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Abstract: Quetiapine (QTP) is a short-acting atypical antipsychotic drug that treats schizophrenia or
manic episodes of bipolar disorder. Human serum albumin (HSA) is an essential transport protein that
transports hormones and various other ligands to their intended site of action. The interactions of QTP
with HSA and their binding mechanism in the HSA-QTP system was studied using spectroscopic
and molecular docking techniques. The UV-Vis absorption study shows hyperchromicity in the
spectra of HSA on the addition of QTP, suggesting the complex formation and interactions between
QTP and HSA. The results of intrinsic fluorescence indicate that QTP quenched the fluorescence of
HSA and confirmed the complex formation between HSA and QTP, and this quenching mechanism
was a static one. Thermodynamic analysis of the HSA-QTP system confirms the involvement of
hydrophobic forces, and this complex formation is spontaneous. The competitive displacement and
molecular docking experiments demonstrated that QTP is preferentially bound to HSA subdomain
IB. Furthermore, the CD experiment results showed conformational changes in the HSA-QTP system.
Besides this, the addition of QTP does not affect the esterase-like activity of HSA. This study will help
further understand the credible mechanism of transport and delivery of QTP via HSA and design
new QTP-based derivatives with greater efficacy.

Keywords: quetiapine; human serum albumin; hydrophobic interaction; thermodynamic parameters

1. Introduction

In recent years, psychoactive drug usage has increased worldwide due to the in-
creasing incidence of related psychiatric disorders [1]. However, the most commonly
prescribed psychoactive drugs, such as antidepressants, antipsychotics, and mood stabiliz-
ers, cause unwanted side effects (excessive systemic drug exposure) and toxicity to human
systems [2,3].

Quetiapine (QTP Figure 1A) is a second generation (short-acting atypical) antipsy-
chotic drug of dibenzothiazepine (class), which is used to treat schizophrenia, acute bipolar
disorder, and major depression in adolescents and adults [4–7]. The exact mechanism of
action of QTP is poorly understood. However, QTP is an antagonist of various neurotrans-
mitter receptors in the brain, such as dopamine D1 and D2, adrenergic alpha receptors
alpha1 and alpha2, histamine H1, and serotonin 5-HT1A and 5-HT2, respectively [8,9].
Specifically, the antipsychotic and antidepressant effects of QTP are believed to be due
to the interactions of the above-mentioned neurotransmitter receptors dopamine (D1 and
D2), adrenergic alpha receptors (α1 and α2), histamine (H1), and serotonin (5-HT1A and
5-HT2) [9].
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Recent studies explore the insight of binding affinity and mechanism of plasma pro-
teins and drug interactions [10–15]. Recently, nanotechnology has helped explore the inter-
action mechanisms [16,17]. However, the interaction between the drug proteins (plasma)
and their mechanism is vital because they directly affect therapeutic drugs’ pharmaco-
dynamic and pharmacokinetic properties in the human system [10]. Moreover, the drug
proteins (plasma) interactions help to decipher the therapeutic efficacy, distribution, and
bioavailability of therapeutic drugs and assist in enhancing solubility in plasma protein,
reducing toxicity, and protecting against oxidation [18–20].

Human serum albumin (HSA) is a principal plasma protein with critical physio-
logical functions and facilitates the transportation of many molecules and metabolites
(Figure 1B) [21]. It is a monomeric chain globular plasma protein (585 amino acids residues),
and its 3D structure consists of three homologous domains (I-III-A and B subdomains). The
essential binding regions for drugs in the HSA are Sudlow’s site I (subdomains IIA) and
Sudlow’s site II (subdomains IIIA) [22–25]. However, there is also Site III (subdomain IB),
which is also believed to play an essential role in binding various drugs [26]. Therefore,
HSA has multiple binding sites and can bind several different drugs, thus making it a
fundamental functional drug carrier [27]. Furthermore, the binding of therapeutic drugs
within HSA is commonly reversible via weak interactions such as hydrogen bonding,
hydrophobic forces, ionic interactions, and van der Waal’s interactions [28].

To the best of our knowledge, the interaction binding mechanism of QTP and HSA
has still not been investigated. Here, multi-spectroscopic techniques and biochemical
and molecular docking approaches were applied to scrutinize the binding properties of
QTP with HSA under physiological conditions. However, we considered the possibility
of complexation between QTP-HSA, which would explore the pharmacodynamics and
pharmacokinetics of QTP. The QTP-HSA interactions reported here would explain the
binding mechanism at the molecular level and facilitate efforts to modify new therapeutic
drugs that optimize their distribution within the human body.

2. Results and Discussion
2.1. UV-Vis Absorption Spectroscopy

UV-Vis spectral analyses are carried out to observe the structural and conformational
changes in the protein molecule induced by the binding ligands and thus to obtain informa-
tion about their interaction mechanism. [29]. The UV-Vis absorption spectra of the HSA and
HSA-QTP complex are shown in Figure 2. It is apparent from the spectra that HSA exhibits
an absorption peak at 280 nm coming from the π-π* transition of the aromatic amino acids
(tryptophan (W), tyrosine (Y), phenylalanine) [30]. An increase in QTP concentration was
accompanied by a slight shift in the absorption wavelength. This blue shift indicates that
QTP binding is associated with changes in the local environment of HSA. In addition,
there is an increase in UV-absorption intensities of HSA at around 280 nm at increasing
concentrations of QTP, and this hyperchromicity suggests the HSA-QTP system formation.
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Hyperchromicity at around 280 nm in HSA after QTP addition also confirms that the
aromatic amino acid (W and Y) microenvironment changes due to the HSA-QTP complex
formation [31,32].
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Figure 2. UV absorption spectra of HSA (5 µM) in the absence and presence of increasing concentra-
tions of QTP (5–30 µM) in the wavelength range 240–410 nm.

2.2. Fluorescence Emission Spectroscopy of the HSA-QTP Complex

Fluorescence emission spectroscopy is a multipurpose biophysical technique used to
study the binding mechanism of protein-ligand interactions and to evaluate the binding
parameters [10,12,26]. The fluorescence emission spectra of HSA alone and the HSA-QTP
complex are given in Figure 3A. It is apparent from Figure 3A that HSA exhibits a strong
emission peak at 340 nm upon excitation at 295 nm due to W-214 residue. Further, the
addition of different concentrations of QTP (0–35 µM) leads to the quenching of HSA
fluorescence intensity without changing the peak shape. This fluorescence quenching
suggests the formation of the HSA-QTP system and suggests a possible microenvironmental
alteration in HSA upon treatment with QTP [33,34].
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Figure 3. (A) Steady-state fluorescence emission spectra of HSA were recorded in the absence and
presence of increasing concentrations of QTP. The intrinsic fluorescence of the HSA was measured at
295 K in the wavelength range of 300–420 nm after exciting at 295 nm. The black arrow represents
fluorescence quenching of HSA on titration with QTP (B) Stern-Volmer plot for QTP-HSA interaction
(295, 300, 310 K). (C) Double log plot for the QTP-HSA interaction at different temperatures (295, 300,
310 K). (D) van ’t Hoff plot (lnK vs. 1/T) for the binding of QTP to HSA. The concentration of HSA
was 5 µM and was titrated with QTP (0–35 µM) in all the experiments (A–D).

2.2.1. Fluorescence Quenching Mechanism (FQM) of the Interactions of the HSA-QTP System

According to the literature, the protein’s fluorescence quenching mechanism (FQM)
consists mainly of dynamic quenching and static quenching. In the case of dynamic
quenching, the interaction of the fluorophore with the quencher is indirect. In contrast,
in the case of static quenching, a ground state complex formation exists between the
fluorophore and quencher [30]. Therefore, the FQM can be sorted out based on their
temperature dependence. Furthermore, in the case of static quenching, Ksv values are
inversely proportional to temperature, whereas in dynamic Ksv, the values are directly
proportional to temperature. Therefore, the FQM of the HSA-QTP system was evaluated
by recording the fluorescence spectra of HSA-QTP at different temperatures (295, 300, and
305 K), and the fluorescence quenching data of the HSA-QTP system was analyzed using
the Stern-Volmer equation [30]:

F0

F
= 1 + Ksv[Q] (1)

where F0 and F represent the steady-state fluorescence of HSA and the HSA-QTP complex,
respectively. [Q] represents the quencher concentration (QTP), and Ksv represents the Stern-
Volmer constant. The Ksv plot for the HSA-QTP system obtained at various temperatures
(295, 300, and 305 K) is given in Figure 3B. It is found that the Ksv values for the HSA-QTP
system decreased with a temperature rise, confirming the static quenching mechanism for
the HSA-QTP system (Table 1). In addition, the fluorescence mechanism (quenching) was
also analyzed according to the bimolecular rate constant values using the equation:

kq = Ksv/τ0 (2)

where kq is the bimolecular rate constant, and τ0 is the average lifetime of the protein in
the absence of the quencher and is valued at 10−8 for biopolymers [35]. The calculated
bimolecular quenching rate constant value for the HSA-QTP system is presented in Table 1.
The kq values were found to be higher than the value of the scattering collision constant
(2 × 1010 M−1 s−1), which again suggests the involvement of a static quenching mechanism
between the HSA-QTP system [36].
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Table 1. The values of the Stern-Volmer constant and quenching rate constant for the QTP-HSA system.

pH Temp (K) Ksv (× 104 M−1) Kq (× 1012 M−1 s−1) R2

7.4
295 0.7 0.7 0.987
305 0.5 0.5 0.992
310 0.3 0.3 0.993

2.2.2. Evaluation of the Binding Constants and the Number of Binding Sites in the
HSA-QTP System

Intrinsic fluorescence data at different temperatures (295, 300, and 305 K) were used to
determine the binding constant (Kb) and binding stoichiometry (n) of the HSA-QTP system
by using the following equation [10,30]:

log
(F0 − F)

F
= log Kb + n log[Q] (3)

where F0 and F represent fluorescence intensities of HSA with or without the quencher
(QTP), respectively. Kb and n represent the binding constant and binding stoichiometry in
the HSA-QTP system. The double log plot of log [(F0 − F)/F] vs. log [Q] (Figure 3C) was
used for the determination of the binding constant and binding stoichiometry. The values
of Kb and n were calculated from the intercept and slope of the plot, as shown in Figure 3C.
As per Figure 3C, Kb and n at different temperatures for the HSA-QTP system are presented
in Table 2. A decrease in the binding constant was observed at higher temperatures for
the HSA-QTP system. Further, the binding constants were ~104, suggesting a moderate
binding between HSA and QTP.

Table 2. The binding constant values and the number of binding sites for the interaction of QTP with HSA.

pH Temp (K) Kb (× 104 M−1) N R2

7.4
295 1.326 1.28 0.996
305 1.236 1.31 0.994
310 1.200 1.35 0.994

2.2.3. Determination of the Binding Forces between HSA and QTP-Thermodynamic Analysis

The primary binding intermolecular forces that are involved in the drug-protein
interactions were estimated via thermodynamic parameters. The protein-drug interactions
are held together by hydrophobic interactions, hydrogen bonds, electrostatic forces, and
van der Waal interactions. Moreover, the sign and magnitude of the enthalpy (∆H0) and
entropy (∆S0) change to determine the nature of binding forces in the drug-protein complex.
For the hydrophobic interactions, the sign and magnitude must have a positive value for
∆H0 and ∆S0. At the same time, in the case of van der Waals forces and hydrogen bonding,
it must be negative for ∆H0 and ∆S0 [36,37]. Additionally, for the electrostatic interaction,
∆H0 should be negative and ∆S0 positive. The free energy (∆G0) change of the HSA-QTP
system can be determined by using the van ’t Hoff equation and the thermodynamic
equation given below:

lnKb = −∆H0

RT
+

∆S0

R
(4)

∆G0 = ∆H0 − T∆S0 (5)

where R represents the gas constant (8.314 J mol −1 K −1), T is the temperature in kelvins,
and Kb represents the binding constant at the studied different temperatures. ∆H0 and ∆S0

are obtained from the slope and intercept of the plot between lnK and 1/T (Figure 3D).
The results of ∆G0, ∆H0, and ∆S0 obtained from HSA-QTP interactions are summarized
in Table 3. The positive values of ∆H0 and ∆S0 for the HSA-QTP system suggest that
hydrophobic interactions played a significant role in the binding process of QTP to HSA.
Thus, the formation of the HSA-QTP complex was exothermic and spontaneous [38].
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Table 3. Various thermodynamic parameters for QTP-HSA complex formation at various temperatures.

Temp (K) ∆H0 (KJ mol−1) ∆S0 (JK−1 mol−1) T∆S0 (KJ mol−1) ∆G0 (KJ mol−1)

295
5.087 81

23.89 −18.8
305 24.705 −19.61
310 25.11 −20.11

2.2.4. Synchronous Fluorescence Spectroscopy (SFS) Experiment

The synchronous fluorescence spectrometry helps to provide information about the lo-
cal environment of proteins around W and Y residues upon interaction with ligands [30,39].
In this experiment, the fluorescence difference between excitation and emission wave-
lengths reflects the nature of the spectra. A difference of wavelength (∆λ) of 15 nm is
characteristic for (Y), and 60 nm is typical of (W) residues. Therefore, any shift in the
maximum emission wavelength reflects the local environment changes around aromatic
amino acid residue (Y and W) [40]. The SFS emission spectra of the HSA-QTP complex are
given in Figure 4A,B. It was clear from Figure 4 that the HSA fluorescence intensity of both
(W and Y) regularly decreases with the addition of QTP. Further, no shift in the emission
wavelength was observed for either of the spectra at ∆λ = 15 nm or 60 nm. The HSA-
QTP interaction did not lead to any microenvironmental change in the protein molecule
upon interaction.
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Figure 4. Synchronous fluorescence spectra at ∆λ = 15 nm (A) and ∆λ = 60 nm (B) of HSA (5 µM) in
the absence and presence of increasing concentrations of QTP (0-35 µM). At ∆λ = 15 nm (for Y), the
excitation wavelength of HSA was fixed at 240 nm, and the emission range was 255–400 nm, whereas
at ∆λ = 60 nm (for W), the excitation wavelength was taken at 240 nm and the emission range was
300–400 nm.

2.2.5. Binding and Prediction of Site Markers in the HSA-QTP System

A site marker displacement experiment was investigated to identify QTP binding site
on HSA. In this experiment, here warfarin (WAR) for Sudlow’s site I (subdomain IIA),
ibuprofen (IBU) for Sudlow’s Site II (subdomain IIIA), and hemin (HEM) for binding site
III (subdomain IB) were used as HSA site marker probes; [10,26]. As a result, fluorescence
spectra were recorded HSA-QTP system in the presence of site marker probes (0–30 µM).
Moreover, the displacement percentage (I%) of QTP with the site markers is estimated by
the following methods [40,41]:

I(%) =
F2

F1
× 100 (6)

F1 and F2 represent the fluorescence emission intensities of the HSA-QTP system in
the absence and presence of different site markers, respectively. However, the percentage
of displacement values of the HSA-QTP complex against the different concentrations of site
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markers is shown in Figure 5. It is apparent from Figure 5 that the displacement percentage
of QTP from HSA by hemin is appreciably higher than WAR and IBU. Thus, the binding
site of QTP is predicted to be in site III (subdomain IB) of HSA.
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Figure 5. Effect of site probes on the fluorescence emission intensities of the HSA-QTP system. The
experiments were carried out using three site probes (warfarin, ibuprofen, and hemin). (HSA = 5 µM,
QTP = 10 µM, C = 0-30 µM), λex = 295 nm, T = 295 K.

2.2.6. Circular Dichroism Spectra Changes in HSA upon QTP Binding

Circular dichroism (CD) spectroscopy is a versatile technique mainly used to detect
structural and conformational changes in protein structure. The CD spectra of HSA have
two negative peaks in the UV region, which reflect α-helix at around 208 and 222 nm of the
protein [42]. Figure 6 represents the CD spectra of HSA alone and the HSA-QTP system at
different molar ratios of 1:0–1:2. The addition of QTP leads to a decrease in the ellipticity
of HSA, suggesting the loss of α-helical content. The CD results showed that the α-helix
content of the HSA and QTP-HSA system was 55.92% and 48.88%, respectively. Therefore,
these results suggest that the addition of QTP leads to secondary structure change of HSA
α-helix content.

2.2.7. QTP-Induced Thermal Stabilization of HSA

The binding of drugs to plasma proteins can increase the protein’s thermal stability [43].
Various studies have shown that drugs induced thermal stabilization to HSA [44,45]. There-
fore, the thermal stability measurements of HSA were carried out at different temperatures
in the absence and presence of QTP binding. The temperature-dependent titrations mea-
surements were performed on HSA (5 µM) without or with QTP (50 µM) in different
temperature range, 25–80 ◦C (5 ◦C intervals). Figure 7 shows the influence of temperature
on the fluorescence intensity of the HSA and HSA-QTP system at 343 nm. In the presence
of QTP at 45 ◦C, the decrease in FI of the HSA-QTP system was lesser than HSA alone.
However, our thermal stability results demonstrated QTP-induced stability to HSA via
QTP-HSA system formation (coupling of binding and unfolding equilibrium) [46].
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2.2.8. Effect of QTP Binding on the Esterase-Like Activity of HSA

HSA is the most abundant protein in the blood plasma and possesses catalytic func-
tions such as esterase-like activity [47]. Amino acid residues such as Arg-410 Tyr-41
(Sudlow’s site II (subdomain IIIA)) of HSA play a predominant function in esterase activity
(Watanabe et al., 2000) [48]. However, the effect of QTP binding on the esterase-like activity
of HSA is shown in Figure 8. It was observed that upon the addition of QTP (0–75 µM),
there is no inhibiting effect on the esterase-like activity of HSA.
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2.2.9. Computational Modeling of the HSA-QTP Complex

The binding region and amino acid residues involved in the interaction of QTP with
HSA were evaluated by molecular docking analysis [27,45,47]. The most suitable confir-
mation of the HSA-QTP system is given in Figure 9A,B. The molecular docking results
suggested the QTP binding region at subdomain IB (Site III) of HSA (Figure 9A). Fur-
ther, QTP binds to HSA and forms two hydrogen bonds with VAL120 and ASP173 amino
acid residues of HSA (Figure 10A). In addition to the two hydrogen bonds, the QTP
molecule is surrounded by LEU-179, ARG-117, ALA-176, ASP-121, LEU-179, PRO-118,
ALA-172, VAL-120, ASP-173, GLU-119, LYS-174, and ALA-175 through different interac-
tions (Figure 10). The autodock results also showed that the binding affinity of QTP to HSA
was −8.2 kcal mol−1. Thus, we can conclude that the molecular docking results agree with
the site displacement markers experiments (Figure 5).
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3. Materials and Methods
3.1. Chemical Reagents

HSA (A1887, fatty acid and globulin free) and QTP (purity, 90%) were obtained from
Sigma Chemical Co. (St. Louis, Mo, USA) and GLR. Scientific. Co. (Delhi, India), warfarin,
ibuprofen through the National Scientific company (Riyadh, KSA) and hemin were obtained
from SRL Pvt. Ltd. (Mumbai, India). All other chemicals and reagents for this study were
of high analytical grade.

3.2. Sample Preparation

HSA stock solution (200 µM) was prepared in Tris-HCI buffers (0.2 M) pH 7.4. In
addition, the stock of QTP (10 mM) was prepared in methanol and then diluted with
Tris-HCI buffers (0.2 M), pH 7.4, to prepare the working standard samples of QTP. Finally,
the buffer was prepared using Type I Millipore water (Burlington, MA, USA).
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3.3. Instrumentations

The UV-Vis absorption spectra were recorded on a UV-1800 spectrophotometer (Shi-
madzu, Kyoto, Japan) using a 1.0 × 1.0 cm cell. The fluorescence experiments were recorded
on an RF-5301PC spectrofluorometer (Shimadzu, Kyoto, Japan) fitted with a xenon-flash
lamp with quartz-cuvettes. The circular dichroism experiments were recorded on a JASCO
J-1500-CD spectrophotometer (Mary’s Court, Easton, MD, USA) equipped with a Peltier
temperature controller with a quartz cuvette.

3.4. Methods
3.4.1. UV-Visible Absorption Spectroscopy

UV-Visible absorbance spectra of HSA (5 µM) in the absence and presence of QTP
(0–30 µM) at 298 k were recorded at wavelengths from 240 to 410 nm, and baseline correc-
tion was performed using an appropriate buffer.

3.4.2. Steady-State Fluorescence Measurements

The intrinsic fluorescence spectra of HSA were recorded at an emission wavelength
(300–420 nm) upon excitement at 295 nm. The HSA (5 µM) samples were titrated with
QTP (0–35 µM) at three different temperatures (295, 300, 305 K) to estimate thermodynamic
parameters. The obtained fluorescence data were corrected for inner filter effects.

3.4.3. Synchronous Fluorescence Spectroscopy (SFS) Experiments

For this experiment, SFS measurements of HSA (5 µM) titrated with different concen-
trations of QTP (0–35 µM) were performed in different experiments by setting wavelength
intervals (∆λ) at 15 nm for tyrosine residue (Y) and 60 nm for tryptophan residue (W) in
the same experimental conditions as the fluorescence measurements.

3.4.4. Competitive Site Probe Displacement (CSPD) Experiments

Briefly, in these experiments, CSPD experiments were carried out to locate the binding
site of QTP on the HSA. Warfarin (WAR) (Sudlow’s site I), ibuprofen (IBU) (Sudlow’s
site II), and hemin (HEM) (site III) site markers were used to locate the binding region of
QTP in HSA. Initially, fluorescence spectra were performed by titrating a solution of 5 µM
HSA and QTP 10 µM with increasing site marker (0–30 µM) concentrations in separate
experiments. All other parameters (excitation and emission wavelength) were uniform for
the fluorescence measurements.

3.4.5. Circular Dichroism (CD) Spectroscopy Measurements

The far CD spectra of HSA and the HSA-QTP complex were recorded at a wavelength
between 200 and 260 nm on the spectropolarimeter with a scan speed of 100 nm min−1.
HSA (5 µM) was titrated with 10 µM QTP. The measured ellipticity values were expressed
as the mean residue ellipticity (MRE) in deg cm2 dmol−1, defined by equation [48]:

MRE =
Observed CD (θobs)

c × n × l × 10
(7)

where θobs is the measured ellipticity in millidegree, “n” is the number of amino acids
residues, “l” is the path length of the cuvette (cm), and “c” is the molar concentration of
protein. The α-helical content of HSA was determined by equation [48]:

α-helical content(%) =
[MRE208 − 4000]
[33, 000 − 4000]

× 100 (8)

where MRE208 is the mean residue elasticity (MRE) at 208 nm.
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3.4.6. Thermal Stability Studies of HSA and the HSA-QTP System

The thermal stability of HSA without and with QTP was investigated using fluores-
cence measurements. The fluorescence spectra of the HSA (5 µM) and HSA-QTP (50 µM)
complex were recorded (300–400 nm upon excitation at 295 nm) in the temperature range
25–80 ◦C (with 5 ◦C intervals). The solution mixture (HSA-QTP) was incubated for 1 h at
25 ◦C before fluorescence measurements.

3.4.7. HSA Esterase Activity (E.A.) Assay

The influence of QTP on the esterase activity of HSA was investigated by estimating
the formation of p-nitrophenol [40]. The E.A. analysis is based on the fact that 4-nitrophenyl
acetate (P-NPA) interacts with HSA and generates 4-nitrophenol (maximum absorption at
400 nm) [49,50]. For this experiment, the concentration of P-NPA (5 µM) and HSA (5 µM)
was fixed, and the concentration of QTP increased (0–75 µM).

3.4.8. Molecular Docking between HSA and QTP

The mechanism of QTP binding with HSA has been predicted by molecular docking
using AutoDock Vina [51]. The molecular structure of HSA (PDB ID: 1AO6) and QTP
(Chem-Spider ID 4827) was obtained from Protein Data Bank (PDB) and Chem-spider,
respectively. In the docking protocol, a grid box size of 60 × 60 × 60 with coordinates set
to x = 45, y = 12, and z = 18 was built to cover the entire protein. All other parameters
were maintained to the default setting. The docked structure of the HSA-QTP system was
analyzed with Discovery studio.

4. Conclusions

In the present study, the antipsychotic drug QTP was characterized for its binding
interaction to HSA using spectroscopic and biochemical methods and computational ap-
proaches. The results obtained from the QTP-HSA binding interactions showed moderate
binding affinity of QTP toward HSA. In addition, the involvement of hydrogen bonding
and hydrophobic interactions was observed. The spectroscopic studies suggest a complex
formation between QTP and HSA, and the system follows a static quenching mechanism.
Conversely, the thermodynamic parameters of the HSA-QTP system calculated via fluo-
rescence spectroscopy at different temperatures indicate a spontaneous and exothermic
process and indicate the predominant forces to be hydrophobic interactions.

Further, the site-displacement assay and molecular docking results confirm the QTP
binding region at subdomain IB of HSA. The CD spectra and UV-Vis spectroscopy identified
changes in the secondary structure of HSA upon its interaction with QTP. In addition, QTP
did not inhibit the esterase-like activity of HSA. This study is essential and is expected to
help understand the drug’s mechanisms and pharmacokinetics for further clinical research
and novel drug delivery systems.
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