	49082124	А	0.24	0.52	0.40	0.36	0.56
65rs225519249079973T0.370.100.280.220.1666rs93463249074968A0.220.370.310.240.2067rs87904649071401C0.440.990.000.990.00	64	rs4646	49081982	А	0.30	0.37	0.32	0.41	0.28
66rs93463249074968A0.220.370.310.240.2067rs87904649071401C0.440.990.000.990.00	65	rs2255192	49079973	Т	0.37	0.10	0.28	0.22	0.16
67 rs879046 49071401 C 0.44 0.99 0.00 0.99 0.00	66	rs934632	49074968	А	0.22	0.37	0.31	0.24	0.20
	67	rs879046	49071401	С	0.44	0.99	0.00	0.99	0.00

 Table 7. Seventy-four SNPs used in the haplotype analysis of CYP19

SNP no.	SNP ID	Position ^a	Minor allele	Minor allele frequency				
				African-Americans	Hawaiians	Japanese	Latinas	Whites
68	rs2899469	49061060	А	0.43	0.51	0.44	0.55	0.61
69	rs934635	49057915	А	0.09	0.08	0.01	0.21	0.18
70	rs2414094	49057449	А	0.44	0.49	0.44	0.57	0.61
71	rs2414093	49057423	А	0.10	0.07	0.01	0.22	0.17
72	rs745258	49055208	С	0.47	0.79	0.82	0.49	0.57
73	rs2414092	49054804	Т	0.12	0.07	0.01	0.21	0.16
74	rs1122044	49051383	С	0.28	0.20	0.18	0.48	0.41

Table 7. (Continued)

^aSNP position is based on the April 2003 freeze of chromosome 15 (contig NT_010194, http://genome.ucsc.edu).

Haplotype reconstruction and htSNP selection

Haplotype frequency estimates were constructed from genotype data in the multiethnic panel (one ethnicity at a time) within blocks using the expectation-maximization (E-M) algorithm of Excoffier and Slatkin (43). The squared correlation (R_h^2) between the true haplotypes (*h*) and their estimates from this calculation were then estimated as described by Stram *et al.* (35). Briefly, for any given set of true haplotype frequencies, P_h , we can make a formal calculation (under Hardy–Weinberg equilibrium) of the squared correlation, R_h^2 , between the estimate, $E\{\delta_h(H_i)|G_i\}$, and the true value, $\delta_h(H_i)$, of the number of copies of *h* carried by a randomly sampled subject [i.e. $\delta_h(H_i) = 0$, 1 or 2]. Here G_i is the genotype data for each subject, *i*, and H_i is the true (but generally unknown) pair of haplotypes carried by that individual. The estimate is calculated as

$$E\{\delta_h(H_i) \mid G_i\} = \frac{\sum_{H \sim G_i} \delta_h(H) p_{h1} p_{h2}}{\sum_{H \sim G_i} p_{h1} p_{h2}}$$

where $\Sigma_{H \sim Gi}$ indicates a summation over the haplotype pairs, $H = \{h_1, h_2\}$, that are compatible with the observed genotype data, and p_h is the frequency of haplotype h.

Under an assumption of Hardy–Weinberg equilibrium (HWE), the correlation may be most easily calculated as

$$R_h^2 = \frac{\operatorname{Var}[E\{\delta_h(H_i) \mid G_i\}}{2p_h(1-p_h)}$$

where the variance of the expectation is computed by averaging $E\{\delta_h(H)|G\}$ and $E\{\delta_h(H)|G\}^2$ over all possible genotypes *G*, weighting by the probability of each genotype. This method explicitly recognizes that it is genotypes rather than haplotypes that are directly read, taking account of the resulting haplotype uncertainty. This uncertainty has not generally been accounted for in other haplotype SNP picking methods (44,45). R_h^2 is a sample size inflation factor—to achieve equivalent power as having perfectly tagged the haplotypes using *N* samples requires approximately N/R_h^2 samples.

htSNPs for the case–control study were then chosen by finding the minimum set of SNPs (within a block) which would have $R_h^2 \ge 0.7$ for all haplotypes with an estimated frequency of $\ge 5\%$. The actual $R_h^2 s$ achieved for the haplotypes defined are generally higher and are given in the Results section. A computer program (tagSNPs) for the calculation of R_h^2 is available at D. Stram's website (www-rcf.usc.edu/~stram).

A total of 25 htSNPs were selected to distinguish the common haplotypes (frequencies \geq 5%) in blocks 1–4 estimated in each ethnic group of the multiethnic panel. We included as htSNPs two well-studied sequence variants, *Arg264Cys* in exon 7 (rs700519) and an SNP in the 3'-UTR of exon 10 (rs10046), before minimizing the number of htSNPs required to predict the common haplotypes. We expected and observed only minor differences in haplotype frequencies predicted solely by the htSNPs versus haplotype frequencies as defined by all of the SNPs in the block based on the high $R_h^2 s$ for determining the common haplotypes (Fig. 1B).

In addition, we calculated the multivariate squared correlation, R_s^2 , between measured and unmeasured SNPs as an alternative statistic not focused on haplotype prediction, but rather on 'reconstruction' of the unmeasured SNP genotypes exploiting the multivariate correlation between SNPs in a region of high LD. This correlation is computed, as is R_h^2 , based on the estimated haplotype frequencies under HWE. The average R_s^2 value for each block was ≥ 0.97 , showing that our choice of htSNPs provides good prediction of unmeasured SNPs as well as an optimal prediction of haplotypes.

Genotyping in the case-control study

Genotyping of htSNPs in the case–control study was performed by the 5' nuclease Taqman allelic discrimination assay using the ABI7900 (Applied Biosystems, Foster City, CA, USA) in the MEC Genotyping Laboratory and by MALDI-TOF using the Sequenom platform at the Whitehead Institute/MIT Center for Genome Research. We also evaluated the independent effect of the rare *Trp39Arg* missense variant located in exon 2 (rs2236722). Laboratory personnel were blinded to case–control status and ~5% of samples were included as duplicates. The concordance for the blinded samples was >99%.

Comparison of haplotype frequencies between breast cancer cases and controls

Haplotype frequencies among breast cancer cases and controls were estimated using the htSNPs selected to distinguish the common haplotypes (\geq 5%) for each ethnic group in the multiethnic panel. Following the method of Zaykin *et al.* (46), for each individual and each haplotype, *h*, the haplotype dosage estimate (i.e. an estimate of the number of copies of haplotype *h*) was computed using that individual's genotype data and haplotype frequency estimates obtained from the

combined (cases + controls) data set. These individual estimates were merged with all other individual-specific data. All the variables were used in unconditional logistic regression analyses with the estimate of haplotype dosage treated as a surrogate variable for the true haplotype. Under the null hypothesis (of no haplotype-specific effects on risk) the usual score test from the logistic regression, when haplotype is added to the model, will correspond to the test described by Zaykin et al. (46). We have found that this approach gives accurate estimates of the statistical significance (P-values), and that confidence intervals (CIs) are appropriate when R_h^2 is high (47). Odds ratios (ORs) and 95% CIs for each haplotype were estimated using the most common haplotype observed among all ethnic groups combined within each block as the reference category. Results were similar when evaluating each haplotype separately (versus all other haplotypes, data not shown). Analyses were stratified by ethnicity and a summary OR was estimated controlling for age and ethnicity. Results were also similar when adjusting for the established breast cancer risk factors (26), family history of breast cancer, body mass index, parity, age at first birth, age at menarche, menopausal status, type of menopause, age at menopause, use of hormone replacement therapy and alcohol consumption (data not shown). A likelihood ratio test was performed to globally test for associations with the common haplotypes in each block. For blocks where this global test was significant, we also formally tested for ethnic differences in haplotype-associated risks by performing a likelihood ratio test following the inclusion of an interaction term between the risk haplotypes and ethnicity in the multivariate model. One case missing age at diagnosis was removed from all analyses. Sixty-eight cases and 98 controls had high genotype failure rates due to low DNA concentration and were removed from all genetic analyses. We used the Statistical Analysis System for all analyses (48).

ACKNOWLEDGEMENTS

We thank Loreall Pooler, David Wong, and Johannah Butler for their laboratory assistance and Mathew Freedman, Kristine Monroe, Hank Huang, Peggy Wan, John Casagrande, Stuart Wugalter, Faye Nagamine, Stephen Schaffner, Mark Daly, Stacey Gabriel and Siby Sebastian for their technical support. We are also indebted to the participants of the Multiethnic Cohort Study for their participation and commitment. This work was supported by National Cancer Institute grants CA 63464 and CA 54281 and a General Motors Cancer Research Scholar's Grant awarded to C.A.H.

REFERENCES

- Henderson, B.E., Ross, R.K., Pike, M.C. and Casagrande, J.T. (1982) Endogenous hormones as a major factor in human cancer. *Cancer Res.*, 42, 3232–3239.
- Thomas, H.V., Reeves, G.K. and Key, T.J. (1997) Endogenous estrogen and postmenopausal breast cancer: a quantitative review. *Cancer Causes Control*, 8, 922–928.
- Hankinson, S.E., Willett, W.C., Manson, J.E., Colditz, G.A., Hunter, D.J., Spiegelman, D., Barbieri, R.L. and Speizer, F.E. (1998) Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. *J. Natl Cancer Inst.*, 90, 1292–1299.

- Means, G.D., Mahendroo, M.S., Corbin, C.J., Mathis, J.M., Powell, F.E., Mendelson, C.R. and Simpson, E.R. (1989) Structural analysis of the gene encoding human aromatase cytochrome P- 450, the enzyme responsible for estrogen biosynthesis. *J. Biol. Chem.*, 264, 19385–19391.
- Mahendroo, M.S., Means, G.D., Mendelson, C.R. and Simpson, E.R. (1991) Tissue-specific expression of human P-450AROM. The promoter responsible for expression in adipose tissue is different from that utilized in placenta. J. Biol. Chem., 266, 11276–11281.
- Means, G.D., Kilgore, M.W., Mahendroo, M.S., Mendelson, C.R. and Simpson, E.R. (1991) Tissue-specific promoters regulate aromatase cytochrome P450 gene expression in human ovary and fetal tissues. *Mol. Endocrinol.*, 5, 2005–2013.
- Sasano, H., Nagura, H., Harada, N., Goukon, Y. and Kimura, M. (1994) Immunolocalization of aromatase and other steroidogenic enzymes in human breast disorders. *Hum. Pathol.*, 25, 530–535.
- Utsumi, T., Harada, N., Maruta, M. and Takagi, Y. (1996) Presence of alternatively spliced transcripts of aromatase gene in human breast cancer. *J. Clin. Endocrinol. Metab.*, 81, 2344–2349.
- Yue, W., Wang, J.P., Hamilton, C.J., Demers, L.M. and Santen, R.J. (1998) In situ aromatization enhances breast tumor estradiol levels and cellular proliferation. *Cancer Res.*, 58, 927–932.
- Maggiolini, M., Bonofiglio, D., Pezzi, V., Carpino, A., Marsico, S., Rago, V., Vivacqua, A., Picard, D. and Ando, S. (2002) Aromatase overexpression enhances the stimulatory effects of adrenal androgens on MCF7 breast cancer cells. *Mol. Cell Endocrinol.*, **193**, 13–18.
- van Landeghem, A.A., Poortman, J., Nabuurs, M. and Thijssen, J.H. (1985) Endogenous concentration and subcellular distribution of estrogens in normal and malignant human breast tissue. *Cancer Res.*, 45, 2900–2906.
- Harada, N., Utsumi, T. and Takagi, Y. (1993) Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. *Proc. Natl Acad. Sci. USA*, **90**, 11312–11316.
- Agarwal, V.R., Bulun, S.E., Leitch, M., Rohrich, R. and Simpson, E.R. (1996) Use of alternative promoters to express the aromatase cytochrome P450 (*CYP19*) gene in breast adipose tissues of cancer-free and breast cancer patients. J. Clin. Endocrinol. Metab., 81, 3843–3849.
- 14. Goss, P.E. and Strasser, K. (2001) Aromatase inhibitors in the treatment and prevention of breast cancer. J. Clin. Oncol., **19**, 881–894.
- 15. Bonneterre, J., Thurlimann, B., Robertson, J.F., Krzakowski, M., Mauriac, L., Koralewski, P., Vergote, I., Webster, A., Steinberg, M. and von Euler, M. (2000) Anastrozole versus tamoxifen as first-line therapy for advanced breast cancer in 668 postmenopausal women: results of the Tamoxifen or Arimidex Randomized Group Efficacy and Tolerability study. *J. Clin. Oncol.*, **18**, 3748–3757.
- Nabholtz, J.M., Buzdar, A., Pollak, M., Harwin, W., Burton, G., Mangalik, A., Steinberg, M., Webster, A. and von Euler, M. (2000) Anastrozole is superior to tamoxifen as first-line therapy for advanced breast cancer in postmenopausal women: results of a North American multicenter randomized trial. Arimidex Study Group. J. Clin. Oncol., 18, 3758–3767.
- Mouridsen, H., Gershanovich, M., Sun, Y., Perez-Carrion, R., Boni, C., Monnier, A., Apffelstaedt, J., Smith, R., Sleeboom, H.P., Janicke, F. *et al.* (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. *J. Clin. Oncol.*, **19**, 2596–2606.
- Kristensen, V.N., Andersen, T.I., Lindblom, A., Erikstein, B., Magnus, P. and Borresen-Dale, A.L. (1998) A rare *CYP19* (aromatase) variant may increase the risk of breast cancer. *Pharmacogenetics*, 8, 43–48.
- Siegelmann-Danieli, N. and Buetow, K.H. (1999) Constitutional genetic variation at the human aromatase gene (*Cyp19*) and breast cancer risk. *Br. J. Cancer*, **79**, 456–463.
- Probst-Hensch, N.M., Ingles, S.A., Diep, A.T., Haile, R.W., Stanczyk, F.Z., Kolonel, L.N. and Henderson, B.E. (1999) Aromatase and breast cancer susceptibility. *Endocr. Relat. Cancer*, 6, 165–173.
- Haiman, C.A., Hankinson, S.E., Spiegelman, D., De Vivo, I., Colditz, G.A., Willett, W.C., Speizer, F.E. and Hunter, D.J. (2000) A tetranucleotide repeat polymorphism in *CYP19* and breast cancer risk. *Int. J. Cancer*, 87, 204–210.

- Healey, C.S., Dunning, A.M., Durocher, F., Teare, D., Pharoah, P.D., Luben, R.N., Easton, D.F. and Ponder, B.A. (2000) Polymorphisms in the human aromatase cytochrome P450 gene (*CYP19*) and breast cancer risk. *Carcinogenesis*, 21, 189–193.
- Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J. and Lander, E.S. (2001) High-resolution haplotype structure in the human genome. *Nat. Genet.*, 29, 229–232.
- Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M. *et al.* (2002) The structure of haplotype blocks in the human genome. *Science*, 296, 2225–2229.
- Patil, N., Berno, A.J., Hinds, D.A., Barrett, W.A., Doshi, J.M., Hacker, C.R., Kautzer, C.R., Lee, D.H., Marjoribanks, C., McDonough, D.P. *et al.* (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. *Science*, **294**, 1719–1723.
- 26. Pike, M.C., Kolonel, L.N., Henderson, B.E., Wilkens, L.R., Hankin, J.H., Feigelson, H.S., Wan, P.C., Stram, D.O. and Nomura, A.M. (2002) Breast cancer in a multiethnic cohort in Hawaii and Los Angeles: risk factor-adjusted incidence in Japanese equals and in Hawaiians exceeds that in whites. *Cancer Epidemiol. Biomarkers Prev.*, **11**, 795–800.
- Harada, N. (1988) Cloning of a complete cDNA encoding human aromatase: immunochemical identification and sequence analysis. *Biochem. Biophys. Res. Commun.*, 156, 725–732.
- Miyoshi, Y., Iwao, K., Ikeda, N., Egawa, C. and Noguchi, S. (2000) Breast cancer risk associated with polymorphism in *CYP19* in Japanese women. *Int. J. Cancer*, 89, 325–328.
- Nativelle-Serpentini, C., Lambard, S., Seralini, G.E. and Sourdaine, P. (2002) Aromatase and breast cancer: W39R, an inactive protein. *Eur. J. Endocrinol*, 146, 583–589.
- Kristensen, V.N., Anderson, T.I., Lindblom, L., Erikstein, B., Magnus, P. and Börrensen-Dale, A.L. (1998) A rare CYP19 (aromatase) variant may increase the risk of breast cancer. *Pharmacogenetics*, 8, 43–48.
- Haiman, C.A., Hankinson, S.E., Spiegelman, D., Brown, M. and Hunter, D.J. (2002) No association between a single nucleotide polymorphism in *CYP19* and breast cancer risk. *Cancer Epidemiol. Biomarkers Prev.*, 11, 215–216.
- Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J., Lavery, T., Kouyoumjian, R., Farhadian, S.F., Ward, R. and Lander, E.S. (2001) Linkage disequilibrium in the human genome. *Nature*, 411, 199–204.
- Carlson, C.S., Eberle, M.A., Rieder, M.J., Smith, J.D., Kruglyak, L. and Nickerson, D.A. (2003) Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. *Nat. Genet.*, 33, 518–521.
- 34. Johnson, G.C.L., Esposito, L., Barratt, B.J., Smith, A.N., Heward, J., Di Genova, G., Ueda, H., Cordell, H.J., Eaves, I.A., Dudbridge, F. *et al.* (2001) Haplotype tagging for the identification of common disease genes. *Nat. Genet.*, **29**, 233–237.

- 35. Stram, D.O., Haiman, C.A., Hirschhorn, J., Altshuler, D., Kolonel, L.N., Henderson, B.E., Pike, M.C. (2003) Choosing haplotype-tagging SNPs based on unphased genotype data from a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. *Hum. Hered.*, 100, 27–36.
- 36. Mullis, P.E., Yoshimura, N., Kuhlmann, B., Lippuner, K., Jaeger, P. and Harada, H. (1997) Aromatase deficiency in a female who is compound heterozygote for two new point mutations in the P450arom gene: impact of estrogens on hypergonadotropic hypogonadism, multicystic ovaries, and bone densitometry in childhood. *J. Clin. Endocrinol. Metab.*, 82, 1739–1745.
- Henderson, B.E. and Feigelson, H.S. (2000) Hormonal carcinogenesis. *Carcinogenesis*, 21, 427–433.
- Watanabe, J., Harada, N., Suemasu, K., Higashi, Y., Gotoh, O. and Kawajiri, K. (1997) Arginine-cysteine polymorphism at codon 264 of the human *CYP19* gene does not affect aromatase activity. *Pharmacogenetics*, 7, 419–424.
- 39. Lee, K.M., Abel, J., Ko, Y., Harth, V., Park, W.Y., Seo, J.S., Yoo, K.Y., Choi, J.Y., Shin, A., Ahn, S.H. *et al.* (2003) Genetic polymorphisms of cytochrome P450 19 and 1B1, alcohol use, and breast cancer risk in Korean women. *Br. J. Cancer*, 88, 675–678.
- Cox, N.J., Frigge, M., Nicolae, D.L., Concannon, P., Hanis, C.L., Bell, G.I. and Kong, A. (1999) Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. *Nat. Genet.*, 21, 213–215.
- 41. Kolonel, L.N., Henderson, B.E., Hankin, J.H., Nomura, A.M., Wilkens, L.R., Pike, M.C., Stram, D.O., Monroe, K.R., Earle, M.E. and Nagamine, F.S. (2000) A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. *Am. J. Epidemiol.*, **151**, 346–357.
- Lewontin, R.C. (1964) The interaction of selection and linkage. I. General considerations; heterotic models. *Genetics*, 49, 49–67.
- Excoffier, L. and Slatkin, M. (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. *Mol. Biol. Evol.*, 12, 921–927.
- 44. Zhang, K., Deng, M., Chen, T., Waterman, M.S. and Sun, F. (2002) A dynamic programming algorithm for haplotype block partitioning. *Proc. Natl Acad. Sci. USA*, **99**,7335–7339.
- Ke, X. and Cardon, L.R. (2003) Efficient selective screening of haplotype tag SNPs. *Bioinformatics*, 19, 287–288.
- 46. Zaykin, D.V., Westfall, P.H., Young, S.S., Karnoub, M.A., Wagner, M.J. and Ehm, M.G. (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. *Hum. Hered.*, 53, 79–91.
- 47. Stram, D.O., Pearce, C.L., Bretsky, P., Freedman, M., Hirschhorn, J., Altshuler, D., Kolonel, L.N. and Henderson, B.E. (2003) Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. *Hum. Hered.* (in press).
- 48. SAS Institute (2001) SAS release 8.02. SAS Inc., Cary, NC.