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Abstract: Adrenocortical carcinoma is a heterogeneous and aggressive cancer that originates from
steroidogenic cells within the adrenal cortex. In this study, we have assessed for the preclinical
gold standard NCI-H295 in direct comparison with the more recently established MUC-1 and a here
newly reported ACC cell line (TVBF-7) the mutational status of important driver genes (TP53, MEN1,
PRKAR1A, CTNNB1, APC, ZNRF-3, IGF-2, EGFR, RB1, BRCA1, BRCA2, RET, GNAS and PTEN),
Wnt-signaling specificities (CTNNB1 mutation vs. APC mutation vs. wildtype), steroidogenic-
(CYP11A1, CYP17A1, HSD3B2, HSD17B4, CYP21A2, CYP11B1, CYP11B2, MC2R, AT1R) and nuclear-
receptor-signaling (AR, ER, GCR), varying electrophysiological potentials as well as highly individual
hormone secretion profiles (Cortisol, Aldosterone, DHEA, DHEAS, Testosterone, 17-OH Progesterone,
among others) which were investigated under basal and stimulated conditions (ACTH, AngII, FSK).
Our findings reveal important genetic and pathophysiological characteristics for these three cell lines
and reveal the importance of such cell-line panels reflecting differential endocrine functionalities to
thereby better reflect clinically well-known ACC patient heterogeneities in preclinical studies.

Keywords: adrenocortical carcinoma cell lines; steroidogenesis; electrophysiology; genotype;
NCI-H295; MUC-1; TVBF-7

1. Introduction

Adrenocortical carcinoma (ACC) is a rare and aggressive cancer that originates from
steroidogenic cells within the adrenal cortex with an estimated incidence of 0.7–1 cases
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per million of the population per year [1]. ACCs demonstrate heterogeneous steroid
secretion patterns producing hormones such as mineralocorticoids, glucocorticoids and
androgens or secrete precursor metabolites, deriving from intermediate steps along the
three major adrenocortical biosynthetic pathways ([2], Figure 1). Only in rare cases ACCs
are biochemically inactive and the elucidation of the steroid profile of ACCs is important in
diagnostic, but also in therapeutic level.
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In recent years, steroid profiling of patient plasma or 24-h urine samples have been de-
veloped and provide steroid metabolomic information via liquid chromatography tandem
mass spectrometry (LC–MS/MS) or gas chromatography mass spectrometry (GC-MS) [3,4].
Those tools combined with machine-learning based approaches have resulted in the identifi-
cation of distinct malignant steroid “fingerprints” for ACC, which could differentiate benign
from malignant adrenal tumor [2,3], but also be used as biomarkers and as a screening tool
for early identification of tumor recurrence [5]. On the other hand, steroidogenesis is the
direct or indirect target of action of drugs used as chemotherapeutics in patients diagnosed
with ACC, with main representative the gold standard medication: mitotane [6,7].

To date preliminary data obtained for mineralocorticoids and glucocorticoids show
that the steroidogenic pattern could be related with the disease outcome [8–10]. However,
detailed mechanistic insights are lacking and as indicated above, also androgens and
androgen receptor signalling is commonly present in ACC. The androgen receptor (AR)
is a ligand-activated transcription factor that plays an important role in the context of
various severe diseases. The AR is already a therapeutic target for prostate cancer and
is also emerging as a new marker and potential therapeutic target for breast cancer. The
availability of selective AR inhibitors (e.g., bicalutamide, enzalutamide, apalutamide)
approved for the treatment of prostate cancer might have, thus, potential to be translated
to other endocrine cancers. However, for breast and prostate cancer AR-signalling appears
to have different functions according to the specific subtype [11], and disease stage [12].
Steroid hormones other than the classical ligands testosterone and dihydrotestosterone
may be in this context also of interest considering their potential role in the development of
resistance mechanisms [12].

However, important pre-requisite for detailed mechanistic and therapeutic studies are
preclinical models. Considering that primary cell cultures from adrenal tumors are, due to rarity
of this tumor type, overall limited, many groups have attempted to establish cell lines from ACCs
and currently different ACC cell lines are meanwhile available [13–17]. The most implemented
model for the study of steroidogenic gene expression and chemotherapeutic responsiveness in
ACC until today is NCI-H295, which was established in the early 1990s from Gazdar et al. from
a female patient diagnosed with a primary ACC [14]. Extensive in vitro studies have shown
that the original line NCI-H295 expresses in baseline all the enzymes participating in normal
human adrenal steroidogenic gene expression, including the enzymes that catalyse the rate-
limiting steroidogenic step (STAR and CYP11A1) and all the major biosynthetic steroidogenic
enzymes (CYP17, HSD3B2, CYP21, CYP11B2, CYP11B1 and HSD17B4) and retain, thus, the
general potential to produce all major adrenal steroids. Considering that adrenocortical cells
are, normally, excitable cells, the precise control of the membrane voltage is very important
for the initiation of steroid synthesis. However, in context of steroidogenesis it should be also
mentioned that clinical ACC cases of combined mineralocorticoid and glucocorticoid secretion,
as reflected by NCI-H295, are comparably rare. Thus, from a clinical point of view, these
cells do maybe not represent the most common phenotype in terms of ACC functionality [18].
Likewise, combined mutations in the two ACC driver genes TP53 and CTNNB1, as described
for NCI-H295, is for ACC clinically rather rarely observed [19]. However, due to a lack of ACC
models for many years, comprehensive data from additional human models reflecting diverse
subtypes are nowadays for many aspects still lacking.

A recently developed, highly emerging model in this field is MUC-1, which has been
established as patient-derived tissue xenograft and cell line from an ACC neck metastasis
of a male patient [15]. MUC-1 was previously presented to be SF-1 and 3βHSD positive and
mice bearing MUC-1 xenografts had increased plasma cortisol [15]. Meanwhile, MUC-1
has been implemented in a variety of preclinical ACC studies and demonstrated repeatedly
a different response pattern and clinically frequently observed drug resistance phenotype
compared to NCI-H295R [20–29].

Here, we describe the development and characterization of a new ACC cell line, named
TVBF-7, which is carrying a nonsense APC and represents functional signs of autonomous
cortisol secretion. In a comprehensive study, we investigate TVBF-7in direct comparison
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to NCI-H295 and MUC-1 regarding mutational status of main driver genes, steroidogenic
signaling, electrophysiological properties as well as secretion profiles and reveal patterns
of genetical, steroidogenic distinct and highly relevant pathophysiological ACC sub-types.

2. Materials and Methods
2.1. Cancer Cell Lines

NCI-H295R cells were originally obtained from ATCC while MUC-1 cells were previ-
ously established by our group [15]. Both cell lines were authenticated again in December
2020 by Microsynth (Balgach, Switzerland) and maintained as previously described [15].
Additionally, the novel cell line described as TVBF-7 was authenticated for multiple pas-
sages at the universities Zurich and Brescia (Balgach, Switzerland, and BMR Genomics,
Padova, Italy). The cells were cultured in advanced D-MEM-F12 (#12634010, Gibco,
Waltham, MS, USA), 10% FBS (#10082147, Gibco), 1% penicillin-streptomycin (#15070063,
Gibco), 1% amphotericin B (#15290026, Gibco) and 2 mM glutamine (#A2916801, Gibco).

2.2. Whole Genome Sequencing and Genomic Data Presentation

Whole genome sequencing (WGS) for NCI-H295R, MUC-1 and TVBF-7 cells has been
performed and standard bioinformatic analysis has been carried out (BGI, Shenzhen, Guang-
dong, China). The filtered reads were aligned to the human reference genome (UCSC build
HG19) using Burrows-Wheeler Aligner (BWA) software. Single Nucleotide Polymorphisms
(SNP), insertions and deletions (InDel) and copy number variations (CNVs) have been
annotated (SnpEff tool: http://snpeff.sourceforge.net/SnpEff_manual.html (accessed on
19 July 2021) and VEP tool: https://asia.ensembl.org/info/docs/tools/vep/index.html
(accessed on 19 July 2021)) and filtered as presented in detail in the Supplementary File.
The data were delivered post-analysis in vcf files, which were further assessed by the use
of EmEditor (Washington, DC, USA) for the generation of the information provided in
Figure 2B and in the Supplementary Table S3.
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2.3. Stimulation Experiments

On the treatment starting day, the cell medium was removed, and the cells were
washed with PBS and then treated with the following agents: potassium chloride (KCl)
(5, 10, 20 mM concentrations added on top to the baseline K+ concentration contained in the
medium calculated to around 5 mM), (#P5405, Sigma-Aldrich, Buchs, Switzerland), AngII
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(20, 100, 250 nM) (#A9525, Sigma-Aldrich), ACTH (5, 15, 25 nM) (#A0423, Sigma-Aldrich)
or FSK (5, 10, 25 µM) (#F3918, Sigma-Aldrich). Each concentration of the samples and
each control was included in triplicate. The plates were incubated at 37 ◦C and 5% CO2
for 24 h, and then either processed for quantitative Real-Time PCR in 24-well plates (TPP
#92024; NCI-H295R (200,000/well), MUC-1 cells (85,000/well), TVBF-7 (180,000/well))
or for steroid measurements in the cell supernatant with simultaneous protein quantifi-
cation within the cells in 6-well plates (TPP#92006; NCI-H295R (1,000,000/well), MUC-1
(425,000/well) and TVBF-7 (750,000/well)).

2.4. Quantitative Real-Time PCR

After 24h of stimulation, cells were prepared for total RNA isolation, genomic DNA
removal and cDNA generation as previously described [20]. For real-time PCR analy-
sis, EvaGreen® reaction mix (#1725200, Bio-Rad, Hercules, CA, USA) in QuantStudio5
(applied biosystems, Waltham, MS, USA) was used. The primers used are described in
Supplementary Table S2. Differences in the threshold cycle (Ct) values between the GAPDH
housekeeping gene and the gene of interest (∆Ct) were then calculated as an indicator of
difference in the amount of mRNA expressed, corrected for the efficiency of the reaction
previously acquired via standard curve.

2.5. Liquid Chromatography Tandem Mass Spectrometry (LC–MS/MS) Steroid Measurements

After 24h of stimulation, cell supernatant was collected, directly frozen on dry ice and
stored at. −80 ◦C. A whole panel of steroid metabolomics was determined by LC–MS/MS
as described previously (Peitzsch et al., 2015). The results were provided in concentration
(ng/mL). As blank the respective medium supernatant for similarly treated but cell free
wells was used for untreated and stimulated conditions. For this experiment, the following
concentrations have been used: KCl 10 mM, AngII 100 nM, FSK 10 µM and a low (l) and a
high ACTH (h) concentration corresponding to 10 and 50 nM, respectively.

2.6. Protein Quantification

Protein samples from the wells used for supernatant collection were acquired, following
the same order. More specifically, cell proteins were extracted in RIPA buffer (50 mM Tris
pH 8.0, 150 mM NaCl, 0.01 v/v NP-40 #74385, Sigma-Aldrich, St. Louis, MI, USA), 0.005 v/v
sodium deoxycholate (#D6750, Sigma-Aldrich), and 0.001 w/v SDS (#2326.3, Roth, Karlsruhe,
Germany) supplemented with a complete protease inhibitor cocktail (#11836170001, Roche,
NY, USA) and phosphatase inhibitor cocktail (#P5726, Sigma-Aldrich). The homogenized
lysate was centrifuged at 16,000× g for 15 min and protein concentration was quantified by
Pierce BCA Protein Assay (#23225, Thermo ScientificTM, Reinach, Switzerland) following the
manufacturer’s recommendations.

2.7. Electrophysiological Studies

For whole-cell automated patch clamp, NCI-H295R, MUC-1 and TVBF-7 cells were
grown until ~80% confluency. Cells were used immediately after detaching with Accutase
(Sigma-Aldrich, Buchs, Switzerland) and resuspended in an extracellular solution contain-
ing (in mM) 135 NaCl, 1.8 MgCl2, 1.8 CaCl2, 10 HEPES, 5 KCl, pH 7.4 adjusted NaOH/HCl.
3.0 × 106 cells/mL and then directly added to the centrifuge tube of the QPatchII auto-
mated patch clamp platform (Sophion Bioscience, Ballerup, Denmark). 48X single hole
QChips with a resistance of ~2 MΩ were used for experiments with an intracellular solu-
tion containing (in mM) 95 K-gluconate, 30 KCl, 4.8 Na2HPO4, 1.2 NaH2PO4, 5 glucose,
2.38 MgCl2, 0.73 CaCl2, 1 EGTA, 3 Mg-ATP, pH 7.2 adjusted KOH/HCl. No seal enhancer
and no liquid junction potential correction (11 mV measured for the solution pair) was
used. Only cells maintaining a seal resistance of >0.5 GΩ, and with stable access resistance
throughout the experiment, were used. After obtaining the whole-cell patch clamp, the
extracellular solution was exchanged twice with solution containing 5, 15, 50 mM K+ and a
protocol including 20 mv voltage steps (−100 to +80 mV, holding potential −60 mV, 200 ms)
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was applied every 50 s. The osmolality of the extracellular solution was kept constant by
proportionally decreasing the concentration of NaCl for increasing concentrations of KCl
(e.g., in mM 135 NaCl + 5 KCl or 90 NaCl + 50 KCl). Current density was calculated using
steady state current (average of last 100 ms of each step) divided by the cell capacitance
measured immediately before each protocol. For the effect of AngII (20 nM), FSK (5 µM)
and ACTH (5 nM), cells were washed twice with extracellular solution containing 5 mM
K+ before the application of the effector. Voltage protocols including 20 mv voltage steps
(−100 to +80 mV, holding potential −60 mV, 200 ms) was applied. For each treatment,
currents and reversal potential were measured.

2.8. Statistical Analysis and Graphical Designs

Statistical analysis and graphical representation of the data was carried out using
GraphPad Prism software (version 8, GraphPad Software, La Jolla, CA, USA). If not
stated otherwise, comparison between control group and two or more treatment groups
or between cell lines (mean of each) were performed by one-way ANOVA followed by
Dunnett’s multiple comparisons test. The data are presented in column graphs depicting
the mean ± SEM. The statistical significance is denoted as stars in the graphs (* p < 0.05;
** p < 0.01; *** p < 0.001).

For the representation of the graphical abstract of Figure 1, the figures created by
modifying an image set from Servier Medical Art (SMART) http://smart.servier.com/
(accessed on 19 July 2021), which is cited appropriately.

3. Results
3.1. Establishment of a Novel Cancer Cell Line, TVBF-7

Recently, ACC primary cells (primary culture ACC115m [27]) have been isolated from
a lymph node metastasis from a male patient without clinically obvious signs of steroid
excess, while no functional testing has been performed. When the cells were found to
be continuously passageable, the cells were further cultured for multiple passages at the
university of Brescia (to date P 34) and remained stable as confirmed by cell authentication
performed via STR profiling in passages 7, 14, 16, 23, and 29 (Supplementary Table S1).
After transfer to the University of Zurich, the cells were cultured during the subsequently
described experiments and again authenticated by STR-Analysis (Figure 2A). The newly
established and characterized ACC cell line has been named TVBF-7.

3.2. Mutational Status of Important Driver Genes

The mutational status of TVBF-7 in main driver genes (TP53, MEN1, PRKAR1A,
CTNNB1, APC, ZNRF-3, IGF-2, EGFR, RB1, BRCA1, BRCA2, RET, GNAS and PTEN) has
been assessed vs. NCI-H295R and MUC-1. In Figure 2B, the most critical mutations are
presented, a full panel of findings is provided in the Supplementary Materials. The main
differences were detected regarding Wnt-signaling pathway regulators, as our analyses
revealed for TVBF-7 a nonsense mutation in APC (Figure 2B). For NCI-H295R, the known
CTNNB1 mutation was confirmed while MUC-1 represented the wild type for both genes.
Moreover, the analysis revealed TP53 WT for TVBF-7 compared to the TP53 mutated
genotypes of NCI-H295R and MUC-1. For BRCA2 a missense mutation was found for
NCI-H295R exclusively.

3.3. Baseline Gene Expression Levels and Electrophysiological Properties

Interestingly, comparative characterizations of baseline gene expressions revealed for
TVBF-7 much higher levels of Melanocortin 2 Receptor (MC2R) compared to NCI-H295R
(NCI-H295R: 100.0 ± 3.9% vs. MUC-1: 0.4 ± 0.1% vs. TVBF-7: 301.4 ± 18.1, p < 0.001 for all
comparisons), but lower for other hormonal receptors (Angiotensin II receptor type 1-AT1R,
Estrogen Receptor 1-ER1, Androgen Receptor-AR and Gonadotropin-Releasing-Hormone
Receptor-GNRHR). MUC-1 demonstrate overall rather low or intermediate (Glucocorticoid
receptor) baseline expression (Figure 3A). In accordance, also CYP11B1-expression was

http://smart.servier.com/


Cells 2022, 11, 1439 7 of 17

extraordinary high in TVBF-7 (NCI-H295R: 100.0 ± 3.2%, MUC-1: 0.0 ± 0.0% mV and
TVBF-7: 20555.1 ± 991.4%, p < 0.001 for all comparisons) and CYP11A1, while for MUC-1
the basal gene expression was found to be overall low or undetectable (Figure 3B). For
CYP17A1, HSD3B2, HSD17B4, CYP21A2 and CYP11B2 baseline gene-expression was
demonstrated to be highest in NCI-H295R.
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and GCR) of unstimulated cells (A). Baseline gene expression levels of steroidogenic enzymes (CYP11A1,
CYP17A1, HSD3B2, HSD17B4, CYP21A2, CYP11B2 and CYP11B1) (B). Comparative depiction of the
reversal potential in baseline (5mM KCl) and upon stimulation with total 15 and 50 mM KCl for all three
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cell lines (C). Mean current densities in baseline (5mM KCl) and upon stimulation
with total 15 and 50mM KCl for NCI-H295R (n = 51), MUC-1 (n = 39) and TVBF-7
(n = 26) cells at 80 mV (D). Stimulation of the first steroidogenesis steps among the different cell lines
and upon different stimulations. CYP11A1 (E), HSD3B2 (F) and CYP17A1 (G) gene expression levels
upon FSK stimulation per cell line. Hormonal production of 17-OH progesterone (H) in ng per mg of
total protein for unstimulated cells in comparison with KCl, AngII, FSK and two different ACTH
stimulations. Stars represent significance vs. untreated cells (** p < 0.01; *** p < 0.001).

Next, the baseline cell sensitivity to potassium (K+) was tested electrophysiologically. All
cell lines responded to increased concentrations of KCl with depolarization, as shown by the
changes in the reversal potential, used as a marker of the resting membrane voltage (Figure 3C,
NCI-H295R (n = 28–43), MUC-1 (n = 25–28) and TVBF-7 (n = 24–28)). In the overall presentation
for all cell lines, these results are indicated as not-significant for MUC-1, but when the data
were analyzed with paired t-tests and not as pooled means, the significances were highlighted
also in case of MUC-1 (data not shown). Of note, TVBF-7 tend to be the most hyperpolarized
(NCI-H295R: −32.11 ± 4.91 mV, MUC-1: −34.74 ± 3.42 mV and TVBF-7: 41.06 ± 4.52, p > 0.05
for all comparisons). Considering that, in the presenting data, the liquid junction potential has
not been subtracted (calculated around 11 mV for the current setting), the resting membrane
voltage of the TVBF-7 cells demonstrates overall the closest value to the known hyperpolarized
standard for adrenal cells (around −80 mV). For the same experimental setup, the membrane
currents for different KCl concentrations tested at 80 mV remained insignificant for NCI-H295R
(n = 51), MUC-1 (n = 39) and TVBF-7 (n = 25) cells (Figure 3D).

3.4. Stimulation of the First Steps of Steroidogenesis upon Known Stimuli: TVBF-7 Are Unresponsive

Next, we investigated if the cells respond to known stimulators of steroidogenesis such
as KCl, AngII, ACTH and FSK, using FSK as a known inducer of overall steroidogenesis
by increasing intracellular cAMP levels. Indeed, FSK stimulation resulted in induction
of gene expression of the rate-limiting and first main steps of steroidogenesis (CYP11A1,
HSD3B2 and CYP17A1) in NCI-H295R and also MUC-1 cells, while TVBF-7 remained
unresponsive (Figure 3E–G). Interestingly, MUC-1 cells responded upon FSK stimulation
here even more intensely than NCI-H295R cells. In agreement with these findings, the
investigation of 17-OH- Progesterone detected by LC–MS/MS revealed significant increases
for NCI-H295R and MUC-1, but not for TVBF-7. Progesterone levels increased for MUC-1
only (NCI-H295R: untreated 0.0 ± 0 vs. FSK 0.0 ± 0 ng/mg protein; MUC-1: untreated
1.6 ± 0.03 vs. FSK 6.8 ± 0.12 ng/mg protein, p < 0.001; TVBF-7: untreated 0.12 ± 0.025 vs.
FSK 0.13 ± 0.009 ng/mg protein, p > 0.999; Supplemental Figure S3).

3.5. Mineralocorticoid Pathway Stimulation Reveals Dysregulated and Distinct Patterns among
the Cell Lines

Next, we have assessed the response of candidates and products of the mineralocorti-
coid pathway. Hence, stimulation with KCl, AngII and ACTH induced CYP11B2 expression
(Figure 4A–C) in NCI-H295R cells but not in TVBF-7 cells while the enzyme expression was
undetected in MUC-1. ATR1 gene expression was induced only in NCI-H295R cells upon
AngII stimulation (Figure 4D) but not in the other cell lines and not upon KCl or ACTH
stimulation (data not shown). The induction towards mineralocorticoid phenotype, though,
was not depicted in the hormonal secretion profile within 24 h, since an aldosterone increase
was detected for none of the cell lines and 18-OH corticosterone production in NCI-H295R
cells upon FSK stimulation only (data are provided in the Supplementary Materials).

AngII stimulation of cells for 5 min (300 s) did furthermore not result in statistically
significant changes in reversal potential (Supplemental Figure S4), but regarding membrane
currents, various cells responding at different time points and/or consecutive responses
of the same cell were detected (change in current density >2 fold of baseline; Figure 4E).
Having isolated the responders, we could furthermore observe NCI-H295R (n = 3/20)
increasing their currents at 80 mV after the first 50 s of stimulation and again, with less
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intensity in later time points, while MUC-1 (3/16) and TVBF-7 (2/17) responded at 100 s or
later (Figure 4F).

3.6. Responsive, Non-Producing and Autonomous Secretion Detected Regarding the
Glucocorticoid Production

Next, the glucocorticoid production, respective steroidogenic gene and receptor stimu-
lation upon ACTH and FSK stimulation was investigated. While the cells did not show
any clear response in terms of reversal potential in the conditions measured (data are in the
Supplementary Materials), ACTH stimulation revealed some electrophysiological respon-
ders with excessive change in the currents at 80 mV, surprisingly mostly deriving from the
MUC-1 (n = 3/8) and TVBF-7 (n = 4/18) and not from NCI-H295R cells (n = 0/15) cells.
However, a cell-to-cell analysis did not reveal a specific response pattern (Figure 4G,H). In
contrast, upon FSK stimulation, NCI-H295R (n = 2/16) and MUC-1 (n = 4/15) responded
with increases in the current density reaching to a maximum 200 s upon the beginning of
FSK stimulation (Figure 4I,J).
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expression upon AngII (A), ACTH (B) and KCl (C) per cell line as well as AT1R expression upon
AngII stimulation (D). Scatter dot representation of the fold change of the current densities versus
baseline at 80 mV for 5 min (300 s) of AngII stimulation cumulatively for all cells per time point
aiming to divide the responders (>2 fold change, marked with red) from the non-responders (E).
Representation of the fold change of the currents of the responder cells in conjunction with time
for the AngII stimulation (F). Scatter dot representation of the fold change of the current densities
versus baseline at 80 mV for 5 min (300 s) of ACTH stimulation cumulatively for all cells per time
point aiming to divide the responders (>2 fold change, marked with red) from the non-responders
(G). Representation of the fold change of the currents of the responder cells in conjunction with time
for the ACTH stimulation (H). Scatter dot representation of the fold change of the current densities
versus baseline at 80 mV for 5 min (300 s) of FSK stimulation cumulatively for all cells per time point
aiming to divide the responders (>2 fold change, marked with red) from the non-responders (I).
Representation of the fold change of the currents of the responder cells in conjunction with time for
the FSK stimulation (J). Stars represent significance vs. untreated cells (** p < 0.01; *** p < 0.001).

NCI-H295R responded upon ACTH and NCI-H295R and MUC-1 upon FSK with
increase of the MC2R and CYP21A2 gene expression (Figure 5B,D,F) but only in NCI-H295R
this was also accompanied by an increase of CYP11B1 gene expression as well as elevation
in cortisol and 21-deoxycortisol secretion (Figure 5A,C,E,H). As already indicated before,
TVBF-7 demonstrated basally a profile represented by high basal glucocorticoid expression
with upregulated MC2R and CYP11B1 expression levels which was again confirmed by
extraordinary high basal cortisol (Figure 5E) and 21-Deoxycortisol (Figure 5H) levels.
However, in contrast to NCI-H295R they remained unresponsive upon ACTH and FSK
stimulation, which corresponds to an autonomous glucocorticoid secretion profile.

3.7. MUC-1 Induce Androgen Production and Upregulation of the AR

While NCI-H295R demonstrated basally very high androstendione (Figure 6C) and
TVBF-7 DHEAS levels (Figure 6B), only MUC-1 represented a remarkable stimulability and
downstream response in the context of androgens (Figure 6A,C,D) which was then by far
exceeding DHEA and also Testosterone levels of NCI-H295R and TVBF-7 (Figure 6A,D).
Apart from the above-mentioned distinct and around 200 s also specifically patterned
electrophysiological response of MUC-1 cells upon FSK stimulation, this was accompanied
by highly significant increases in expression of HSD17B4 (Figure 6E), androgen receptor
gene (AR, Figure 6F), gonadotropin releasing hormone receptor gene (GNRH, Figure 6J),
SF-1 (Figure 6I) and tendencies towards ER1-upregulation (Figure 6G) for MUC-1. Inter-
estingly, in the context of nuclear receptors also the glucocorticoid receptor was under
these conditions strongly upregulated for MUC-1 only. In contrast, HSD17B4 remained
unchanged, SF-1 was upregulated and AR and ER1 were conversely down-regulated for
NCI-H295R. For TVBF-7, again, all levels remained unchanged.
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Figure 5. Activation of the glucocorticoid pathway upon different stimulations. CYP11B1 and MC2R
gene expression upon ACTH (A,B) and FSK (C,D), respectively, per cell line. Hormonal production
of cortisol (E) in ng per mg of total protein for unstimulated cells in comparison with KCl, AngII,
FSK and two different ACTH stimulations. Activation of intermediate steroidogenesis steps upon
different stimulations. CYP21A2 gene expression upon FSK stimulation (F) per cell line. Hormonal
production of 11- (G) and 21-deoxycortisol (H) in ng per mg of total protein for unstimulated cells in
comparison with KCl, AngII, FSK and two different ACTH stimulations. Stars represent significance
vs. untreated cells (* p < 0.05; ** p < 0.01; *** p < 0.001).
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Figure 6. Androgenic pathway activation. Hormonal production of DHEA (A), DHEAS (B), An-
drostenedione (C) and Testosterone (D) in ng per mg of total protein for unstimulated cells in
comparison with KCl, AngII, FSK and two different ACTH stimulations. HSD17B4 gene expression
upon FSK (E) per cell line. Differential response of different hormonal receptor expression per cell
36 line upon FSK stimulation: expression levels of AR (F), ER1 (G), GCR (H), SF-1 (I) and GNRHR (J)
Stars represent significance vs. untreated cells (* p < 0.05; ** p < 0.01; *** p < 0.001).

Figure 6. Androgenic pathway activation. Hormonal production of DHEA (A), DHEAS (B), An-
drostenedione (C) and Testosterone (D) in ng per mg of total protein for unstimulated cells in
comparison with KCl, AngII, FSK and two different ACTH stimulations. HSD17B4 gene expression
upon FSK (E) per cell line. Differential response of different hormonal receptor expression per cell
36 line upon FSK stimulation: expression levels of AR (F), ER1 (G), GCR (H), SF-1 (I) and GNRHR (J)
Stars represent significance vs. untreated cells (* p < 0.05; ** p < 0.01; *** p < 0.001).
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4. Discussion

In our study, we have established a novel cell line, namely TVBF-7, which we character-
ized in direct comparison to the gold standard NCI-H295R and the highly emerging MUC-1
cells. In a first step, we investigated a large panel of known driver genes. Our data demon-
strate heterogenous genotypes. For TP53, e.g., we confirmed the known mutations for
NCI-H295R and MUC-1 [13] and newly characterized TVBF-7 to be a wildtype. Our studies
confirmed also the previously described activating CTNNB1 mutation for NCI-H295R [30].
For TVBF-7, we identified a non-sense APC mutation, while MUC-1 represented wildtype
in both genetic loci. Overall, our data suggest a cell panel that includes important tools for
preclinical mechanistic and therapeutic studies in the future. The Wnt/β-catenin pathway
is a target of many novel treatments suggested for ACC on a preclinical level [31]. Even
though a focus of great research, detailed mechanistic and therapeutic studies in a panel of
human cell lines naturally reflecting different genotypes are still lacking. Similar considera-
tions can be taken into account for TP53 or other potential candidates. Overall, the initial
genomic data revealed that the three cell lines cover important aspects of the mutational
heterogeneity met in patients with ACC [32].

In two therapeutic studies, NCI-H295R, MUC-1 and TVBF-7 (as primary culture
ACC115m) have been already implemented. Interestingly, independent from genetic status
both metastatic models often shared rather less therapeutic responsiveness compared to
NCI-H295R [27,29], a therapeutic phenotype which is already well known from further
studies implementing MUC-1 [20–23,25,26,28]. It should be mentioned in this context that,
in contrast to the primary derived chemo-naive NCI-H295R, both metastatic models were
obtained from EDP-M treated patients [15,27]. However, patients with advanced, metastatic
and pre-treated disease are the ones urgently requiring ongoing multi-chemotherapeutic
treatments, while early stages with a low risk of recurrence undergo in first-instance
surgery [1]. Thus, in the best case, preclinical platforms provide such patient tumor hetero-
geneities as various stages, therapeutic responsiveness, genotypes, hormonal phenotypes
and gender, among others.

Consequently, we went on with the investigation of other important aspects such
as steroidogenic signaling, secretion and, electrophysiological responsiveness using an
innovative and unbiased automated high-through-put patch-clamp system. Alongside
maintenance in characteristics of steroid producing cells such as the most hyperpolarized
reversal potential and sensitivity to increased potassium concentrations [33], our studies
revealed for TVBF-7 extremely high expression of MC2R, CYP11B1, cortisol and DHEAS
secretion at baseline. The cells were furthermore unresponsive to a selection of known
physiological stimuli. A profile comparable to autonomous cortisol secretion could be
found [34]. Hypercortisolism in such patients is often mild, and most patients lack typical
clinical features of overt Cushing’s syndrome. Likewise, TVBF-7 was derived from a
patient without obvious clinical signs of hormone excess [27]. However, a correlation
of APC inactivating mutations and elevated cortisol levels has been already previously
reported for patients with adrenal tumors [30,35].

In contrast, for MUC-1 which was also derived from a male patient tumor originally
diagnosed as hormonally diffuse with no clinical signs of steroid excess [15,36] at baseline
no parameter of steroid excess was detectable. Fittingly, MUC-1 demonstrated a profile
with comparably low steroidogenic activity and secretion. However, upon FSK stimulation
MUC-1 demonstrated the capacity to induce impressively strong main steroidogenic genes
such as CYP11A1, HSD3B2, CYP17A1 and also the upregulation of genes involved in
glucocorticoid metabolism such as MC2R and CYP21A2. Electrophysiologically, MUC-1
responded furthermore to FSK showing a clear pattern, which is in alignment with the
respective outcome for gene expression and hormonal levels. Interestingly, in previous
studies with MUC-1 xenografts and first passages after explantation from a female host,
MUC-1 demonstrated increased cortisol levels [15]. Hormonal patterns in ACC might be,
thus, conditional and inducible by a variety of local factors. Tumors, clinically considered
as not functional, might be thereby still able to lead to profound hormonal changes within
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the tumor-microenviroment, even if not leading to whole body excess. This finding could
be of high clinical relevance in the context of therapeutic treatments and responsiveness.
Moreover, also gender aspects could be involved. Data which are scarce in the literature
concerning the effects of gender on adrenal tumors [37]. However, it is known that cortisol-
secreting adrenal tumors are more often diagnosed in female patients [38]. Of note, SF-1 is
a key regulator of human sex determination [39] and its activation might lead to different
downstream effects in tissues of male and female origin.

Androgens, estrogens, and progestins are known as sex steroids. For prostate and
breast cancer mechanisms of sex-steroid hormone–regulated DNA damage repair is already
well known [40]. Recently, our group reported marked differences in DNA damage repair
leading to a rather drug-resistant phenotype for MUC-1 vs. NCI-H295R [20]. Together
with the data obtained from the current study, it is prudent to speculate about a potential
involvement of AR and its ligands in the drug resistant phenotype of MUC-1. Of note, the
AR was markedly differently regulated in NCI-H295R (down), MUC-1 (up) and TVBF-7
(unchanged). The main AR ligand testosterone was within the observed time-frame de-
tectable for MUC-1 exclusively, as well as an extraordinary increase in DHEA. DHEA is
known to augment AR levels, and, furthermore, is able to compete with dihydrotestos-
terone indicating intrinsic androgenic activity that is potentially independent of metabolic
conversion to other androgens and can affect gene function through the AR [41]. In contrast,
further studies demonstrate that androgenicity of DHEAS, which is instead rather elevated
in NCI-H295R and even more in TVBF-7, is negligible [42]. However, also other nuclear
receptors (ER and GCR) underly differential regulation in the various models. In this
context, it is relevant to mention that previous studies demonstrated at baseline higher
HSP90-abundance in MUC-1 compared to NCI-H295R, which was again correlated with
less therapeutic responsiveness towards therapeutic HSP90 inhibition for MUC-1 [22].
Overall, further studies will be required, to elucidate the underlying mechanisms of action
under varying conditions in more detail.

Interestingly, also HSD17B4 a gene with a dual role in steroidogenesis and fatty
acid oxidation is specifically upregulated for MUC-1 under FSK-conditions. HSD17B4
expression is known to increase in castration resistant prostate cancer, leading to metabolic
re-programming resulting in AR-stimulation and poor prognosis [43]. Furthermore, a
recent study reported a main role in the context of mitochondrial and peroxisomal fatty
acid oxidation and that the latter one can serve as a compensatory mechanism in case
of mitochondrial defects or overload [44]. This is in the specific context of great interest,
as we have recently reported significant differences in cholesterol storage between mi-
totane sensitive (NCI-H295R) and resistant (MUC-1) adrenocortical cells [21]. Furthermore,
upcoming data indicate strong differences in storage of cholesterylester-containing lipid
droplets (NCI-H295R) vs. triacyglycerol-LDs (MUC-1) and the appropriate differential
lipid-metabolism in this context [45].

In sum, the aim of the current study was to characterize NCI-H295R, MUC-1 and
TVBF-7 regarding their underlying heterogenic geno- and phenotypes, to thereby reveal
varying steroidogenic and down-stream signalling/secretion capacities and highlight their
significant, but not interchangeable values for new therapeutic and mechanistic studies by
representing various clusters known for ACC patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11091439/s1, Figure S1: AT1R gene expression upon increasing
KCl (A) and ACTH stimulation (B) and MC2R gene expression upon increasing KCl (C) and AngII
stimulation (D). Stars represent significance vs. untreated cells (*, p < 0.05; **, p < 0.01; ***, p < 0.001);
Figure S2: Hormonal production of Aldosterone (A), 18-oxo-cortisol (B), 18-OH-cortisol (C) and
11-deoxycorticosterone (D) in ng per mg of total protein for unstimulated cells in comparison with
KCl, AngII, FSK and two different ACTH stimulations. Stars represent significance vs. untreated cells
(*, p < 0.05; **, p < 0.01; ***, p < 0.001); Figure S3: Hormonal production of 18-OH-corticosterone (A),
Pregnenolone (B), Progesterone (C) and cortison (D) in ng per mg of total protein for unstimulated
cells in comparison with KCl, AngII, FSK and two different ACTH stimulations. Stars represent
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significance vs. untreated cells (*, p < 0.05; **, p < 0.01; ***, p < 0.001); Figure S4: Reversal potential
changes over time upon stimulation with AngII (A), ACTH (B) and Forskolin (FSK) (C) for all three
cell lines. Table S1: STR Profile at the University of Brescia; Table S2: Primers used in the Quantitative
Real-Time PCR; Table S3: Single-nucleotide polymorphism (SNP) findings for certain ACC and
general cancer genes filtered for mutations located in coding (exonic) regions, with exclusion of the
synonymous (silence) mutations.
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