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Abstract

As next-generation sequencing becomes a clinical tool, a full understanding of the variables affecting
sequencing analysis output is required. Through the International Cancer Genome Consortium
(ICGC), we compared sequencing pipelines at five independent centers (CNAG, DKFZ, OICR, RIKEN
and WTSI) using a single tumor-blood DNA pair. Analyses by each center and with one standardized
algorithm revealed significant discrepancies. Although most pipelines performed well for coding
mutations, library preparation methods and sequencing coverage metrics clearly influenced
downstream results. PCR-free methods showed reduced GC-bias and more even coverage.
Increasing sequencing depth to ~100x (two- to three-fold higher than current standards) showed a
benefit, as long as the tumor:control coverage ratio remained balanced. To become part of routine
clinical care, high-throughput sequencing must be globally compatible and comparable. This
benchmarking exercise has highlighted several fundamental parameters to consider in this regard,

which will allow for better optimization and planning of both basic and translational studies.
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Introduction

‘Next-generation’ sequencing technologies have been available for almost a decade® ?, and in the
past 5 years or so, their use in an ever increasing range of fields has resulted in an unprecedented
revolution in genomic profiling (reviewed in?, for example). With the latest generation of sequencing
machines promising to dramatically increase throughput and reduce costs, it is now inevitable that
this technology will become a routine part of clinical care for a wide variety of diseases within the
relatively near future. It is therefore critical to understand every stage of the analytical process in
detail, from initial library generation (evenness of coverage, GC bias, introduction of artifacts, etc.)
right through to annotation of the final variant lists. The question of 'how much is enough' sequence
coverage to give sufficient power for genome-wide mutation detection has also not yet been
conclusively addressed. The International Cancer Genome Consortium (ICGC*) has been one of the
leading generators of cancer whole-genome sequencing (WGS) data in recent years. Under the
auspices of this consortium, the Verification and Validation Working Group was established to
investigate the factors that need to be considered in order to generate high-quality and high-
confidence variant calls from WGS data. One method through which this has been evaluated is the
establishment of two parallel benchmarking exercises to look at how differences in variant calling
pipelines (Benchmark 1, BM1) and/or complete sequencing pipelines (Benchmark 2, BM2) can
influence downstream results. We describe here BM2, where a single tumor-blood DNA pair was
sequenced at multiple sites (the National Center for Genome Analysis (CNAG), Barcelona, Spain; the
German Cancer Research Center (DKFZ), Heidelberg, Germany; the RIKEN institute, Tokyo, Japan; the
Ontario Institute for Cancer Research (OICR), Toronto, Canada and the Wellcome Trust Sanger
Institute, Hinxton, UK). The results were subsequently compared using both local and centralized
analysis. The tumor chosen for this analysis was a medulloblastoma (a malignant pediatric brain
tumor arising in the cerebellum® °) from the ICGC PedBrain Tumor project. This tumor type typically
shows a very high tumor purity (usually >95%), but also often carries ploidy changes and other copy
number alterations, thereby allowing for analysis of mutation detection performance at different
allele frequencies’. Merging data from the different contributing centers and analyzing the
combined dataset resulted in an extremely high WGS coverage of >300x for the tumor and >250x for
the germline control. This allowed us to investigate variant-calling parameters at very low allele
frequencies, as well as the impact of imbalanced tumor vs. control coverage levels and of total
sequencing coverage on mutation detection performance. These ‘real-life’, high-coverage tumor
data complement a recent TCGA-ICGC benchmarking exercise on simulated data as part of the

DREAM somatic mutation calling challenge®.
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The results outlined below highlight a number of variables, some more surprising than others, as
having an impact on the ultimate output of a sequencing experiment (i.e. the variant call list). Library
preparation played a major role in output variability, with PCR-free libraries giving more even
coverage and also higher coverage in regions of interest such as exons. Increasing coverage led to
better mutation calling performance (with a notable proportion of calls missing at 30-40x), but only
up to a saturation point at about 100x, and only when keeping tumor and control coverage roughly
even. These findings raise important considerations for factors to take into account when planning

future sequencing studies.
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Results

Influence of library preparation on sequencing metrics

Several different protocols were used for generating sequencing libraries at the contributing centers,
which varied in their reagent supplier, methods for selecting the fragment size of library inserts, and
use of amplifying PCR steps (Table 1, Online Methods and Supplementary Table 1). Interestingly,
these differences resulted in marked variation in the evenness of coverage genome-wide as well as
in key regions of interest such as exons. Chromosome 22, being a small chromosome without copy
number aberrations in this tumor (Supplementary Figure 1), was chosen to further assess base-wise
coverage. The standard deviation of coverage ranged from 8.58 in the most evenly covered library to
38.49 in the most unevenly covered, which could have a significant impact on the ability to call copy
number variations (Supplementary Table 2). Differences in coverage between tumor and control
also influence the ability to call simple somatic mutations (SSMs) and small insertions/deletions
(somatic indel mutations, SIMs), so we additionally calculated the standard deviation of the absolute
pairwise coverage difference (tumor vs. control). The values ranged from 5.14 in a good library to
11.37 in a strongly biased library (Supplementary Table 2). PCR-free libraries were found to give the
most even coverage, with very little effect of GC content on coverage levels, although several
protocols containing an amplification step performed almost as well (Figure 1a). Two methods
showed a marked variation in coverage, with a dramatic and unexpected increase in the number of
sequencing reads mapping to regions of high GC content. This also resulted in much ‘noisier’ copy
number profiles derived from these libraries, likely reducing the resolution at which structural
variants could be reliably called (Supplementary Figure 1). One possible explanation for this maybe
DNA-binding beads used during the clean-up process, which could feasibly bind more strongly to GC-

rich sequences at a given fragment size under certain concentration and/or temperature conditions.

A better evenness of read distribution also means that a greater proportion of the genome is
covered to a reasonable degree at a given average coverage level. It is preferable, for example, that
the entire genome be covered at 30x rather than having half covered at 15x and half at 45x, even
though both require the same total read number. To give a fair comparison for this measure, each
dataset was down-sampled to an average 30x tumor and control coverage (the minimum coverage
in any individual tumor or control set). In the best performing library, 74% of the genome was
covered at or above 25x, while the worst performing library had only 46% of regions covered at this
level (Figure 1b). In general the coverage distribution was more even and the percentage of well-

covered regions was higher in the control libraries compared to the tumor libraries, reflecting the
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different copy number states of the tumor. An unusual pattern of GC content distribution in control

library E, however, meant that this was slightly worse than its tumor counterpart.

Table 1:
. Starting Fragment Size Library Sequencing | Chemistry
Lib PCR cycl
forary DNA (pg) | Size (bp) selection Protocol cycles Machine | (lllumina)
E-gel
TrueS
LA 1 ~400 | (Invitrogen, | ¢4 10 HiSeq 2000 V3
DNA
2% Agarose)
0,
LB 4 ~a00 | 2% AGg:Irose KapaBio no Hiseq 2000 | V3
12 Cycles
2% Agarose Post Both HiSeq | v1 (RR)/v3
L.C 2.5 ~ 500 NEBNext
Gel ~650 bp | Ligation |2500/2000| (HT)
Clean Up
Agarose Gel TrueSe
L.D 1 ~ 550 500-600bp DNA q 10 HiSeq 2000 V3
cut
1.5%
L.E 2.8 ~ 620 Agarose Gel | NEBNext No HiSeq 2000 V3
(Pippin)
LF 1 ~a00 | AMPUreXP - \EBDNA 10 |HiSeq2000| V3
Beads
TrueSeq
AMPureXpP
LG 1 ~ 350 ure DNA PCR- 0 HiSeq 2000 | V3
Beads
Free
AMPureXP | SureSelect .
L.H 0.5 175 Beads WGS 10 HiSeq 2500 V3

The percentage of exonic regions covered at <10x (i.e. likely insufficient to accurately call mutations)
also varied, with a range from less than 1% ‘missing’ in the best performing libraries to more than
10% in the worst (Figure 1c), demonstrating that sequencing library preparation performance can
have a significant impact on the ability to identify variants in downstream analyses. Performance in
other regions of interest, such as enhancers and UTRs, was similarly variable (Figure 1lc &
Supplementary Figure 2) While combining all libraries to give a coverage of close to 300x reduced
the ‘missing’ exon fraction to just 0.1%, some regions of the genome (including part or all of ~80
genes) were still only covered at <=10x (Supplementary Table 3; none of these genes are listed in
the Cancer Gene Census’). The vast majority of these regions (>98%) were in non-uniquely mappable
areas such as telomeric or centromeric repeats. These will likely never be covered using routine
short-read methods, regardless of the total read count (e.g. in stretches of long, highly homologous

repeats). Library A also contained some longer 2x 250bp MiSeq reads as opposed to standard HiSeq
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2x 101bp, but the overall contribution of these (below 2x) was too low to assess whether they may

help in covering some of the missed regions.

We also examined the performance of each dataset in regions of biased nucleotide composition that
were previously reported to be challenging to sequence across different platforms *°. There was a
marked variation in coverage in these regions, in keeping with the notable GC-bias observed in some
libraries (Supplementary Table 4). The best overall performance in terms of evenness of coverage
was seen with the PCR-free library, and this also outperformed the methods previously reported in
the study of Ross et al. '°. Of note, some regions showed a significant discrepancy in coverage

between tumor and normal in certain regions, which would likely compromise variant calling in

these loci.
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Figure 1: Differences between the different sample libraries. a) GC bias of the different libraries. The genome was
segmented into 10 kb windows. For each window the GC content was calculated and the coverage for the respective
library was added. For a better comparability the coverage was normalized by division with the mean. b) Cumulative
coverage displayed for different libraries. Displayed are all libraries sequenced to at least 28x. To make the values
comparable we downsampled all samples to a coverage of 28x (the lowest coverage of the initially sequenced libraries).
The plot shows the percentage of the genome (y-axis) covered with a given minimum coverage (x-axis). c) Percentage of
certain regions of interest covered with less than 10x.
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Comparison of variant calling on the different libraries

The first comparison of variant calls that we performed was using each individual center’s own
mutation calling algorithm on their sequencing output, which resulted in a surprising amount of
variation. The precise differences in the variant calling algorithms are explored in more detail in the
related ICGC Benchmark 1 exercise (Alioto et al., described elsewhere in this issue). Whilst there was
a core set of mutations called by all 5 centers, this was the case for less than 20% of the total
number of called variants (Figure 2a). Allele frequency plots indicated that these consensus calls
showed clear peaks at ~50% (heterozygous mutations occurring while the tumor was diploid) and
~25% (mutations occurring in 1 of 4 alleles after tetraploidization of the genome), while those made
by less than 4 centers were shifted towards a lower allele frequency. This may indicate either
increased variability in sensitivity of the pipelines as allele frequency decreases, and/or some
mutations at such a low frequency that there were no variant reads in certain datasets (Figure 2a).
The mutation contexts of the variants were reasonably similar across centers, with the majority
being C > T transitions in a GpCpG or ApCpG context, although some variability can clearly be seen
across the 5 sets (Figure 2b). Roughly one third of the mutations were unique to only one center,
with the remainder variably called by 2-4 groups. One of the most notable differences was the low
total number of calls made by center C, resulting in a large proportion of calls called by the other 4
centers but not this one. Based on the outcome of the ICGC benchmark analyses, however, this
center has now modified its analysis pipeline to slightly relax some over-stringent filtering steps,
resulting in a much greater overlap with the other calls (not shown). When looking further at
mutational signatures as defined by Alexandrov and colleagues®® rather than simple base change
contexts, variation can also be seen per center in the number and type of mutational processes

identified (Figure 2c).

In terms of coding alterations, there was a greater degree of overlap, but certainly not 100%
concordance. A curated ‘Gold’ set of calls was generated from the 300x WGS dataset by comparison
of multiple independent call sets followed by manual inspection (Alioto et al., described elsewhere
in this issue and available from the ICGC Data Portal, https://dcc.icgc.org/). Four non-synonymous,
one splice-site (SET) and one stop gain (ANGPT1) SSMs were identified from this Gold set, which
were also present at more than 10% allele frequency in each individual dataset. Of these, one center
called all 6, two centers called 5, and one 4. One outlier called only two originally, which was found
to be a result of minor contamination of the control sample with tumor DNA. A second library
preparation resolved this issue, and all 6 SSMs were subsequently called (Supplementary Figure 3).

One analysis pipeline also indicated a potential SSM in ZMYM3 that was not detected in the other
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sets. Further inspection revealed that this alteration is probably a complex SIM rather than a single

point change (discussed below).

a Overlap of SSMs called by different centers on own library
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Figure 2: Comparison of ability to discover SSMs with different pipelines. a) Overlap of SSMs called by each center on its
own library. All SSMs detected by at least one center are shown on the x-axis. The SSMs were sorted and colored by
recurrence. SSMs were considered to be identical when both, the exact position and the base substitution were the same.
The bar plot shows the percentage of all non-unique SSMs for the given levels of concordance. Shown on the bottom are
the density plots of the variant allele frequencies for each level of concordance. b) Sequence context of SSMs detected by
each center on its own library. For each single base substitution, the sequence context (plus/minus one base) was
determined. The 128 possible combinations are shown in a heat map. c) Mutational signatures for SSMs as defined by
Alexandrov and colleaguesn. The calls from each center were used to fit into the predefined signatures. Only signatures
composing at least 5% of the total SSMs are shown.

Interestingly, the variation of calls between these five centers was higher for this exercise than for
the Benchmark 1 exercises (Alioto et al., described elsewhere in this issue). In particular, each center
calling on their own library produced a higher variation than for the same centers calling on the
same tumor-normal pair, but on data from only one center (Benchmark 1.2), clearly indicating that
library variations contribute to the observed heterogeneity of mutation calls. When excluding

unique calls, fewer than 60% of SSM calls were shared between 4 or more centers and fewer than

10
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20% were called by all 5 when analyzing different libraries. When using only one library, however,

more than 60% of SSM calls were shared across all centers (Supplementary Figure 4).

Although the previous comparison already provided some evidence of a role for pre-analysis
sequencing pipelines in generating differences between datasets, we wanted to further assess this
by removing any variation in the analysis pipeline itself. We therefore re-aligned and re-called
mutations on each dataset using one standardized pipeline (the DKFZ pipeline was chosen for
logistical reasons). This resulted in a notably better consensus of mutations called by more than one
center (>80% called by at least 4 out of 5 centers, Figure 3a, versus <60% with different pipelines,
Figure 2a), but an unexpected increase in the number of private mutations, particularly for one
center (Figure 3a). A shift towards lower allele frequencies was again seen in the mutations not
called in all centers (Figure 3a). Analysis of mutation contexts indicated that the vast majority of
these excess mutations were T>G transversions with low allele frequency, which were not observed
at high frequency in the other datasets. Simply filtering out mutations with low allele frequency
arising in this context resulted in an improvement in the overlap of mutation calls, but many more
exclusively called (‘private’) alterations remained compared with the center’s own calls on their data
(filtered against other reference samples, Figure 2a and Figure 3b). Closer investigation revealed
that the cause for this artifact was a center-specific method for adjusting base quality g-scores,
whereby a calibrating PhiX library was spiked into each sequencing lane. Unfortunately, this actually
led to an increase in the specific artifact detected in this comparison, and the center has
subsequently reverted to default g-score metrics. The fact that the same phenomenon was not seen
in the center’s own calls on their data (Figure 2) is because it had already been identified, and a
customized filter applied to account for it (removal of such changes also observed in a panel of 48
sequenced normal samples). This emphasizes that care must be taken when re-analyzing publicly
available genome data from external centers, particularly when details on library preparation and
customized ‘blacklists’ are not known. This effect also had an impact on the mutational signatures
identified, with a different distribution of processes observed in this mutation set than for each
center calling their own variants (Figure 3d), further suggesting that both library preparation and

calling algorithms can strongly affect the ability to accurately detect such signature.
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Figure 3: Influence of the library and sequencing on SSM calls with one pipeline. a) Overlap of SSMs called using one
pipeline (DKFZ) on all different data sets. Percentage of concordance of non-unique SSMs are shown in the bar plot. The
bottom shows density plots of variant allele frequencies for each concordance level. b) Overlap of SSMs called after
removal of the most prominent artifact (GpTpG to GpGpG) from the library L.E. c) Sequence context of SSM calls derived
from the DKFZ pipeline on the different data sets. In order to have a better comparability, the most prominent artifact was
removed from L.E (L.E.CL). d) Mutational signatures for SSMs as defined by Alexandrov and colleaguesn. Calls made by
DKFZ were fitted to the predefined signatures. Only signatures composing at least 5% of the total SSMs are shown.

Effects of tumor/normal coverage levels on variant calling

Combining the sequencing data generated from each participating center gave us the excellent
opportunity to investigate a tumor-normal pair with very deep coverage whole-genome sequencing
information. After merging each of the individual pairs, the combined tumor coverage was 314x, and
the control 272x. To remove already identified artifacts, we excluded the tumor library from center E

and the slightly contaminated control library from center B. For comparison of mutation calling
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metrics at a range of coverage levels, the combined tumor and normal sets were randomly serially
down-sampled to 250, 200, 150, 100, 50, 30 and 20x coverages and then analyzed using the
standard DKFZ pipeline. The total number of mutations increased when going from 30x to 50x and
further to 100x coverage, but no striking increase was seen above this level (by 100x, 95% of the
maximum mutation number are detected, in contrast to only 77% at 30x; Figure 4a, Supplementary
Table 5). Whilst the majority of mutations were called at the 30x level, there were some notable
differences in the number and type of mutations detected as the coverage increased. In particular,
the sensitivity for detecting mutations with lower mutant allele frequencies (i.e. subclonal
alterations and/or events happening after polysomic changes but also major somatic mutations in
samples with low tumor cell content) was much greater with higher coverages, as seen from density
plots of mutations vs allele frequency (Figure 4b). This effect was even more striking when looking at
mutation calls per chromosome, which clearly shows the difference between low and high coverages
when looking for late-occurring mutations after whole chromosome copy number changes

(Supplementary Figure 5).

Since medulloblastomas tend to show a very high tumor cell content (usually above 95%, and for this
samples ~98%, due to their nature as masses of small, round, tightly-packed tumor cells), the high
coverage dataset also provided a good opportunity to model the dynamics of mutation calling with
increasing coverage and with increasing proportions of ‘contaminating’ normal tissue (low tumor
purity). We found that the mutation calls with increasing coverage were accurately modeled by a
Michaelis-Menten equation, reaching ‘saturation’ (no or minimal additional mutations called as
coverage increases) at around 100x (Figure 4c). For SIMs (indels) called using the DKFZ pipeline, a
different picture was observed. SIM calling at present likely suffers at least much from low specificity
as from low sensitivity, as indicated by the fact that increasing coverage actually reduces the number
of called variants (i.e. the false positive rate decreases; Supplementary Figure 6). The impact of
normal cells on SSM detection could be thought of as a ‘mixed-type inhibition” of mutation detection
sensitivity, which we examined by mixing increasing proportions of normal sequence reads (17%,
33% and 50%) into the tumor dataset and re-calling mutations. Each curve displayed the same
plateau after ~100x as the pure tumor sample, but the addition of any normal content meant that
the maximum mutation count from the pure tumor could not be reached, even at 250x total
coverage. At 100x, the detected proportion of mutation calls from the pure sample were 95%, 90%
and 85% respectively for 17%, 33% and 50% ‘contamination’ (Figure 4c). At lower coverages,
however, the normal cell content had a proportionally larger impact. At 30x, only 92%, 83% or 68%
of the calls from the 30x pure sample were called when adding 17%, 33% or 50% normal reads,

respectively (Supplementary Table 5).
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Figure 4: Effect of sequencing coverage (from downsampled combined files) on the ability to call SSMs. a) Overlap of SSMs
called on different balanced coverages. b) Density plots of the variant allele frequencies for different balanced coverages of
tumor and control (tumor_vs_control) and number of SSMs called in total (calls were done using the DKFZ calling pipeline).
c) Plot of the number of SSMs (y-axis) found for a given coverage (x-axis). The different colors represent different levels of
normal “contamination” in the tumor (0% black, 17% blue, 33% green and 50% orange). Solid lines represent the real data
and dashed lines are simulated. Lines are fitted against the Michaelis-Menten model using the ‘drc’ package in R. Solid lines
are fitted to the data points and dashed lines are simulated using a mixed inhibition model for enzyme kinetics.

We next investigated the effect of tumor:normal coverage ratios on variant calling, to assess
whether increasing coverage of the tumor alone is sufficient to increase mutation detection
sensitivity. The 250x tumor genome was therefore compared with a down-sampled control at 200,
150, 100, 50 and 30x coverages. Down to the 150x level, few differences are seen in the mutations
called when compared with the 250x/250x standard (Figure 5a,b). At lower control coverage levels,
however, a notable increase is observed in the overall number of mutations reported, due to a sharp
rise in those called with a low allele fraction. Since these mutations are not called in the 250x vs 250x
set, it is almost certain that they are sequencing artefacts arising in a very small proportion of calls,
which appear to be somatic when the control coverage is insufficient to show the same
phenomenon. When looking further into the context of these new calls, it is clear that they are
dominated by one specific base change (T>G) arising in a particular sequence context (GpTpG, Figure
5¢). Indeed, performing a motif analysis on the wider context of these changes revealed that the

majority arise at a thymine base within a homopolymer run of guanines (Figure 5d). Keeping the
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ratio of tumor:normal coverage closer to 1 therefore appears to play a role in maintaining the
accuracy of mutation calling with standard pipelines, since any systematic artifacts are then
balanced out in both the tumor and control datasets. While it may be possible to apply additional
filters to account for the new false positives seen in unbalanced comparisons, this would potentially
come at the cost of a reduced sensitivity for detecting true mutations with low allele frequencies

(i.e. tumor subpopulations), which are of particular interest when increasing sequencing coverage

depth.
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Figure 5: Effect of unbalanced coverage between tumor and control on SSM calling. a) Overlap of SSMs called on different
unbalanced coverages. b) Density plots of the variant allele frequencies for different control coverages and a fixed tumor
coverage and number of SSMs called in total (calls were done using the DKFZ calling pipeline). c) Sequence context of SSM
calls derived for two different coverage combinations (100x tumor vs. 100x control and 100x tumor vs. 30x control). d)
Logo plots showing the window of ten bases upstream and downstream from the presumed T to G transversion artifact.
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Discussion

This benchmarking exercise has highlighted the importance of carefully considering all stages of the
laboratory and analysis pipelines required to run a sequencing experiment, in order to generate
consistent and high-quality genomic data. Somewhat reassuringly for present applications, most of
the coding mutations present at >10% allele frequency (which could reasonably be expected to be
detected at ~30x coverage) were accurately detected, especially after a second subsequent to
optimization and harmonization of variant calling algorithms. The overlap was still not 100%,
however. The problem of ‘missing’ SSMs was recently highlighted in colorectal and endometrial
tumors, whereby frequent mutations were identified in RNF43 that had not been detected in a
previous analysis due to the sequence context™>. Whilst likely not truly an SSM, and therefore not
directly related to the current analysis, the almost coincidental finding of a ZMYM3 alteration in the
MB sample further highlights that some classes of alteration are poorly detected by current
pipelines. This is particularly important when considering the potentially driving role of this gene in

13,1
medulloblastoma® .

Discrepancies outside of the coding regions were more substantial, which may be of significance as

. . 15, 1
the role of the non-coding genome to human disease becomes clearer™

. Library preparation
methods clearly had a significant impact on downstream data output, even when using one
standardized variant calling pipeline. PCR-free libraries gave a more even coverage and also covered
a higher proportion of functional regions such as exons than those requiring an amplification step.
Each method was tested only once, however, so the reproducibility of variations and precise
contribution of different parameters in the sequencing process could not be directly tested. The
reporting of detailed protocols and QC metrics is therefore a necessity for clinical or other regulated
applications'’. Comparison of different coverage levels indicated that care should be taken not to
increase artefact rates when increasing tumor but not control sequencing. The rate of new
mutations identified with increasing coverage up to as much as 100x suggested that the 30-40x
which is still often taken as standard™ may not be sufficient to capture the full spectrum of
(especially non-coding) changes, particularly when there is an additional contribution of uneven
coverage, low tumor purity or subclonal heterogeneity (although our method of merging data from
multiple centers may not completely reflect deep coverage data from one center). Indeed, even at
250x coverage, not all mutations from the pure tumor could be recaptured from the samples
‘contaminated’ with normal DNA. This effect will most probably be more or less noticeable with
different variant calling algorithms that have been optimized to work on the specific tumor types or

sequencing protocols that are most frequently encountered at a given center (with varying inherent
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tumor purities and other types of bias), but it is likely that 30-40x is insufficient to truly capture the

full somatic mutational spectrum of a sample, regardless of other parameters.

Taken together, our results suggest that PCR-free library preparation protocols should be the
method of choice in order to ensure evenness of coverage, and that a sequencing depth of close to
100x for both tumor and normal ought to be aimed for (particularly in situations where subclonal
mutations or non-coding alterations are suspected to be playing a role). With platforms such as the
Illumina HiSeqg X now coming online in more centers, such an increase in coverage may be feasible
without dramatically increasing costs. We would also recommend that variant calling pipelines
should be benchmarked against publicly available datasets of validated mutations, including the

Gold set of mutations derived from the data presented here.

In summary, this valuable resource can serve as a useful tool for the comparative assessment of
sequencing pipelines, and gives important new insights into sequencing and analysis strategies as we

move into the next big expansion phase of the high-throughput sequencing era.
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Methods

Patient material

An Institutional Review Board ethical vote (Medical Faculty of the University of Heidelberg) as well

as informed consent was obtained according to ICGC guidelines (www.icgc.org).

Library preparation and sequencing

The libraries were prepared at the different sequencing centers. Some samples are the result of a
mixture of different libraries (as per the center’s standard protocols); others are comprised of one
library only. An overview of the composition of the different samples and differences in the library
preparation protocols is given in Table 1 and Supplementary Table 1. All samples were sequenced
using Illumina technology and chemistry. The majority of reads are of 2x100 bp length and are
derived from HiSeq2000 or HiSeq2500 sequencers. Only library L.A additionally has a low number of
2x250 bp MiSeq reads included.

Comparison of SSM calls

Each of the participating centers performed mutation calling using the respective in house pipelines
(Alioto T et al., accompanying manuscript). The raw simple somatic mutation (SSM) calls were
provided in the form of customized variant calling files (VCF). In order to provide a fair comparison,
only single base point mutations were considered. A call was considered to be equal when both the
position and the exact substitution reported were identical. The calls were then sorted according to
the number of centers that made this particular call using a custom Perl script. The resulting file was

plotted using a custom R-script (both available on request).

Merging of the bam files to get the 300x files

To create the high coverage ~300x bam files, the raw fastq files were aligned using bwa 0.6.2-r126-
tpx aln -t 12 -q 20. Followed by bwa-0.6.2-tpx sampe -P -T -t 8 -a 1000 -r. The bam files for each
center/library were merged and duplicates were marked using Picard tools MarkDuplicates Version
1.61. Finally, all merged per center bam files were merged using picard-1.95 MergeSamFiles and the
header was adjusted using samtools-0.1.19 reheader. Since only reads from different libraries were
merged at this step, duplicates were not marked. The coverage was calculated using an in-house

tool, taking into account only non-N bases.
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Downsampling of the 300x files

The ~300x bam files were serially down-sampled to different coverage levels (250x, 200x, 150x,
100x, 50x, 30x, 20x) using picard-1.95 DownsampleSam, and the coverage was determined after

each step.

Determination of library GC-bias

To determine the GC-bias of the libraries we first created 10kb windows over the whole genome
using bedtools (v2.16.2) makewindows. Then the GC content for each window was calculated using
bedtools (v2.16.2) nuc, windows containing more than 100 “N” bases were excluded (awk-3.1.6
'BEGIN{FS="\t"}if (510 <= 100 && $11 <= 100) print $1"\t"$2"\t"$3"\t"S5}'). Finally the coverage for
each of the remaining windows was calculated using bedtools (v2.16.2) multicov. Since the total
coverage of the different libraries was not the same, the coverage was normalized by diving the
coverage for each window by the mean coverage across all windows for each of the samples
respectively. To visualize the GC-bias we then plotted the normalized coverage against the GC-

content.

Determination of percentage of bases covered with fewer than ten reads in special regions of

interest

The regions of interest were defined as previously described™. To determine the percentage of
bases covered with fewer than ten reads, we first determined the coverage over the whole genome
in per base resolution using genomeCoverageBed (v2.16.2) -bga. The resulting coverage file was
compressed using bgzip and an index was produced with tabix-0.2.5 -p bed. We then extracted the
coverage for our regions of interest using tabix-0.2.5. From the resulting extracted coverage files we
computed the number of bases covered by a certain number of reads using intersectBed and a
custom perl script. This table was then used to determine the percentage of bases covered by <= 10

reads.

Extracting mutation signatures

Mutational catalogues were generated based on the somatic mutations detected in the tumors. The
3' and 5' sequence context of all selected mutations was extracted, and the resulting trinucleotides
were converted to the pyrimidine context of the substituted base. Considering 6 basic substitution
types with surrounding sequence context, this results in a mutation type vector of length 96. The
mutational catalogue was set up by counting the occurrence of each of these 96 mutation types per

sample.
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The proportions of the signatures published by Alexandrov et al."" %

contributing to the mutational
profile of each sample were estimated based on the probabilities of point mutations with their
trinucleotide context in the signatures. The respective exposures were extracted sample-wise by
guadratic programming. Exposures were plotted if they accounted for at least 5% of the SSMs in a

sample.
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