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The goal of this overview paper is to serve as a reference for researchers that are interested in the realistic modeling of wireless
channels for the purpose of analysis and optimization of networked robotic systems. By utilizing the knowledge available in
the wireless communication literature, we first summarize a probabilistic framework for the characterization of the underlying
multiscale dynamics of a wireless link. We furthermore confirm this framework with our robotic testbed, by making an extensive
number of channel measurements. To show the usefulness of this framework for networked robotic applications, we then
discuss a few recent examples where this probabilistic channel characterization has been utilized for the theoretical analysis
and communication-aware design of networked robotic systems. Finally, we show how to develop a realistic yet simple channel
simulator, which can be used to verify cooperative robotic operations in the presence of realistic communication links.

1. Introduction

Recently, there has been considerable interest in multi-agent
robotic networks. In order to realize the full potential of
such systems, an integrative approach to communication
and robotic issues is essential. In the robotics community,
progress has been made towards designing local decisions
that can result in certain group behaviors [1–7]. Similarly,
in the communications community, rich literature was
developed, over the past decades, for the characterization
and modeling of wireless channels. However, the knowledge
available on wireless link characterization is not typically
used in networked robotic/control literature, that is, ideal or
oversimplified models are commonly used. It is, therefore,
the goal of this paper to provide a reference for the
characterization and modeling of wireless channels for the
analysis and optimization of networked robotic systems.

In a realistic communication setting, such as an urban
area or an indoor environment, Line-Of-Sight (LOS) com-
munication may not be possible due to the existence
of several objects that can attenuate, reflect, diffract, or
block the transmitted signal. The received signal power
typically experiences considerable variations and can change

drastically in even a small distance. As an example, consider
Figure 1, where channel measurements in the Electrical and
Computer Engineering (ECE) building at UNM are shown.
It can be seen that channel can change drastically with a small
movement of the robot. Thus, communication between
robotic units can degrade due to factors such as shadowing,
fading, or distance-dependent path loss [8], which can
impact the overall performance of the robotic network
considerably. However, multiagent robotic and navigation
literature typically consider ideal links or links that are ideal
within a certain radius of the node since distributed and
cooperative control of robotic units is already a considerably
challenging problem. Such simplified link models, however,
do not embrace realistic wireless communication effects such
as fading and shadowing and therefore cannot address the
interplay between sensing, communication, and motion-
planning in cooperative networks.

On the communication side, a rich literature has been
developed over the years to characterize and model wireless
channels, with the cellular industry as one of the key
motivations [9–14]. However, the knowledge available on
link modeling is spread out over a large body of literature.
This makes finding simple yet realistic link models for
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Figure 1: Sample channel measurements in (a) 1D and (b) 2D.

networked robotic applications challenging. Furthermore,
the height of the antennas used in robotic applications is
typically considerably shorter than those used in most of
the traditional wireless communication literature. As such,
the applicability of the older models may need further
validations. Finally, in robotics, the control of motion as
well as location awareness presents new possibilities in terms
of improving both the communication quality and channel
measurement process, which differentiate these applications
from cellular systems or Wireless Local Area Networks
(WLANs). For instance, the process of channel measurement
can be fully automated. Furthermore, a robot can plan
its motion intelligently in order to ensure maintaining
connectivity or smart adaptive directional antennas can be
utilized in order to reduce the impact of multipath fading.

These are the main motivations for this overview
paper. We first summarize a framework for understanding,
abstraction, and probabilistic modeling of wireless channels,
for networked robotic and control applications, by tapping
into the relevant knowledge available in wireless commu-
nication literature. We furthermore use a robotic testbed
and make several channel measurements in order to assert
these mathematical models for the heights and frequencies
relevant to robotic applications. We then summarize a few
recent examples where this probabilistic characterization
was used for the analysis and design of networked robotic
systems. Finally, we show how to develop a realistic yet
simple channel simulation environment for the verification
of cooperative robotic operations in the presence of realistic
communication links.

We start in Section 2 by describing our experimental set-
up for automating the channel measurement process, using
our robots. We then summarize a probabilistic character-
ization of wireless channels and their underlying dynam-
ics/spatial correlation in Section 3 and verify it with exper-
imental measurements. Our mathematical framework is
based on well-known references in wireless communication

literature such as [8, 14–17]. We furthermore show the
potentials of directional adaptive antennas for improving
the link quality in robotic networks. In Sections 4 and 5,
we show how the aforementioned probabilistic framework
has been recently used for the mathematical analysis and
optimization of networked robotic systems, in the presence
of realistic links. In Section 6, we show how this framework
can be used to develop a simple yet realistic channel
simulation environment for networked robotic applications.
We conclude in Section 7.

2. An Experimental Robotic Platform for
Channel Measurement Collection

The analyses of this paper are all accompanied by experimen-
tal validations. As such, in this section we briefly describe our
experimental testbed. This can help the readers understand
the conditions under which our measurements are collected
so that they can reproduce the results.

Traditionally, there has been considerable interest in
measurement and characterization of the received commu-
nication signal strength in the context of cellular systems
[18–22]. Automating the measurement process, however, has
been difficult in the past due to the lack of an automated
mobile system. For outdoor measurements, vehicle-mounted
transceivers have been used in some experiments [21,
22]. Collecting indoor measurements, however, is more
challenging. For instance, in [18], the authors use a cart
to move the receiver and transmitter units, resulting in
a positioning accuracy of about 10 cm, which may not
suffice depending on the required analysis. Using rails
with motorized positioners is another common approach
for moving the transmitter/receiver [23]. The advent of
robotic networks facilitates the design of an automated
measurement system considerably and allows for collecting
measurements with flexibility, reconfigurability, and a high
spatial resolution. As such, we have developed a robotic
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Figure 2: (a) Pioneer 3-AT robot equipped with a servomechanism and a directional antenna. (b) Pioneer 3-AT robot equipped with an
omnidirectional antenna.

testbed to automate our channel measurement process.
The testbed consists of two Pioneer 3-AT (P3-AT) mobile
robots from MobileRobots Inc. [24], each equipped with an
onboard PC, an IEEE 802.11 g (WLAN) card, and various
sensors used for localization and obstacle avoidance. Each
robot acts as a mobile transceiver and can record its received
signal strength as it moves. The resulting data set is then
used for the characterization of wireless channels for mobile
robotic networks.

Next, we explain the hardware and software components
of our testbed in more details including our software-based
controller and navigation infrastructure.

2.1. Hardware Architecture. Our setup consists of two P3-
AT mobile robots [24]. Pioneer 3-AT is a high-performance
robotic platform from MobileRobots, which is a popular
and reliable team performer for indoor, outdoor, and rough-
terrain projects. We equipped each robot with a removable
electromechanical fixture to possibly hold a directional
antenna. Figure 2(b) shows one of our robots in its original
form, while Figure 2(a) shows the robot with a directional
antenna mounted on it. A block diagram of the hardware
architecture of one of the robots is shown in Figure 3. The
remote PC is a supervising unit, in charge of planning
the motion of the robots and collecting the signal strength
data from the robots. Each P3-AT base comes with an
onboard PC104 and a Renesas SH7144-based microcon-
troller platform to control the motors, actuators, and sensors.
MobileRobots provides a C/C++ application programming
interface (API) library called ARIA [24] to program and
control the robot via its onboard microcontroller platform.
We also developed a servomechanism to intelligently rotate
the directional antenna of the robot. The servo mechanism
is controlled by the onboard PC of the robot through a
microcontroller-based external hardware. We make use of
Hitec HS-7955TG high-performance coreless digital servo

motors with 180◦ rotation in our servomechanism. As for the
directional antennas, we use a GD24-15 2.4 GHz parabolic
grid antenna from Laird Technologies [25]. This model has a
15 dBi gain with 21◦ horizontal and 17◦ vertical beamwidth
and is suitable for IEEE 802.11 b/g applications (Figure 2(a)).

2.1.1. Robot Localization. Accurate localization of the robots
is crucial to proper channel measurement and analysis. For
instance, characterizing the spatial correlation of different
channel dynamics requires accurate position information. In
our testbed, each robot uses both the onboard gyroscope and
the wheel encoders for localization. Since the localization
error is additive in time, the calibration unit resets the
gyroscope and the wheel encoders periodically, after an
adjustable number of steps. Currently, our localization error
is less than 2.5 cm for every 1 m of a straight line movement.
If additional accuracy is needed over longer distances, more
advanced localization strategies, from the robotic literature,
can also be utilized. Alternatively, a long route can be
divided into shorter subroutes and the robot can be manually
repositioned at the beginning of each sub-route to provide a
better overall accuracy.

2.1.2. Software Architecture. A high-level schematic of the
software architecture is shown in Figure 4. The software-
based control infrastructure consists of two application layers
running on different machines: the robot-side application
runs on the onboard PC of the robot whereas the client-
side application runs on the remote PC. the robot-side
application is developed as a TCP/IP server and is in charge
of reading the sensory data, sending it to the client-side appli-
cation, receiving the high-level control of motion/antenna
angle commands from the client-side application and exe-
cuting the commands. The client-side application, which
runs as a TCP/IP client for robot-side application, is in
charge of supervising the entire operation, planning the
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motion, generating the high-level control commands to be
sent to the robots, and collecting the signal strength data
from the robots for future processing. The microcontroller
of the servo mechanism is also programmed to decode the
rotation commands and send the corresponding Pulse Width
Modulation (PWM) signals to the servo motor that rotates
the antenna. The operating system is Microsoft Windows XP,
and all the programs are developed in C++ using MS Visual
Studio 2008. The user can run both robots simultaneously,
calibrate and test the servo mechanism, and run several
automatic data gathering scenarios. Among all the possible
scenarios, the following two are used extensively for the
analysis presented in this paper.

(i) Scenario 1. The transmitter is a wireless 802.11 g
router with an omnidirectional antenna at a height of
1.5 m. The receiver is a robot with an omnidirectional
antenna at the height of 27 cm (see Figure 2(b)).

(ii) Scenario 2. Both the transmitter and receiver are
robots with different combinations of directional/
omnidirectional TX/RX antennas. The directional
antenna is as shown in Figure 2(a).

Unless stated otherwise, the default mode of operation is
scenario 1 throughout the paper.

3. Characterization of the Spatial
Variations of a Wireless Channel [8, 16]

In this section, our goal is to summarize the existing results
on the probabilistic characterization of wireless channels,
from the wireless communication literature, and to confirm
this characterization with our robots. In general, exact math-
ematical characterization of a wireless channel is extremely
challenging, due to its time-varying and unpredictable
nature. Blocking, reflection, scattering, and diffraction are
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Figure 5: (b) Blueprint of the basement of the ECE bulding. at UNM where channel measurements are collected—a colormap of the
measured received signal power is superimposed on the map for the transmitter at location #1. (a) A magnified inset of the blueprint.

a few examples of phenomena that a transmitted wave
between two robotic agents can experience. One can possibly
solve Maxwell’s equations with proper boundary conditions
that reflect all the physical constraints of the environment.
However, such calculation is difficult and requires the
knowledge of several geometric and dielectric properties of
the environment, which is not easily available. In wireless
communication systems, it is therefore common to model
the channel probabilistically, with the goal of capturing its
underlying dynamics. The utilized probabilistic models are
the results of analyzing several empirical data over the years.
In general, a communication channel between two robotic
platforms can be modeled as a multiscale dynamical system
with three major dynamics: small-scale fading (multipath
fading), shadowing (shadow fading), and path loss. These
three dynamics are key to the realistic characterization of the
performance of networked robotic systems. We first show an
example of these three dynamics through an experiment with
our robotic testbed.

Figure 5 shows the blueprint of the basement of the
Electrical and Computer Engineering building at UNM
where we made several measurements along more than 70
routes using the experimental setup described in Section 2.
(Unless we specifically indicate otherwise, both the transmit-
ter and receiver antennas should be assumed omnidirectional
(scenario 1). In such cases, the transmitter is a fixed router
at the height of 1.5 m and the receiver is a moving robot
with its antenna at the height of 27 cm.) The figure also
shows a colormap of our measured received signal power
for the transmitter at location no. 1. In this paper, we use
this data for analysis and mathematical characterization.
It should, however, be noted that the framework of this
paper is also fully applicable for modeling outdoor wireless
measurements. We used indoor measurements in this paper
since wireless link quality is typically worse inside a building
(due to the higher chance of lacking a line-of-sight commu-
nication).
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Figure 6: Underlying dynamics of the received signal power across
route 1 of Figure 5 and for the transmitter at location #1. The
blue curve is the measured received power which exhibits small-
scale fading. By averaging locally over small-scale variations, the
underlying shadowing variations can be seen (gray). The average of
the shadowing variations then follows the distance-dependent path
loss curve (dashed line).

As an example, Figure 6 shows the received signal power
across route 1, as marked in Figure 5, for the transmitter
at location #1 and as a function of the distance to the
transmitter. The three main dynamics of the received signal
power are marked on the figure. As can be seen, the received
power can have rapid spatial variations that are referred
to as small-scale fading. By spatially averaging the received
signal locally and over distances where channel can still be
considered stationary, a slower dynamic emerges, which is
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called shadowing. Finally, by averaging over the variations
of shadowing, a distance-dependent trend is seen, which
is referred to as path loss. In this section, we provide an
understanding and modeling of these underlying dynamics.

3.1. Small-Scale Fading (Multipath Fading). When a wireless
transmission occurs, replicas of the transmitted signal will
arrive at the receiver due to phenomena such as reflection
and scattering. This results in the following baseband
equivalent channel at time instant t:

h(t) =
N(t)∑
n=1

αn(t)e jσn(t)− j2π fcτn(t), (1)

where N(t) represents the total number of paths that arrive at
the receiving robot at time t, fc is the carrier frequency, and
αn, τn, and σn are the attenuation, delay, and Doppler phase
shift of the nth path respectively. As can be seen from (1),
different paths can be added constructively or destructively
depending on the phase terms of individual paths. As a
result, with a small movement, the phase terms can change
drastically, resulting in the rapid variations of the channel.
Such rapid variations are referred to as small-scale fading
(multipath fading) and can be seen in Figure 6. The higher
the number of reflectors and scatterers in the environment
is, the more severe the small-scale variations could be.
Next, we characterize the distribution of |h(t)| (which easily
translates to a distribution for the received Signal-to-Noise

Ratio (SNR) since it is proportional to |h(t)|2).
In the wireless communications literature, several efforts

have been made in order to mathematically characterize
the behavior of small-scale fading. As can be seen from
Figure 6, the small-scale fading curve is nonstationary over
large distances as its average is changing. Therefore, it is
common to characterize the behavior of it over small-enough
distances where channel can be considered stationary. Then,
the behavior of the average of the small-scale variations is
characterized in order to address channel dynamics over
larger distances, as we shall see in the next part. Over
small-enough distances where channel (or equivalently the
received signal power) can be considered stationary, it can be
mathematically shown that Rayleigh distribution is a good
match for the distribution of |h(t)| if there is no Line-Of-
Sight (LOS) path while Rician provides a better match if an
LOS exists. These distributions also match several empirical
data. A more general distribution that was shown to match
empirical data is Nakagami distribution [15, 16, 26], which
has the following pdf for z(t) = |h(t)|:

p(z) = 2mmz2m−1

Γ(m)P
m
z

exp

[
−mz2

Pz

]
, for z ≥ 0, (2)

where m ≥ 0.5 is the fading parameter, Pz = E[|h(t)|2] rep-
resent the average power of the channel (averaged over small-
scale fading), and Γ(·) is the Gamma function. If m = 1, this
distribution becomes Rayleigh: pray(z) = 2z/Pz exp[−z2/Pz],

for z ≥ 0, whereas for m = (m′ + 1)2/(2m′ + 1), it

is approximately reduced to a Rician distribution with
parameter m′:

pric(z) = 2z(m′ + 1)

Pz
exp

[
−m′

−

(m′ + 1)z2

Pz

]

× I0

(
2z

√
m′(m′ + 1)

Pz

)
,

(3)

for z ≥ 0. Similarly, distributions of the power of the channel

(|h|2), the received power, and SNR can be derived by a
change of variables. Such distributions can be very helpful
in generating realistic communication links for the purpose
of mathematical analysis, optimization as well as simulation
in robotic networks.

We verified the Nakagami distribution using several
measurements in our building. While Rayleigh and Rician
distributions are more heavily assumed for the purpose of
analysis involving wireless channels, we found that a general
Nakagami distribution is a better match for most of our
gathered data. As an example, consider the measurement
of Figure 6, which is across route 1 of Figure 5 and for the
transmitter at location #1. Figure 7 shows the probability
density function (pdf) and cumulative distribution function
(cdf) of three different sections of the small-scale variations
across this route. These parts are chosen such that the
data can be considered stationary within each section (since
small-scale analysis is only relevant to the small-enough and
thus stationary parts). It can be seen that the distribution of
the gathered data matches power distribution for Nakagami
fading with parameters m = 1.20 and m = 1.30 well.
Note that since the distribution of the power of the received
signal, which is proportional to |h(t)|2, is plotted, the figure
does not show a Nakagami distribution directly. It shows
the power distribution of Nakagami fading, that is, the
distribution of a nonnegative variable whose square root has
a Nakagami distribution.

While Nakagami distribution shows a good match for
the distribution of small-scale fading, mathematical analysis
of the performance of a robotic network under such a
distribution is generally challenging. Alternatively, a simpler
but suboptimum match is lognormal. In [27], the authors
showed that a Gaussian distribution can possibly provide
an acceptable match for the distribution of the small-scale
variations in dB (albeit with some loss of performance as
compared to Nakagami). Figure 8 compares the match of
both Nakagami and lognormal to the distribution of small-
scale fading for two different stationary sections of the data of
Figure 6. As can be seen, Nakagami provides a considerably
better match while lognormal can be acceptable depending
on the required accuracy.

3.2. Shadow Fading (Shadowing). As discussed in the previ-
ous part, the received wireless signal is nonstationary over
large distances. While small-scale fading characterizes the
behavior of the channel over a small distance, it does not
suffice for characterizing the channel over larger distances.
Small-scale variations are the result of a number of paths
arriving at the receiver at approximately the same time
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Figure 7: The distribution of small-scale fading using three different parts of our gathered measurements. Nakagami distribution shows a
very good match—(a) pdf and (b) cdf.

but being added constructively or destructively, depending
on their phase terms, which results in rapid variations. As
Figure 9 shows, once we average over small-scale variations,
another dynamic can be observed which changes at a slower

rate. Let Pz = E[|h(t)|2] represent the average power of the
channel (averaged over small-scale fading), as defined for
(2). This signal varies over larger distances and is referred
to as shadow fading or shadowing. Shadowing is the result
of the transmitted signal being possibly blocked by a number
of obstacles before reaching the receiver. Empirical data has
shown Pz to have a lognormal distribution (mathematical
justification also exists by using Central Limit Theorem
[16]). Let Pz,dB = 10 log10(Pz). We have the following for the
distribution of Pz,dB [15, 16, 28, 29]:

p
(
Pz,dB

)
= 1√

2πσdB
e−(Pz,dB−µdB)

2
/2σ2

dB , (4)

where µdB = KdB − 10γ log10(d) and σdB is the standard
deviation of Pz,dB. Consider the distance-dependent path
loss, µ = K/dγ, where d represents the distance between the
transmitting and receiving robots, γ denotes the power fall-
off rate, and K > 0 is a constant. Then, it can be seen from
(4) that µdB = 10 log10(µ) = KdB − 10γ log10(d) represents
the average of shadowing variations. Note that average SNR
will also have a lognormal distribution.

Figure 10 shows the pdf and cdf of shadow fading for
all the collected data in the basement of ECE building, as
shown in Figure 5, and for the transmitter at location #1. In
order to access the shadowing variations, the gathered data
of each route is averaged locally over small-scale fading, as
illustrated in Figure 9. It should be noted that the resulting
shadowing variation is non-stationary as its average changes
with distance. The distance-dependent path loss component
for each route can be easily estimated by finding the best
linear fit that relates the log of the received power of the
collected data to the log of the distance traveled (see Figure 6
for an example). We then remove the distance-dependent
average from shadowing variations before characterizing the
distribution of the collected data. As a result, the distribution
of the resulting gathered data should match a zero-mean
lognormal distribution. It can be seen from Figure 10 that
the distribution of the log of the shadowing variations (after
removing the distance-dependent average) matches a zero-
mean normal distribution very well. The three columns
correspond to averaging window sizes of 0.4 λ, 1 λ, and 10 λ
from left to right, where λ is the wavelength of operation.
The standard deviations for these matches are σdB = 2.7,
σdB = 2.3, and σdB = 1.4, respectively. As can be seen, as
the averaging window size increases, the standard deviation
of the best fit becomes smaller. This is as expected since, by
averaging over larger distances, the resulting signal becomes
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Figure 8: Comparison of Nakagami and lognormal for the distribution of small-scale fading—(a) pdf and (b) cdf.
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window corresponds to the average of all the data points within the window. Alternatively, the window size can be adaptive.

closer to the underlying overall average (distance-dependent
path loss). For this specific data, the best fit corresponds to
the averaging window size of 0.4 λ, with a Normalized Mean
Square Error of 2.89× 10−4.

3.3. Distance-Dependent Path Loss. It can be seen from (4)
that the distance-dependent path loss, characterized as KdB−

10γ log10(d), is the average of the shadowing variations. This
completes the relationship between the three underlying
dynamics: small-scale fading, shadow fading, and path loss.
As mentioned earlier, the distance-dependent path loss

component can be found by finding the best linear fit that
relates the log of the received signal power to the log of
the distance traveled. For instance, for the data of Figure 6,
path loss component can be characterized as −17.35 −
30 log10(d). It should be noted that the parameters of path
loss curve, such as exponent γ, vary from route to route.
They can even vary within a route if the route is considerably
long.

In current networked robotics literature, it is common to
use fixed-radius disc models to model wireless channels. It
is noteworthy that this over-simplified model only considers



Journal of Robotics 9
P

ro
b

ab
il

it
y 

d
en

si
ty

 

   
   

   
 f

u
n

ct
io

n
C

u
m

u
la

ti
ve

 d
is

tr
ib

u
ti

o
n

 

   
   

   
   

   
fu

n
ct

io
n

Experimental data

Normal distribution

Experimental data

Normal distribution

Experimental data

Normal distribution

0.2

0.15

0.05

0
−10 −5 0 5 10 15−10 −5 0 5 10 15

−10 −5 0 5 10 15 −10 −5 0 5 10 15

0.4

0.3

0.2

0.1

0.1

0.2

0.15

0.05

0

0.1

0
−4 −2 0 2 4 6

Average received power (dBm)

−4 −2 0 2 4 6

Average received power (dBm)

Average received power (dBm)

Average received power (dBm)

Average received power (dBm)

Average received power (dBm)

0

0.5

1

0

0.5

1

0

0.5

1

(a) (b) (c)

(d) (e) (f)

Averaging window size =0.4 λ Averaging window size =1 λ Averaging window size =10 λ

Figure 10: (a–c) pdf and (d–f) cdf of the log of shadow fading (after removing the distance-dependent path loss) and the normal distribution
match for all the data gathered in the basement of ECE bulding. The three columns show the impact of the averaging window size on the
match: (a, d) window size of 0.4 λ, (b, e) window size of 1.0 λ, and (c, f) window size of 10.0 λ, with λ = 0.125 m denoting the wavelength of
the transmitted signal.

path loss. It furthermore assumes the same path loss
parameters everywhere in the environment. Therefore, it is
only a very crude representation after considerable averaging
is done.

3.4. Channel Spatial Correlation. Thus far we characterized
the distribution of a wireless channel at a single position
(or equivalently at a time instant). Another important
parameter that characterizes a wireless channel is its spatial
correlation, that is, how fast the small-scale and shadow
fading components are changing spatially. Channel spatial
correlation plays a critical role in the cooperative operation
of autonomous agents. For instance, it impacts how well we
can predict channel spatial variations [30–32] and embed
the corresponding communication objectives in a motion-
planning function [30, 32].

Spatial correlation of small-scale fading depends on the
speed of the robots, frequency of operation, and antenna
beamwidth/gain, among several other factors. The least
correlation is typically observed when there exists a rich
scatterer/reflector environment that results in a uniform
angle of arrival of the paths. In such cases, the power
spectrum of small-scale fading will have a form that is
referred to as Jakes spectrum [8] and channel decorrelates
on the order of 0.4 λ, with λ representing the wavelength
(5 cm for 2.4 GHz WLAN transmission). If this is not the
case, the spatial correlation function of small-scale fading
can be mathematically derived for more general cases [8].
However, a general model that can fit several scenarios does
not exist. For most scenarios, small-scale fading decorrelates
considerably fast, as compared to the other dynamics.

For shadow fading, there is less mathematical characteri-
zation of spatial correlation. Gudmundson [33] characterizes
an exponentially decaying spatial covariance function for
the log of the shadow-fading variations, based on outdoor
empirical data, which is widely used:

Acov,Pz,dB

(∥∥q1 − q2

∥∥) = E
[(
Pz,dB,1 − µdB,1

)(
Pz,dB,2 − µdB,2

)]

= σ2
dBe

−‖q1−q2‖/Xc , q1, q2 ∈ R2,

(5)

where Pz,dB,1 and Pz,dB,2 are the average power of the channel
(averaged over small-scale fading) at positions q1 and q2,
respectively, µdB,1 and µdB,2 are the corresponding path loss
components, σ2

dB is the variance of the log of shadowing as
defined in (4), and Xc is the decorrelation distance, which is
defined as the distance at which the autocovariance reaches
1/e of its maximum value. It has been shown that the
decorrelation distance is on the order of the size of the
blocking objects or clusters of objects [16].

We used our channel measurements and found the
exponential to be a good match for the correlation of
shadowing. Figure 11 shows the normalized autocovariance
function for the data gathered in route 2 of Figure 5 with
the transmitter at location #1. It can be seen that the
real autocovariance function matches the exponential model
considerably well although this is an indoor measurement.
We see similar matches across other routes of Figure 5.

3.5. Impact of Antenna Angle. As seen in the previous
sections, small-scale fading can result in the severe fluctu-
ations of the received signal power, which can degrade the
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performance of a robotic network considerably. The main
contributor to such fluctuations is the fact that different
multipaths can be added constructively or destructively
depending on their traveled routes. One possible way to
mitigate the impact of multipath fading is to use adaptive
directional antennas with a small beamwidth (angle). A
smaller beamwidth can limit the number of multipaths that
reach the receiver, which will reduce the chance of the paths
being added out of phase. This approach, however, would
require alignment and adaption of the transmitting and
receiving antennas in order to make sure that they face each
other when communicating. As such, it does not work for
nonrobotic communication systems, such as cellular systems
or Wireless Local Area Networks (WLANs), where control of
angle is simply not possible. In a robotic network, however,
the angle can be adapted. Each robot typically knows the
position of another robot in the network, which can be used
for online adaption and alignment of directional antennas.

We have also equipped our robots with adaptive direc-
tional antennas in order to see their impact on multipath
fading. Figure 12(a), for instance, shows an operation using
an adaptive and an omnidirectional antenna whereas, in
Figure 12(b), both robots are using adaptive antennas.
Figure 13 shows the impact of small antenna beamwidth
on small-scale fading. The figure shows the received signal
power across route 2, marked on Figure 5, and for the
transmitting robot at location #2. In the omni-to-omni case,
both the transmitter and receiver are omnidirectional. In the
omni-to-dir case, the transmitter is omnidirectional while
the receiver is directional. Finally, for the dir-to-dir case, both
the transmitter and receiver are directional. Our directional
antenna has a horizontal and vertical beamwidth of 21◦ and
17◦, respectively.

It can be seen that the dir-to-dir case results in the
smallest amount of variations. To measure this, the standard
deviations of the received signal power from the distance-
dependent path loss are calculated to be 4.53, 2.44, and 1.89
for the omni-to-omni, omni-to-dir, and dir-to-dir, cases,
respectively. Furthermore, it can be seen that the overall
signal power increases as we use directional antennas. We
saw similar behaviors across other routes in our building.
This shows the potential of directional adaptive antennas for
networked robotic applications.

4. Probabilistic Analysis of
Networked Robotic Systems in the Presence of
Realistic Wireless Channels

In the robotics literature, oftentimes disk models are used to
characterize wireless channels when theoretically analyzing
the behavior of a networked robotic and control system.
Performing theoretical analysis with such a model, however,
can lead to conclusions that are far from the true behavior
of these systems. The probabilistic characterization of the
previous section, on the other hand, can be used for more
accurate mathematical analysis of networked robotic sys-
tems. For instance, wireless links can be modeled as random
nonstationary processes (small-scale fading) with a Rayleigh,
Rician, or Nakagami distribution. Then the average of the
power of this process will have a lognormal distribution with
a mean that follows the distance-dependent path loss (in
dB). As such, the overall behavior of a networked robotic
systems, in presence of realistic wireless channels, can be
characterized probabilistically. In order to see an example
of this, consider a cooperative target tracking operation,
where a team of Nr robots track a moving target as shown
in Figure 14 [31, 32, 34]. The nodes constantly sense the
position of the target and send their sensory information to
a fixed base station over wireless links. The overall goal is for
the base station to have the best estimate of the position of
the target in real time.

Let ξ(t) ∈ R
2 denote the position of the target at time

instant t. Consider the following linear sensing model for the
jth robot, for j = 1, . . . ,Nr : η j(t) = ξ(t) + v j(t), where
η j(t) ∈ R2 is the observation of the jth robot and v j(t) ∈ R2

is a zero-mean Gaussian noise with Π j(t) = E[v j(t)v
T
j (t)]

representing its covariance matrix. Each node constantly
sends its observations to the base station. Depending on
the quality of the link from node j to the base station at
time t, the transmitted observation may be received by the
base station or may be dropped due to poor link quality.
In other words, if the received power (or equivalently the
received SNR) on a given link, at a given time, is below a given
threshold (PTH), the transmitted information on that link
will not be received by the base station. Let Pr, j(t) denote the
received power at the base station in communication from
the jth node at time t. Then, the received observation from
the jth node is kept if Pr, j(t) > PTH and is dropped otherwise.

At each time step, the base station fuses all the
received observations using a Best Linear Unbiased Estimator

(BLUE). Let ξ̂b(t) represent the estimate of the base station of
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(a) (b)

Figure 12: (a) Pioneer robots gathering data at the basement of the ECE building at UNM with the transmitter using an omnidirectional
antenna and the receiver using a directional one. (b) Pioneer robots using directional antennas for both transmission and reception.

the position of the target at time t, after fusing all the received
information, with Πb(t) denoting the corresponding error
covariance. We have

ξ̂b(t) =
⎡
⎣

Nr∑

j=1

ρ j(t)Π
−1
j (t)

⎤
⎦
−1⎡
⎣

Nr∑

j=1

ρ j(t)Π
−1
j (t)η j(t)

⎤
⎦,

Πb(t) = E
[(

ξ(t)− ξ̂b(t)
)(

ξ(t)− ξ̂b(t)
)T]

=

⎡
⎢⎢⎢⎣

Nr∑

j=1

ρ j(t)Π
−1
j (t)

︸ ︷︷ ︸
I j (t)

⎤
⎥⎥⎥⎦

−1

,

(6)

where ρ j(t) is defined as follows:

ρ j(t) =

⎧⎨
⎩

1 Pr, j(t) > PTH,

0 else,
(7)

and I j(t) � Π
−1
j (t) denotes the Fisher information collected

by the jth node from the target at time instant t [35].
Depending on the existence of the corresponding link to the
base station (i.e., the value of ρ j(t)), this information may or

may not be received by the base station. Let Ib(t) � Π
−1
b (t)

denote the overall instantaneous Fisher information received
at the base station at time instant t. We have

Ib(t) � Π
−1
b (t) =

Nr∑

j=1

ρ j(t)I j(t). (8)

Let Ib,total,traj �
∑Tmax−1

t=0 Ib(t) denote the overall accumulated
Fisher information at the base station in a given total number
of time steps, Tmax, and for a given set of trajectories of the
robots. We have

Ib,total,traj =
Tmax−1∑
t=0

Nr∑

j=1

ρ j(t)I j(t). (9)
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Figure 13: Impact of antenna angle in reducing small-scale fading.
It can be seen that using an adaptive antenna with a small
beamwidth can reduce the amount of multipath fading considerably
and also increase the overall received signal power.

Equation (9) is a function of a given set of trajectories of
the robots. The trajectories of the robots are dictated by the
trajectory of the target. Therefore, we next calculate the
average accumulated Fisher information of the base station,
averaged over random target and hence robot trajectories. We
have

Ib,total,ave � E

[
Ib,total,traj

]
=

Tmax−1∑
t=0

Nr∑

j=1

I j,aveE

[
ρ j(t)

]

= Tmax

Nr∑

j=1

I j,aveProbcon
j ,

(10)
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Figure 14: Cooperative target tracking over realistic communica-
tion links [30].

where I j,ave is the average information that the jth node col-
lects in this environment (averaged over random positions).
In several applications, the robot tries to maintain a fixed
distance from the target which maximizes the information
collected (sweet spot radius [36]). In such cases, I j(t) is
not a function of t anymore and I j,ave = I j(t) for any

time instant t. Probcon
j � Prob{Pr, j(t) > PTH} is the

probability (percentage of the times) that the received power
in the transmission of the jth node is above the threshold
in the given operation environment. This probability can be
calculated using the probabilistic framework of the previous
section. We next show how to do this analysis for two
different scenarios. Without loss of generality, we assume that
all the robots have the same transmit power in this analysis.
As such, we drop the index j if the calculation is the same for
all the nodes.

First consider the case where the area of operation is
small enough, such that the channels can be considered
stationary. We will have the following by considering
only small-scale fading with a Rayleigh distribution (see
Section 3.1):

Probcon =
∫∞
√

PTH/PT

2z

Pz
exp

(
−z2

Pz

)
dz = e−PTH/PTPz , (11)

where PT is the TX power (which is taken to be the same
for all the nodes) and Pz represents the average power of
the channel (averaged over small-scale fading), as defined in
Section 3. Thus, we will have

Ib,total,ave = Tmaxe
−PTH/PTPz

Nr∑

j=1

I j,ave. (12)

Similar expressions can be derived for Rician and Nakagami
distributions.

For several robotic applications, however, the area of
operation is typically large such that wireless channels can
not be considered stationary. If the area and the distance
between consecutive channel usages as well are large enough,
shadowing and path loss can become the dominant factors.
We next characterize Probcon for such cases, where we can
neglect small-scale variations. Using the probabilistic frame-
work of the previous section, we model each received power

(in dB) as a Gaussian random variable whose average follows
the distance-dependent path loss. Due to the space-varying
nature of the average, calculating Probcon is more challenging
in this case. Since the distance-dependent average is constant
in a given radius from the base station, we calculate Probcon as
follows for the case where the given area can be considered a
disk. Consider a narrow ring around the base station between
the two disks of radii R and R + ∆R. We have [16]

CR,R+∆R � area in the ring with received power above PTH

≃ Prob{Pr(R) > PTH}2πR∆R,

(13)

where Pr(R) is the received power in the transmission from
a position at distance R from the base station. Let Rmax

represent the maximum radius of the area. By integrating
CR,R+∆R over the whole area, we will have

Probcon

= 2π

πR2
max

∫ Rmax

0
R Prob{Pr(R) > PTH}dR

= 2π

πR2
max

∫ Rmax

0
RQ

(
PTH,dB−PT ,dB−KdB +10γ log10(R)

σdB

)
dR

= 2

R2
max

∫ Rmax

0
RQ

(
a + b ln

R

Rmax

)
dR

= Q(a) + exp

(
2− 2ab

b2

)
Q
(

2− ab

b

)
,

(14)

where a = (PTH,dB − PT ,dB − KdB + 10γ log10(Rmax))/σdB,
b = (10γ log10(e))/σdB, PT ,dB = 10 log10(PT), PTH,dB =
10 log10(PTH), and Q(α) = (1/

√
2π)

∫∞
α e−ϑ

2/2dϑ is the Q-
function. The last line of (14) is derived after a long but
straightforward derivation [16]. Thus we have the following
for the average overall received Fisher information at the base
station:

Ib,total,ave

= Tmax

[
Q(a) + exp

(
2− 2ab

b2

)
Q
(

2− ab

b

)] Nr∑

j=1

I j,ave.

(15)

This example shows how the previous channel modeling
framework can be used for the probabilistic analysis of
robotic networks in realistic communication environments,
which becomes considerably important when designing
robust cooperative mobile systems.

5. Optimization of Networked Robotic
Systems in the Presence of
Realistic Wireless Channels

In the previous section, we studied how to probabilistically
analyze the performance of networked control and robotic
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systems, in the presence of realistic wireless channels. In
networked robotic systems, each robot also needs to optimize
its motion such that it can gather as much information from
the environment as possible, while maintaining connectivity
with some of the other nodes or a fixed station. In order to do
this, however, a robot needs to (1) have an assessment of the
communication link quality in locations it has not yet visited
and (2) properly integrate its channel assessment with sens-
ing goals and form communication-aware motion-planning
objectives. These two issues make communication-aware
motion planning in realistic communication environments a
considerably challenging task. In this section, we summarize
how the probabilistic channel characterization of Section 3
has recently been utilized for channel learning [31, 37] and
communication-aware motion planning [30, 32].

5.1. Probabilistic Assessment of Wireless Channels [31, 37]. In
this part, we summarize the probabilistic channel assessment
framework of [31, 37]. Consider a team of Nr mobile
nodes that need to operate in a given workspace W ∈ R

2

while maintaining their connectivity to a fixed station. Let
P(z,dB)(q) = 10 log10(Pz(q)) denote the channel power in dB,
as measured by a node at position q ∈ W . Based on the
probabilistic characterization of Section 4, Pz,dB(q) can be
expressed as follows:

Pz,dB

(
q
)
= K̃dB − 10γ log10

(∥∥q − qb
∥∥) + Pz,SH,ZM,dB

(
q
)

+ Pz,MP,ZM,dB

(
q
)
,

(16)

where qb = (xb, yb) is the position of the base station,

K̃dB and γ are path loss parameters, and Pz,SH,ZM,dB(q) and
Pz,MP,ZM,dB(q) are zero-mean random variables representing
the effects of shadowing and multipath fading in dB, respec-

tively. Note that K̃dB includes both the average of multipath
component in dB, and KdB (defined in (4)), in order to make
Pz,MP,ZM,dB(q) zero mean.

As was proved in [31, 37], based on the measurements
available to the jth node at time t and assuming lognormal
shadowing and multipath fading, the assessment of the chan-
nel (in dB) at an unvisited position q is given by a Gaussian

distribution with mean P̂z,dB, j,t(q) = E{Pz,dB(q) | Y j,t} and

variance δ2
j,t(q) = E{(Pz,dB(q)− P̂z,dB, j,t(q))

2 | Y j,t}, where
Y j,t is the stacked vector of channel power measurements
taken at the set of positions Q j,t = {q1, . . . , qNc}. We then
have

P̂z,dB, j,t
(
q
)
= ψT

(
q
) ̟̂ j,t + φ̂T

j,t

(
q
)
Û−1

j,t

(
Y j,t −Ψ j,t ̟̂ j,t

)

δ2
j,t

(
q
)
= σ̂2

dB, j,t + ω̂2
dB, j,t − φ̂T

j,t

(
q
)
Û−1

j,t φ̂ j,t
(
q
)

+
[
ψ
(
q
)
−Ψ

T
j,tÛ

−1
j,t φ̂ j,t

(
q
)]T

∆̟, j,t

×
[
ψ
(
q
)
−Ψ

T
j,tÛ

−1
j,t φ̂ j,t

(
q
)]

,

(17)

where ρ̂dB, j,t, X̂c, j,t, ω̂dB, j,t, and ̟̂ j,t denote the estimated val-

ues of σdB, Xc, ωdB, and ̟ = [K̃dB γ]
T

, based on the available

measurements, ψ(q) = [1− 10 log(‖q − qb‖)]T , Û j,t = Ŝ j,t+

ω̂2
dB, j,tINc , and Ŝ j,t denotes the corresponding estimation of

the covariance matrix of the shadowing component [31,

37], with σdB and Xc replaced by σ̂dB, j,t and X̂c, j,t, re-
spectively. Furthermore, ∆̟, j,t is the estimation error co-
variance of the path loss parameters, (we skip the details
of how to estimate the underlying parameters and refer
the readers to [31, 37]) Ψ j,t = [1Nc − D j,t], with 1Nc

denoting the Nc-dimensional vector of all ones and

D j,t = [10 log10(‖q1 − qb‖) · · · 10 log10(‖qNc − qb‖)]T , and

φ̂ j,t(q) = [σ̂2
dB, j,t e

−‖q−q1‖/X̂c, j,t · · · σ̂2
dB, j,t e

−‖q−qNc‖/X̂c, j,t ]
T

.

5.2. Communication-Aware Target Tracking in Robotic Net-
works [30, 32]. Next, we briefly summarize the communica-
tion-aware design and motion planning of [30, 32], to show
how the channel prediction framework of the previous part
can be used for the communication-aware optimization of
robotic networks. Consider the target tracking scenario of
Section 4 as an example. We found the overall instantaneous
Fisher information at the base station to be as follows:

Ib(t) = Π
−1
b (t) =

Nr∑

j=1

ρ j(t)I j(t). (18)

By averaging only over the distribution of the channel at time
instant t (and not over trajectories like the previous section),
we obtain

Ib,ave(t) =
Nr∑

j=1

I j(t)E
[
ρ j(t)

]
=

Nr∑

j=1

I j(t)Probcon
j (t), (19)

where Probcon
j (t) = Prob{Pr, j(t) > PTH} is the probability

that the received power in the transmission of the jth
node is above the threshold at time instant t. In order
for the jth node to maximize its contribution to the
Fisher information at the base station, it has to plan its
motion such that I j(t)Probcon

j (t) is maximized. This requires

predicting Probcon
j (t) at locations that it has not yet visited.

Our aforementioned prediction framework can be utilized
towards this prediction as follows:

Probcon
j (t) = Q

⎛
⎝PTH/PT − P̂z,dB, j,t

(
qr, j(t)

)

δ j,t
(
qr, j(t)

)
⎞
⎠, (20)

where qr, j(t) is the position of the jth node at time t and PT
is the TX power. Then the jth node can optimize its motion
as follows [30, 32]:

u∗j,r(t) = arg max
u j,r (t)

Q

⎛
⎝PTH/PT−P̂z,dB, j,t

(
qr, j(t+1)

)

δ j,t
(
qr, j(t+1)

)
⎞
⎠

× I j(t + 1)

s.t. qr, j(t + 1) = Υ j

(
qr, j(t),u j,r(t)

)
, u j,r(t) ∈U,

(21)

where qr, j(t + 1) = Υ j(qr, j(t),u j,r(t)) denotes the dynamics
of the jth node, with u j,r(t) denoting its control input, and
U is the set of admissible control signals.
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6. Developing a Probabilistic Channel
Generation Environment for Networked
Robotic Applications

Developing a realistic channel simulation environment is
considerably important for testing the performance of any
proposed networked robotic strategy. If all the information
about object positions, geometry, and dielectric properties
is available, ray tracing methods could be used to find a
spatial map of the received signal strength in the area of
interest. A ray tracer [38] follows all or some of the reflected,
diffracted or scattered multipaths in the environment. There
are several software packages, such as Wireless InSite [39]
and Motorola’s WLAN Planner and Site Scanner, that are
aimed at generating a map of the received signal strength
based on ray tracing. While it is possible to use such
software for evaluating the performance of a robotic network
in a certain environment, assessing the exact coefficients
associated with the dielectric properties of the objects could
be challenging. Furthermore, such commercial software
packages are typically considerably expensive. Finally, unlike
probabilistic characterizations of the previous section, ray
tracing approaches are not suitable for mathematical analysis
since they simply generate a received signal map for a specific
environment.

The characterization of the previous sections can be
used towards developing a probabilistic channel simulator.
A probabilistic simulator is, in particular, suitable for those
cases where the information of the environment, in terms
of dielectric/magnetic properties and/or geometries of the
obstacles, is not entirely known (which is the case most of the
time). Then, channel can be generated as a two-dimensional
spatial function with the three major dynamics, that is, small-
scale fading, shadowing, and path loss while ensuring the
desired spatial correlation. In this section, we show how such
a probabilistic channel simulator can be developed.

As discussed earlier, the received signal power, Pr(x, y),
at position (x, y) ∈ R

2 consists of the following three
components.

(i) Path Loss Component (Pr,PL(x, y)) : The distance-
dependent path loss component of the received signal
power can be expressed as follows in dB:

Pr,PL,dB

(
x, y

)

= 10 log10

(
Pr,PL

(
x, y

))

= PT ,dB︸ ︷︷ ︸
TX power

+ KdB − 10γ log10

(√
(x − xb)2 +

(
y − yb

)2
)

︸ ︷︷ ︸
path loss(µdB(x,y)≤0)

,

(22)

where (xb, yb) ∈ R2 is the position of the base station.

(ii) Shadowing Component (Pr,SH,ZM(x, y)): Based on the
lognormal distribution of the shadowing component,
we have Pr,SH,ZM,dB(x, y) = 10 log10 (Pr,SH,ZM(x, y)) as

a 2D zero-mean Gaussian random process with the
following Autocovariance Function (ACF):

Acov,Pr,SH,ZM,dB

(
∆x,∆y

)

= E
[
Pr,SH,ZM,dB

(
x + ∆x, y + ∆y

)
Pr,SH,ZM,dB

(
x, y

)]

= σ2
dBe

−

√
∆x2+∆y2/Xc ,

(23)

where σ2
dB is the variance of the shadowing com-

ponent in dB and Xc is the decorrelation dis-
tance as defined in the previous section. It can
be easily shown that the 2D Fourier transform of
Acov,Pr,SH,ZM,dB (∆x,∆y) results in the following Power
Spectral Density (PSD) [40]:

ΦPr,SH,ZM,dB

(
fx, fy

)
= 2πX2

c σ
2
dB[

1 + 4π2X2
c

(
f 2
x + f 2

y

)]3/2 . (24)

(iii) Small-Scale (Multipath) Fading Component
(Pr,MP,NORM(x, y)): Let h(x, y) represent the base-
band equivalent channel at position (x, y) ∈ R

2, as
introduced in Section 3. Let hNORM(x, y) denote the
normalized version of h(x, y), which has a unit pow-
er. hNORM(x, y) can be described as a function of
its in-phase and quadrature components as follows:
hNORM(x, y) = hI ,NORM(x, y) + jhQ,NORM(x, y), where
hI ,NORM(x, y) and hQ,NORM(x, y) are the in-phase and
quadrature parts, respectively [16]. Then, we have

Pr,MP,NORM(x, y) � |hNORM(x, y)|2 = h2
I ,NORM(x, y) +

h2
Q,NORM(x, y). For Rayleigh-distributed small-scale

fading, (Rician small-scale fading can be similarly
characterized and simulated by adding a constant to
the in-phase or quadrature part) hI ,NORM(x, y) and
hQ,NORM(x, y) are zero-mean Gaussian processes with
the power of 0.5. As discussed earlier, one possible
form for the spatial covariance of the in-phase or
quadrature components of the small-scale variations
is given by the Jakes model as follows [8, 16]:

Acov,Pr,MP,NORM

(
∆x,∆y

)

= E
[
hI ,NORM

(
x + ∆x, y + ∆y

)
hI ,NORM

(
x, y

)]

= E
[
hQ,NORM

(
x + ∆x, y + ∆y

)
hQ,NORM

(
x, y

)]

= 1

2
J0

⎛
⎝2π

√
∆x2 + ∆y2

λ

⎞
⎠,

(25)

where J0(·) is the zeroth-order Bessel function and λ
is the wavelength of operation. This model is valid for
the cases where we have uniform angle of arrivals and
isotropic antennas.
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Figure 15: Block diagram of the two-dimensional probabilistic channel simulator for networked robotic applications.

The PSD of the in-phase or quadrature component is
then given by the following, which can be calculated numer-
ically:

ΦPr,MP,NORM

(
fx, fy

)

=
∫∞
−∞

∫∞
−∞

1

2
J0

⎛
⎝2π

√
∆x2 +∆y2

λ

⎞
⎠e− j2π( fx∆x+ fy∆y)d∆x d∆y

= 1

2

∫ 2π

0

∫∞
0
J0

(
2π

R

λ

)
e− j2πR( fx cos(θ)+ fy sin(θ))RdR dθ.

(26)

Therefore, in order to generate the small-scale compo-
nent of the received power, two independent 2D zero-mean
Gaussian random processes (with ACF given by (25)) should
be generated for the in-phase (hI ,NORM(x, y)) and quadrature
(hQ,NORM(x, y)) parts. Then the small-scale component can
be generated using Pr,MP,NORM(x, y) = h2

I ,NORM(x, y) +
h2
Q,NORM(x, y).

It can be seen that in order to generate the underly-
ing channel dynamics, 2D Gaussian processes should be
generated with appropriate correlation properties. Next,
we discuss two different approaches for generating a 2D
correlated Gaussian process. While we provided examples of
the most common correlation functions in (23) and (25),
any correlation function can be generated in what follows.
Once all the three dynamics of the channel are generated, the
overall received signal power can be simulated by Pr(x, y) =
Pr,PL(x, y)Pr,SH,ZM(x, y)Pr,MP,NORM(x, y). Figure 15 shows a
block diagram of the probabilistic channel generation pro-
cess.

6.1. Generation of a Correlated 2D Gaussian Process. There
exist a number of techniques for generating a correlated
Gaussian random process with an arbitrary ACF. Here, we
briefly discuss two approaches, which we have used in our
own simulation environment.

Filtering-Based Approach [41]. The most intuitive way
of generating a correlated Gaussian process is to generate
2D uncorrelated Gaussian variables and pass them through a
properly designed filter, whose transfer function is the square
root of the desired power spectral density. For instance, in
order to generate the in-phase part of the small-scale fading

with the ACF of (25), a 2D i.i.d. zero-mean Gaussian random
variable with unit variance is passed through a bidirectional
filter with the following transfer function:

G
(
fx, fy

)
=
√
ΦPr,MP,NORM

(
fx, fy

)
. (27)

The quadrature part can be similarly generated. Note that
the resulting small-scale component will have a unit power

since
∫∞
−∞

∫∞
−∞ |G( fx, fy)|2dfxdfy = 1/2.

(i) The filtering approach provides a simple way of
generating a correlated Gaussian process. However, it
can result in high computational complexity (or poor
performance depending on the given computation
budget) when the spatial correlation increases. For
instance, while it may be suitable for generating
correlated small-scale fading, other approaches may
be more efficient for generating the correlated shad-
owing component, as we discuss next.

(ii) Sum-of-Sinusoids-(SOS-) Based Approach [40]. An
alternative method for generating a correlated Gaus-
sian process is proposed in [40]. Here, we briefly
discuss this approach. A Gaussian random process
can be efficiently approximated by the sum of a
finite number of sinusoids with random phases and
properly selected frequencies and amplitudes [40].
For instance, consider the shadowing component in
dB. It can be written as follows:

Pr,SH,ZM,dB

(
x, y

)
=

Ns∑

j=1

c j cos
[

2π
(
fx, jx + fy, j y

)
+ θ j

]
,

(28)

where Ns is the number of sinusoids, { fx, j}Ns

j=1
and { fy, j}Ns

j=1

are discrete spatial frequencies that can be either deter-

ministic (uniform or nonuniform) or random, {θ j}Ns

j=1
are

randomly distributed over [0, 2π), and constants {c j}Ns

j=1
are

calculated based on the PSD of the shadowing component
(e.g., in (24)). As an example, we briefly explain how

{ fx, j}Ns

j=1
, { fy, j}Ns

j=1
and {c j}Ns

j=1
can be selected for the case

with non-uniform but deterministic sampling of the spatial
frequencies. Readers are referred to [40] for more details.
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Figure 16: An example of a channel generated using the probabilistic characterization of the previous section. (a) Channel with path loss
only, (b) channel with path loss and shadowing, and (c) channel with path loss, shadowing, and small-scale fading. Transmitter is in the top
right corner.

As can be seen from (24), the PSD of shadowing is
circularly symmetric. Thus, by defining fx = fr cos(ϕ)
and fy = fr sin(ϕ), the 1D equivalent PSD is given by

ΦPr,SH,ZM,dB ( fr) = 2πX2
c σ

2
dB/[1 + 4π2X2

c f
2
r ]

3/2
. Define the ε-

dB cutoff frequency ( fr,c) as the radial frequency for which
ΦPr,SH,ZM,dB ( fr,c)/ΦPr,SH,ZM,dB (0) = 10−ε/10. This gives fr,c =
1/(2πXc)

√
102ε/30

− 1. Define Ms such that Ns = 2M2
s . We

first pick Ms radial frequencies { fr,k}Ms

k=1 such that

∫ 2π

0

∫ fr,k

fr,k−1

ΦPr,SH,ZM,dB

(
fr
)
frdfrdϕ

= 1

Ms

∫ 2π

0

∫ fr,c

0
ΦPr,SH,ZM,dB

(
fr
)
frdfrdϕ,

(29)

starting from fr,0 = 0. By picking up 2Ms angles in

(−π/2, π/2) using {ϕl = π(2l − 2Ms + 1)/4Ms}2Ms−1
l=0 , the Ns

sampling frequencies are given by fx, j = fr,k cos(ϕl) and
fy, j = fr,k sin(ϕl), where k = ⌊( j − 1)/2Ms⌋ + 1 and l =
j mod 2Ms. Since the power in the area between any two
radial frequencies fr,k−1 and fr,k for k = 1, . . . ,Ms is the same,
we can choose c j = σdB

√
2/Ns. It can be shown that by using a

moderately large value for Ns, the average mean square error
between the desired and generated ACF is very small [40].

Figure 16 shows an example of a two-dimensional chan-
nel generated by using the characterization of the previous
sections and the probabilistic simulator of this section. The
figure shows the three different dynamics of the channel.
For instance, the Figure 16(a) shows only the distance-
dependent path loss whereas Figure 16(b) shows the shad-
owing component added. Finally, Figure 16(c) shows the
channel with all the three scales. In this example, the
covariance functions for small scale and shadowing are taken
to be Bessel and exponential, respectively, as discussed in
the previous section. The autocovariance function of the
simulated shadowing component is shown in Figure 17(a).
The figure shows a slice of the autocovariance along a
fixed position in the x axis. The desired autocovariance
corresponds to an exponentially decaying function given by
(23). As can be seen, the two curves match well. Similarly,
Figure 17(b) shows a slice of the desired and simulated
normalized small-scale autocorrelation functions. A good
match can be seen.

6.2. Case of Partially Known Environment. In robotic appli-
cations, the positions and geometry of some of the objects
are learned for navigation purposes. Such knowledge can
also be incorporated in the channel simulator such that
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Figure 17: (a) A slice of the normalized autocovariance function of shadowing for the simulated two-dimensional channel of Figure 16 and
its exponential match. (b) A slice of the autocorrelation function of the in-phase part of small-scale fading and its Bessel function match. It
can be seen that our simulated channel has the desired correlation properties.

the generated channel matches the known environmental
specifications better. For instance, consider the case where
the position and geometry of the obstacles are known on the
line from position (x, y) ∈ R2 to the transmitter. Then, the
received signal power in dB, Pr,dB(x, y), at position (x, y), can
be approximated as follows by following the LOS path and
considering only shadow fading and path loss:

Pr,dB

(
x, y

)

≈ PT ,dB︸ ︷︷ ︸
TX power

+KdB−10γ log10

(√
(x − xb)2 +

(
y − yb

)2
)

︸ ︷︷ ︸
path loss(µdB(x,y)≤0)

− ζ
∑

j

βlos, j llos, j

︸ ︷︷ ︸
shadowing

,

(30)

where ζ = 10/ ln(10), path loss parameters are as defined
earlier, and βlos, j and llos, j denote the approximated decay
rate of the LOS path and its traveled distance in the jth
obstacle on its path, respectively. It should be noted that
implementing (30) still requires approximating βlos, j for all
js. In practice, this approximation can only be done very
roughly. Furthermore, we still have to simulate small-scale
fading. As such, using only (30) does not suffice for channel
generation. Instead, we can combine partial environment-
specific knowledge with probabilistic components of the
previous section in order to generate a more realistic
channel. For instance, a small-scale fading variable can be

added to the received power generated from (30). Figure
18 shows simulated binary maps of the received signal
power where black areas indicate regions with the received
signal strength below an acceptable threshold while white
areas denote otherwise. Figure 18(a) shows an example of
a channel generated based on knowing the positions of the
obstacles and considering only shadowing and path loss, as
indicated by (30), and for the marked transmitter location.
Figure 18(b) shows the same map after adding a Rician-
distributed small-scale fading to it, which becomes more
realistic.

7. Conclusions

The goal of this paper was to provide a reference for
researchers in robotics and control that are interested in the
realistic characterization of wireless links. By utilizing the
knowledge available in wireless communication literature,
we provided a comprehensive overview of the key charac-
teristics of wireless channels: small-scale fading, shadowing,
and path loss, for networked robotic and control operations.
We furthermore developed a robotic testbed in order to
confirm these mathematical models. We then summarized
some of the recent results on how to use this probabilistic
framework for the analysis and optimization of networked
robotic systems. Finally, we showed how to develop a
realistic yet simple channel simulator for the verification of
cooperative robotic operations in realistic communication
environments.
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(a)

(b)

Figure 18: Examples of a binary channel (white areas indicate
that channel quality is above an acceptable threshold whereas black
areas denote otherwise)—(a) channel generated based on knowing
the positions of the obstacles and considering only shadowing and
path loss and (b) the same channel after adding Rician-distributed
fading.
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