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Abstract 

Colorectal cancer (CRC) is one of the most malignant cancers, and it tends to migrate to the liver and has 
a high mortality rate. Several mechanisms behind the metastasis of CRC have been identified, including 
hyperlipidemia. For example, hyperlipidemia can lead to enhanced stemness and neutrophil infiltration, 
which increases CRC metastasis. There are three primary aspects to the relationship between 
hyperlipidemia and CRC metastasis: hyperlipidemia (1) promotes the initial metastatic properties of 
CRC, (2) stimulates CRC cells to leave the vasculature, and (3) facilitates the development of CRC 
metastasis. In this study, we provide a comprehensive overview of the role that hyperlipidemia played in 
CRC metastasis to help reduce the mortality associated with CRC metastasis from the standpoint of 
metabolic. We also review cancer metastasis. 
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Introduction 
Colorectal cancer (CRC) is one of the most 

common neoplasms of the digestive system [1]. It is 
the third leading cause of cancer-related deaths in the 
United States [2]. The 5-year survival rate is >90% in 
patients with early-stage disease, compared with 
10–15% in patients with distant metastases [3]. The 
liver is the most important target site of CRC 
metastasis [4]. The progression of metastasis mainly 
involves three steps. First, the primary cancer cells 
disseminate locally into the vascular system. Second, 
circulating cancer cells can either be arrested by the 
innate immune system or extravasate through 
vascular walls into distant tissues. Finally, the 
micro-metastatic colonies settle in the parenchyma 
and proliferate further [5, 6]. There are several 
mechanisms closely related to CRC distant metastasis. 
For example, transforming growth factor-β (TGF-β) is 
a major inducer of epithelial-mesenchymal transition 

(EMT) program [7]. EMT program is considered as a 
crucial step in metastatic cascades by making CRC 
cells acquire migratory abilities [8]. Some factors, such 
as vascular endothelial growth factor (VEGF), 
contribute to vascular leakiness and therefore increase 
the rate at which cancer cells leave the vascular 
system and metastasize [9]. Recent studies have 
provided new insights into the profound influence of 
lipids, via distinct capabilities, on CRC metastasis. 
Some studies have indicated that hyperlipidemia can 
exacerbate several severe diseases such as 
cardiovascular disease, which remains the primary 
cause of mortality in Western countries [10, 11]. 
Recent epidemiologic studies have also suggested that 
lipid metabolism plays important roles in the 
development of many cancers, including prostate and 
breast [12, 13]. Furthermore, decreased concentrations 
of high-density lipoprotein cholesterol (HDL) have 
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been related to increased proinflammatory cytokines 
such as interleukin 6 (IL-6) and tumor necrosis 
factor-a receptors, which promote CRC cells growth 
and proliferation [14]. In the clinic, many 
epidemiological studies have demonstrated that 
several lifestyle choices that lead to high levels of 
lipids, such as high-fat diet (HFD) status, stimulate 
the CRC progression [15]. Clinical evidence suggests 
that statins can reduce the incidence of CRC-related 
mortality [16]. Therefore, it is worth understanding 
the mechanisms by which hyperlipidemia affects CRC 
metastasis. For example, a HFD lifestyle is responsible 
for increased CRC cell stemness, and enhanced 
stemness may stimulate the initial metastatic 
capability [17]. Similarly, a HFD status enhances 
macrophage infiltration, which promotes the 
migration of CRC cells to distant organs [18, 19]. IL-8 
acts as the obesity-induced inflammation, and a 
higher level of it is also associated with CRC 
metastasis [20]. In addition, enhanced level of 
insulin-like growth factor-1 (IGF-1) found in obese 
individuals accelerates formation of the liver 
metastasis microenvironment [21]. CRC patients who 
consume a HFD accumulate more reactive oxygen 
species (ROS), which eventually stimulate the 
progression of metastasis by degrading molecules 
such as PKC and protein tyrosine phosphatases [6]. 

Several mechanisms involving hyperlipidemia 
and CRC metastasis have been identified in clinical 
experiments. In addition to these well-known 
molecular changes that promote malignant behavior, 
this review highlights the most recent developments 
in our understanding of how hyperlipidemia affects 
CRC metastasis to the liver. 

Hyperlipidemia stimulates the initial 
migratory properties of CRC 

Cancer stem cells (CSCs) are an important 
driving force behind CRC metastasis [22, 23]. CSCs 
have the ability to self-renew and undergo 
multi-lineage differentiation [24, 25]; they also play a 
key role in both original tumorigenicity and the ability 
of tumors to migrate [26]. Moreover, the 
dissemination of CSCs may help metastatic colonies 
to form in distant organs and descendant cells to 
adjust to the new microenvironment [27]. CRC 
recurrence and metastasis after chemotherapy are 
sometimes the result of present CSCs [28]. 

Serum lipid levels play an essential role in the 
progression of CSCs. In the context of a HFD, CRC cell 
stemness can be enhanced by modifying signaling 
pathways and genetic expression. A HFD induces 
tumor progression by acting on the RBP4-STRA6 
pathway, which stimulates stemness by activating 
signal transducer and activator of transcription 3 

(STAT3) [17]. Low-density lipoprotein cholesterol 
(LDL) also enhances the expression of stemness genes 
including Sox2, Oct4, Nanog, and Bmi 1 [6]. Enhanced 
CRC cell stemness is required for the later stages of 
migration. 

It is generally accepted that the acquisition of 
pro-invasive capacities is associated with EMT [29]. 
The EMT program allows epithelial cells to acquire a 
mesenchymal phenotype [30], which involves loss of 
cell–cell adhesion, alteration of cytoskeletal 
organization, and loss of apical-basal polarity [31, 32]. 

 EMT can be activated in a variety of cancer cells 
[33], and enables cells to acquire stem cell-like features 
and the ability to migrate [34-36]. After activation of 
EMT, CRC cells can differentiate and become resistant 
to apoptosis [37, 38]. Moreover, cancer cells within the 
CSC-enriched subpopulation exhibit aspects of EMT 
program activation [32]. LDL has the ability to 
activate the MAPK pathway, which is an 
indispensable signaling cascade during EMT that is 
regulated by PKC and TGF-β/Smad signaling [6]. The 
MAPK pathway is also involved in a wide range of 
cellular responses, including cell proliferation, 
differentiation, and survival [39]. Consistent with 
these findings, lipids specifically affect the early 
metastatic seeding of CRC in distant organs. 

Hyperlipidemia promotes the departure 
of CRC cells from the vasculature 

Many cells within the bloodstream, including 
endothelial cells, platelets, lymphocytes, and 
neutrophils, promote metastasis [40, 41]. For example, 
after degranulation, mast cells (MCs) could secrete 
tryptase to degrade extracellular matrix (ECM) 
components to help the invasion and metastasis of 
CRC [42]. All of these cell types may protect cancer 
cells from immune attack, especially that involving 
natural killer (NK) cells and γδ T cells [43-45]. NK 
cells and γδ T cells are crucial for the innate immune 
response that initiates a series of immunological 
effects on cancer cells [46, 47]. Hypercholesterolemia- 
induced oxidative stress downregulates the 
expression of Tet1 in hemopoietic stem cells, resulting 
in increased DNA hypermethylation and histone 
modifications. This ultimately leads to dysfunction 
and reduced differentiation of NK cells and γδT cells, 
thereby causing an inadequate immune surveillance 
[45]. 

Hyperlipidemia is significantly correlated with a 
higher proportion of blood neutrophil [48, 49]. The 
accumulation of neutrophils is mainly the result of 
enhanced granulopoiesis and mobilization from the 
bone marrow, as well as increasing levels of CCR1, 
CCR2, CCR5, and CXCR2 [50]. Neutrophils are critical 
for cancer metastasis [51]. They can induce a leaky 
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vasculature and increase the attachment of cancer 
cells to endothelial monolayers via matrix 
metalloproteinase MMP9 and BV8, thereby 
facilitating the adhesion and extravasation of CRC 
cells via the vascular system [52, 53]. Neutrophils also 
capture circulating cancer cells, either by the cell 
surface molecule CD11b or by releasing neutrophil 
extracellular traps, which contributes to increased 
metastasis formation [41, 44, 54]. Neutrophils are also 
effectors of angiogenesis, since they provide CRC cells 
with more selective escape routes [55]. Therefore, 
neutrophils promote metastasis around the vascular 
system. 

Among immune cells, dendritic cells (DCs) are 
critically involved in CRC metastasis; they have the 
capacity of immune activation and the ability to 
recognize and absorb cancer cells [56]. Under the 
conditions of obesity and CRC, the adipocyte 
microenvironment delivers immunosuppressive 
signals to induce DC differentiation and shift DC 
immune surveillance toward T lymphocyte antigen 
presentation; these effects are mediated by increased 
expression of inhibitory molecules and decreased 
IL-12/IL-10 levels [57]. 

CRC patients with thrombocytosis (high platelet 
count) have a poor prognosis [58]. Platelets protect 
cancer cells from immune elimination and allow 
better adaption to the blood environment, adherence 
to endothelial cells, and migration of cancer cells [59, 
60]. In addition, central obesity status helps boost 
platelet activity in the circulation [61]. It activates 
platelets both locally and systemically via three main 
approaches [62]. First, obesity stimulates the 
production of ROS, result in increased isoprostane 
levels. Second, obesity increases the levels of 
inflammatory adipokines. Third, obesity leads to an 
increased platelet activity via the NO/cGMP/PKG 
and PGI2/cAMP/PKA pathways [62]. Activated 
platelets increase their adhesion to cancer cells, 
forming hetero-aggregates that promote metastasis; 
heterodimer formation occurs between platelet 
integrin αIIbβ3 and cancer cell receptors such as 
integrin αvβ3 [63]. 

Understanding the influence of the immune cells 
and platelets discussed here will provide more insight 
into how hyperlipidemia affects circulating tumor 
cells (CTCs) in CRC. CRC cells become CTCs once 
they enter the vasculature [64]. CTCs often exhibit 
both epithelial and mesenchymal traits that are a 
prerequisite for successful formation of a metastatic 
colony [5]. CTCs can potentially undergo necrosis in 
the bloodstream in response to high hemodynamic 
shear stress, which inhibits metastasis. In a 
hyperlipidemic state, the elevated levels of lipids 
would slow down the hemodynamics, and the 

resulting reduced flow shear stress would stimulate 
CTC migration [65]. 

Hyperlipidemia facilitates the formation 
of CRC metastases 

After exiting the vasculature, CRC cells are most 
likely to metastasize to the liver [66]. The formation of 
distant metastasis is correlated with several 
modifications, especially MMP9. 

At sites of metastasis, increased numbers of 
neutrophils release granules containing neutrophil 
elastase and MMP9, which remodel the ECM in the 
tumor microenvironment. This remodeling allows 
CRC cells to overcome the constraints of cell–cell and 
cell–matrix interactions and to migrate more freely 
[67]. Obesity also contributes to the recruitment and 
transformation of M1-macrophages into 
M2-macrophages [68]; this transformation is a 
metastasis-promoting phenotype that occurs in 
response to the immunosuppressive cytokines 
secreted by tumor tissues [69]. Taken together, these 
studies suggest that tumor-associated neutrophils and 
the macrophages involved in hyperlipidemia further 
accelerate CRC metastasis. 

In a metastatic microenvironment, high levels of 
plasma triglycerides, total serum cholesterol, and 
saturated fatty acids contribute to ROS-induced 
oxidative stress [70]. ROS are produced via 
intracellular metabolism and include superoxide, the 
hydroxyl radical, and H2O2 [71, 72]. ROS degrade 
molecules such as PKC and protein tyrosine 
phosphatases and regulate downstream molecules of 
MAPK and PAK, which are both involved in cancer 
migration [6]. 

Obese subjects have an increased risk of 
non-alcoholic fatty liver disease (NAFLD) [73]. 
NAFLD includes steatosis and its progression to 
non-alcoholic steatohepatitis [74]. The NAFLD 
provides a microenvironment that is more susceptible 
to CRC metastasis by secreting increased levels of 
various signaling molecules, including MMPs [75]. In 
addition, NAFLD is associated with liver cell injury 
and inflammation [76]. Inflammatory cells such as 
neutrophils might be recruited in the NAFLD and 
contribute to CRC progression [77]. 

The relationship between obesity and liver 
metastasis also involves circulating levels of IGF-1 
[21]. Obesity is accompanied by elevated circulating 
IGF-1 levels and insulin resistance [78-80]. IGF-1 is a 
procarcinogen produced mainly by the liver that 
regulates the host innate immune system [21]. It also 
reduces cancer cell death, enhances cell proliferation, 
influences the host microenvironment, and modulates 
the pro-inflammatory response to promote liver 
metastasis [81, 82]. 
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Table 1. The risk factors of the formation of CRC metastases in 
the presence of high lipid levels 

subjects Factors Results Risk of CRC 
metastasis 

 
 
 
 
high level of 
lipid status 

neutrophils↑ MMP9, NE, CD11b, 
NETs… 

↑ 

M1->M2 
(macrophages) 

metastasis-promoting 
phenotype 

↑ 

ROS↑ oxidative stress ↑ 
NAFLD Permissive 

microenvironment 
↑ 

IGF-1↑ Permissive 
microenvironment 

↑ 

  
The metastatic microenvironment in the liver 

also contains stromal cells and endothelial cells [83], 
which exert oxidative stress under conditions of 
hyperlipidemia. The interaction between oxidative 
stress and inflammation can stimulate metastasis. 
Obese subjects are apt to get increased circulating 
VEGF level as well [84]. The elevated level of VEGF is 
a predictor of liver metastasis. And a higher 
serum VEGF level represents a worse prognostic 
for patients with liver metastases [85]. In addition, 
PIGF/VEGFR-1 signaling in obese subjects contribu-
tes to a pro-cancer immune microenvironment [86].  

Collectively, high lipid levels further influence 
CRC metastasis by excreting increased levels of 
granules and stimulating the accumulation of ROS 
and IGF-1, which confer a special advantage to tumor 
cells and promote metastasis progression (Table 1). 

Conclusion: principles and outlook 
As the preceding discussions indicated, 

significant progress has been made over the past 
decade in elucidating the cellular, molecular, and 
signaling pathway programs that drive CRC liver 
metastasis. It is now evident that hyperlipidemia 
promotes the entry of CRC cells into the vasculature 
and their subsequent migration to the distant liver. A 
HFD lifestyle could enhance CRC cells stemness to 
promote their migration ability [17]. In vivo, lipids 
enhance platelet activation and the numbers of 
neutrophils to protect CRC cells from immune attack 
[48-50, 59, 60], thereby making it easier for cancer cells 
to escape from the vascular system. In a 
pre-metastatic microenvironment, hyperlipidemia 
facilitates liver metastasis via a variety of mechanisms 
including accumulation of tumor-associated 

neutrophils and ROS production 
(Figure 1) [6, 51]. Moreover, 
obesity, which is directly related 
to hyperlipidemia, is believed to 
be a risk factor for liver 
metastasis in CRC [21]. These 
observations provide novel 
insights into how lifestyle 
changes could help reduce the 
likelihood of CRC metastasis. 
For example, a low-fat diet and 
exercise are recommended to 
reduce the risk of metastasis. 
Clinical evidence showed that 
statins can reduce the mortality 
of CRC [16]. Statins are known to 
be the inhibition of Ras signaling 
and may activate the bone 
morphogenetic protein (BMP) 
signaling pathway in CRC cells 
[87]. Therefore, we wonder 
whether we can target Ras or 
BMP signaling pathway to 
reduce CRC metastatic 
properties still need to be further 
explored. In conclusion, CRC 
metastasis is highly related to 
hyperlipidemia, and restoration 
of lipid levels may reduce CRC 
metastasis-associated mortality. 

 

 
Figure 1. The progression of CRC liver metastasis under hyperlipidemic conditions 
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