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Abstract

As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly
half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between
individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including
hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms
from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with
two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic
distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same
individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes
despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent,
presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential
mobile element insertion rate among populations.
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Introduction

Mobile elements: significance and current catalogs
Retrotransposons are endogenous genomic sequences that copy

and paste into locations throughout host genomes [1–3]. Most

mobile elements annotated in the human reference genome are

remnants of ancient retrotransposition events and are no longer

capable of active retrotransposition. However, a fraction of mobile

elements remain active and contribute to variation between

individuals in the human population. These active elements

belong almost exclusively to the Alu, L1, and SVA families of non-

LTR retrotransposons [4].

The Alu family is the most common mobile element in primate

genomes, with more than 1.1 million copies in Homo sapiens [5–7].

The sequence of a full-length Alu element is 300 bp long. Alu

elements are classified into a range of sub-families which have

different propensities for retrotransposition, and are identified

according to sequence alterations. Several AluY sub-families are

currently active and are responsible for the bulk of mobile element

insertion variation in Homo sapiens. The human reference genome

contains over 140,000 annotated AluY elements. After Alus, L1

insertions are the next most prevalent family of mobile elements.

There are over 500,000 L1 elements annotated in Homo sapiens. A

full-length L1 is a sequence of roughly 6 kb in length and the most

active L1 sub-family in the human lineage is L1HS [8,9]. There

are a little more than 1,500 L1HS annotated elements in the

human reference. A third family of mobile element are SVA

retrotransposons [10]. SVAs are hybrid elements of SINE, VNTR

and Alu components that range in size up to several Kb, with

more than 3,600 annotated SVA elements in the human reference

genome. SVA elements are thought to be the youngest family of

retrotransposons in primates [11]. Other less common classes of

mobile elements, such as DNA transposons, and endogenous

retroviruses are not the focus in this study.

Mobile element insertions (MEI) are known to generate

significant structural variation within Homo sapiens [12,13] and

have diverse functional impacts [14–16]. In vitro experiments

identified key features of Alu [17] and L1 [18] elements
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responsible for retrotransposon activity. The identification of MEI

variant loci in humans initially began with disease-causing

insertion events (e.g. hemophilia [19], breast cancer [20]).

Experimental approaches were based upon library screening and

small-scale PCR based display assays [21]. These approaches have

been augmented by comparisons of the NCBI and the HuRef

genomes [22,23], large scale fosmid-end sequences [24], and

targeted sequencing of element-specific PCR products [25–28].

The dbRIP database of MEI polymorphisms [29] currently

contains 2,691 polymorphic loci, enabling early estimates for the

total number of segregating events [25] and per-generation

mutation rates [23].

MEI polymorphisms can be detected either as insertions or as

deletions in samples relative to the reference genome. Mechanis-

tically, however, both types of observations are due to retro-

transposon insertion; precise excisions of mobile elements are

essentially non-existent [1]. Therefore MEI detected as deletions

are, in fact, retrotransposon insertions in the reference DNA and

can be verified as such by comparison with ancestral genomes.

Detection and genotyping properties of MEI detected as insertions

(‘‘non-reference MEI’’) and as deletions (‘‘reference MEI’’) are substan-

tially different. We present their respective properties separately

before combining the two detection modes into a unified MEI

analysis. The deletion detection methods and properties of the full

set of 1000GP deletions have been extensively described in the

1000GP CNV companion paper [30]. This allows us to focus on

specific properties of the reference MEI subset of those deletions.

Effective computational algorithms using second-generation se-

quencing data exist for identifying deletions [27,31,32], and have

been used to find MEI in particular [33]. Detecting non-reference

MEI directly as insertions from whole genome shotgun sequence

data poses a more challenging problem, owing to the inherent

difficulties associated with accurate mapping of sequenced reads

derived from highly repetitive regions of the genome. Only recently

have methods been developed for the purpose of non-reference

MEI detection from second-generation whole genome shotgun data

including published studies of L1 element insertions [34] and of Alu

insertions [35]. These studies adopted similar computational

approaches to one of our insertion detection methods (the read

pair method, see Materials and Methods) and have different

detection properties (Text S2 Comparisons, Figures S8, S9, S10).

Relative to previous studies, we present a broad analysis of

MEI variation in the human population; with more variant loci

detected, from the three major mobile element families, using

multiple detection methods, each with comprehensive experi-

mental validation (Table 1). The present study represents the

combined efforts of the MEI sub-group of the 1000 Genomes

Project and has been prepared as a companion to previous

1000GP pilot publications [30,36]. The MEI analyzed in this

study were included the 1000GP variant call release of July 2010

(ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/release

/2010_07), also provided as Table S1). The specific purpose here is

to provide a more detailed description of the methods, validation

experiments, and properties of the 1000GP catalog of MEI events,

and to extend the analysis by adding genotype information,

population allele frequencies, and population specific mutation

rates.

Results

Datasets analyzed
We analyzed two whole-genome datasets produced by the

1000GP, the low coverage pilot dataset consisting of 179

individuals sequenced to ,1–3X coverage and the trio pilot

dataset consisting of two family trios sequenced to high, ,15–40X

coverage (Table S2, Figure S4). These datasets included samples

from three continental population groups, 60 samples of European

origin (CEU), 59 African (YRI), and 60 Asian samples from Japan

and China (CHBJPT). The two pilot datasets were produced and

analyzed for complementary purposes. The trio dataset was used

for assessing detection methods in high coverage samples and for

the purpose of finding candidate de novo insertions in the trio

children. The high coverage dataset was used to assess population

properties of MEI. Both datasets contributed to the overall catalog

of events.

Detection of non-reference mobile element insertions
We developed two complementary methods for the detection of

non-reference MEI, a read-pair constraint (RP) method applied to

Illumina paired-end short read data, and a split-read (SR) method

applied to the longer read data from Roche/454 pyrosequencing

(Materials and Methods: non-reference MEI detection). Figure 1a

and 1b shows the respective detection signatures and examples of

event displays. Candidate MEI events were formed as clusters of

supporting fragments. A limitation specific to RP detection arises

from annotated elements within a characteristic read pair

fragment length of candidate MEI (Figure 1a). Read pairs

spanning from a uniquely mapped anchor into an annotated

mobile element with a fragment length consistent with the given

library fragment length distribution (Figure S5) are characteristic

of the reference allele and are not evidence for non-reference MEI.

These ‘‘background’’ read pairs occasionally have fragment

lengths on the extreme tails of the library distribution and can

potentially be misclassified as evidence for non-reference MEI. For

this reason RP detection criteria required at least two supporting

fragments spanning into the insertions from both sides of the

insertion. We also masked insertion positions within a fragment

length around each annotated element of the corresponding family

from RP detection in order to achieve a low false detection rate.

The SR method was not dependent on the fragment length

distribution in the 454 data so these additional detection criteria

were not required.

We applied the two methods to both 1000GP pilot datasets

(Table 1) separately, yielding a total of 5,370 distinct genomic MEI

loci, 33% of which were found by both SR and RP methods

Author Summary

We embarked on this study to explore the 1000 Genomes
Project (1000GP) pilot dataset as a substrate for Mobile
Element Insertion (MEI) discovery and analysis. MEI is
already well known as a significant component of genetic
variation in the human population. However the full extent
and effects of MEI can only be assessed by accurate
detection in large whole-genome sequencing efforts such
as the 1000GP. In this study we identified 7,380 distinct
genomic locations of variant MEI and carried out rigorous
validation experiments that confirmed the high accuracy
of the detected events. We were able to measure the
frequency of each variant in three continental population
groups and found that inherited MEI variants propagate
through populations in much the same way as single
nucleotide polymorphisms, except that MEI are more
strongly suppressed in protein coding parts of the
genome. We also found evidence that the MEI mutation
rate has not been constant over human population history,
rather that different populations appear to have different
characteristic MEI mutation rates.

Mobile Element Insertions: 1000 Genomes Project
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(Figure 1c). The overall level of detection overlap between SR and

RP methods is limited by detection sensitivity and specificity (see

below) and the number of samples sequenced by both 454 and by

Illumina read pairs.

Detection of reference MEI
In addition to the 5,370 non-reference MEI, we identified 2,010

reference MEI detected as deletions of mobile elements in samples.

The reference MEI events were selected from the full release set of

1000GP pilot deletions (n = 22025) [30,36] based on matching

deletion coordinates to RepeatMasker 3.27 Alu, L1, and SVA

annotations [6], and the requirement that the mobile element is

absent in the chimpanzee genome [37] (6x pan Trogodytes-2.1

assembly) at the corresponding positions in hg18 (Materials and

Methods: Reference MEI selection). Figure 1e shows an example

event display of an AluYb8 reference MEI, detected as a deletion

in the trio pilot data. All but one of the reference MEI were found

by one or more of the RP or SR deletion detection algorithms that

were part of the released 1000GP deletion call set [30,38–42] with

a small overlapping contribution from algorithms based on

assembly or read depth methods [43,44] (Figure 1d, Table S3).

Combined MEI catalog
The complete set of 7,310 MEI calls is simply the combined set

of reference and non-reference MEI over both pilot datasets

(summarized in Table 1, complete list in Table S1). Insertions

occurring at the same locus from different call sets were merged

using a 100 bp window for matching positions, choosing the SR

insertion coordinate when available to represent the merged event.

Similarly for reference MEI, deletion merging was accomplished

among the 23 separate 1000GP call sets using a precision-aware

algorithm described in detail in the 1000GP SV companion paper

[30]. The full catalog of MEI loci appear to be distributed

randomly across the genome (Figure 2b) with a characteristic

spacing of 0.4 Mb between MEI loci, except for an apparent MEI

hotspot in the HLA region of chromosome 6 where 19 MEI loci

are clustered in a 1 Mb region (8 times the genomic average

density for MEI, Figure S11). Accurate read mapping in the HLA

region is complicated by a high density of variation [36], however,

we see no evidence of falsely detected MEI here. The balance

between reference and non-reference MEI, proportions of RP and

SR detected loci, the fraction of previously identified MEI loci,

and the validation rate are all consistent with genomic averages;

only the density of MEI is significantly increased.

The genomic proportions of the three mobile element families

are 8562% Alu, 1262% L1, and 2.561% SVA (Figure 2b) for

both reference and non-reference MEI. Most non-reference MEI

loci were detected from the low coverage pilot data (Figure 2c)

while the reference MEI were more evenly distributed between the

low coverage and trio pilot data (Figure 2d). As described in the

1000GP main pilot paper [36], more than 80% of the non-

reference MEI were newly identified loci not detected by previous

studies [23–28,34,35,45]. However, in the mean time, several

published studies have produced new lists of non-reference MEI

loci including L1 insertions [34] and Alu insertions [28,35]. Half of

the non-reference MEI loci from this study have not yet been

reported elsewhere (Figure 2e, Figure S8). Table 1 of the 1000GP

paper lists 5,371 MEI, two of these events were subsequently

merged into one to form the present count of 5,370 MEI detected

as insertions. For reference MEI, we find that 76% of our events

matched deletion coordinates listed in the dbVAR (28 January

2011) structural variation database or a deletion identified in the

HuRef genome [22,46], leaving 24% of the reference MEI

unreported prior to 1000GP publications.

The 1000GP catalog of MEI variant sites includes all 7,310

detected loci, including those matching MEI from other

publications. Further comparisons among the recent MEI studies

are provided in Text S2.

Detection specificity and sensitivity
We benchmarked each of the four non-reference MEI call sets

(separate SR and RP call sets for the low coverage and trio pilot

datasets) to assess detection sensitivity and specificity. As MEI are

currently not suitable for microarray validation due to their highly

repetitive sequence, all validations were done by locus-specific

PCR. 200 loci were randomly selected from each of the four

insertion call sets. Using an automated pipeline [32], primer

design was possible for 746 loci (Table S4). In addition to the

randomly selected loci, other candidate loci were selected for

validation experiments in order to confirm SVA insertions (n = 7),

to test potential de novo insertions from the pilot 2 trio (n = 1), and

gene-interrupting events (n = 86 attempted), as well as for

algorithm training and testing purposes (n = 386). These additional

PCR results (Table S4a) were not used to assess false detection

Table 1. 1000 Genomes Project pilot data used for mobile element insertion discovery.

Non-reference MEI Reference MEI

Detection method Illumina RP 454 SR RP+SR Combined deletion detection algorithms

Dataset Low Cov Trio Low Cov Trio Total Low Cov Trio Total

Number of samples 138 6 22 2 156 169 6 175

Coverage per sample 2.2x 16.4x 2.0x 7.6x 3.0x 3x 25x 3.9x

Alu insertions 2882 1786 2420 1284 4500 1689 1420 1730

L1 insertions 345 192 396 172 792 193 170 206

SVA insertions 49 35 17 7 79 70 65 74

Loci PCR tested 193 186 182 185 746 - - -

Loci validated 183 182 173 174 712 1873 1615 1927

FDR (%) 5.261.6 2.261.1 4.461.6 5.561.1 4.560.8 - - -

Number of samples, average read coverage, detected loci, and validation results are shown. Non-reference MEI false detection rates (FDR) were based on validation
results at randomly selected loci. In addition to PCR validation, reference MEI were also tested for validation as deletions by local assembly. The FDR for reference MEI,
including the additional MEI selection criteria, is estimated to be ,10%.
doi:10.1371/journal.pgen.1002236.t001

Mobile Element Insertions: 1000 Genomes Project
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rates, except for the special case of SVA insertions, which were

under-represented in the random loci selection since SVA

insertions are relatively rare.

All candidate loci with successful primer design were tested on

two different population genetic panels (Materials and Methods:

Validation) one with DNA of 25 individuals from the low coverage

pilot, and one with DNA from all samples of the trio pilot dataset.

In addition to other human samples from populations not

represented by the pilot datasets, DNA of a chimpanzee was also

included on the panel to confirm that the identified insertion is

indeed human-specific. An example of typical results for a low

coverage locus is shown in Figure 3a. Through additional primer

design for loci with inconclusive results and PCRs using a primer

residing within the 39 end of a retrotransposon, in particular within

SVA elements, more than 98% of the tested candidate loci were

successfully genotyped. The validation experiments revealed

overall insertion false discovery rates for each dataset of less than

5% (Table 1). Among the different retrotransposon families (L1,

SVA, and Alu elements), false discovery rates varied noticeably

(Figure 3b), with Alu insertions showing the lowest false-positive

rate (2.0 [1.1–3.4] %, followed by L1s (17 [10–27] %), and SVAs

(27 [8–55] %) with 95% confidence intervals. This is not entirely

unexpected as polymorphic Alu insertions tend to be low

divergence full-length AluY elements, unlike L1 or SVA insertions

which tend to be truncated and may be accompanied by adjacent

transduced genomic DNA sequences. Although the SR and RP

detection methods are very different, the overall detection

specificities were remarkably consistent.

Following the validation of non-reference MEI, we assessed

detection sensitivity. The primary challenge here was to find

suitable gold standard non-reference MEI that should be present

in our samples from which to assess sensitivity. We estimated

Figure 1. MEI detection modes. a) RP signature for of non-reference MEI detection. The RP signature consists of Illumina read pairs spanning into
the element from each side of the insertion. The RP event display shows a heterozygous Alu insertion allele on chromosome 22 from the trio pilot
dataset. Fragment mapping quality is shown on the vertical scale. Horizontal grey lines show read pairs uniquely mapped at both ends with a
mapped fragment length consistent with the sequence library; the blue and red lines are read pairs spanning into an Alu sequence from the 59 and 39
ends. The green vertical line is the position of the insertion. Thick black lines near the top show annotated Alu positions. Red and blue reads
bracketing annotated elements are characteristic of mapping artifacts that we removed from insertion detection by masking out regions within a
fragment length of an annotated element of the same family as the insertion. b) Signature for SR-based insertion detection. Split-mapped 454 reads
span into the element sequence. The SR event display shows split reads spanning into an Alu insertion from the 59 (blue) or the 39(red) sides. The
vertical green line marks the insertion site. Fully mapped 454 reads are shown in gray. Gray reads that span the breakpoint correspond to the
reference allele. Note that the mapping quality increases with the length of the split-mapped segment. The red and blue segments overlap by
roughly 15 bp in the target site duplication region that brackets the MEI insertion. c) Overlap between non-reference MEI detected by RP and by SR.
d) Overlap between detection methods for reference MEI. Of the 23 1000GP deletion call sets, 11 were RP and 4 were SR. Also shown are the relative
proportions of events detected by assembly (yellow) and by read depth (gray) both of which had nearly 100% overlap with RP and SR calls. e) RP
signature for reference MEI detection. Read pairs with abnormally long mapped fragment lengths (in green) span over an AluYb8 annotation. The
event display shows RP evidence for a homozygous reference MEI in chromosome 22 from the trio dataset. The yellow line at the top marks
homologous regions from the chimpanzee assembly, with a gap at the precise location of the variant MEI.
doi:10.1371/journal.pgen.1002236.g001

Mobile Element Insertions: 1000 Genomes Project
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sensitivity in three different ways, as a consistency check. First, we

estimated sensitivity by using the high quality non-reference MEI

from HuRef [23] as a gold standard and found that 74% of the

650 Alu, L1, or SVA insertions in HuRef matched MEI insertion

loci in our catalog (Table S5). This represents a lower limit for

insertion detection sensitivity since not all MEI in the HuRef

genome are necessarily present in the 1000GP pilot samples. Next

we looked at the overlapping insertion detection between the RP

and SR methods in the trio children samples (Figure 3c, Figure

S6), which were the samples sequenced to the highest depth for

both Illumina and 454 data. Based on the detected loci overlap

(see Materials and Methods: Detection sensitivity), we estimate

67%63% and 70%67% sensitivities respectively for RP and SR

insertion detection in the trio children (Table S6), with a combined

SR+RP detection sensitivity exceeding 90% in the CEU trio child

(see Materials and Methods, Eq. 4) with high coverage data from

both 454 and Illumina reads.

A third approach to estimate for the non-reference MEI

detection sensitivity is based on the validation PCR genotypes in

the low coverage dataset. Since the PCR loci were selected as

random subsets for each RP and SR call set independently, the

validated sites selected from SR events can be used as a gold

standard to assess RP detection sensitivity, and vice-versa.

Detection sensitivity as a function of allele frequency (Figure 3d)

was estimated for each method from PCR genotypes at those loci

randomly selected for validation of the complementary method.

PCR genotypes provided the allele frequency estimate on the

abscissa. Statistical errors at high allele frequency are large

because the limited number of tested MEI loci at higher allele

frequencies. Detection sensitivity of the RP method saturates close

to 70% at high coverage and the SR method sensitivity exceeds

70% at high coverage (Figure S6). The corresponding trend is

apparent in Figure 3d. The combined detection sensitivity

approaches 90% for common alleles (Materials and Methods,

Eq. 4). However, since relatively few of the low coverage samples

were sequenced with 454, a realistic estimate for the detection

sensitivity to common MEI insertions is between 70% and 80%.

This is consistent with 75% derived from the HuRef gold standard

comparison and the sensitivity estimate from the trio pilot

overlaps. Equivalent estimates for Alu, L1, and SVA specific

sensitivities for common MEI alleles are 75%610%, 50%610%,

and 50%620% respectively (Table S9).

Figure 2. MEI catalog. a) MEI genomic distribution. Circos plot with non-reference MEI represented in blue and reference MEI in red. The outermost
ring of chromosomes show the cytoband structure. The outer histogram displays counts of Alu polymorphisms in bins of 5 Mbp, the middle ring L1
polymorphisms in bins of 10 Mbp, and the innermost ring SVA polymorphisms in bins of 20 Mbp. The radial scale of the site counts is the same for
each element type. b) MEI family breakdown. Non-reference MEI (blue) and reference MEI (red). c) Venn diagram of non-reference MEI from each pilot
dataset. Most of the loci were detected from the low coverage dataset (dark grey). d) Venn diagram of reference MEI from each pilot dataset. e) Venn
diagram of non-reference MEI from this study and other studies [23–29,34,35].
doi:10.1371/journal.pgen.1002236.g002

Mobile Element Insertions: 1000 Genomes Project
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Regarding reference MEI detected as deletions, the overall

validation rate from PCR and local assembly for the MEI

component of deletions was 96%. This does not imply that the

remaining 4% were false, only that the released set of deletions

contained reference MEI detected by two high specificity

algorithms with characteristic false detection rates less than 10%.

These algorithms did not require additional validation evidence in

the 1000GP release. A rough estimate for the false detection rate

for the MEI component of deletions is therefore 0.4%. The

number of algorithms supporting a given call is another indicator

of call quality. The average number of separate deletion calls (out

of a maximum of 23 call sets) supporting events in the MEI subset

was 7.8 while the average over all other deletions was 2.3 (Figure

S2). The high validation rate and high consensus among detection

algorithms indicate that this subset of deletions is relatively free of

detection artifact. The practical limitation on the specificity of

these events as reference MEI is the subsequent MEI selection

criteria. Only a small fraction the 2,010 selected events were

ambiguous in terms of matching coordinates to an annotated

mobile element with corresponding gap in the chimpanzee

genome assembly (e.g. Figure S3, bottom panel). The 1000GP

CNV paper identified 2029 reference MEI variants using the

BreakSeq algorithm. Overlap between the respective lists is 89%.

We estimate 10% as an upper limit on the false discovery rate for

reference MEI.

Detection sensitivity for reference MEI was estimated from the

fractions of gold standard reference MEI identified by Xing et al.

from HuRef [22,23,46], and reference MEI identified by Mills et

al. [4,47] from 1000GP samples NA12878 and NA12156 matched

to any of our 2,010 reference MEI (Table S5). In each case the

fraction of those MEI deletions found in this study exceeded 90%.

This level of detection sensitivity is considerably higher than the

bulk deletion detection sensitivity reported in the SV companion

paper [30], indicating that the RP and SR deletion detection

methods developed for the 1000GP were particularly well suited

for reference MEI detection.

Figure 3. Non-reference MEI validation and detection sensitivity. a) Example of PCR gel chromatograph validation results. At this site, three
of the 25 low coverage samples show two bands characteristic of heterozygous insertions. Two additional test samples (Pop80 and HeLa) also show
the insertion allele. b) False detection rate estimates based on PCR experiments at random sites, broken down by element type (Alu, L1, SVA),
algorithm (RP & SR), and dataset (LCP: low coverage pilot, TP: trio pilot). The false detection rate for Alu elements is uniformly ,3% while the false
detection rates for L1s and SVA element insertions approach 30%, with large error bars (95% confidence intervals) arising from relatively low statistics.
c) Non-reference MEI detection overlap from trio samples NA12878 and NA19240. This level of overlap between two independent methods using
independent sequence data corresponds to a detection sensitivity of roughly 70% for each algorithm and a combined detection sensitivity of 90% in
these samples. d) Non-reference MEI detection sensitivity as a function of allele frequency in the low coverage dataset. PCR results for loci randomly
selected from one method were used as a gold standard for the complementary method, and vice versa. PCR also provides an estimate of the allele
frequency based on the 25 low coverage samples used for validation experiments. RP (blue) and SR (red) and the combined (black) detection
sensitivities rise with frequency. One standard deviation confidence intervals are shown as shaded bars for the RP and SR algorithm, with black error
bars for the combined RP+SR detection efficiency.
doi:10.1371/journal.pgen.1002236.g003

Mobile Element Insertions: 1000 Genomes Project
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MEI properties, assembly, and sub-family classification
We characterized each detected MEI event (Table S1) by the

insertion position, which algorithm(s) detected the event, number

of fragments supporting the insertion and reference alleles,

insertion length (Figure S12), element family, bracketing homology

(Figure 4a), and assembled sequence. MEI have a characteristic

‘‘target site duplication’’ region of homology bracketing the

insertion. The target site duplication length distributions for the

MEI detected by different methods, as well as for different element

families, peaked at 15 bp with a standard deviation of 7 bp

(Figure 4a). The full insertion sequence from reference MEI is

readily extracted from the reference, but non-reference MEI

require local de novo assembly to reconstruct the inserted sequence.

For this we used 454 data to reconstruct 1,105 Alu insertions

(Tables S1 and S7) from our event list based on the PHRAP

assembly program [48]. We then used BLAT [49] to map

assembled contigs back to the build 36.3 human reference to

identify the boundaries of the inserted sequence. The inserted

sequence was then mapped back to the RepeatMasker mobile

element sequences using the RepeatMasker web server (http://

www.repeatmasker.org) to identify the sub-family (Figure 4b). The

accuracy of Alu sub-family classification was assessed by

comparison to matched 359 Alu insertions from dbRIP [29] and

nine fully sequenced Alu insertions from PCR validation

experiments. 272 of the assembled Alu sub-family classes were

identical (74%). The most active Alu sub-families are AluYa5 and

AluYb8. AluY sub-families account for essentially all Alu variation.

The relative proportions among Alu sub-families are consistent

among reference and non-reference MEI, as well as consistent

with the Alu sub-families observed in HuRef [23]. The Alu sub-

family breakdown differs from that reported by Hormozdiari et. al.

[35] who identified more than 10% of their set of insertions from

AluJ or AluS sub-families. The authors of that study point out that

these ‘older’ Alu events could arise from mechanisms other than

retrotransposon insertions.

Genotyping
Genotyping of non-reference MEI (Materials and Methods:

Genotyping) was based on counts of fragments supporting the

reference allele and fragments supporting the insertion allele at

each locus for each sample. Heterozygous MEI sites are identified

by roughly equal amounts of reference and alternate allele

supporting fragments spanning an insertion locus, while homozy-

gous sites should have all fragments supporting one or the other

allele. For reference MEI, we used genotypes produced by the

Genome STRiP package [39], which was developed for 1000GP

deletion genotyping [30,39] and incorporates Beagle [50]

imputation based on linkage with local SNPs. Both genotyping

methods provide phred-scaled [51] genotype quality (GQ) metrics

at each site that reflect confidence in the given call based on

supporting evidence, GQ=0 to a total lack of genotype evidence

and GQ=10 indicating that the genotype should be 90%

accurate. The GQ metric depends on the number of fragments

found to support the MEI and non-MEI alleles for a given locus

and sample (Text S2: Genotyping methods). As in most issues of

sensitivity vs. specificity, there is a trade-off between high genotype

efficiency and genotyping accuracy. The drop-off in genotyping

efficiency vs. GQ threshold is more severe for non-reference MEI

(Figure S13). For subsequent genotype-based analysis of non-

reference MEI sites and samples we required GQ$7, which

corresponds to roughly 40% genotyping efficiency in the low

coverage pilot data. For reference MEI we required GQ$10,

which corresponds to an efficiency of 80%. Genotyping efficiency

improves with increased sample read coverage (Figure S13,

bottom panel), particularly for non-reference MEI.

Genotyping accuracy for non-reference MEI is assessed by

direct comparison to PCR validation genotypes in the same

samples, and by testing for Mendelian errors in the trios and

violations of Hardy-Weinberg Equilibrium in the low coverage

data (Text S2 Genotyping tests, Figures S13 and S14). Validation

genotypes are listed in Table S4 (also as the ‘‘VG’’ field of the

released MEI insertion genotyped VCF files). Genotype contin-

gency tables for the low coverage data (Table 3) show an 87%

agreement between sequenced genotypes and PCR genotypes for

sites with GQ$7. Genotyping accuracy improves with increasing

GQ threshold (Figure S13) but never exceeds 90% in the low

coverage data. Non-reference MEI genotyping performance for

high coverage trio data (Table 3, Table S8) was considerably

Figure 4. MEI Alu sub-family breakdown, Target site duplication length. a) Length of target site duplications bracketing the MEI sites.
Different detection modes (top) and different element families (lower plot) exhibit similar distributions target site duplications lengths. b) Alu sub-
family breakdown of 1,105 assembled Alu non-reference insertions. Also shown are the Alu breakdowns from reference MEI (ref) from this study, as
well as variant Alus found in the HuRef genome by Xing et al. AluYa5 is the most frequent polymorphic Alu sub-family.
doi:10.1371/journal.pgen.1002236.g004
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better than for the low coverage data. However, for population

analyses we used only low coverage data in order to minimize the

potential for coverage biases. The accuracy of GenomeSTRiP

genotypes (for reference MEI events) with GQ$10 was estimated

at 99% in the full 1000GP deletion call set [30,36,39].

Population segregation of MEI
We estimated MEI allele frequencies from the count of high

quality (GQ$7 non-reference and GQ$10 for reference MEI)

genotyped insertion alleles for each MEI locus. Allele frequencies

were estimated from loci with at least 25 high quality genotypes for

each continental population group. The two MEI detection modes

(i.e. reference and non-reference insertions) have very different

allele frequency spectra (Figure 5a–5c). Since the non-reference

MEI and reference MEI components have very different powers of

detection and genotyping, the two components were corrected

separately (Materials and Methods: Allele frequency spectra)

before being combined into the full MEI spectrum (Figure 5d–5f).

We estimated correction factors for each population group, each

element type, and each detection mode (Table S9). Non-reference

MEI correction factors are larger than reference MEI factors

because of the lower detection sensitivity and genotyping

efficiency.

The allele count spectra were compared to the standard neutral

model [52–54], h/i, where h is an MEI diversity parameter and i is

the allele count in a fixed number of samples. The value of h is fit

from the MEI allele count spectrum for each population group

and the fitted model is the gray dotted line appearing in Figure 5d–

5f. Only allele count bins in the range 0.15,frequency,0.95 were

used in the fit (bins marked with error bars in Figure 5d–5f) to

avoid regions of poor detection sensitivity. The corresponding gray

dashed lines superimposed on Figures 5a–5c also represent the

neutral model expectation, modified to account for the respective

ascertainment conditions, (h/2N) for reference MEI, (h/i)(2N2i)/

(2N) for non-reference MEI, where N=25 is the number of

samples in the spectra. These ascertainment condition expressions

are based on the assumption that the reference genome represents

a random sample from the given population, which is admittedly

simplistic but nevertheless explains much of the difference between

the allele spectra of reference and non-reference MEI. A

coalescent simulation (Text S2 Coalescent, Figure S17) for MEI

variation also shows this behavior using standard population

history parameters [55]. Fitted values of the diversity parameter h

for each of three population groups and each element family are

listed in Table 4, along with rough estimates for the corresponding

MEI mutation rates based on the neutral model (m= h/(4?Ne)) with

an effective population size Ne of 10,000 [56,57]. Confidence

intervals for m and h (Table 4) take into account Poisson noise and

uncertainties in the correction factors, but do not reflect the degree

to which the model assumptions are valid.

All three element families have been combined into the allele

count spectra shown in Figure 5, although the Alu family is the

dominant component. Allele frequency spectra for different

element families have similar shapes (Figure 6a). We know from

Figure 5. MEI allele count spectrum. a–c) Uncorrected allele count spectra. Non-reference MEI (blue) and reference MEI (red): a) CEU, b) YRI, c)
CHBJPT. Loci with 25 or more genotyped samples were included. A random subset of 25 samples was selected for any locus with more than 25
genotyped samples. Gray dashed lines are based on neutral model fits from the full MEI spectra, modified to account for the respective ascertainment
conditions, (h/2N) for reference MEI, (h/i)(2N2i)/(2N) for non-reference MEI, where N=25 is the number of samples in the spectrum. d–f) MEI allele
count spectra. d) CEU, e) YRI, f) CHBJPT. The spectra are corrected for each detection mode sensitivity and genotyping efficiency according to the
expression in the legend. Gray dashed line is a fit to h/i, where i is the allele count and h is the diversity parameter. Only counts in the range of
7#i#47 were used in the fit (bins with vertical one sigma error bars).
doi:10.1371/journal.pgen.1002236.g005
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SNP studies that the shape of the allele frequency spectrum is

modulated by demographic history, and that this shape is

characteristically different for European, African, and Asian

populations [56,57]. When compared to SNP allele frequency

spectra from the same datasets (Figure 6b), the MEI and SNP

frequency spectra show similar trends among the corresponding

populations. Among the three population groups, the CHBJPT

spectrum shows relatively few low frequency allele loci. This was

also apparent in comparison with the neutral model (Figure 5e).

We also analyzed population differentiation by applying

principal component analysis to the matrix of allele counts across

the low coverage pilot samples and loci (Figures S15 and S16).

Some structure is immediately apparent in the matrix of allele

counts, e.g. increased heterozygosity in the YRI samples, but PCA

reveals population specific patterns of MEI that result in tight

clusters of samples according to geographic origin (Figure 6c);

again similar to population patterns for SNPs [58], CNVs [59] and

deletions [30].

Functional properties
As few as 39 of the 5,370 non-reference MEI loci were located

in exonic sequence, mostly in untranslated regions, and only 3

were found in coding exons (Table 2). These numbers are much

lower than expected from random placement (Materials and

Methods: Functional calculation), indicating strong selection

against MEI disrupting gene function. The suppression factor for

an MEI to occur in a coding region compared to the genome-

averaged rate is 46x, a much stronger suppression than is observed

for coding SNPs (Table S10, suppression factor = 3.9x), and is

similar to SNPs that cause the loss of a stop codon (42x, derived

from Table 2 of [36]). Two of the MEI interrupting coding regions

were PCR-validated. These two MEI appear to be of little

functional consequence: ZNF404 is a member of a highly

paralogous zinc finger gene family and C14orf166B is a predicted

gene without functional annotation. These findings suggest very

strong negative selection against MEI interrupting coding regions.

Although it is obvious from first principles that insertions in

functional regions should be deleterious, the observed suppression

factor in a large catalog of MEI in populations quantifies the effect.

Number of ME polymorphisms between pairs of
individuals
The high-coverage trio data allows for the most precise

estimates of the total number of MEI variants between pairs of

Figure 6. MEI allele frequency spectra, PCA, counts of variants between trio samples. a) Element family breakdown of the combined
population allele frequency spectra. L1 and SVA are scaled up to allow comparison with the Alu spectrum. b) MEI and SNP allele frequency spectra
across three population groups. The corresponding allele frequency spectra of SNPs relative to the ancestral genome from the 1000 Genomes low
coverage pilot project are superimposed as dotted lines. The SNP spectra are scaled down by a factor of 500 for this comparison. c) Principal
component analysis of MEI genotypes. CEU: blue; YRI: red; CHB: cyan; JPT: green. The first and second principal components are plotted. d) Total
number of MEI between trio samples versus coalescent time based on SNP differences between the sample pairs.
doi:10.1371/journal.pgen.1002236.g006
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individuals because of the high detection sensitivity. The number

of pair-wise variant loci is calculated as the presence or absence of

an insertion at a given locus, combining reference and non-

reference MEI. We selected the two trio children (NA12878 and

NA19240) for comparison between CEU and YRI individuals and

the trio parents for comparison of individuals within the CEU and

the YRI population groups. After corrections for detection

sensitivity and false detection (Text S2 and Table S6), we found

2,0346120 MEI variant loci between the African and the

European trio children, 1,4426120 between the YRI parents,

and 6636140 MEI between the CEU parents. The pair-wise

event numbers scale linearly with coalescent time derived from

SNPs (Figure 6d) in these samples (Text S2: Coalescent [60–64]).

Search for de novo MEI
Previous estimates for the de novo mobile element insertion rate

and our own estimate of the MEI mutation rate are one event per

20 births in the human population [23]. Accordingly, we did not

expect to find de novo insertions in our sample of two trio children.

Among all MEI events detected in the trio offspring against the

reference (1,778 in NA12878 and 1,971 in NA19240), we did

identify a single de novo candidate insertion in NA12878, not

detected in either parent or in any other sample (Table S6, de

Novo). A subsequent PCR validation experiment revealed that this

insertion was, in fact, present in one of the trio parents, but not

detected from the sequence data. All in all, our study found no

direct evidence for de novo MEI events in the two trio samples.

MEI heterozygosity and mutation rates
MEI genotyping allows us to estimate MEI heterozygosity

within each sample. We define heterozygosity as the count of

heterozygous loci across the individual’s genome. In a manner

similar to the allele frequency analysis, heterozygosity is corrected

for detection and genotyping efficiencies (Materials and Methods:

Heterozygosity) such that it represents the true number of

heterozygous loci in the sample. Heterozygosity, p, and the

diversity parameter, h, fit from the allele count spectrum, are

related population metrics that depend on the MEI mutation rate,

mMEI, and demographic history. In the neutral model (under

mutation-drift equilibrium in the limit of infinite segregating sites

and a constant effective population size, Ne) the two metrics should

be approximately equal [65]:

p~4Ne
:m&h ð1Þ

Deviations can be interpreted as evidence for selection pressure,

changing demographic parameters, or possibly as changes in the

mutation rates. These metrics were originally developed as a

framework for SNP analysis but can also be applied to MEI

variants. It is this property of heterozygosity that we wish to

exploit. A comparison MEI and SNP heterozygosity within the

same samples allows a direct comparison of the corresponding

mutation rates, because the impact of long-term demography (here

simplified in terms of Ne) is identical for both variant types.

Consequently, the MEI mutation rate can be estimated as:

mMEI~mSNP
:

pMEI

pSNP

� �

ð2Þ

Given constant mutation rates we would expect proportionality

between pSNP and pMEI in samples from different population

groups, however a scatter plot of pMEI vs. pSNP over the low

coverage pilot samples (Figure 7a) shows some deviation.

Heterozygosity for the Asian sample group is systematically

elevated above the proportionality line (dashed line). Also shown

on the scatter plot is a grey region corresponding to SNP and MEI

differences between the human and chimpanzee reference

genomes [37,66]. The MEI insertion rate is known to be roughly

2.5 times higher in the human than in the chimpanzee lineage

[66], however, the time dependence of the MEI mutation rate

during human evolution is not yet known. For this, we re-

expressed the SNP and MEI heterozygosities for each sample in

terms of mMEI vs. coalescent time (Figure 7b) based on equation (2),

a constant SNP mutation rate (mSNP,1.8610
28 mutations per site

Table 2. Counts of non-reference MEI contained by
annotated function regions.

Gene UTR CDS Total

ALU 1438 32 2 4499

L1 249 4 0 792

SVA 31 0 1 79

Total 1718 36 3 5370

Expected total 2020 105 137 -

Suppression factor 1.2 2.9 45.7

Detected events subsequently invalidated by PCR are not counted. Expected
counts of insertions were calculated according to random placement across the
genome. The p-value that the observed number of CDS interrupting MEI is
consistent with random placement is ,10250.
doi:10.1371/journal.pgen.1002236.t002

Table 3. Non-reference MEI genotype contingency tables.

Low coverage pilot Trio pilot

PCR genotypes PCR genotypes

Sequenced genotypes 0/0 0/1 1/1 Sequenced genotypes 0/0 0/1 1/1

0/0 2773 188 5 0/0 901 5 0

0/1 18 913 217 0/1 2 671 54

1/1 1 140 372 1/1 0 10 144

Low coverage pilot samples; trio pilot samples. Genotypes are listed in ‘‘VCF’’ convention: 0/0 homozygous reference, 0/1 heterozygous MEI, 1/1 homozygous MEI. For
the low coverage validation, 23 samples at 333 sites were tested, while for the trio data all 6 samples were tested at 332 sites. The agreement for the low coverage data
is 88.7% with 58% of the sites genotyped with GQ$7. Genotype agreement for the pilot data was 96% with 90% genotyping efficiency.
doi:10.1371/journal.pgen.1002236.t003
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per generation [67]), and the coalescent time estimated from the

SNP heterozygosity. Characteristic MEI mutation rates for each

population group were derived from Eq. (2) with ,pMEI. and

,pSNP. averaged over the samples in the group. Values of mMEI

for each population and each element family are compared to

mMEI derived from h fitting (Figure 7c) and are listed in Table 4

with 95% statistical confidence intervals. Confidence intervals

from the allele frequency fits (error bars in Figure 7c) are larger

than statistical errors from the averaged heterozygosities over

samples (error bars within the circles on Figure 7c) because each

sample provided independent observations for the average

heterozygosity, whereas in the allele frequency spectra fits all

samples were combined. Both estimates are subject to systematic

errors that may arise from the detection, genotyping, and

correction procedures. To test for systematic biases in mMEI we

re-processed both allele frequency spectra and heterozygosity

estimates over a range of genotype selection thresholds (Text S2:

Stability, Figure S18) and found consistent trends in mMEI among

the population groups and element families, although the overall

scales of the mutation rates are uncertain to 20%. Values of the

element specific mutation rates in Table 4 and Figure 7c are

consistent with previous reports [23,25,68]. In summary, careful

error analysis led us to believe that the differences in the mutation

rate observed between the different population sample groups are

likely to result from biological processes, rather than measurement

or analytical artifacts.

Discussion

Common MEI polymorphisms in the human population
MEI alleles propagate within population groups much like other

predominantly neutral polymorphisms. MEI allele frequency

spectra from the low coverage samples are in general agreement

with expectations from the standard neutral model for allele drift

in a population. The major differences in allele frequency spectra

between non-reference and reference MEI (Figure 5a–5c) are

explained by the ascertainment condition that the derived MEI

allele occurs in a given sample (the reference) and are in agreement

with expectations based on a coalescent simulation of MEI

population drift (Figure S17). MEI allele frequency spectra among

the three population groups exhibits a similar trend to SNPs

(Figure 6b), although the MEI spectrum in the Asian samples is a

poor fit to the h/i form (x2/d.f.,2 from Table 4) with an excess of

high frequency alleles and a deficit at low frequency (Figure 5e).

Figure 7. MEI and SNP heterozygosity in low coverage samples. a) MEI vs. SNP heterozygosity scatterplot (pMEI vs. pSNP): The dashed line is a
linear model constrained to pass through the centroid of the YRI (red) samples and the origin. The gray region represents an extrapolation from
human-chimpanzee (H-C) MEI and SNP differences between the respective genome assemblies. b) Averaged population mMEI vs. coalescent time
scaled to thousands of years, assuming that SNP mutation rate is a steady clock (mSNP,1.8610

28 mutations per site per generation). c) MEI mutation
rates based on heterozygosity (solid circles) and based on allele frequency fits (vertical error bars) for population groups (CEU: blue, YRI: red, CHBJPT:
green, all three: black) and estimated separately for element families (all families combined: MEI, Alu, L1, and SVA). Error bars are statistical only.
doi:10.1371/journal.pgen.1002236.g007
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MEI allele frequencies were based on MEI detected and

genotyped across three element families (Alu, L1, and SVA), from

both non-reference and reference MEI, and multiple detection

methods (RP and SR), each with characteristic detection

sensitivities and false detection rates. Corrections for these effects,

as well as genotyping efficiencies, were included in the allele

frequency spectra.

Measurements of MEI heterozygosity offer a more direct

method to estimate MEI insertion rates. Like the allele frequency

spectrum, heterozygosity is dependent on accurate genotyping and

includes corrections for efficiency losses, but in this case the

corrections were made on a per sample basis, which is more

specific since sample coverage is the dominant limitation for

detection and genotyping power (Figure S6). The heterozygosity

measurement also has an advantage in that each sample is an

independent estimate of the population average ,pMEI. and

,pSNP.. The heterozygosity measurements revealed evidence for

differential MEI mutation rates among the three population

groups. The probability that the Asian population samples have

the same MEI mutation rate as the other two population groups is

very low (paired t-test p-value,1026). We tested the stability of

this result by varying the genotype selection criteria across a range

of threshold (Figure S18) and found that the differential MEI rate

effect is indeed stable. Sequence coverage in the 1000GP low-

coverage pilot data was roughly the same for all three continental

population groups (Table S2), so we do not expect coverage

differences to generate significant systematic biases in these

population comparisons.

The question remains whether the differential MEI mutation

rate between populations is driven by a shared increase of mMEI

within Homo sapiens, as suggested by Figure 7b, or simply by

varying insertion rates among different populations. The pilot data

is consistent with either interpretation, so data from more

populations (more than 30 population groups from five continents

are planned for the full 1000GP) will be needed to discriminate

between the two hypotheses.

Based on the global values for the diversity parameters hMEI and

pMEI (Table 4), and the neutral model, our rough estimate of the

total number of MEI segregating sites in the human population

with allele frequency.10% is 4500, and 9000 for frequency.1%,

with 20% uncertainty arising from parameter estimates. Counting

only those sites with a sufficient number of genotypes to measure

allele frequency, our dataset contains more than half of the

segregating human MEI sites with frequency.10%.

Significance
This study of the 1000GP pilot datasets is a sizable step toward a

complete population-based catalog of common human MEI

polymorphisms, made possible by targeting both non-reference

and reference MEI events in the human genome. We identified

7,380 polymorphic mobile element insertions from the Alu, L1,

and SVA families. Based on experimental validation of random

subsets of loci we estimate that the false discovery rate in this study

is less than 5%. Detection power for common alleles (allele

frequency.10%) varies between non-reference MEI (70%–80%)

and reference MEI (.90%). We were also able to assemble the

inserted sequence for more than 1,000 non-reference Alu MEI

and found consistent proportions of Alu sub-families in compar-

ison to MEI identified in HuRef.

This comprehensive variant discovery and genotyping effort

allowed us to directly compare the segregation properties of

different variant types from the same dataset. Our analysis

revealed that, to a first approximation, the evolution of MEI

variants is similar to SNPs and consistent with neutral models

[52,53], except in exonic regions where they are subject to

negative selection on the scale that acts against SNP variants

Table 4. MEI population properties.

population element H [95% CI] m(h) [95% CI] x2 d. f. P [95% CI] m(p) [95% CI]

all MEI 1860 [1540–2170] 0.0464 [0.0384–0.0543] 75.4 78 2160 [2130–2200] 0.0499 [0.0490–0.0507]

CEU MEI 1700 [1360–2040] 0.0425 [0.0339–0.0510] 52.3 39 2040 [2020–2070] 0.0493 [0.0487–0.0499]

YRI MEI 2240 [1690–2790] 0.0559 [0.0421–0.0697] 39.9 39 2480 [2430–2530] 0.0488 [0.0478–0.0499]

CHBJPT MEI 1550 [1220–1870] 0.0387 [0.0306–0.0468] 70.5 39 2030 [2000–2060] 0.0533 [0.0525–0.0541]

all ALU 1570 [1310–1830] 0.0392 [0.0326–0.0457] 83.9 78 1880 [1840–1910] 0.0432 [0.0424–0.0439]

CEU ALU 1440 [1150–1720] 0.0359 [0.0289–0.0430] 55.4 39 1770 [1750–1800] 0.0428 [0.0422–0.0434]

YRI ALU 1830 [1390–2270] 0.0458 [0.0348–0.0569] 43.4 39 2150 [2100–2200] 0.0423 [0.0414–0.0433]

CHBJPT ALU 1300 [1020–1570] 0.0324 [0.0256–0.0391] 86.5 39 1750 [1720–1780] 0.046 [0.0453–0.0468]

all L1 224 [120–329] 0.0056 [0.0030–0.0082] 51.9 71 264 [257–270] 0.0061 [0.0059–0.0062]

CEU L1 223 [100–346] 0.0056 [0.0025–0.0086] 49.6 38 243 [234–252] 0.0059 [0.0057–0.0061]

YRI L1 326 [118–535] 0.0082 [0.0029–0.0134] 59.6 39 303 [292–314] 0.006 [0.0057–0.0062]

CHBJPT L1 166 [70–262] 0.0041 [0.0018–0.0066] 49.7 39 251 [243–258] 0.0066 [0.0064–0.0068]

all SVA 80 [48–113] 0.002 [0.0012–0.0028] 15.4 39 55 [53–58] 0.0013 [0.0012–0.0014]

CEU SVA 38 [18–58] 0.001 [0.0004–0.0014] 10.4 27 51 [48–54] 0.0012 [0.0011–0.0013]

YRI SVA 64 [26–101] 0.0016 [0.0006–0.0025] 11.2 24 61 [56–65] 0.0012 [0.0011–0.0013]

CHBJPT SVA 46 [21–72] 0.0012 [0.0005–0.0018] 12.5 27 55 [51–59] 0.0014 [0.0013–0.0015]

MEI diversity parameter h was fit from the allele frequency spectra for the listed populations and element families. ‘‘all’’ is the full dataset of all three population groups.
Insertion rates m(h) were derived from the h values, assuming an effective population size of 10,000. The MEI population heterozygosities p were averaged over samples
in the given population group. MEI insertion rates m(p) were derived from Eq (2) relative to the SNP mutation rate. All insertion rates are listed in units of insertions per
genome per generation.
doi:10.1371/journal.pgen.1002236.t004
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resulting in stop codon loss. An intriguing finding from our data,

however, is the detection of signals suggesting a recent increase in

MEI rates in humans.

Materials and Methods

Non-reference MEI detection
Both the SR and the RP methods were based on identification

of non-reference MEI as clusters of mapped DNA fragments in

which one end mapped to the consensus sequence of a mobile

element while the other end was uniquely mapped to the reference

genome in a location inconsistent with a known mobile element

location in the reference (Figure 1a–1b). The RP method required

at least two MEI supporting fragments across both the 59 and 39

insertion breakpoints for each candidate MEI from the pooled

datasets (the low coverage and trio pilot data were pooled

separately). The SR method required only one MEI supporting

fragment across either the 59 or 39 breakpoints for candidate

events. We used 52 consensus element sequences from Repbase

[69] (www.girinst.org, version 14.03, Table S11) to identify reads

mapping to mobile elements. The RP method used Mosaik [70]

(bioinformatics.bc.edu/marthlab/Mosaik, version 0.9.1176) for

read pair mapping of Illumina paired-end data to the NCBI36

human reference (build 36.3) and the Spanner [40] program to

identify non-reference MEI by clustering supporting fragments

[40,71,72]. The SR method also used Mosaik to align 454 data,

for full read mapping as well as for split-read mapping. We used

extensive simulation experiments [73] to optimize detection

methods, algorithm parameters, and post-process MEI candidate

event selection filters (further details are provided in Text S2).

Reference MEI selection
The 2,010 reference MEI events are a subset of the 1000GP

pilot release of 22,025 deletions [30]. 95% of the MEI sites

detected as deletions were found by more than one algorithm but

the dominant mapping algorithms were Mosaik, and Maq [74],

with detection algorithms Spanner, Pindel [41], BreakDancer

[38], and GenomeSTRiP [39]. Two selection criteria ensure that a

given deletion corresponds to a true variant MEI inserted in the

reference genome:

1) The deletion coordinates match to an annotated Alu, L1, or

SVA element [6] in the hg18 reference, defined as .50%

reciprocal overlap and the start and end coordinates both

match within a window of 20 bp for Alus, or 200 bp for L1s

and SVAs.

2) At least 75% of the deleted region corresponds to a gap in the

chimpanzee genome assembly [37].

MEI event matching between algorithms and studies
Non-reference MEI detected by the SR and RP methods were

merged according to a 100 bp matching window around the

leftmost insertion coordinates. To assess call set intersections

between this study and other published lists of non-reference MEI,

we used a matching window of 200 bp around each insertion

position. We adopted the ‘leftmost’ coordinate convention (Figure

S1), in keeping with 1000GP call sets, whereas other studies used

rightmost or unclear coordinate conventions. The respective scales

of the matching windows were dictated by the characteristic

position resolutions of the algorithms (Figure S7, Figure S10),

which varied considerably from study to study. Redundant loci

from recent publications were not counted multiple times in

Figure 2e. To identify matching reference MEI to other studies we

required at least 50% reciprocal overlap between the starting and

ending NCBI36 deletion coordinates.

Calculations of sample sequence coverage
For SR detection the relevant coverage statistic is 454 base

coverage, counts of aligned reads covering a given base, averaged

across the accessible genome. For RP detection the driving

coverage statistic is Illumina read-pair spanning coverage, counts

of fragments in which the non-sequenced segment of the fragment

between the reads cover a given base, averaged across the genome

(Table S2).

Validation methods
The four non-reference MEI event lists (Table 1) were

submitted to the 1000 Genomes Structural Variation subgroup

for validation experiments to assess false detection rates. 200 loci

from each list were randomly selected for primer design and

subsequent PCR validation. Primers were designed as described

previously [32,36] to span across the insertion breakpoint and to

guarantee unique mapping to build 36.3. In addition to the

estimation of the false detection rates, validation genotypes were

derived from gel-band size comparison for each sample and site

tested by PCR. We also used the validation data to estimate

detection sensitivity based on the overlap of events called between

the two independent sequence data platforms and algorithms.

For loci with ambiguous PCR results, no amplification, or

amplification of only the empty insertions site, a second primer

pair was designed. For the primer design, 600 bp of flanking

sequence on either side of the insertion site was retrieved from

genome.ucsc.edu using Galaxy. Alu elements within the flanking

sequence were masked to ‘‘N’’ using RepeatMasker (repeatmas-

ker.org). Primers were designed with BatchPrimer3 v2.0 in the

flanking sequence, leaving at least 100 bp before and after the

predicted insertion site. Next, all primers were tested with BLAT

to determine the number of matches in the human genome. If one

primer of a primer pair matched several times and the other

primer was unique, a virtual PCR was performed. Primer

combinations with one predicted PCR product were tested on

our panel. Otherwise primers were designed manually (if possible)

after repeat-masking the flanking sequence with the complete

repeat library.

In addition, for L1 and SVA loci without unambiguous PCR

amplification, primers were designed, placing one primer within

the 39 end of the mobile element sequence [75]. The primers were

designed to match the consensus sequences of the youngest L1 and

SVA sub-families. All PCR primers were ordered from Sigma

Aldrich, Inc. (St. Louis, MO). All LSU-designed PCR primer

sequences used in this project can be found at http://batzerlab.lsu.

edu.

DNA samples for PCR verification. A subset of 25 DNA

samples from the low coverage pilot samples and all six trio

samples were used in PCR validations (Table S4). Each DNA

panel also included a population out-group sample, an individual

of South American origin (NA17310, Coriell) for low coverage

pilot, and an individual of Asian origin (NA17081, Coriell) for the

trio pilot. Additional control DNA samples on both panels

included human cell line DNA, (HeLa; ATCC CCL-2) as well

as ‘‘Pop80’’, a locally pooled DNA sample from different

individuals of diverse geographic origins (Asia, Africa, South

American, and European). This sample serves as a diagnostic tool

because amplification of an empty site alone in all samples

(including Pop80) strongly indicates that the putative insertion is

absent (false positive). In contrast, the presence of an MEI in a

single study subject, while absent in Pop80, points toward a

Mobile Element Insertions: 1000 Genomes Project
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potential de novo retrotransposon insertion, or at least an insertion

with a low allele frequency (AF). Chimpanzee DNA (NS06006,

Coriell) was also included on each panel, representing the

presumptive pre-insertion site for each event (empty site) as

another PCR control.

In addition to the subset of 25 individuals used for the low

coverage pilot validations, four more DNA samples from the low

coverage pilot dataset were obtained for subsequent experiments.

DNA samples NA12872, NA12814, NA12815 and NA12044

(CEPH/Utah USA) were purchased from the Coriell Institute for

Medical Research. All 35 samples (25+6+4) were used for PCR

validations associated with MEI events detected specifically in

exons.

PCR details (LSU). PCR amplifications were performed in

25 ml reactions in a 96-well format using either a Perkin Elmer

GeneAmp 9700 or a BioRad i-cycler thermo-cycler. Each reaction

contained 15–50 ng of template DNA; 200 nM of each

oligonucleotide primer; 1.5 mM MgCl2, 16 PCR buffer

(50 mM KCl; 10 mM TrisHCl, pH 8.3); 0.2 mM dNTPs; and

1–2 U Taq DNA polymerase.

Full-length L1 and SVA elements typically exceed the

limitations of standard DNA Taq polymerase in PCR. For L1

insertions, LA-Taq DNA polymerase (Takara Bio USA, Clontech

Laboratories, Inc. Mountain View, CA) was used in the PCR

reactions according to the manufacturer’s instructions to enhance

the yield of long PCR templates (2–10 kb). SVA elements are

particularly GC-rich and difficult to amplify in PCR if full-length

even with special long-template polymerases. In order to evaluate

presence/absence of these insertions using PCR, we performed a

PCR using one primer residing within the SVA insertion in

conjunction with an external primer (forward or reverse,

depending on the orientation of the predicted insertion). To

determine the genotype and presence of the insertion, two separate

PCR reactions were required in these instances. A PCR using

primers flanking the MEI amplified a PCR product if the MEI was

‘‘absent.’’ A separate PCR with internal primers detected the MEI

‘‘present’’ site. In addition, this approach was also used for some

L1 loci to confirm the presence/absence of the insertion and to

minimize the chance of false non-detection.

PCR experiments were carried out in three different laborato-

ries yielding similar success rates. At EMBL, PCRs were

preformed using 10 ng of NA12878 genomic DNA (Coriell) in

20 ml volumes in a C1000 thermocycler (BioRad). Two different

enzymes, iProof High Fidelity DNA Polymerase (Biorad) and

Hotstart Taq (Qiagen) were used, with comparable results. PCR

conditions for iProof were: 98uC for 1 min, followed by 5 cycles of

98uC for 10 s, 68uC for 20 s and 72uC for 4 min and 30 cycles of

98uC for 10 s, 66uC for 20 s and 72uC for 4.5 min, followed by a

final cycle of 72uC for 5 min. PCR conditions for HotStart Taq

were: 94uC for 15 min, followed by 5 cycles of 94uC for 30 s, 60uC

for 30 s and 72uC for 3 min and 30 cycles of 94uC for 30 s, 56uC

for 30 s and 72uC for 3.5 min, followed by a final cycle of 72uC for

5 min. PCR products were analyzed on a 1% agarose gel stained

with Sybr Safe Dye (Invitrogen) and a 100 bp ladder and 1 kb

ladder (NEB).

PCR reactions at Louisiana State University were performed

under the following conditions: initial denaturation at 94uC for

90 sec, followed by 32 cycles of denaturation at 94uC for 20 sec,

annealing at 61uC for primers designed by pipeline or 57uC for

other primer design for 20 sec, and extension at 72uC for 30 to

90 sec depending on the predicted PCR amplicon size. PCRs were

terminated with a final extension at 72uC for 3 min. When LA-

Taq DNA polymerase was used to amplify L1 insertions, the

extension step of each cycle was carried out at 68u for 8 min,

30 sec, followed by a final extension step at 68u for 10 minutes at

the end of the run. 20 ml of each PCR product were size-

fractionated in a horizontal gel chamber on a 2% (Alu and SVA) or

1% (L1) agarose gel containing 0.1 mg/ml ethidium bromide for

60 minutes at 175 V or 1 hour/45 min at 150 V, respectively.

UV-fluorescence was used to visualize the DNA fragments and

images were saved using a BioRad ChemiDoc XRS imaging

system (Hercules, CA).

An outcome from the validation experiments on the 86 gene-

interupting MEI was a high false detection rate for candidate Alu

insertions in close proximity to 7SLRNA annotations. Subse-

quently we reclassified all 22 Alu insertion candidates within

200 bp of a 7SLRNA as invalidated (Table S1).

Detection sensitivity
The two non-reference MEI detection methods use independent

DNA libraries. So the overlap between the RP and SR are

governed by the respective detection sensitivities, statistically akin

to the Lincoln-Peterson method [76] used in ecological studies to

estimate the size of a population based on two random capture

and recapture samplings. This estimate assumes that the two

algorithms are sensitive to the same type of events and that the

difference between the event lists is a sampling issue. The

expression for the detection respective detection sensitivities (eRP
and eSR) depends on the false detection rates (fRP and fSR) provided

by the validation experiments, the counts of loci detected by each

method (nRP and nSR), and the count of loci detected by both

methods (nRP.SR):

eRP~
nRP:SR

nSR
:

1

1{fSR
eSR~

nRP:SR

nRP
:

1

1{fRP
ð3Þ

Given detection sensitivities eRP and eSR from independent datasets

and methods, the combined detection sensitivity (RP+SR) becomes:

eRPzSR~eRPzeSR{eRP:SR ð4Þ

for samples in which both types of data were available (e.g. trio

samples NA12878 and NA19240).

Genotyping methods
For reference MEI we used available genotypes calculated by

GenomeSTRiP [39] for the 1000GP deletion call set. Genome-

STRiP results were not readily available for non-reference MEI so

we developed a simple Bayesian framework to estimate the

posterior probability for each possible genotype. The posterior

genotype probability is:

P(gjNREF ,NALT )~
pbin(NALT ,NREFzNALT ,pg):P(g)

P

g0
pbin(NALT ,NREFzNALT ,pg0):P(g0)

ð5Þ

where NALT and NREF are the counts of fragments supporting the

alternate and reference alleles respectively; g is the genotype (i.e.

homozygous reference allele, heterozygous, homozygous insertion

allele); P(g) is the prior probability for the genotype g (a flat prior

was used, P(g) = 1/3); pg is the expected fraction of insertion

fragments given a genotype g (i.e. pg=0.5 for heterozygous

insertions, pg,0 for homozygous reference, and pg,1 for

homozygous insertions); Pbin(NALT,NALT+NREF,pg) is the binomial

probability that NALT+NREF fragments will fluctuate to NALT, given

an expected fraction pg. The called genotype for a given site is the

genotype with the maximum posterior probability. The Bayesian
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framework also provides genotype likelihoods, which are used to

construct genotyping quality metric (GQ) for each site and sample.

The GQ value adopts the ‘‘phred’’ quality convention:

GQ~{10 log10(1{P(gjNALT ,NREF )) ð6Þ

Where P(g|NALT,NREF) is the posterior probability for the called

genotype from Eq. (5). GQ is highly dependent on the total

number of supporting fragments (reference plus insertion). A

selection of sites at GQ=7 should correspond to roughly to 80%

genotyping accuracy and corresponds to sites with 2 or more

supporting fragments.

Allele frequency spectra
MEI loci with at least 25 genotyped samples per population (50

samples for the combined population spectra) were included in

allele frequency spectra. Sites of GQ$7 non-reference MEI and of

GQ$10 reference MEI were included. For loci with more than 25

genotyped samples, a random subset of 25 was used for the allele

count spectra (Figure 5). For the allele frequency spectra

(Figure 6a–6b) we projected down to 25 samples according to

the hypergeometric distribution [56,57] which smooths the

spectrum while retaining all available information from loci with

more than 25 genotyped samples. Hypergeometric projection was

not used to build the allele count spectra used for fitting purposes

because it introduces correlation among allele count bins. We

constructed the allele count spectra for MEI events detected as

insertions and those detected as deletions separately to account for

the distinct ascertainment conditions before combining them into

the aggregate spectrum. The combined spectrum includes

corrections for respective detection and genotyping efficiencies:

nMEI (i)~
nREF (i)

(eDET
:eGEN )REF

z
nNREF (i)

(eDET
:eGEN )NREF

~KREF
:nREF (i)zKNREF

:nNREF (i)

ð7Þ

where nREF(i) and nNREF(i) are the counts of genotyped loci for

reference (e.g. Figure 5b) and non-reference MEI (Figure 5a) at

allele count i, KREF and KNREF are scaling factors for each

detection mode (not dependent on i), and nMEI(i) is the net count

of MEI variant loci at a given allele count i (Figure 5c–d). The

correction factors depend on the detection sensitivity (eDET) and

genotyping efficiency (eGEN) as K= (eDET?eGEN)
21. Genotyping

efficiency is simply the fraction of detected sites with 25 more

genotyped samples (Table S9). Detection efficiency is described

above (Detection specificity and sensitivity, Figure 3d). SNP

allele frequency spectra (Figure 6b) were based on the 1000GP

release VCF files (ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/pilot_data/release/2010_07/) with no corrections. SNP

allele frequency spectra were projected down to 50 samples

using the hypergeometric distribution [56,57].

Functional calculation of suppression factor
Only non-reference MEI with insertion position confidence

intervals entirely within annotated regions (Gene, UTR, CDS)

were counted. No MEI that were subsequently invalidated were

counted. Relative to random placement across the genome the

MEI suppression or boost factor is defined as:

x~
Nobs

:Lobs

Ntot
:Ltot

ð8Þ

where Ntot is the total number of MEI loci, Ltot=2.856109 bp is

the length of the accessible genome, Lobs is the size of the region

(1 MB or the sum of coding regions) where the number of

observed MEI is Nobs. The null model for MEI placement results in

a binomially distributed Nobs, which is generally not far from what

we observe, except in the case of functional regions (suppressed)

and HLA (hotspot). For the calculation of MEI inserted in CDS

regions, only non-reference MEI were considered, since an

embedded reference MEI precludes annotation as a coding

sequence.

Heterozygosity
MEI and SNP heterozygosity for each sample were calculated

from the counts of genotyped heterozygous sites. For MEI, the

total numbers of genomic heterozygous sites were estimated with

corrections for genotyping efficiency and detection sensitivity. The

genotyping efficiency for a given sample is the fraction of detected

loci with high quality (GQ$7 non-reference, of GQ$10 reference

MEI) genotypes. There is also a sample specific correction for

genotyping bias against heterozygotes at sites with limited

fragment coverage:

KHET~
Nloci

X

loci

1{2:binopdf (0,NF ,0:5)
ð9Þ

where the sum is over genotyped loci passing the GQ threshold for

the given sample, Nloci is the count of such sites, NF is the count of

supporting fragments (both reference and insertion allele) at the

site and binopdf is the binomial probability density function that a

heterozgygous site will randomly produce only reference support-

ing fragments. The KHET correction was applied only to the non-

reference MEI component because, for reference MEI detected as

deletions, GenomeSTRiP used not just supporting fragment

information for genotype likelihoods, but also used Beagle to

impute missing data from linkage with local SNP haplotypes to

identify heterozygous deletions. For each sample (s) the number of

heterozygous MEI in the genome is estimated as:

pMEI (s)~
pREF (s)

(eDET
:eGEN (s))REF

z
KHET (s):pNREF (s)

(eDET
:eGEN (s))NREF

ð10Þ

where pMEI(s) is the heterozygosity for sample s, pREF(s) and

pNREF(s) are the raw counts of heterozygous sites for reference and

non-reference MEI, eDET is the detection sensitivity, and eGEN(s) is
the fraction of detected sites genotyped in the given sample (Figure

S13, Table S9). SNP heterozygosity is derived from the raw counts

of heterozygous sites. All values of heterozygosity are in units of

heterozygous sites per genome, and the length of the genome is

considered to be the accessible genome (2.85 Gb) [36].

The SNP heterozygosity values are transformed to rough

estimates of the corresponding coalescent time (Figure 7b) [77]:

CT~2:

pSNP

4mSNP

� �

:TGEN ð11Þ

where, mSNP=1.861028 mutations per site per generation, and

TGEN,25 y is the average time between generations.
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Figure S1 Insertion coordinate convention.

(EPS)
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Figure S2 Number of deletion call sets supporting reference

MEI locus. The average number of deletions call sets supporting

MEI events is about eight (blue) while for all deletions in the

1000GP release (gray dashed line) the average number of calls was

about three. The peak at the call sets for Alu MEI deletions

corresponds to the eight Illumina RP based call sets (BC, Wash U,

WTSI, for both pilots, Broad for pilot 1 and U.Wash for pilot 2)

and two SR call sets (Pindel for both pilots).

(EPS)

Figure S3 UCSC browser display of reference MEI. (top) The

deletion (red track with 1000GP deletion id’s P1_M_061510

_12_213 for low coverage pilot and P2_M_061510_12_22 from

the trio pilot) matches to the annotated AluYg6 element at

chr12:8516855–8517156, present in the NCBI36 reference

sequence but missing in the sequenced sample. The black

RepeatMasker track shows that the AluYg6 element matches

the deletion start and end coordinates. The green tracks indicate

the extent of the chimpanzee assembly, which does not include

the AluYg6 element. The blue DGV tracks show that this

particular deletion has been previously identified by several

experiments with various degrees of position resolution.

(bottom) Example of questionable reference MEI. The blue

track at the top marks a detected deletion (id

P2_M_061510_3_301) at chromosome 3, 60,660,331 bp that

overlaps .50% with a short annotated L1HS element, but the

start and end coordinates do not match precisely. The

chimpanzee genome (in yellow) has a gap in the region, but

the edges do not align precisely. This deletion was included in

the count of 2,010 reference MEI, but adds to the level of

uncertainty.

(TIFF)

Figure S4 1000 Genome Project pilot sample breakdown. a)

Venn diagram of pilot samples by sequencing platform (Illumina

and 454 only). The bulk of the samples were sequenced by

Illumina. The circle areas are only roughly proportional to the

number of samples contained. b) Venn diagram of samples used

for MEI detection (left) and genotyping (right). MEI detected as

insertions (red) and deletions (blue) have different signatures and

algorithms resulting in the difference between the samples used.

(TIFF)

Figure S5 Illumina paired end fragment length distributions.

Left) Low coverage pilot fragment length distributions for a

random selection of 20 lanes of Illumina read pair data. Most

libraries have a median fragment length from 100 to 300 bp with a

wide variety of shapes. Right) Trio pilot fragment length

distributions for 130 lanes of Illumina read pair data for

NA12878. Five libraries are shown in different colors with

different characteristic shapes. The small peak visible in orange

at 550 bp is shifted by 300 bp from the main peak. This small

peak arises from reference Alu insertions of length 300 bp. This

small Alu peak occurs for all libraries in both pilots.

(EPS)

Figure S6 MEI insertion sensitivity vs. coverage for the two

methods. Coverage for the RP method is quantified as ‘‘span’’

coverage on the blue scale. Span coverage is calculated based on

the fragment gap between the reads at the end of the fragment

where RP detection is sensitive to large structural variations. The

SR algorithm sensitivity depends on read coverage (red scale at the

top) because the insertion can be detected anywhere within a given

read (except within 20 bp of the ends). The detection sensitivity at

maximum coverage is determined by the trio overlap calculations

from Table S6. Sensitivity at reduced coverage values is calculated

by down sampling the number of supporting reads and counting

the fraction of insertions that survive the selection criteria.

(EPS)

Figure S7 Non-reference MEI insertion breakpoint resolution.

(top) the position residual between matched RP to SR insertions.

(bottom) 1000GP loci vs. dbRIP. The dbRIP hg18 coordinates

were shifted by TSD such that both lists adopt the ‘leftmost’

coordinate convention.

(EPS)

Figure S8 Venn diagrams of MEI insertion overlap with recent

studies. (top) L1 overlap with Ewing and Kazazian [34]. (bottom)

Alu overlap with Hormozdiari et. al. [35].

(EPS)

Figure S9 Genomic distance to nearest element of the same

family. (top) Non-reference MEI. 1000GP and HuRef distribu-

tions are plotted as well as L1 distances for Ewing and Kazazian

[34] and Alu distance for Hormozdiari et. al. [35]. Distances ,1

indicate insertions within annotated elements.

(EPS)

Figure S10 Insertion position resolution comparison. Non-

reference MEI were matched to dbRIP using a 200 bp window.

(EPS)

Figure S11 Number of MEI per 1 MB binned regions across

genome. (top) Dotted gray line is a simple Poisson model for MEI

distributed uniformly across the accessible genome (2.85 Gb). The

red arrow points to a significant hotspot in chromosome 6, position

33 Mb in the HLA region where 19 MEI were detected in a 1 MB

region. (bottom) MEI density profile across chromosome 6

showing spike in region of HLA at 33 Mb.

(EPS)

Figure S12 MEI insertion length. a) Comparison of insertion

lengths with 617 dbRIP assembled MEI insertions that match

1000 Genomes MEI using a 200 bp window around insertion

position. b) MEI insertion length residual distribution. c) The

insertion length from MEI deletions (red) is the number of

reference nucleotides in the deleted region (the annotated mobile

element plus one copy of the TSD and any carry-over sequence).

Sharp peaks at 300 bp and 6000 bp are the Alu and L1 insertions

respectively. The insertion length for MEI detected as insertions

(blue) is estimated from the span of the mapping coordinates

within the mobile element. This estimate does not take into

account any inserted sequence that is not part of the mobile

element such as the TSD, poly-A tail, or carry-over sequence.

(EPS)

Figure S13 Genotyping efficiency. top) Fraction of MEI sites

surviving genotype quality thresholds in low coverage data for

non-reference MEI (blue steps, GQ$7) and for reference MEI

(red, GQ$10). Also shown is genotype accuracy based on

validation experiments for non-reference MEI (dashed with grey

95% confidence interval). bottom) Sample-by-sample fraction of

MEI sites surviving genotype quality threshold for vs. coverage in

low coverage samples. Non-reference MEI (crosses) show a

genotyping efficiency approaching 60% at 4 fragments/base

spanning coverage, while reference MEI (circles) genotyping

efficiency is nearly flat at 80%. Samples from the three population

groups show the same trends. Coverage here is calculated as

spanning coverage, most relevant for RP detection.

(EPS)

Figure S14 Hardy-Weinberg Equilibrium test. Proportions of

each genotype as a function of allele frequency for each population
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group (blue: CEU, red YRI, and green CHBJPT). Also plotted in

gray dashed lines for comparison is the proportion expected from

HWE.

(EPS)

Figure S15 Genotype Matrix of low coverage samples. Each

element in the matrix corresponds to a sample and a locus at

which the genotype is color coded. Sample populations are labeled

across the top, separated by green lines. The chromosome order

for the MEI loci is labeled on the right side, with non-reference

MEI (‘‘insertions’’) and reference MEI (‘‘deletions’’) grouped

separately. This matrix was input to Principal Component

Analysis for plotted in the main text Figure 6c (Figure S16d).

(EPS)

Figure S16 Principal Component Analysis population clustering

for PCR genotypes, MEI ins, MEI del, combined. A matrix of

genotypes for each site and sample was input to a PCA and the

resulting first two components are plotted against each other. The

sum of insertion alleles is the value in the matrix elements. For

elements corresponding to sites and samples without genotypes,

the global average genotype value was used. a) Genotypes from

PCR validation for the low coverage pilot. b) Genotypes from low

coverage non-reference MEI only. c) Genotypes from reference

MEI only. d) Genotypes from samples with both non-reference

and reference MEI. Population clusters become tighter as more

MEI insertion information is added to PCA.

(EPS)

Figure S17 Coalescent simulation allele frequency spectra for

the combined CEU, YRI, CHB and JPT population groups. AF is

binned in units of 0.1. The lowest bin (0–0.1) is not plotted to allow

the spectra at higher AF to be compared. The normalizations for

MEI detected as insertions (red) and deletions (green) are set to

that the two components sum to the total unbiased MEI AFS

(blue).

(EPS)

Figure S18 MEI insertion rate vs. coalescent time for increasing

MEI site selection thresholds. The estimated MEI insertion rates

(main text Eq.2) for each sample is plotted vs. the coalescent time

derived from SNP heterozygosity. Panel a) is the same as Fig. 7b

from the main text and corresponds to genotyped sites with

GQ$7, which also corresponds to sites with at least two

supporting fragments. As more supporting fragments are required

b) NF$3, c) NF$5, d) NF$7, the numbers of genotyped sites

decrease, but the trend between populations in the MEI insertion

rates remains.

(EPS)

Table S1 Combined MEI event list (external Excel file).

Genomic coordinates with confidence intervals are listed for each

of the 7380 MEI loci. Each event is characterized by an element

type (ELEMENT=Alu, L1, or SVA), element STRAND (+ or2),

detection (DET=DEL or INS for non-reference and reference

MEI respectively), event ID, estimated insertion length (LEN),

detection algorithm (ALG), validation status (VAL), validation

method (VALMETH=PCR, ASM for assembly, 7SLRNA should

be discarded due to proximity to annotated 7SLRNA element),

population (POP=CEU, YRI, CHB, or JPT), allele frequency in

three major groups (AF), number of genotyped samples in the

three groups, number of insertion alleles in the three groups,

previous study ID’s (DBVARID, DBRIPID, PUBID), TSD length,

number of insertion-supporting fragments from the 59 side

(NALT5), from the 39 side (NALT3), the 1000 Genomes CALL

SET name, quality value (Q), gene/exon/UTR/CDS interrupted

(GENE), sub-family, and inserted sequence when available, and a

list of all samples in which the alternate allele was detected

(ALTSAMPLES). Note: 71 events identified by the VAL field as

invalidated or in close proximity to a 7SLRNA loci are marked in

yellow and were not included in the counts of interrupted genes,

exons, UTRs, or CDS regions.

(XLSX)

Table S2 Samples with corresponding sequence coverage

(external Excel file) Sequence coverage for each of the 185

samples calculated in terms of Illumina span-coverage for RP

detection, 454 base coverage for SR detection and Illumina base-

coverage (including single-end read data) for deletion detection.

(XLSX)

Table S3 Reference MEI detection method breakdown. (exter-

nal Excel file) Thirteen different algorithms contributed to the

detection of MEI present in the reference but not in a sample. a)

Breakdown by pilot. b) Breakdown by algorithm. The bulk of MEI

deletions were found by Illumina RP and SR methods.

(XLSX)

Table S4 Validation genotypes for non-reference MEI datasets

(external Excel file). Complete genotyping information for all

samples tested at the 746 sites used for false detection rate

estimates and for genotyping assessment. a) Additional validation

results for non-reference MEI loci (external Excel file) Genome

coordinates for 267 additional validation PCR experiments carried

out at Yale, EMBL, and LSU. These experiments were done as

preliminary tests (EMBL, Yale, LSU-PRELIM) and for testing

specific loci (SVA, de novo, exon interrupting).

(XLSX)

Table S5 MEI sensitivity based on comparison to gold standard

events. (external Excel file) The fraction of HuRef MEI [23] found

by this study is a lower limit to the detection sensitivity to common

MEI alleles. a) MEI insertion detection sensitivity. b) MEI deletion

sensitivity. b) MEI deletion sensitivity based on loci detected in the

same samples from Mills et al. [47].

(XLSX)

Table S6 Trios (external Excel file). a) Overlap between RP and

SR in the same trio samples (NA12878 and NA19240) can be used

to estimate detection sensitivity. Columns RP and SR are the

counts of all loci for the two samples broken down by element

type. RP-only and SR-only count loci where only one method

found the insertion. RP+SR is the count of loci deleted by both

methods. The detection sensitivity estimates (eRP, eSR, and e) with

corresponding statistical 1-sigma errors are derived from the

overlaps. The combined detected efficiency is based on the union

of the two independent methods. b) Counts of MEI site differences

between two individuals. The trio samples were used for this

because of the relatively high coverage and corresponding

sensitivity to low frequency alleles. Corrections to the counts

compensate for less-than-perfect detection sensitivity and false

detections. The trio children from two populations (CEU and

YRI) have the most differences (20346120) while the CEU

parents have the fewest (6636120). The YRI parents’ count of

sites is between the other pairs. These differences are plotted vs.

the corresponding coalescent time in Figure 6d (main text). c) De

novo insertion hunt. Any MEI appearing in the children of the

family trios but not in the parent would be a de novo MEI insertion.

Six candidates from NA12878 (a) and 15 from NA19240 (b). All

but one de novo candidate occurred at a site not found in any of the

other samples. This site was PCR tested and identified in

NA12892 (mother).

(XLSX)
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Table S7 Sub-family breakdown (external Excel file). Fragments

from 1,105 of the Alu insertions were assembled into contigs

spanning the Alu element to allow subfamily identification. The

subfamilies are compared with those from the reference MEI

detected as deletions and to the Venter MEI.

(XLSX)

Table S8 Non-reference MEI genotyping validation (external

Excel file). Genotype contingency table for non-reference MEI vs.

genotypes from PCR validation experiments. ‘‘0/0’’ are homozy-

gous reference, ‘‘0/1’’ are heterozygous insertions, and ‘‘1/1’’ are

homozygous insertions (VCF file genotype label convention).

Counts in each box are the numbers of sites and samples with the

corresponding combination of genotype from sequencing and

PCR. The overall genotyping accuracy is the fraction of counts on

the diagonal while the genotyping efficiency is the fraction of all

genotyped sites & samples divided by sites6samples for the given

pilot dataset. Only genotypes with Q$7 are included. The low

coverage (a) accuracy is 87% and the efficiency is 57%. The trio

pilot (b) accuracy is 95.7% and the genotyping efficiency is 89.9%.

The improved genotyping performance for the trio pilot is a

consequence of higher coverage.

(XLSX)

Table S9 MEI genotyping corrections. (external Excel file). a)

Detection sensitivity. b) Genotyping efficiency with correction

factors used in constructing the allele frequency spectra for each

population and element type. c) Heterozygosity counts and

correction factors for each sample and element family.

(XLSX)

Table S10 Loss of Function variants (external Excel file). Counts

of insertions occurring within genes, UTR, and CDS regions

annotated from Gencode version 3b. This table is partially shown

as Table 1 in the main text. Only insertions with breakpoint

confidence intervals entirely within the annotation region are

counted. Any insertion candidate subsequently invalidated is not

counted. A random placement model is used to estimate the

number of expected insertions in the absence of selection. a) MEI

counts. b) The corresponding counts of SNPs from the low

coverage pilots are also listed along with the expected numbers of

SNPs based on random placement. The suppression factor for

MEI (,466) is similar to that of a SNP changing a stop codon

(,426).

(XLSX)

Table S11 Mobile element consensus sequences (external Excel

file). Repbase element names and sequences for each of the

element added to the reference genome for MEI insertion

detection.

(XLSX)

Text S1 The 1000 Genomes Project Consortium.

(DOC)

Text S2 Supporting Methods.

(DOCX)
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