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A complex fracture network is generally generated during the hydraulic fracturing treatment in shale 

gas reservoirs. Numerous efforts have been made to model the flow behavior of such fracture networks. 
However, it is still challenging to predict the impacts of various gas transport mechanisms on well 

performance with arbitrary fracture geometry in a computationally efficient manner. We develop a 
robust and comprehensive model for real gas transport in shales with complex non-planar fracture 
network. Contributions of gas transport mechanisms and fracture complexity to well productivity and 
rate transient behavior are systematically analyzed. The major findings are: simple planar fracture 
can overestimate gas production than non-planar fracture due to less fracture interference. A “hump” 

that occurs in the transition period and formation linear flow with a slope less than 1/2 can infer 
the appearance of natural fractures. The sharpness of the “hump” can indicate the complexity and 

irregularity of the fracture networks. Gas flow mechanisms can extend the transition flow period. The 
gas desorption could make the “hump” more profound. The Knudsen diffusion and slippage effect play 
a dominant role in the later production time. Maximizing the fracture complexity through generating 
large connected networks is an effective way to increase shale gas production.

Large-scale shale gas production began in 2000, when horizontal drilling and hydraulic fracturing techniques 
provided access to commercial volumes of shale gas. According to recent EIA report, 43 billion cubic feet of gas 
per day is produced from shales in the US1. Hydraulic fracturing in shale formations is o�en associated with com-
plex fracture networks2–6. �e occurrence of complex non-planar fracture network is much more common than 
initially anticipated, especially in unconventional reservoirs6. �e complexity and non-planarity is caused by the 
interaction of hydraulic fractures with pre-existing natural fractures, �ssures or cleat4.

Signi�cant e�orts have been made to numerically model shale gas production in complex fracture networks. 
�e dual continuum model (dual porosity and dual permeability)7–11 and discrete fracture models (DFM)12–14 
are the two most common methods to handle complex fracture networks and to study �ow in fractured reser-
voirs (with natural fractures and/or induced fractures). Cipolla et al. (2011) developed automated unstructured 
gridding algorithms to numerically simulate well performance from the complex fractures15. Li and Lee (2008), 
Moinfar (2014), used embedded discrete fracture models (EDFM) to treat the matrix as structured grids and dis-
cretize the complex fractures into a number of segments16,17. Sheng et al. (2012) integrated a shale-gas transport 
model with extended �nite element method (XFEM) to study the main �ow gas mechanism of shale in complex 
fracture network18. Jiang and Younis (2015) proposed two hybrid approaches: one is the coupling EDFM with 
multiple interacting continua (MINC), the other is the coupling of unstructured DFM with continuum-type 
approaches19. However, these numerical methods are still challenging to apply due to complicated gridding issues, 
an expensive computational cost, and complexities in development of computational codes.
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Analytical and semi-analytical approaches have also been developed to investigate the well performance in 
complex fracture networks. Zhou et al. (2013) proposed a semi-analytical model by combining an analytical 
reservoir solution with a numerical solution on a discretized fracture panels20. However, the model did not incor-
porate the main gas transport mechanisms in shale gas formations. Yu et al. (2015) developed a comprehensive 
semi-analytical model for gas transport in shale formation with complex fracture geometry21. �e model consid-
ered the complex non-planar fractures with varying fracture width and fracture permeability, and the gas trans-
port mechanisms in shale. However, there is no systematic studies for the e�ects of various gas �ow mechanisms 
on the production. Besides, the complex fracture network due to the interconnection of hydraulic fracture and 
natural fractures has not been considered. Jia et al. (2015) adopted the Star-Delta transformation to solve the 
interplay of �ow between the interconnected fractures in their semi-analytical model22. However, the method is 
based on the discrete fracture network simulation and the fracture �ow is numerically solved by the method of 
�nite di�erence method, which is also related to gridding problem and computational cost. Moreover, most of the 
recent models only solved the orthogonal fracture network without considering the arbitrary fracture orientation 
and geometry22,23.

Furthermore, the common methods for analysis of di�erent gas �ow regimes is mainly focused on the tran-
sient pressure behavior under constant �ow rate24–26, because most of these models are within the Laplace domain, 
which are proved to be acceptable for fractures with in�nite conductivity. However, shale-gas wells with low per-
meability and �nite �ow capacity fractures are generally produced at constant bottomhole pressure rather than 
constant �ow rate27,28. Accordingly, type curves under constant bottomhole pressure, i.e. rate transient analysis, is 
especially more useful to identify the �ow regime and deserves more interest to estimate the fracture properties.

In this paper, we develop a comprehensive and e�cient semi-analytical model by incorporating the main shale 
gas �ow mechanisms, including gas di�usion, gas desorption, gas slippage, and non-Darcy’s �ow in the com-
plex fracture network. An innovative approach de�ned as “Correction of Flow Performance at Interconnected 
Nodes” is introduced to consider the interplay of �ow between the interconnected fractures. �en, we verify the 
semi-analytical model against a numerical model and an analytical model. Subsequently, the e�ects of various 
gas �ow mechanisms and fracture network complexities on well performance and rate transient behavior with 
the constraint of constant bottomhole pressure are studied systematically. Furthermore, we apply the model to 
perform history matching and production forecasting in an actual vertical fractured well from Marcellus shale. 
�e semi-analytical model we present is simple-yet-rigorous to deal with complex fracture network with arbitrary 
orientation, geometry, various properties and interconnections between fractures. Besides, by use of the varying 
time step automatically according to the changing speed of gas �ow rate, the model is computationally e�cient. 
To best of our knowledge, this work is the �rst study that presents the impacts of gas transport mechanisms on 
well performance and rate transient analysis in shale formations with the complex non-planar fracture network.

Results
Model validation. �e accuracy of the semi-analytical model is con�rmed by comparing the results with the 
numerical simulation (CMG, 2015) and an analytical solution (Kappa, 2015). �e reservoir and fracture prop-
erties are as follows: initial reservoir pressure is 5,000 psi, reservoir temperature is 130 °F, reservoir permeability 
is 500 nd, reservoir porosity is 7%, reservoir thickness is 150 �, rock compressibility is 1 ×  10−6 psi−1, fracture 
width is 0.01 �, fracture half-length is 350 �, fracture conductivity is 50 md-�, Langmuir pressure is 1,300 psi, 
Langmuir volume is 140 scf/ton, and shale bulk density is 2.5 g/cm3. �e constant bottomhole pressure of 500 psi 
is used for simulation constraint and the simulation time is 30 years. Figure 1 shows a good match of gas �ow rate 
and cumulative gas production between the semi-analytical model and numerical model and analytical model.

Effects of gas flow mechanisms. Shale gas is natural gas produced from shale sequences29. Due to low 
permeability of the shale rock (nano-Darcy scales) and organic matter as a medium of gas source and storage, the 
gas transport mechanism is signi�cantly di�erent from conventional natural gas30. We will investigate the physical 
aspects of gas production from shale with a single bi-wing fracture in the following sections.

Gas diffusion. According to Javadpour et al. (2007), the gas evolution process from shale has four di�erent 
transport processes: (1) gas �ow in micro-pores, i.e. gas �ow in fractures, which can be described by Fickian 

Figure 1. Model validation with numerical model and analytical model. 
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di�usion and/or Darcy’s law depending on the original pressure; (2) gas �ow in nano-pores, i.e. gas �ow in 
shale matrix, where a Knudsen di�usion is the dominant di�usion process; (3) Gas desorption from the sur-
face of the kerogen/clays to the pore networks; (4) Gas molecule di�usion from the kerogen bulk or clays to the 
exposed surfaces29. Besides, the experimental studies show that the di�usion coe�cient for Knudsen di�usion 
is 4 ×  10−2 cm2/s and the di�usion coe�cient for gas molecule transport in the kerogen bulk is 2 ×  10−6 cm2/s29. 
Kim et al. (2015) presented that the Fick di�usion coe�cient remains 5.068 ×  10−4 cm2/s and is independent 
of the pore radius31. �erefore, in this study, the range of di�usion coe�cient is determined from 1 ×  10−2 to 
1 ×  10−4 cm2/s.

�e simulation results show that the higher the di�usion coe�cient, the greater the di�usion e�ect is, espe-
cially when it is larger than 1 ×  10−3 cm2/s, the impact increases drastically (Fig. 2a). For the di�usion coe�cient 
of 1 ×  10−2 cm2/s, which is within the scope of Knudsen di�usion, the contribution to cumulative production is 
up to 54%. Hence, Knudsen di�usion plays a dominant role in the gas production. When the di�usion coe�cient 
is lower than 1 ×  10−4 cm2/s, the gas di�usion plays a negligible role in well performance and the contribution to 
well performance is only 0.01%.

Gas desorption. Gas adsorption and desorption is an important process in organic rich shale reservoirs32. 
�e organic matter has a strong adsorption ability because of the large surface area and a�nity to methane21. Gas 
is supposed to �rst desorb from the surface of nano-pores to matrix then transport into fractures. Di�erent gases 
have di�erent Langmuir adsorption capacities32.

�e e�ects of di�erent Langmuir adsorption capabilities on well performance are shown in Fig. 2b. It suggests 
that the gas desorption contributes to 10–27% increase of cumulative gas production at 30 years. �is is because 
gas desorption increases the e�ective pore diameter for �ow, reduces tortuosity and causes extra slippage at the 
boundary, thereby increases the matrix permeability manifold33. In addition, the production is higher with a 
larger value of Langmuir volume. �e reason is that the Langmuir volume re�ects the capacity of adsorbed gas 
in the reservoir. �e larger the value, the more adsorbed gas in the reservoir, and the more gas could desorb from 
matrix to fractures when well produces at a constant bottomhole pressure.

Gas slippage. Gas �ows through shale matrix with pore size ranging from nanometers (1 nm =  10−9 m) to 
micrometers (1 µ m =  10−6 m)29. �e velocity of gas molecules at pore walls is referred to the gas slip velocity. 
Because of the comparable dimensions of pore size in a shale reservoir to the mean free path of molecules, the 
slip velocity is not zero34. �is phenomenon is known as gas slippage e�ect or Klinkenberg e�ect35. Small pore 

Figure 2. E�ects of three gas transport mechanisms on cumulative gas production. (a) E�ect of gas 
di�usion with di�erent gas di�usion coe�cients. (b) E�ect of gas desorption with di�erent Langmuir volumes. 
(c) E�ect of gas slippage with di�erent pore diameters.
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size enhances gas slippage along pore walls and needs to be quanti�ed36. To illustrate the gas slippage e�ect on 
cumulative gas production and rate transient behavior, the range of pore size from 5 nm to 500 nm is studied.

Simulation results indicate that the smaller the pore size is, the more important the gas slippage e�ect (Fig. 2c). 
When the pore size is 5 nm, the slippage e�ect could contribute to 37% of increase in cumulative gas production. 
When the pore size approaches 500 nm, the gas slippage e�ect becomes negligible, which contributes only 0.69% 
of the increase in cumulative gas production.

�e reason is that the smaller pore size results in a higher Knudsen number under the same pressure and per-
meability condition. A higher Knudsen number indicates the distances between gas molecules are comparable 
to the pore dimension, resulting in rare�ed gas34,37, thus more gas production could be obtained. Besides, the 
slippage e�ect could accelerate the gas molecules transport speed because there is less drag or no stationary layer 
to slow them34. �erefore, slippage e�ect, acting as an enhancement of apparent permeability, could increase the 
shale gas production.

Effects of fracture complexity. �e e�ects of complex fracture networks on well performance are studied. 
�e fractures are simulated from simple to complex. Six cases are investigated to illustrate the fracture complexity 
(Fig. 3). Case 1 is simple planar hydraulic fracture without considering natural fractures. Case 2 is non-planar 
hydraulic fracture without considering natural fractures. Case 3 is non-planar hydraulic fracture interconnected 
with simple planar natural fractures. Case 4 is non-planar hydraulic fracture interconnected with non-planar 
natural fractures. Case 5 is based on Case 3, but with more complicated natural fracture networks, i.e. the planar 
natural fractures are also interconnected with each other. Case 6 is based on Case 5, the planar natural fractures 
are treated as non-planar natural fractures. �e natural fracture properties are as follows: fracture half-length is 
180 � for the ones interconnected with hydraulic fracture and 100 � for natural fractures in the network. Fracture 
width and fracture conductivity is 0.01 � and 1 md-� for both of the natural fracture systems.

Non-planar hydraulic fracture. To illustrate the e�ect of non-planar hydraulic fracture on gas production, 
Cases 1 and 2 are compared. In this situation, only one single bi-wing hydraulic fracture is considered. �e total 
fracture length is the same for both cases. �e di�erence is that Case 1 is a straight hydraulic fracture, while Case 
2 has an arbitrary geometry.

As illustrated by Fig. 4a, there is 5% higher of cumulative gas production for the simple planar hydraulic frac-
ture. Hence, the planar hydraulic fracture could overestimate the cumulative gas production. �e possible reason 
could be that fracture segments in non-planar fracture have a larger production interference and competition 
with each other, which could be regarded as a reduction of fracture conductivity. �e pressure distribution a�er 
10 days production suggests that the drainage area of the non-planar fracture is smaller than the simple planar 
fracture, resulting in the smaller pressure drop, thus less gas production was obtained.

Non-planar natural fracture. Shale gas reservoir is the naturally fractured formation. �e interaction 
between hydraulic fracture and natural fractures is common. Cases 3 and 4 are compared to study the e�ect of 
non-planar natural fractures.

As indicated in Fig. 4b, hydraulic fracture interconnected with simple planar natural fractures could overesti-
mate about 12% of cumulative gas production. Similar with the e�ect of non-planar hydraulic fracture, with the 
appearance of interconnection between hydraulic fracture and natural fractures, the signi�cance of non-planar 
natural fracture becomes more pronounced. �e reason could be attributed to the occurrence of more production 
interference among the fractures including hydraulic fracture with natural fractures and natural fractures with 
each other.

Figure 3. Six di�erent complex fracture networks. Case 1 is the simple planar hydraulic fracture; Case 2 is 
the non-planar hydraulic fracture; Case 3 is the simple planar natural fracture; Case 4 is the non-planar natural 
fracture; Case 5 is the simple planar natural fracture network; Case 6 is the non-planar natural fracture network.
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Non-planar fracture network. In this simulation case, the natural fractures are also interconnected with 
each other, the e�ect of non-planar natural fracture networks is studied.

As shown in Fig. 4c, hydraulic fracture is interconnected with simple planar natural fracture networks could 
overestimate about 21% of cumulative gas production. Similarly, the signi�cance of non-planar natural fracture 
network is increasingly noteworthy. �erefore, with the increasing complexity of the fracture network, the impact 
of non-planar fracture increases, indicating that it is important to accurately characterize the realistic complexity 
of the fracture network in actual �eld application.

�e results show that the more complex the fracture network is, the higher the production could be obtained. 
�e hydraulic fracture interconnected with natural fracture networks could achieve the highest gas recovery at 
the end of production. Comparing Case 2 with Case 4, the natural fracture contributes to 17% of cumulative gas 
production. Comparing Case 4 with Case 6, the natural fracture network could contribute to 36% of cumulative 
gas production. �erefore, increasing the fracture complexity and the interconnections between hydraulic frac-
ture and natural fractures could improve the gas production signi�cantly.

Maximizing the fracture complexity through generating large fracture networks is an e�ective way to increase 
shale gas production. �is can be done through pumping large volumes of low viscosity �uid, for example, slick 
water. In addition, low viscous �uid could improve the clean-up behavior4.

Field application. One vertical well in Marcellus shale is selected to perform history matching and further 
illustrate the application of this semi-analytical model. �e reservoir and fracture properties are as follows: the 
initial reservoir pressure is 4,917 psi, the reservoir temperature is 130 °F, the reservoir porosity is 6.8%, the res-
ervoir thickness is 80 �, the rock compressibility is 3 ×  10−6 psi−1, the initial gas saturation is 75%, and the gas 
gravity is 0.59.

Based on the given parameters, the semi-analytical model is used to perform history matching and production 
forecasting. �e bottomhole pressure of 500 psi is used for simulation constraint and cumulative gas production 
is the history-matching variable. Complexity of fracture networks, fracture half-length, fracture conductivity, and 
matrix permeability are tuning parameters to perform history matching. �e Langmuir volume is 140 scf/ton, the 
average pore size is 10 nm, and the di�usivity coe�cient is 4 ×  10−2 cm2/s.

Because the history-matching process usually leads to non-unique solutions. In other words, di�erent sets of 
values can achieve satisfactory match results. Due to lack of data for this well such as microseismic monitoring, 
advanced sonic logs, 3D-seismic interpretation of curvature stress and natural-fracture orientation, two pos-
sible history-matching results are generated below: one is the planar fracture network and the other one is the 

Figure 4. E�ects of fracture complexity on gas production and pressure distribution a�er 10 days. (a) E�ect 
of non-planar hydraulic fracture; (b) E�ect of non-planar natural fracture; (c) E�ect of non-planar natural 
fracture network.
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non-planar fracture network. �e geometry of non-planar fracture network is mainly referred to the mechanical 
analysis of interaction between hydraulic and natural fractures in shale gas reservoir38. Both of the fracture net-
work have the same fracture properties and total fracture length. �e uncertainty quanti�cation and integration 
of history matching with microseismic data will be further investigated in our future work.

�e history matching results for cumulative gas production are shown in Fig. 5a, which illustrates a good 
match between both of the planar fracture network and non-planar fracture network with the �eld data. In addi-
tion, the pressure distribution for both cases at production time of 30 days clearly indicates that the e�ective 
gas drainage area is di�erent between two cases. For the planar fracture network, the primary drainage area is 
the vicinity of the fractures near the wellbore. While for the non-planar fracture network, the interaction area 
between the hydraulic fracture and natural fractures is the primary drainage area, illustrating the importance of 
interference of fractures inside the network.

�rough the history matching, the matrix permeability, fracture network complexity and fracture proper-
ties can be possibly quanti�ed as follows: the matrix permeability is 50 nd; the fracture network consists of one 
bi-wing hydraulic fracture and 98 natural fractures, among them, 14 natural fractures are interconnected with the 
hydraulic fractures. �e fracture width is 0.01 � for all the fractures in the network. �e fracture half-length is 200 
�, 100 � and 25 � for hydraulic fracture, natural fractures interconnected with hydraulic fractures, and natural 
fractures in the network, respectively. �e fracture conductivity is 5 md-� and 1 md-� for hydraulic fracture and 
natural fractures, respectively.

A�er history matching, we performed production forecasting for a 30-year period using both planar fracture 
network and non-planar fracture network. Although at early production time, these two networks obtained the 
same amount of cumulative gas production. However, a�er about 2.25 years, the fracture interference starts to 
play increasing important roles in the gas production performance, resulting in di�erence between two networks. 
At the end of 30 years, there is 19% di�erence for the cumulative gas production (Fig. 5b). �e planar fracture net-
work could overestimate well performance because of less fracture interference. Hence, it is extremely important 
to characterize the realistic fracture networks underground for accurate long-term production prediction. �e 
�ndings of the �eld application may emphasize the importance of characterizing the realistic complexity of the 
fracture network and their properties.

Discussion
�e gas �ow mechanisms and fracture complexity have signi�cant impacts on the cumulative gas production. 
Rate transient analysis and �ow regime identi�cation are investigated to further explain the reasons. �e reser-
voir, fracture and gas properties are adopted from the �eld case study discussed above.

Effect of fracture network on rate transient behavior. In this study, the single bi-wing hydraulic frac-
ture without considering natural fractures is the reference case. �e total fracture length remains the same as the 
fracture network.

�e gas �ow rate versus production time on a log-log scale is plotted to identify the �ow regimes experi-
enced by the well (Fig. 6a). For the early production time, most of the gas entering the wellbore comes from the 
expansion of the system within the fracture and �ow is essentially linear. �e log-log graph of �ow rate against 
time yields a straight line with a slope of 1/2. A�er the fracture linear �ow regime, two linear �ows occur simul-
taneously. One �ow is linear �ow within the fracture and the other is in the formation, thus the bi-linear �ow is 
with a 1/4-slope straight line. When the fracture tip e�ects are felt at the wellbore, bi-linear �ow periods end and 
formation linear �ow begins. �e gas �ow becomes formation linear �ow with a 1/2-slope straight line.

However, with the appearance of natural fractures, a “hump” could be characterized at the transition �ow 
regime between bi-linear �ow and formation linear �ow. Besides, at later production time, i.e. the formation 
�ow period, the slope is less than 1/2, suggesting a relatively higher gas rate with the contribution from natural 
fractures. �is phenomenon could possibly help �eld analysis to identify the complexity of the fracture network 
and reveal whether there is a good connection between hydraulic fractures and natural fractures. �e “hump” 

Figure 5. History matching and production forecasting for an actual vertical well from Marcellus shale. 
(a) History matching results for both planar fracture network and non-planar fracture network and pressure 
distribution a�er 30 years production. (b) Comparison of cumulative gas production for a 30-year period.
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indicates the interference between fractures. �e sharper of the “hump”, the more severe of the interference, thus 
more complex the fracture network will be. Furthermore, the presence of non-planar fracture network also plays 
an important role in the transition period. Gas �ow rate is higher for the non-planar fracture network than the 
planar fracture network during this period. In addition, a sharper “hump” could be obtained than the planar frac-
ture network, suggesting stronger fracture interference for the non-planar fracture network. Combined with gas 
�ow rate or cumulative gas production and the sharpness of the hump could possibly assist in the �eld analysis to 
identify whether there is a severe irregularity of the fracture network.

Effects of gas flow mechanisms on rate transient behavior. In this study, the non-planar fracture 
network is the reference case, because we want to verify the e�ects of gas �ow mechanisms under the complex 
non-planar fracture network. Cases without considering gas di�usion, gas desorption and gas slippage are com-
pared and analyzed.

Figure 6b presents that all the gas �ow mechanisms could extend the transition �ow period, especially the gas 
desorption. �is is because at early production time, free gas releases fast from matrix to the fractures. With the 
depletion of reservoir pressure, gas desorbs from the matrix particles to matrix pores to compensate the reduction 
of the pressure. �erefore, at the transition �ow period, gas desorption plays a major role in the gas production. 
Furthermore, gas desorption could make the “hump” more profound. Gas slippage and gas di�usion mainly in�u-
ence the gas rate at later production time, especially the Knudsen di�usion dominates the �ow behavior in the 
formation linear period. �e possible reason could be that with the continuous decreasing reservoir pressure, the 
Knudsen number increases, the slippage e�ect and Knudsen di�usion tend to play a major role in the nano-scale 
�ow perspective, and the viscous pipe �ow is almost negligible39,40.

Method
Model Development. �e semi-analytical model combines an analytical reservoir solution with a numeri-
cal solution on the discretized fracture segments. �e major assumptions are:

•	 �e reservoir is homogeneous and isotropic with uniform thickness and constant porosity permeability and 
compressibility;

•	 �e �uid �ow is single gas phase;
•	 �e height of each fracture is equal to that of reservoir;
•	 �e gravity force is neglected.

Shale gas flow in matrix system. �e di�usivity equation for shale gas transport in the matrix can be 
expressed below:

ρ φ
ρ υ

∂
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+ ∇ =

( )
t

( ) 0
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g g

where ρg is gas density, φ is matrix porosity, vg is gas velocity. Taking the gas slippage and gas di�usion into 
account, the gas velocity can be expressed as21:
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where km is matrix permeability, α is a constant and close to 1, Kn is Knudsen number, µg is gas viscosity, Dg is 
di�usion coe�cient, cg is compressibility of real gas.

�e gas desorption e�ect is considered by revising the gas compressibility as following:

Figure 6. E�ects of fracture complexity and gas �ow mechanisms on rate transient behavior. (a) E�ects 
of fracture complexity and non-planar network on rate transient behavior. (b) E�ects of gas di�usion, gas 
desorption and gas slippage on rate transient behavior.
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�erefore, the di�usivity equation of gas transport in shale matrix is given by:
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where cm is matrix rock compressibility.
For real gas �ow, pseudo pressure is introduced41:
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where P* is the reference pressure, Z is the gas compressibility factor, dimensionless, which can be obtained 
through the relationship with pseudo reduced pressure and pseudo reduced temperature42,43:
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where Pr is pseudo reduced pressure, dimensionless; Tr is pseudo-reduced temperature, dimensionless; Pc is crit-
ical pressure of gas; Tc is critical temperature of gas.

�e gas density can be estimated by the following formula:

ρ =
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ZRT (10)g

where M represents the gas molecular weight (M =  Mairγg, where Mair is the air molecular weight and equals to 
29 g/mol),R =  8.1345kPa ×  m3(kmoles/K) is the general gas constant, and T is the absolute temperature.

�e gas viscosity is given by44:
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(9 4 0 02 )

209 19 (12)

1 5

= . + + .b
T

M3 5
986

0 01
(13)

= . − .c b2 4 0 2 (14)

�en, the gas compressibility can be determined as follows:

=c
c

P (15)
g

pr

c

where cpr is reduced gas compressibility, which can be estimated by:

= − . − .
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Shale gas flow in the fracture network. Gas �ow from fracture to the wellbore is described by Darcy’s 
law. Due to the high gas velocity, especially at early production time, non-Darcy �ow is used to model the addi-
tional pressure drop. Pressure drop is given as followings when gas �ow from j+ 1th node to jth node by Zhou  
et al. (2014)20:

∫− = + =+
+

P P D q y ND q y dy j N{ ( ) [ ( )] } , 1
(17)

j j
y

y

j j j j f1
2

j

j

1

= + −
+ +

q y q q y y( ) ( ) (18)j j fj j1 1
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ρ
=











D

k w h
(19)

j
g

g f f f
j

ρ β

ρ
=ND

w h( ) (20)
j

g

g f f j
2

where Pj is the gas pressure at jth node, q� is the gas �ux at jth fracture segment, qj is the gas �ow rate at jth node of 
fracture segment, Dj is the coe�cient of Darcy �ow for gas at jth fracture segment, kf is the fracture permeability, 
wf is the fracture width, hf is the fracture height, NDj is the coe�cient of non-Darcy �ow, and β is the non-Darcy 
Forchheimer coe�cient.

Model solution. �e fracture network can be divided into N groups system depending on the complexity. 
Figure 7 shows an example of the fracture network. �e hydraulic fracture is in the middle of blue color. Others 
are natural fractures. �e natural fractures interconnected with hydraulic fracture are called “Primary natural 
fracture system”, the fractures interconnected with “Primary natural fracture system” are called “Secondary natu-
ral fracture system.” If there are other natural fractures interconnected with “Secondary natural fracture system”, 
they can be named as “Tertiary natural fracture system.” �e calculation method can be followed �ve steps and a 
�ow chart is shown in Fig. 8.

•	 Step 1: Fracture discretization and numbering�e fracture network is discretized into a number of segments 
and the associated nodes connecting these segments, which should capture the topology and fracture charac-
teristics. �e fracture segments and nodes could be numbered following the sequence of hydraulic fracture, 
primary, secondary, tertiary natural fractures. Figure 7 is an example of the discretization of the fracture 

Figure 7. An example of fracture network discretization. �e fracture network consists of one hydraulic 
fracture, four primary natural fractures and ten secondary natural fractures. �e hydraulic fractures are 
connected with natural fractures, and natural fractures are also connected with each other. �e wellbore is in 
the middle of the �gure. �e fracture network is discretized into 31 nodes (indexed in black) and 30 segments 
(indexed in red).
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network. �e fracture network consists of single bi-wing hydraulic fracture, 4 primary natural fractures and 
10 secondary natural fractures. �e network is discretized into 30 fracture segments with 31 nodes.

•	 Step 2: Equation system set up at each fracture node:

Two equation systems are introduced at the fracture nodes:

(1) Mass balance.In�ow should equal to out�ow at each node.

= =
ν

q q i N( ) ( ) , 1
(21)i inflow i outflow

where (qi)in�ow is the gas in�ow rate at ith node, (qi)out�ow is the gas out�ow rate at ith node.
(2) Pressure drop.

�e pressure drop at each node is calculated by equations (17) considering non-Darcy �ow. �us the equation 
system is non-linear.
•	 Step 3: Boundary conditions implementation

�e boundary condition of the equation system is the coupling of the �ow from shale matrix with fracture 
�ow. Pressure at any point of each fracture segment obtained from equation (5) is the same as the result obtained 
from equation (17).

= = P P j Nf( ) ( ) , 1
(22)js matrix js fracture

where Pjs represents pressure at any point of each fracture segment.

Figure 8. Flow chart of the calculation procedure. 
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For gas �ow in the fracture, Eq. (17) is used. For gas transport in shale matrix, the unsteady state gas di�u-
sivity equation [Eq. (5)] is solved analytically based on the point source solutions in real domain presented by 
Gringarten and Ramey (1973)45. Each fracture segment can be treated as a plane source. �e pressure response at 
any point in the reservoir can be obtained through the superposition principle of all fracture segments. �e plane 
source pressure drop in 2D in�nite space of reservoir point (x, y) can be expressed below46:

∫∑φ ρ
τ τ τ= − −( )P P

x hc
q L N P x y t d

1

4
( ) ( , , )

(23)
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j

where ηj is reservoir di�usivity for jth segment, and is suggested to be revised by shale gas �ow mechanism, 

η =
α µ

φ µ

+ +k K D c

c

(1 8 )m n g g g

m g t

, ct is the total compressibility (ct= cm+ cd), δj is the angle between the jth fracture segment 

and the x-axis.
�e “planarity” of the fracture network is mainly controlled by the number of discretized fracture segments 

in step 1 and angle input in step 3. One can discretize the fracture network into any numbers of segments at any 
angle according to the complexity of the fracture network. �erefore, an arbitrary fracture geometry can be simu-
lated and the planarity of the fracture network can be controlled in such a simple way by using this semi-analytical 
model.
•	 Step 4: Solve non-linear system of equations using the Newton-Raphson algorithm.

�e interconnection of the fractures is calculated by an innovative approach de�ned as “Correction of Flow 
Performance at Interconnected Nodes”:

+ =A A X B( ) (25)1 2

A1 is the system of equations within each network of fractures. �e mass balance equation, pressure drop 
equation and boundary conditions are adopted for each node and segment within their own fracture system 
without considering the interconnections between other fractures.

A2 is the correction of �ow rate and pressure drop at the interconnected nodes. �e interconnected nodes are 
input, their �ow rate and pressure drop are corrected by the interconnected fracture segments: the �ow rate con-
tribution from the interconnected fracture segment is added to the interconnected nodes, then the pressure drop 
equations are added correspondingly. �e calculation �ow chart is illustrated the process in detail.
•	 Step 5: Automatic variation time step.

Variation of time step very o�en used to maximize the computational speed. We select the time step according 
to the changing extent of gas �ow rate. If the change of gas �ow rate is minor, i.e. within a predetermined tolerance 
scope, the time step will become larger automatically. �erefore, in the early production time, the gas �ow rate 
changes dramatically, the time step is smaller and more iteration steps need to be taken. While, the situation is just 
the opposite at later production time, thus less iteration steps are needed.

References
1. EIA. U. S. Energy Information Administration. Shale in the United States, http://www.eia.gov/energy_in_brief/article/shale_in_the_

united_states.cfm (accessed 05/05/2016).
2. Maxwell, S. C., Urbancic, T. I., Steinsberger, N. P. & Zinno, R. Microseismic Imaging of Hydraulic Fracture Complexity in the 

Barnett Shale. Paper presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA. Society of 
Petroleum Engineers. doi: 10.2118/77440-MS (September 29-October 2 2002).

3. Sun, J. & David, S. Optimization-Based Unstructured Meshing Algorithms for Simulation of Hydraulically and Naturally Fractured 
Reservoirs with Variable Distribution of Fracture Aperture, Spacing, Length, and Strike. SPE Reservoir Evaluation & Engineering. 
18(04), 463–480 (2015).

4. Cipolla, C. L., Warpinski, N. R., Mayerhofer, M. J., Lolon, E. & Vincent, M. C. �e Relationship Between Fracture Complexity, 
Reservoir Properties, and Fracture Treatment Design. Paper presented at the Annual Technical Conference and Exhibition, Denver, 
Colorado, USA. Society of Petroleum Engineers. doi: 10.2118/115769-MS (September 21–24 2008).

5. Sun, J. & David, S. Investigating the Effect of Improved Fracture Conductivity on Production Performance of Hydraulically 
Fractured Wells: Field-Case Studies and Numerical Simulations. Journal of Canadian Petroleum Technology. 54(6), 442–449 (2015).

6. Wu, K. & Olson, J. E. Simultaneous Multi-Frac Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells. 
SPE Journal. 20, 337–346 (2015).

7. Warren, J. E. & Root, P. J. �e Behavior of Naturally Fractured Reservoirs. SPE Journal. 3, 245–255 (1963).
8. Saidi, A. M. Simulation of Naturally Fractured Reservoirs. Paper presented at the SPE Reservoir Simulation Symposium, San 

Francisco, California, USA. Society of Petroleum Engineers. doi: 10.2118/12270-MS (November 15–18 1983).
9. Blaskovich, F. T., Gain, G. M. & Sonier, F. A Multicomponent Isothermal System for E�cient Reservoir Simulation. Paper presented 

at the Middle East Oil Technical Conference of the Society of Petroleum Engineers, Manama, Bahrain. Society of Petroleum 
Engineers., doi: 10.2118/11480-MS (March 14–17 1983).

10. Hill, A. C. & �omas, G. W. A New Approach for Simulating Complex Fractured Reservoirs. Paper presented at the Middle East Oil 
Technical Conference and Exhibition, Manama, Bahrain. Society of Petroleum Engineers. doi: 10.2118/13537-MS (March 11–14 1985).

11. Dean, R. H. & Lo, L. Simulations of Naturally Fractured Reservoirs. SPE Reservoir Engineering. 3, 638–648 (1988).
12. Noorishad, J. & Mehran, M. An Upstream Finite Element Method for Solution of Transient Transport Equation in Fractured Porous 

Media. Water Resources Research. 18(3), 588–596 (1982).

http://www.eia.gov/energy_in_brief/article/shale_in_the_united_states.cfm 
http://www.eia.gov/energy_in_brief/article/shale_in_the_united_states.cfm 


www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:36673 | DOI: 10.1038/srep36673

13. Hui, M. & Mallison, B. System and Method for Predicting Fluid Flow Characteristics within Fractured Subsurface Reservoirs. US 
Patent Appl. 2009630709 (2009).

14. Marcondes, F., Varavei, A. & Sepehrnoori, K. An Element-Based Finite-Volume Method Approach for Naturally Fractured 
Compositional Reservoir Simulation. Paper presented at the 13th Brazilian �ermal Sciences Meeting, Uberlandia, Brazil. Brazilian 
Society of Mechanical Sciences. (December 5–10 2010).

15. Cipolla, C. L., Fitzpatrick, T., Williams, M. J. & Ganguly, U. K. Seismic-to-Simulation for Unconventional Reservoir Development. 
Paper presented at the Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, UAE. Society of 
Petroleum Engineers. doi: 10.2118/146876-MS (2011 October 9–11).

16. Li, L. & Lee, S. H. E�cient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir �rough Discrete Fracture 
Networks and Homogenized Media. SPE Reservoir Evaluation & Engineering 11(4), 750–758 (2008).

17. Moinfar, A., Varavei, A., Sepehrnoori, K. & Johns, R. T. Development of an E�cient Embedded Discrete Fracture Model for 3D 
Compositional Reservoir Simulation in Fractured Reservoirs. SPE Journal. 19(2), 289–303 (2014).

18. Sheng, M., Li, G., Shah, S. N. & Jin, X. Extended Finite Element Modeling of Multi-scale Flow in Fractured Shale Gas Reservoirs. 
Paper presented at SPE Annual Technical Conference and Exhibition held, San Antonio, Texas, USA. Society of Petroleum 
Engineers. doi: 10.2118/159919-MS (October 8–10 2012).

19. Jiang, J. & Younis, R. Hybrid Coupled Discrete-Fracture/Matrix and Multi-continuum Models for Unconventional-Reservoir 
Simulation. SPE Journal. 10, 1–19 (2015).

20. Zhou, W., Banerjee, R., Poe, B., Spath, J. & �ambynayagam, M. Semi-Analytical Production Simulation of Complex Hydraulic 
Fracture Networks. SPE Journal. 19, 6–18 (2014).

21. Yu, W. A Comprehensive Model for Simulation of Gas Transport in Shale Formation with Complex Hydraulic Fracture Geometry. 
Paper presented at SPE Annual Technical Conference and Exhibition, Houston, Texas, USA. Society of Petroleum Engineers. doi: 
10.2118/178747-STU (September 28–30 2015).

22. Jia, P., Cheng L., Huang, S. & Liu, H. Transient behavior of complex fracture networks. Journal of Petroleum Science and Engineering. 
132, 1–17 (2015).

23. Xu, W., �iercelin, M. J. & Walton, I. C. Characterization of Hydraulically-Induced Shale Fracture Network Using An Analytical/
Semi-Analytical Model. Paper presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA. 
Society of Petroleum Engineers. doi: 10.2118/124697-MS (October 4–7 2009).

24. Warpinski, N. R., Mayerhofer, M. J. & Vincent, M. C. Stimulating Unconventional Reservoirs: Maximizing Network Growth while 
Optimizing Fracture Conductivity. Journal of Canadian Petroleum Technology. 48, 39–51 (2008).

25. Chen, Z., Liao, X., Zhao, X., Dou, X. & Zhu, L. A Semi-Analytical Mathematical Model for Transient Pressure Behavior of Multiple 
Fractured Vertical Well in Coal Reservoirs Incorporating with Di�usion, Adsorption, and Stress-Sensitivity. Journal of Natural Gas 
Science and Engineering. 1–13 (2015).

26. Ma, C., Lian, P. & Liu, C. Transient Pressure Responses of Vertical Fracture with Finite Conductivity in Shale Gas Reservoir. Journal 
of Natural Gas Science and Engineering. 25, 371–379 (2015).

27. Chaudhry, A. U. Gas Well Testing Handbook. Burlington, MA: Gulf Professional Publishing (2003).
28. Sureshjani, M. H., Behmanesh, H., Soroush, M. & Clarkson, C. R. A Direct Method for Property Estimation from Analysis of In�nite 

Acting Production in Shale/Tight Gas Reservoirs. Journal of Petroleum Science and Engineering. 143, 26–34 (2016).
29. Javadpour, F., Fisher, D. & Unsworth, M. Nanoscale Gas Flow in Shale Gas Sediments. Journal of Canadian Petroleum Technology. 

46(10), 55–61 (2007).
30. Naraghi, M. E. & Javadpour, F. A Stochastic Permeability Model for the Shale-Gas Systems. International Journal of Coal Geology. 

140, 111–124 (2015).
31. Kim, C., Jang, H. & Lee, J. Experimental Investigation On the Characteristics of Gas Di�usion in Shale Gas Reservoir Using Porosity 

and Permeability of Nanopore Scale. Journal of Petroleum Science and Engineering. 133, 226–237 (2015).
32. Li, D., Zhang, L., Wang, J. Y. & Lu, D. Composition-Transient Analysis in Shale-Gas Reservoirs With Consideration of 

Multicomponent Adsorption. SPE Journal. 4, 648–664 (2016).
33. Swami, V., Settari, A. T. & Javadpour, F. A Numerical Model for Multi-mechanism �ow in Shale Gas Reservoirs with Application to 

Laboratory Scale Testing. Paper presented at EAGE Annual Conference and Exhibition incorporating SPE Europec, London, UK. 
Society of Petroleum Engineers. doi: 0.2118/164840-MS (June 10–13 2013).

34. Moghadam, A. A. & Chalaturnyk, R. Analytical and Experimental Investigations of Gas-Flow Regimes in Shales Considering the 
In�uence of Mean E�ective Stress. SPE Journal. 4, 557–572 (2016).

35. Klinkenberg, L. J. �e Permeability of Porous Media to Liquids and Gases. Drilling and Production Practice. API. 200–213 (1941).
36. Alnoaimi, K. R., Duchateau, C. & Kovscek, A. R. 2014. Characterization and Measurement of Multi-Scale Gas Transport in Shale 

Core Samples. Paper presented during the Unconventional Resources Technology Conference (URTeC), Denver, Colorado, USA. 
Society of Petroleum Engineers. doi: 10.15530/urtec-2014-1920820 (August 25–27 2014).

37. Ren, W., Li, G., Tian, S., Sheng, M. & Fan, X. An Analytical Model for Real Gas Flow in Shale Nanopores with Non-Circular Cross-
Section. AIChE Journal. 62(8), 2893–2901 (2016).

38. Wu, K. & Olson, J. E. Mechanics Analysis of Interaction Between Hydraulic and Natural Fractures in Shale Reservoirs. Paper 
presented at the Unconventional Resources Technology Conference (URTeC), Denver, Colorado, USA. Society of Petroleum 
Engineers. doi: 10.15530/urtec-2014-1922946 (August 25–27 2014).

39. Zhang, P., Hu, L., Meegoda, J. N. & Gao, S. Micro/Nano-Pore Network Analysis of Gas Flow in Shale Matrix. Scienti�c reports. 5, 
1–11 (2015).

40. Geng, L. et al. A Di�usion-Viscous Flow Model for Simulating Shale Gas Transport in Nano-Pores. Fuel. 181, 887–894 (2016).
41. Al-Hussainy, R., Ramey Jr H. J. & Crawford, P. B. �e Flow of Gases through Porous Media. Journal of Petroleum Technology. 18, 

624–636 (1966).
42. Dranchuk, P. M., Purvis, R. A. & Robinson, D. B. Computer Calculations of Natural Gas Compressibility Factors Using the Standing 

and Katz Correlation. Institute of Petroleum Technical Series, No. IP 74–008 (1974).
43. Mahmoud, M. Development of a New Correlation of Gas Compressibility Factor (Z-factor) for High Pressure Gas Reservoirs. 

Journal of Energy Resources Technology. 136, 1–11 (2014).
44. Lee, A. L., Gonzalez, M. H. & Eakin, B. E. �e Viscosity of Natural Gases. Journal of Petroleum Technology. 18(8), 997–1000 (1966).
45. Gringarten, A. C. & Ramey, H. J. �e Use of Source and Green’s Functions in Solving Unsteady Flow Problems in Reservoirs. SPE 

Journal. 13(5), 285–296 (1973).
46. Shi, J. et al. A New Approach to Evaluate Stimulation E�ectiveness in Unconventional Reservoirs. Paper presented at International 

Petroleum Technology Conference, Kuala Lumpur, Malaysia. Society of Petroleum Engineers. doi: 10.2523/IPTC-18047-MS 
(December 10–12 2014).

Acknowledgements
The authors would like to thank the financial support from National Natural Science Foundation of China  
(No. 51210006; No. 51374220) and Program for New Century Excellent Talents in University of China  
(NCET-12-097). We also would like to thank Dr. Hamid R. Lashgari (�e University of Texas at Austin) for his 
helpful suggestions and ideas to the work.



www.nature.com/scientificreports/

13Scientific RepoRts | 6:36673 | DOI: 10.1038/srep36673

Author Contributions
R.Y. and W.Y. developed the model. R.Y., W.Y. and W.R. wrote the main manuscript. L.Z. and X.T. improved the 
computational speed of the code. S.T. and M.S. revised the manuscript. Z.H., G.L. and K.S. supervised the project. 
All the authors reviewed the manuscript.

Additional Information
Competing �nancial interests: �e authors declare no competing �nancial interests.

How to cite this article: Yang, R. et al. A Comprehensive Model for Real Gas Transport in Shale Formations 
with Complex Non-planar Fracture Networks. Sci. Rep. 6, 36673; doi: 10.1038/srep36673 (2016).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

�is work is licensed under a Creative Commons Attribution 4.0 International License. �e images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© �e Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	A Comprehensive Model for Real Gas Transport in Shale Formations with Complex Non-planar Fracture Networks
	Introduction
	Results
	Model validation
	Effects of gas flow mechanisms
	Gas diffusion
	Gas desorption
	Gas slippage
	Effects of fracture complexity
	Non-planar hydraulic fracture
	Non-planar natural fracture
	Non-planar fracture network
	Field application

	Discussion
	Effect of fracture network on rate transient behavior
	Effects of gas flow mechanisms on rate transient behavior

	Method
	Model Development
	Shale gas flow in matrix system
	Shale gas flow in the fracture network

	Model solution
	Additional Information
	Acknowledgements
	References


