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Abstract

Background: Numerous genetic and genomic datasets related to complex diseases have been made available

during the last decade. It is now a great challenge to assess such heterogeneous datasets to prioritize disease

genes and perform follow up functional analysis and validation. Among complex disease studies, psychiatric

disorders such as major depressive disorder (MDD) are especially in need of robust integrative analysis because

these diseases are more complex than others, with weak genetic factors at various levels, including genetic

markers, transcription (gene expression), epigenetics (methylation), protein, pathways and networks.

Results: In this study, we proposed a comprehensive analysis framework at the systems level and demonstrated

it in MDD using a set of candidate genes that have recently been prioritized based on multiple lines of

evidence including association, linkage, gene expression (both human and animal studies), regulatory pathway,

and literature search. In the network analysis, we explored the topological characteristics of these genes in the

context of the human interactome and compared them with two other complex diseases. The network

topological features indicated that MDD is similar to schizophrenia compared to cancer. In the functional

analysis, we performed the gene set enrichment analysis for both Gene Ontology categories and canonical

pathways. Moreover, we proposed a unique pathway crosstalk approach to examine the dynamic interactions

among biological pathways. Our pathway enrichment and crosstalk analyses revealed two unique pathway

interaction modules that were significantly enriched with MDD genes. These two modules are neuro-

transmission and immune system related, supporting the neuropathology hypothesis of MDD. Finally, we

constructed a MDD-specific subnetwork, which recruited novel candidate genes with association signals from a

major MDD GWAS dataset.

Conclusions: This study is the first systematic network and pathway analysis of candidate genes in MDD, providing

abundant important information about gene interaction and regulation in a major psychiatric disease. The results

suggest potential functional components underlying the molecular mechanisms of MDD and, thus, facilitate

generation of novel hypotheses in this disease. The systems biology based strategy in this study can be applied to

many other complex diseases.
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Background

During the past decade, rapid advances in high through-

put technologies have helped investigators generate

numerous genetic and genomic datasets, aiming to

uncover disease causal genes and their actions in com-

plex diseases. These datasets are often heterogeneous

and multi-dimensional; thus, it is difficult to find consis-

tent genetic signals for the connection to the corre-

sponding disease. Specifically in psychiatric genetics,

there have been numerous datasets from different plat-

forms or sources such as association studies, including

genome-wide association studies (GWAS), genome-wide

linkage scans, microarray gene expression, and copy

number variation, among others. Analyses of these data-

sets have led to many exciting discoveries, including dis-

ease susceptibility genes or loci, providing important

insights into the underlying molecular mechanisms of

the diseases. However, the results based on single

domain data analysis are often inconsistent, with a very

low replication rate in psychiatric disorders [1,2]. It has

now been commonly accepted that psychiatric disorders,

such as schizophrenia and major depressive disorder

(MDD), have been caused by many genes, each of which

has a weak or moderate risk to the disease [3,4]. Thus, a

convergent analysis of multi-dimensional datasets to

prioritize disease candidate genes is urgently needed.

Such an approach may overcome the limitation of each

single data type and provide a systematic view of the

evidence at the genomic, transcriptomic, proteomic,

metabolomic, and regulatory levels [5,6].

Recently, pathway and network-assisted analyses of

genomic and transcriptomic datasets have been emer-

ging as powerful approaches to analyze disease genes

and their biological implications [7-11]. According to

the observation of “guilt by association”, genes with

similar functions have been demonstrated to interact

with each other more closely in the protein-protein

interaction (PPI) networks than those functionally unre-

lated genes [12]. Similarly, we have seen accumulating

evidence that complex diseases are caused by functional

related genes (e.g., in pathways or protein complex)

through their dynamic interaction and regulation rather

than action by single gene alone. Taken together, a sys-

tematic analysis and comparison of disease genes in the

PPI network would provide additional insights into the

diseases that otherwise could not be identified by single

gene or single marker analysis. It is important to note

that, although network-based analysis has been widely

applied in major complex diseases such as cancer, its

application in psychiatric diseases has been limited so

far.

MDD is a complex mental disorder with a lifetime

prevalence of 9-19% [13-15] and moderate heritability

(37-43%) [16]. Previous studies have suggested the invol-

vement of polygenic and mutifactorial features in the

pathology of MDD, as well as complex interactions

among genes (G×G) and environmental factors (G×E)

[17,18]. Recently, we have performed the first gene

prioritization using multi-dimensional evidence-based

datasets in MDD, including association, linkage, gene

expression (both human and animal studies), regulatory

pathway, and literature search (both human and animal

studies) [19]. A list of depression candidate genes

(which we named DEPgenes) with high reliability has

been generated based on this strategy [19]. However,

several characteristics remain unclear: the functional

relationships among these DEPgenes, how they interact

and regulate with each other, and how they act in the

MDD. Such investigations are warranted for a deeper

understanding of the molecular mechanisms of MDD

but require comprehensive analysis at the systems biol-

ogy level.

In this study, we first explored DEPgenes in the con-

text of the PPI network for their topological characteris-

tics and compared them with two representative

complex diseases: schizophrenia and cancer. We per-

formed the functional enrichment analyses using anno-

tations from both Gene Ontology (GO) [20] and

canonical pathways. More importantly, we examined

crosstalk among the significantly enriched pathways by

quantitatively measuring the shared protein components

between each pair of pathways. Finally, we constructed a

MDD-specific subnetwork using the DEPgenes and vali-

dated them using the association data from an indepen-

dent GWAS dataset for MDD. Our work demonstrated

a practical framework for complex disease candidate

gene analysis at the functional level, which can be

applied to other complex diseases.

Materials and methods

Depression candidate genes

We modified the scoring scheme in the gene prioritiza-

tion system proposed by Kao et al [19] and reprioritized

a list of 151 DEPgenes for MDD using the updated data

information. Briefly, several lines of evidence-based data-

sets were collected for MDD, including association stu-

dies, linkage scans, gene expression (both human and

animal studies), literature search (both human and ani-

mal studies), and biological regulatory pathways. A data-

set-specific score was assigned for each gene in each

data source, and all data types were combined by an

optimized weighting matrix to indicate the priority of a

gene’s association with MDD. The final gene list was

selected based on a set of previously implicated core

genes for MDD and validated by the GWAS dataset.

Detailed information of this gene prioritization
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procedure can be found in Kao et al [19]. Of note, the

number of genes we used here is slightly different from

that in Kao et al [19] due to the data and annotation

updates, but the two lists were very similar.

Other data sources and process

For the purpose of comparison, we collected schizo-

phrenia candidate genes and cancer genes. Schizophre-

nia is a severe psychiatric disorder and has been

suggested to share certain comorbidity with MDD

clinically and genetically [21]. We included this disor-

der here to represent other psychiatric disorders for

the purpose of comparison. We retrieved 160 schizo-

phrenia candidate genes prioritized in our recent work

using a similar multi-dimensional evidence-based strat-

egy [22]. Cancer has been the most studied among all

complex disease and is expected to have substantially

different pathological features from MDD. Thus, it

would be interesting to see how those genes act differ-

ently at the network and pathway levels. Cancer genes

were downloaded from the Cancer Gene Census data-

base [23] (CGC, July 2011).

The human PPI data was downloaded from the Pro-

tein Interaction Network Analysis (PINA) platform

(downloaded in March 2010) [24], which collected and

annotated data from six public PPI databases (MINT,

IntAct, DIP, BioGRID, HPRD, and MIPS/MPact). Only

proteins that could be successfully mapped to NCBI

protein-coding genes were included in our analysis (see

below). After removing self-interaction and duplicates,

the final network included a total of 10,377 nodes and

50,109 interactions.

The GWAS dataset for major depression (dbGaP

Study Accession: phs000020.v2.p1) was retrieved

through our approved access to dbGaP [25]. We devel-

oped a pipeline for quality controls (QC) to the dataset.

Detailed information can be found in our previous stu-

dies [19,26-28]. As a brief summary, there were 1,738

depression patients and 1,802 matched normal controls,

and 424,861 markers after QC, covering a total of

16,758 genes. This dataset was used to evaluate the

genes identified in this work.

To coordinate these heterozygous datasets in this

study, we downloaded several key annotation files from

the National Center for Biotechnology Information

(NCBI) [29] for the ease of integration. These included

the annotation files of Homo_sapiens.gene_info.zip, gen-

e_refseq_uniprotkb_collab.zip, and gene2refseq.zip (as of

November 24, 2010). DEPgenes, schizophrenia candidate

genes, cancer genes, PPI data, and GWAS data were all

mapped to human protein-coding genes from NCBI.

Those genes that could not be mapped appropriately

were discarded from the subsequent analysis.

Network topological properties

In network analysis, there are several key topological

indicators that have been defined to describe the beha-

viors or characteristics of the nodes in a network. The

most representative ones are degree, betweenness, and

shortest path. Degree is defined as the number of adja-

cent edges of a given node (protein) or the number of

neighbor nodes interacting with it. Betweenness of a

node is defined as the number of shortest paths going

through the node; shortest path measures the nearest

distance traveling from one node to another. We chose

to examine the distribution of degree and betweenness

of DEPgenes for exploration of their topological beha-

viors, and compared them with those of schizophrenia

candidate genes [22] and cancer genes [30].

Functional enrichment tests

To perform functional enrichment tests of the candidate

genes, we used WebGestalt [31] for Gene Ontology

(GO) term analysis and used the Ingenuity Pathway

Analysis (IPA) system [32] for both canonical pathways

and molecular networks. Although WebGestalt can per-

form enrichment tests for the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways [33], the IPA

system provides a more comprehensive pathway

resource based on manual collection and curation. The

rich information returned by IPA is also suitable for

pathway crosstalk analysis (see below), as it has more

molecules and their connections included. Briefly, Web-

Gestalt implements the hypergeometric test for the

enrichment of GO terms in the candidate genes, fol-

lowed by the correction of multiple testing using the

Benjamini & Hochberg (BH) method [34]. The IPA sys-

tem implements Fisher’s exact test to determine whether

a canonical pathway is enriched with genes of interest.

Furthermore, the network analysis in the IPA system

searches for significant molecular networks in a com-

mercial knowledge base, including integrative informa-

tion from literature, gene expression, and gene

annotation.

Pathway crosstalk

We performed pathway crosstalk analysis using the

pathways that were significantly enriched with DEPgenes

after multiple testing correction. Two pathways are con-

sidered to crosstalk if they share a proportion of DEP-

genes. We introduced two measurements to

computationally indicate the overlap of a pair of path-

ways: the Jaccard Coefficient JC =

∣

∣A ∩B
∣

∣

∣

∣A ∪B
∣

∣

and the Over-

lap Coefficient OC =

∣

∣A ∩B
∣

∣

min(|A| , |B|)
, where A and B
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denote the number of candidate genes in the two path-

ways, respectively. To avoid non-specific inclusion of

crosstalk, we further implemented the following rules:

(1) only pathways with at least 5 DEPgenes were used;

(2) only pathways with adjusted P values < 0.01 were

used; and (3) two pathways in crosstalk were required to

share at least 3 DEPgenes. These criteria were intro-

duced to ensure that each of the pathways, as well as its

crosstalk pair, have not only statistical significance but

also a biologically meaningful number of genes, as some

pathways may be too small. Finally, we found many sig-

nificant pathways were identified by IPA; thus, they gen-

erated thousands of crosstalk events when all the

pathway combinations were compared. In practice, we

chose only those crosstalk events that had scores within

the top 10% of the score distribution. Although these

criteria were arbitrary, we found it worked efficiently to

balance an appropriate number of pathways and cross-

talk events.

Construction of MDD-specific subnetwork

To construct a MDD-specific subnetwork, we applied

the Steiner minimum tree algorithm that is implemen-

ted in our software framework GenRev [35] to the 151

DEPgenes. Solving the Steiner minimum tree algorithm

was proposed by Klein and Ravi [36], which can be used

for constructing a connected subnetwork given a list of

query nodes. In our case, the query nodes are those

encoded by DEPgenes, and the whole network is the

human interactome extracted from the PINA database

(see above). This algorithm aims to connect a maximum

proportion of the query nodes. To accomplish this, addi-

tional nodes in the network, but not in the query list,

would be recruited in order to make the target subnet-

work interconnected, while the algorithm is optimized

towards a minimum list of the additional nodes. GenRev

is a recently developed software tool which implements

the Steiner minimum tree algorithm, as well as two

other popular algorithms for subnetwork construction.

It has been successfully applied in our previous work

[6,22,37]. In the work discussed here, we used it for

DEPgenes to construct MDD-specific subnetwork.

Results

Network topological properties of depression genes

We collected 151 major depressive disorder candidate

genes (DEPgenes). Among them, 134 had protein inter-

action annotations in the human interactome. Figure 1

shows the degree distribution. The average degree of

these proteins was 18.55, and their median degree value

was 6. As a comparison, the average degree was 14.75

(median value 6) for the schizophrenia candidate genes

(131 of the 160 genes mapped onto the human interac-

tome) and 25.53 (median value 12) for the cancer genes

(353 of the 459 genes mapped onto the interactome).

Overall, although DEPgenes on average had a higher

degree value than schizophrenia genes, their degree dis-

tribution is similar to that of schizophrenia genes, and

statistical tests indicated no significant difference (Wil-

coxon test, P = 0.53). However, we observed different

degree distributions between DEPgenes and cancer

genes, and statistical tests indicated that DEPgenes had

significantly lower degrees than cancer genes (P = 1.93

× 10-5). Specifically, cancer genes were found more fre-

quently in the degree bins 18-32 and 32-40 (Figure 1).

For the measurement of betweenness, the average

value was 5.02 × 104 for DEPgenes, 4.01 × 104 for the

schizophrenia genes, and 5.61 × 104 for cancer genes,

while their median values were 5.12 × 103, 3.54 × 103,

and 1.02 × 104, respectively. Similar to the measurement

of degree, there was no significant difference in the

betweenness values between the MDD and schizophre-

nia candidate genes (P = 0.21), but cancer genes had sig-

nificantly larger betweenness values than DEPgenes (P =

0.03). These results indicated that the candidate genes

for the two major psychiatric disorders, MDD and schi-

zophrenia, shared similar topological features in the

human interactome, while both had substantially differ-

ent features when compared to cancer genes.

Gene Ontology enrichment analysis by WebGestalt

To explore whether DEPgenes share specific functional

features, we performed GO enrichment analysis using

WebGestalt (version 2.0). We found that many neurode-

velopment related functions and biological processes

were significantly enriched in DEPgenes, regardless of

GO terms categories (BP: biological process; MF: mole-

cular function; and CC: cellular component) (Table 1).

The most significant terms in each of these three GO

categories are: synaptic transmission in biological pro-

cess (PBH = 1.18 × 10-34), G-protein coupled amine

receptor activity in molecular function (PBH = 7.18 × 10-

19), and neuron projection in cellular component (PBH =

3.91 × 10-20). Other enriched GO terms of interest

include transmission of nerve impulse, neurological pro-

cess, cell communication, dopamine binding, extracellu-

lar ligand-gated ion channel activity, ligand-gated

channel activity, axon, and dendrite.

Pathway enrichment by Ingenuity Pathway Analysis

We then examined whether DEPgenes are enriched in

canonical pathways by performing Fisher’s exact test in

the IPA system. Table 2 shows the 12 most significantly

enriched pathways. Remarkably, most of them are

related to the neurotransmission system, supporting the

neuropathology hypothesis of MDD (Table 2). Among

them, we highlighted serotonin receptor signaling, dopa-

mine receptor signaling, PXR/RXR activation,
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neuropathic pain signaling on dorsal horn neurons,

CREB signaling in neurons and tryptophan metabolism.

This result is consistent with prior knowledge of MDD

[38,39], providing further evidence of the neuro-related

processes in this disorder.

Crosstalk among significantly enriched pathways

Since many genes and pathways might be involved in

MDD, to more deeply understand how these pathways

are related, we performed a pathway crosstalk analysis.

We first selected the significantly enriched pathways

from the IPA results. Specifically, we selected those

pathways having PBH < 0.01 and ≥ 5 DEPgenes. There

were 71 pathways that met these criteria. Among them,

69 pathways shared at least 3 genes with other path-

ways. A total of 571 edges (links) connected between

any two of these pathways, and these edges were ranked

according to the average scores of the Jaccard Coeffi-

cient and the Overlap Coefficient (see the Materials and

methods section). We selected the top 10% edges, which

resulted in 57 pairs of pathway crosstalk, and con-

structed the pathway crosstalk network for MDD. This

pathway crosstalk was the first of its kind in MDD.

Graphical presentation of the selected pathway cross-

talk revealed two self-clustered modules, as well as small

but strongly-linked pathway pairs. As shown in Figure 2,

the two large modules are dominated by neuro-related

signal transduction and immune related pathways,

respectively. The neuro-related signal transduction mod-

ule consists of the calcium signaling pathway, synaptic

long term potentiation, CREB signaling in neurons, axo-

nal guidance signaling, and others. These pathways have

Figure 1 Comparison of degree distribution of major depressive disorder (MDD), schizophrenia (SCZ), and cancer genes. The disease

genes were grouped by their degree into degree bins. Here, degree was measure by the number of interactors for each disease gene in the

human interactome. The top panel shows the histogram degree distribution, and the bottom panel shows the curve degree distribution. In the

bottom panel, each vertical line represents the median value of the degrees in each disease category. Note that MDD and SCZ candidate genes

had the same median value of degrees so that their vertical lines could not be distinguished.
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been well studied and have been indicated in many psy-

chiatric disorders that share comorbidity with MDD

[5,40,41].

The second large pathway crosstalk module mainly

consisted of immune-related pathways, such as IL-6 sig-

naling and LXR/RXR activation (Figure 2). This strongly

supports recent discoveries of immunity and inflamma-

tion related processes in psychiatric disorders [42,43],

including MDD [44]. Many genes that drove the cross-

talk in the figure were also found to function in both

neuro- and immune-related processes like APOE [45],

TNF [46], and IL6 [47].

Molecular subnetwork

A total of 8 significant molecular networks were identi-

fied by Fisher’s exact test in the IPA system with addi-

tional criteria specifying that a pathway’s score was at

least 10 and each pathway had at least 10 DEPgenes.

Here, score was transformed from -logP, where P is cal-

culated by the Fisher’s exact test. Figure 3 showed the

two most significant networks, in which DEPgenes were

Table 1 Gene Ontology (GO) terms enriched with module genes (GO level ≥ 4)

GO terms Observed* P PBH
$

Biological process

GO:0007268: synaptic transmission 45 7.18 × 10-38 1.18 × 10-34

GO:0007267: cell-cell signaling 56 8.78 × 10-37 7.21 × 10-34

GO:0019226: transmission of nerve impulse 46 2.84 × 10-36 1.55 × 10-33

GO:0044057: regulation of system process 36 1.23 × 10-29 2.89 × 10-27

GO:0051239: regulation of multicellular organismal process 55 1.07 × 10-29 2.89 × 10-27

GO:0050877: neurological system process 59 4.72 × 10-26 9.69 × 10-24

GO:0007154: cell communication 103 6.14 × 10-26 1.12 × 10-23

Molecular function

GO:0008227: G-protein coupled amine receptor activity 15 5.13 × 10-21 7.18 × 10-19

GO:0035240: dopamine binding 7 2.25 × 10-13 1.58 × 10-11

GO:0005230: extracellular ligand-gated ion channel activity 12 4.17 × 10-12 2.34 × 10-10

GO:0004888: transmembrane receptor activity 40 6.55 × 10-12 2.78 × 10-10

GO:0005102: receptor binding 31 9.87 × 10-11 3.07 × 10-9

GO:0022834: ligand-gated channel activity 13 2.46 × 10-10 5.74 × 10-9

Cellular component

GO:0043005: neuron projection 30 2.43 × 10-22 3.91 × 10-20

GO:0044459: plasma membrane part 61 3.12 × 10-20 2.51 × 10-18

GO:0000267: cell fraction 45 1.45 × 10-19 7.78 × 10-18

GO:0005887: integral to plasma membrane 47 5.84 × 10-19 2.35 × 10-17

GO:0031226: intrinsic to plasma membrane 47 1.27 × 10-18 4.09 × 10-17

GO:0042995: cell projection 35 5.50 × 10-18 1.48 × 10-16

GO:0005886: plasma membrane 80 1.64 × 10-17 3.77 × 10-16

GO:0030424: axon 18 1.15 × 10-15 2.31 × 10-14

GO:0030425: dendrite 17 2.76 × 10-14 4.94 × 10-13

GO:0005626: insoluble fraction 32 7.11 × 10-13 1.14 × 10-11

*Number of the observed DEPgenes in the category.
$P values were adjusted by Benjamini & Hochberg (BH) method [34].

Table 2 Canonical pathways enriched with module genes

by Ingenuity Pathway Analysis (IPA) (PBH < 10-6)

Ingenuity canonical pathways Observed* PBH
$

cAMP-mediated signaling 23 6.31 × 10-16

G-protein coupled receptor signaling 31 5.01 × 10-15

Serotonin receptor signaling 12 6.31 × 10-15

Corticotropin releasing hormone signaling 14 7.94 × 10-11

Dopamine receptor signaling 11 3.80 × 10-9

Glucocorticoid receptor signaling 17 1.35 × 10-8

PXR/RXR activation 10 2.29 × 10-8

Amyotrophic lateral sclerosis signaling 11 5.89 × 10-8

Neuropathic pain signaling on dorsal horn
neurons

11 5.89 × 10-8

Relaxin signaling 12 1.02 × 10-7

CREB signaling in neurons 13 1.62 × 10-7

Tryptophan metabolism 11 6.61 × 10-7

*Number of the observed DEPgenes in the category.
$P values were adjusted by Benjamini & Hochberg (BH) method [34].

Jia et al. BMC Systems Biology 2011, 5(Suppl 3):S12

http://www.biomedcentral.com/1752-0509/5/S3/S12

Page 6 of 13



highlighted in red. In the first network (Figure 3A), we

observed 18 DEPgenes, and the top functions of this

network included energy production, drug metabolism,

and small molecule biochemistry. The second network,

which consisted of 18 DEPgenes too, was enriched with

the functions of genetic disorder, neurological disease,

and psychological disorders. On the molecular level, we

observed a group of serotonin receptors and G-proteins

(Figure 3), further supporting the involvement of neuro-

logical signaling in major depressive disorder.

MDD-specific subnetwork

Among the 151 DEPgenes, 134 were found to have PPI

annotations in the human interactome. Using our

recently developed subnetwork extraction tool GenRev,

we successfully constructed a MDD-specific subnetwork.

The subnetwork contained 130 DEPgenes and 62 addi-

tional genes that were recruited via the subnetwork con-

struction algorithm (Steiner minimum tree algorithm

[36]) (Figure 4). To evaluate the genes identified in the

subnetwork, we compared their P values in a GWAS

dataset for MDD (see the Materials and methods sec-

tion). Among the 16,758 genes in the MDD GWAS

dataset, we had 122 DEPgenes in the subnetwork, 56

non-DEPgenes in the subnetwork (we named them sub-

network’s recruited genes), and remaining 16,580 genes

outside of the subnetwork. For each gene, we assigned a

gene-wise P value based on the SNP that had the

Figure 2 Pathway crosstalk and functional map of DEPgenes (major depressive disorder genes). In this figure, each node represents a

significant pathway, and each edge represents a pathway crosstalk, i.e., a significant overlap of the component genes between two linked

pathways. The color of each node is approximately proportional to the adjusted P (PBH) value of the corresponding pathway in the pathway

enrichment analysis by Ingenuity Pathway Analysis (IPA). Darker color indicates lower PBH value. The size of each node is approximately

proportional to the number of DEPgenes found in the corresponding pathway. The width of each edge is approximately proportional to the

overlap score of the related pathways (see Materials and methods).
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smallest P value among all the SNPs mapped to the

gene region [4,26]. When we separated gene-wise P

values into four bins (<0.001, 0.001-0.01, 0.01-0.05, and

≥0.05), we found both the DEPgenes and the newly

recruited genes in the subnetwork were more frequent

in the small P value bins (<0.001, 0.001-0.01, 0.01-0.05)

than other genes (Figure 5). Furthermore, DEPgenes

tended to have smaller gene-wise P values than the

newly recruited genes, supporting that subnetwork ana-

lysis could identify potential disease genes that would

otherwise unlikely be detected by traditional singe gene

or single marker association studies. When using cutoff

value 0.05 to separate the genes into three gene sets (i.

e., nominally significant genes were defined as those

with gene-wise P value < 0.05), we found that the DEP-

genes in the subnetwork had a significantly larger pro-

portion of nominally significant genes in the GWAS

dataset (Fisher’s exact test, P = 4.13 × 10-4) compared to

the remaining genes. The recruited genes in the subnet-

work were found to have a similar trend of larger pro-

portion of nominally significant genes than remaining

genes, but this difference was not significant (P = 0.10).

Of note, when comparing the genes in the MDD-speci-

fic subnetwork (122+56 = 178 genes) with those outside

of the network (16,580 genes), the subnetwork genes

had significantly more nominally significant genes (P =

1.81 × 10-4).

Discussion

Although there have been numerous reports of suscept-

ibility genes or loci to psychiatric disorders such as

major depressive disorder and schizophrenia, no disease

causal genes have been confirmed [48-50]. One impor-

tant task now is to reduce the data noise and prioritize

the candidate genes from multiple dimensional genetic

and genomic datasets that have been made available

during the last decade and then explore their functional

relationships for further validation. To our knowledge,

this is the first systematic network and pathway analysis

for MDD using candidate genes prioritized from com-

prehensive evidence-based data sources. By overlaying

the MDD candidate genes in the context of the human

interactome, we examined the topological characteristics

of these genes by comparing them with those of schizo-

phrenia and cancer candidate genes. We further per-

formed pathway enrichment analysis to better

understand the biological implications of these genes in

the context of the regulatory system. Building on our

observation of the large number of pathways enriched

with DEPgenes, we developed novel approaches to

Figure 3 The top two molecular networks identified by Ingenuity Pathway Analysis (IPA). (A) The most significant molecular network by

IPA pathway enrichment analysis. (B) The second most significant molecular network. Color of each node indicates the score of each DEPgene

calculated by multiple lines of genetic evidence, as described in Kao et al [19].
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measure pathway crosstalk so that complex gene action

and regulation could be explored, thus providing us new

insights into the interpretation of the underlying mole-

cular mechanisms in MDD.

Our network topological analysis revealed that DEP-

genes showed similar topological characteristics to schi-

zophrenia, supporting previous reports that depression

and schizophrenia might share comorbidity both clini-

cally and genetically [21]. For example, clinical symptoms

such as psychosis and neuro-cognitive impairments have

been observed in both depression and schizophrenia

patients [21], and shared genetic variance has been

reported between major depression and schizophrenia

[51,52]. Although similar network topological features

are expected by many investigators, our study was the

first to confirm, and provided further evidence, that the

topological features of depression genes are different

from cancer genes. It is worth noting that, although

depression and schizophrenia genes had similar degree

distributions (Figure 1), depression genes had moderately

stronger connectivity and betweenness than schizophre-

nia genes.

Of significance, our pathway crosstalk analysis revealed

two large clustered modules, both of which had impor-

tant implications to MDD (Figure 2). The first cluster

included 17 pathways, and it was dominated by neuro-

signaling pathways. Among these pathways, neuropathic

pain signaling in dorsal horn neurons (PBH = 5.89 × 10-

8), CREB signaling in neurons (PBH = 1.62 × 10-7), synap-

tic long term potentiation (PBH = 6.17 × 10-5), and axonal

Figure 4 Major depressive disorder (MDD) specific protein-protein interaction subnetwork. Round nodes are DEPgenes (MDD candidate

genes) and triangular nodes are additional genes recruited by subnetwork construction. The darkness of node color is approximately

proportional to the integrative evidence score of each DEPgene, as described in Kao et al [19].

Jia et al. BMC Systems Biology 2011, 5(Suppl 3):S12

http://www.biomedcentral.com/1752-0509/5/S3/S12

Page 9 of 13



guidance signaling (PBH = 1.55 × 10-4) are involved in

neuron/brain tissues and have been reported to be

involved in MDD [53,54]. Our further examination of the

genes contributing to the crosstalk revealed that the most

frequently shared genes in this cluster were PRKACA

(functioning in n = 15 pathways in this cluster), GNAS (n

= 14), GNB3 (n = 13), ADCY7 (n = 10), GNAL (n = 9),

AKT1 (n = 9), CREB1 (n = 8), CAMK2A (n = 6), GRIN2B

(n = 5), GRIN2A (n = 5), and GRIN1 (n = 5), among

others.

The second cluster is primarily related to immunity

and inflammation, including the IL-6 signaling pathway

(PBH = 6.17 × 10-3), differential regulation of cytokine

production in macrophages and T helper cells by IL-

17A and IL-17F (PBH = 8.13 × 10-6), and LXR/RXR acti-

vation (PBH = 4.57 × 10-4). For example, the LXR/RXR

pathway may play a role in the prevention of pro-

grammed cell death and a role in immune responses to

inhibit inflammatory gene expression [55]. The most

frequently shared genes in this cluster included TNF

(functioning in n = 14 pathways), IL6 (n = 13), IL1B

(n = 13), IL10 (n = 9), CCL2 (n = 8), NGFR (n = 7), and

AKT1 (n = 7), among others. These genes further sup-

port the observation that immune- and inflammation-

related functions are involved in this cluster. During

recent years, evidence of immune and inflammation sys-

tems in psychiatric disorders has accumulated quickly

[3,4,56].

In addition to the two major clusters, there are other

crosstalk pairs that are noteworthy. The most interesting

one is the pathway pair of cAMP-mediated signaling

and G-protein coupled receptor signaling. The evidence

linking these two pathways is strong, as its edge had a

score 0.87. Moreover, these two pathways had the most

significant enrichment test P values (6.31 × 10-16 and

5.01 × 10-15, respectively) in the IPA canonical pathway

analysis (Table 2). The interaction between these two

pathways involved 23 DEPgenes, including several sero-

tonin receptor genes like HTR1A, HTR1B, and HTR5A.

The cAMP-mediated signaling and G-protein coupled

receptor signaling pathways have long been studied for

their roles in the nervous system. Of note, there were

Figure 5 Comparison of the distribution of GWAS P values in three gene sets: DEPgenes in the MDD-specific subnetwork, non-

DEPgenes recruited in the MDD-specific subnetwork, and other genes examined in the GWAS dataset. X-axis is the gene-wise P value

grouped into four bins, and Y-axis is the proportion of genes in the corresponding P value bin.
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several crosstalk links between one of these two path-

ways and other pathways that were enriched with the

DEPgenes. Those pathway crosstalk connections were

not shown in Figure 2 because they did not meet our

stringent criteria for pathway inclusion (at least 3 DEP-

genes shared between the pair of pathways or not within

the top 10% crosstalk score, see the Materials and meth-

ods section). One example is the link between the

cAMP-mediated signaling pathway and the serotonin

receptor signaling, both of which were significantly

enriched with DEPgenes, but their crosstalk score fell

outside of the top 10% in the score distribution.

Our aim of the depression-specific subnetwork con-

struction was to explore functional interactions of DEP-

genes in a local protein-protein interaction environment.

Our follow-up evaluation of the disease association of

both DEPgenes and the additionally recruited genes

using a major GWAS dataset for depression found that

these genes tended to have small P-values (i.e., at the

nominal significance level). Since the GWAS data we

used here was an independent dataset, and GWAS was

designed to be hypothesis free in genome-wide associa-

tion studies, our survey of MDD-specific subnetwork

genes demonstrated that this approach is efficient to

find a set of genes that are both functionally interactive

and enriched with the association signals of the corre-

sponding disease. Therefore, this approach is not only

promising to find novel disease candidate genes for

future validation but also useful to study the disease at

the systems biology level.

This work has a few limitations. First, our DEPgenes

and the follow up pathway/network analyses were con-

ducted based on computational strategies. Although

informative, this approach generally requires extensive

experimental validation. Thus, although we validated

subnetwork genes at the genome-wide level using the

GWAS dataset, further validation of specific novel genes

using more samples is urgently needed. Second, the

pathway crosstalk analysis was based on the scores mea-

sured by Jaccard Coefficient (JC) and Overlap Coeffi-

cient (OC). In this study, we selected the pathway pairs

empirically, that is, those ranked in the top 10%. P

values from a statistic test would be better applied to

select significant crosstalk. We did not apply this

method because the Ingenuity Pathway Analysis system

is a commercial software tool, and the information

needed to conduct such a statistic test is not publically

available. Accordingly, we could only use the limited

information for pathway crosstalk analysis. Third, the

MDD-specific subnetwork was built on available human

interactome data. Although the number and quality of

protein interactions has recently improved greatly, the

human interactome is still incomplete with many false

positives [24]. Additionally, subnetwork extraction relies

on specific algorithms and corresponding parameters.

Several algorithms exist for subnetwork extraction. In

this study, we applied the Steiner minimum tree algo-

rithm, which can effectively reduce unrelated nodes

(genes) to be included, but it may also miss some

important functional links. Our analysis, along with our

recent application of this algorithm in other complex

diseases (schizophrenia [5,57], hepatocellular carcinoma

[37], and epilepsy [6]), has demonstrated this strategy is

practical and could provide valuable information of the

interactions among DEPgenes.

Conclusions

We developed a systems biology framework for

advanced and functional analyses of major depressive

disorder candidate genes. The network topological ana-

lysis revealed similar network characteristics between

depression and schizophrenia, but network characteris-

tics of both depression and schizophrenia differed from

cancer, consistent with previous clinical and genetic stu-

dies. However, the depression genes interacted moder-

ately stronger than schizophrenia genes in the context

of the protein-protein interaction network. Our pathway

enrichment tests followed by pathway crosstalk analysis

revealed that neurotransmission and immune systems

might play key roles in the etiology of depression,

assuming that our evidence-based DEPgenes were repre-

sentative of depression. Notably, we found two major

functional clusters in the pathway crosstalk network.

We further constructed a depression-specific subnet-

work, in which additional candidate genes were identi-

fied with enriched association signals using the

depression GWAS dataset. These findings present a

wealth of information for future validation. The frame-

work we presented in this work can be applied to many

other complex diseases, such as addiction and bipolar

disorder.
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