
A Comprehensive Performance Analysis of Apache
Hadoop and Apache Spark for Large Scale Data
Sets Using HiBench
Nasim Ahmed ( nasim751@yahoo.com)

Massey University Institute of Natural and Mathematical Sciences https://orcid.org/0000-0001-5663-
0042
Andre L. C. Barczak

Massey University - Albany Campus
Teo Susnjak

Massey University - Albany Campus
Mohammad Rashid

Massey University - Albany Campus

Research

Keywords: HiBench, BigData, Hadoop, MapReduce, Benchmark, Spark

Posted Date: December 2nd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-43526/v2

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published on December 14th, 2020. See the published
version at https://doi.org/10.1186/s40537-020-00388-5.

https://doi.org/10.21203/rs.3.rs-43526/v2
mailto:nasim751@yahoo.com
https://orcid.org/0000-0001-5663-0042
https://doi.org/10.21203/rs.3.rs-43526/v2
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s40537-020-00388-5

Ahmed et al.

RESEARCH

A Comprehensive Performance Analysis of Apache
Hadoop and Apache Spark for Large Scale Data
Sets Using HiBench
N. Ahmed1*†, Andre L. C. Barczak1, Teo Susnjak1 and Mohammed A. Rashid2

*Correspondence:
nasim751@yahoo.com
1School of Natural and
Computational Sciences, Massey
University, Albany, 0745
Auckland, New Zealand
Full list of author information is
available at the end of the article
†Equal contributor

Abstract

Big Data analytics for storing, processing, and analyzing large-scale datasets has
become an essential tool for the industry. The advent of distributed computing
frameworks such as Hadoop and Spark offers efficient solutions to analyze vast
amounts of data. Due to the application programming interface (API) availability
and its performance, Spark becomes very popular, even more popular than the
MapReduce framework. Both these frameworks have more than 150 parameters,
and the combination of these parameters has a massive impact on cluster perfor-
mance. The default system parameters help the system administrator deploy their
system applications without much effort, and they can measure their specific clus-
ter performance with factory-set parameters. However, an open question remains:
can new parameter selection improve cluster performance for large datasets? In this
regard, this study investigates the most impacting parameters, under resource uti-
lization, input splits, and shuffle, to compare the performance between Hadoop and
Spark, using an implemented cluster in our laboratory. We used a trial-and-error
approach for tuning these parameters based on a large number of experiments.
In order to evaluate the frameworks of comparative analysis, we select two work-
loads: WordCount and TeraSort. The performance metrics are carried out based on
three criteria: execution time, throughput, and speedup. Our experimental results
revealed that both system performances heavily depends on input data size and
correct parameter selection. The analysis of the results shows that Spark has better
performance as compared to Hadoop when data sets are small, achieving up to 2
times speedup in WordCount workloads and up to 14 times in TeraSort workloads
when default parameter values are reconfigured.

Keywords: HiBench; BigData; Hadoop; MapReduce; Benchmark; Spark

1 Introduction

Hadoop [1] has become a very popular platform in the IT industry and academia

for its ability to handle large amounts of data, along with extensive processing and

analysis facilities. Different users produce these large datasets, and most of data

are unstructured, increasing the requirements for memory and I/O. Besides, the

advent of many new applications and technologies brought much larger volumes

of complex data, including social media, e.g., Facebook, Twitter, YouTube, online

shopping, machine data, system data, and browsing history [2]. This massive amount

of digital data becomes a challenging task for the management to store, process,

and analyze.

mailto:nasim751@yahoo.com

Ahmed et al. Page 2 of 17

The conventional database management tools are unable to handle this type of

data [3]. Big data technologies, tools, and procedures allowed organizations to cap-

ture, process speedily, and analyze large quantities of data and extract appropriate

information at a reasonable cost.

Several solutions are available to handle this problems [4]. Distributed computing

is one possible solution considered as the most efficient and fault-tolerant method for

companies to store and process massive amounts of data. Among this new group of

tools, MapReduce and Spark are the most commonly used cluster computing tools.

They provide users with various functions using simple application programming

interfaces (API). MapReduce is a framework used for distributed computing used

for parallel processing and designed purposely to write, read, and process bulky

amounts of data [1, 5, 6]. This data processing framework is comprised of three

stages: Map phase, Shuffle phase and Reduce phase. In this technique, the large

files are divided into several small blocks of equal sizes and distributed across the

cluster for storage. MapReduce and Hadoop distributed file systems (HDFS) are

core parts of the Hadoop system, so computing and storage work together across

all nodes that compose a cluster of computers [7].

Apache Spark is an open-source cluster-computing framework [8]. It is designed

based on the Hadoop and its purpose is to build a programing model that “fits a

wider class of applications than MapReduce while maintaining the automatic fault

tolerance” [9]. It is not only an alternative to the Hadoop framework but it also

provides various functions to process real streaming data. Apart from the map and

reduce functions, Spark also supports MLib1, GraphX, and Spark streaming for

big data analysis. Hadoop MapReduce processing speed is slow because it requires

accessing disks for reads and writes. On the other hand, Spark uses memory to store

data reducing the read/write cycle [1]. In this paper, we have addressed the above

mentioned critical challenges. According to our knowledge, none of the previous

works have addressed those challenges. Our proposed work will help the system

administrators and researchers to understand the system behavior when processing

large scale data sets. The main contributions of this paper are as follows:

• We introduced a comprehensive empirical performance analysis between

MapReduce and Spark frameworks by correlating resource utilization, splits

size, and shuffle behavior parameters.

• We accomplished comprehensive comparison work between Hadoop and Spark

where large scale datasets (600GB) are used for the first time. The experiments

present the various aspects of cluster performance overhead. We applied two

Hibenchmark workloads to test the efficiency of the system under MapReduce

and Spark, where the data sets are repeatedly changing.

• We selected several parameters covering different aspects of system behavior.

Multiple parameters are used to tune job performance. The results of the

analysis will facilitate job performance tuning and enhance the freedom to

modify the ideal parameters to enhance job efficiency.

• We measured the scaleability of the experiment by repeating the experiment

three times, getting the average execution time for each job. Besides, we in-

vestigate the system execution time, maximum sustainable throughput and

speedup.

Ahmed et al. Page 3 of 17

• We used a real cluster capable of handling large scale data set (600GB) with

benchmarking tools for a comprehensive evaluation of MapReduce and Spark.

The remainder of the paper is organized as follows: Section 2 presents a critical

review of related research works, and then describes Hadoop and Spark systems. The

difference between Hadoop and Spark is explained in Section 3. The experimental

setup is presented in Section 4. In Section 5, we explain the chosen parameters and

tuning approach. Section 6 presents the performance analysis of the results and

finally, we conclude in Section 7.

2 Related Work

Shi et al. [10] proposed two profiling tools to quantify the performance of the

MapReduce and Spark framework based on a micro-benchmark experiment. The

comparative study between these frameworks are conducted with batch and itera-

tive jobs. In their work, the authors consider three components: shuffle, executive

model, and caching. The workloads, Wordcount, k-means, Sort, Linear Regression,

and PageRank, are chosen to evaluate the system behavior based on CPU bound,

disk-bound, and network bound [11]. They disabled map and reduce function for all

workloads apart of a Sort. For the Sort, the reduce task is configured up to 60 map

tasks, and the reduce task conFigured to 120. The map output buffer is allocated

to 550MB to avoid additional spills for sorting the map output. Spark intermediate

data are stored in 8 disks where each worker is configured with four threads. The

authors claim that Spark is faster than MapReduce when WordCount runs with

different data sets (1GB, 40GB, and 200GB). The TeraSort is used by sort-by-key()

function. They have found that Spark is faster than MapReduce when the data

set is smaller (1GB), but Mapreduce is nearly two times faster than Spark when

the data set is of bigger sizes (40GB or 100GB). Besides, Spark is one and a half

times faster than MapReduce with machine learning workloads such as K-means

and Linear Regression. It is claimed that in a subsequent iteration, Spark is five

times faster than MapReduce due to the RDD caching and Spark-GraphX is four

times faster than MapReduce.

Li et al. [12] proposed a spark benchmarking suite [13], which significantly en-

hances the optimization of workload configuration. This work has identified the dis-

tinct features of each benchmark application regarding resource consumption, the

data flow, and the communication pattern that can impact the job execution time.

The applications are characterized based on extensive experiments using synthetic

data sets. There are ten different workloads such as Logistic Regression, Support

Vector Machine, Matrix Factorization, Page Rank, Tringle Count, SVD++, Hive,

RDD Relation, Twitter, and PageView used with different input data sizes. An

eleven nodes virtual cluster is used to analyze the performance of the workloads.

The workload analysis is carried out concerning CPU utilization, memory, disk, and

network input/output consumption at the time of job execution. They have found

that most of the workloads spend more than 50% execution time for MapShuffle-

Tasks except logistic regression. They concluded that the job execution time could

be reduced while increasing task parallelism to leverage the CPU utilization fully.

Marcue et al. [14] present the comparative analysis between Spark and Flink

frameworks for large scale data analysis. This work proposed a new methodology

Ahmed et al. Page 4 of 17

for iterative workloads (K-Means, and Page Rank) and batch processing workloads

(WordCount, Grep, and TeraSort) benchmarking. They considered four most im-

portant parameters that impact scalability, resource consumption, and execution

time. Grid 5000 [15] has used upto 100 nodes cluster deploying Spark and Flink.

They have recommended that Spark parameter (i.e., parallelism and partitions) con-

figuration is sensitive and depends on data sets, while the Flink is highly extensive

memory oriented.

Samadi et al. [7] has investigated the criteria of the performance comparison be-

tween Hadoop and Spark framework. In his work, for an impartial comparison, the

input data size and configuration remained the same. Their experiment used eight

benchmarks of the HiBench suite [13]. The input data was generated automatically

for every case and size, and the computation was performed several times to find out

the execution time and throughput. When they deployed microbenchmark (Short

and TeraSort) on both systems, Spark showed higher involvement of processor in

I/Os while Hadoop mostly processed user tasks. On the other hand, Spark’s per-

formance was excellent when dealing with small input sizes, such as micro and web

search (Page Rank). Finally, they concluded that Spark is faster and very strong for

processing data in-memory while Hadoop MapReduce performs maps and reduces

function in the disk.

In another paper, Samadi et al. [9] proposed a virtual machine based on Hadoop

and Spark to get the benefit of virtualization. This virtual machine’s main ad-

vantage is that it can perform all operations even if the hardware fails. In this

deployment, they have used Centos operating system built a Hadoop cluster based

on a pseudo-distribution mode with various workloads. In their experiments, they

have deployed the Hadoop machine on a single workstation and all other demos

on its JVM. To justify the big data framework, they have presented the results of

Hadoop deployment on Amazon Elastic Computing (EC2). They have concluded

that Hadoop is a better choice because Spark requires more memory resources than

Hadoop. Finally, they have suggested that the cluster configuration is essential to

reduce job execution time, and the cluster parameter configuration must align with

Mappers and Reducers.

The computational frameworks, namely Apache Hadoop and Apache Spark, were

investigated by [16]. In this investigation, the Apache webserver log file was taken

into consideration to evaluate the two frameworks’ comparative performance. In

these experiments, they have used Okeanos’s virtualized computing resources based

on infrastructures as a Service (IaaS) developed by the Greek Research and Tech-

nology Network [16]. They proposed a number of applications and conducted several

experiments to determine each application’s execution time. They have used various

input files and the slave nodes to find out the execution time. They have found that

the execution time is proportional to the input data size. They have concluded that

the performance of Spark is much better in most cases as compared to Hadoop.

Satish and Rohan [17] have shown a comparative performance study between

Hadoop MapReduce and Spark-based on the K-means algorithm. In this study,

they have used a specific data set that supports this algorithm and considered both

single and double nodes when gathering each experiment’s execution time. They

have concluded that the Spark speed reaches up to three times higher than the

Ahmed et al. Page 5 of 17

MapReduce, though Spark performance heavily depends on sufficient memory size

[18].

Lin et al. [19] have proposed a unified cloud platform, including batch processing

ability over standalone log analysis tools. This investigation has considered four

different frameworks: Hadoop, Spark, and warehouse data analysis tools Hive and

Shark. They implemented two machine learning algorithms (K-means and PageR-

ank) based on this framework with six nodes to validate the cloud platform. They

have used different data sizes as inputs. In the case of K-means, as the data size

increased and exceed memory size, the latency schedule and overall Spark perfor-

mance degraded. However, the overall performance was still six times higher than

Hadoop on average. On the other hand, Shark shows significant performance im-

provement while using queries directly from disk.

Petridis et al. [20] have investigated the most important Spark parameters shown

in table 4 and given a guideline to the developers and system administrators to

select the correct parameter values by replacing the default parameter values based

on trial-and-error methodology. Three types of case studies with different categories

such as Shuffle Behavior, Compression and Serialization, and Memory Management

parameters were performed in this study. They have highlighted the impact of mem-

ory allocation and serialization when the number of cores and default parallelism

values change. Therefore, there are 12 parameters chosen with three benchmarking

applications: sort-by-key, shuffling, and k-means. The sort-by-key experiments used

both 1 million and 1 billion key-values of lengths 10 and 90 bytes and the optimal

degree of partition is set to 640. The Hash performance is increased to 127 sec-

onds, which is 30 seconds faster than the default parameter, and shuffle.file.buffer

is increased by 140 seconds. The rest of the parameters do not play any impor-

tant role in improving the performance. For another Shuffling experiment, they

used a 400GB dataset. The Hash shuffle performance is degraded by 200 seconds,

and Tungsten-Sort speed is increased by 90 seconds. By decreasing the buffer size

from 32KB to 15KB, the system performance was degraded by about 135s, which

is more than 10% from the primary selection. For K-means, they used two sizes of

data input (100 MB and 200 MB). They have not found significant k-means perfor-

mance improvement by changing the parameters. Therefore, they have concluded

that based on their methodology, the speedup achievement is 10-fold. However, the

main challenges of tuning Hadoop and Spark configuration parameters are due to

the complicated behavior of distributed large scale systems while the parameter

selection is not always trivial for the system administrators. Inappropriate combi-

nation of parameter values can affect the overall system performance. Inappropriate

combination of parameter values can affect the overall system performance.

The published literature in Table 1 presents some empirical studies. None of these

studies have considered larger data sizes (600GB), more parameters, and real clus-

ters. In our study, we chose a conventional trial-and-error approach [20], larger data

set, and 18 important parameters (listed in tables 3 and 4)from resource utilization,

input splits, and shuffle category.

3 Difference Between Hadoop and Spark
Hadoop [21] is a very popular and useful open-source software framework that

enables distributed storage, including the capability of storing a large amount of

Ahmed et al. Page 6 of 17

Table 1 Published Related Work

Author’s Date Workloads Data Size Parameters Hardware

Lin.et.al.
[19]

2013
K-means
PageRank

10,000 to 20
mil points
1 mil to 10
mil points

Log
Analysis

Nodes- 6, 2 CPU cores
4GB memory per node
Nodes- 4, 16 CPU cores
48GB memory per node

Satish &
Rohan
[17]

2015 K-means
62MB -
1240MB

Default
Virtual machine
Nodes- 2, 4GB RAM
and 500GB (HD)

Yasir Samadi.
et.al. [7]

2016

Micro
Benchmarks
Web Search
SQL
Machine
Learning

183MB -
328MB
5000 to
12*10e4
pages

3
Virtual machine
Disk(SDD)- 40GB

Petridis.et.al.
[20]

2017

K-means
Shuffling
and
Sort-by-Key

400GB 12
Barcelona
Supercomputing
Center

Mavridis.et.al.
[16]

2017
Spark SQL
and
Spark Hive

1.1GB,

1.5GB
and 11GB

Log
Analysis

Virtual machine- 6
Memory- 8GB
Master node- 8cores
Salve node- 4cores

Yasir Samadi.
et.al. [9]

2018

Micro
Benchmarks
Web Search
SQL
Machine
Learning

1GB, 5GB
and 8GB

3
Virtual machine
Disk(SDD) - 40GB

Proposed
Experiments

2020
WordCount
and
TeraSort

50GB -
600GB

18

SNCC, Production
Cluster
CPU cores - 80
Total Storage - 60TB
Master node - 1
Slaves nodes - 9

big datasets across clusters. It is designed in such a way that it can scale up from a

single server to thousands of nodes. Hadoop processes large data concurrently and

produces fast results. With Hadoop, the core parts are Hadoop Distributed File

System (HDFS) and MapReduce.

HDFS [22] splits the files into small pieces into blocks and saves them into different

nodes. There are two kinds of nodes on HDFS: data-nodes (worker) and name-nodes

(master nodes) [23, 24]. All the operations, including delete, read, and write, are

based on these two types of nodes. The workflow of HDFS is like the following flow:

firstly, the name-node asks for access permission. If accepted, it will turn the file

name into a list of HDFS block IDs, including the files and the data-nodes that

saved the blocks related to that file. The ID list will then be sent back to the client,

and the users can do further operations based on that.

MapReduce [25] is a computing framework that includes two operations: Mappers

and Reducers. The mappers will process files based on the map function and transfer

them into the new key-value pairs [26]. Next, the new key-value pairs are assigned

to different partitions and sorted based on their keys. The combiner is optional and

can be recognized as a local reduces operation which allows counting the values with

the same key in advance to reduce the I/O pressure. Finally, partitions will divide

the intermediate key-value pairs into different pieces and transfer them to a reducer.

MapReduce needs to implement one operation: shuffle. Shuffle means transferring

the mapper output data to the proper reducer. After the shuffle process is finished,

the reducer starts some copy threads (Fetcher) and obtains the output files of the

Ahmed et al. Page 7 of 17

map task through HTTP [27]. The next step is merging the output into different

final files, which are then recognized as reducer input data. After that, the reducer

processes the data based on the reduced function and writes the output back to the

HDFS. Figure 1 depicts a Hadoop MapReduce architecture.

Figure 1 Hadoop MapReduce architecture [1]

Spark became an open-source project from 2010. Zahari has developed this project

at UC Berkely’s AMPLab in 2009 [28, 4]. Spark offers numerous advantages for de-

velopers to build big data applications. Spark proposed two important terms: Re-

silient Distributed Datasets (RDD) and Directed Acyclic Graph (DAG). These two

techniques work together perfectly and accelerate Spark up to tens of times faster

than Hadoop under certain circumstances, even though it usually only achieves a

performance two to three times more quickly than MapReduce. It supports multi-

ple sources that have a fault tolerance mechanism that can be cached and supports

parallel operations. Besides, it can represent a single dataset with multiple parti-

tions. When Spark runs on the Hadoop cluster, RDDs will be created on the HDFS

in many formats supported by Hadoop, likewise text and sequence files. The DAG

scheduler [29] system expresses the dependencies of RDDs. Each spark job will

create a DAG and the scheduler will drive the graph into the different stages of

tasks then the tasks will be launched to the cluster. The DAG will be created in

both maps and reduce stages to express the dependencies fully. Figure 2 illustrates

the iterative operation on RDD. Theoretically, limited Spark memory causes the

performance to slow down.

4 Experimental Setup
4.1 Cluster Architecture

In the last couple of years, many proposals came from different research groups

about the suitability of Hadoop and Spark frameworks when various types of data

of different sizes are used as input in different clusters. Therefore, it becomes nec-

essary to study the performance of the frameworks and understand the influence of

various parameters. For the experiments, we will present our cluster performance

Ahmed et al. Page 8 of 17

Figure 2 Spark workflow [30]

based on MapReduce and Spark using the HiBench suite [22, 31]. In particular, we

have selected two Hibench workloads out of thirteen standard workloads to repre-

sent the two types of jobs, namely WordCount (aggregation job) [32], and TeraSort

(shuffle job) [33] with large datasets. We selected both the workloads because of

their complex characteristics to study how efficiently both the workloads analyze

the cluster performance by correlating MapReduce and Spark function with a com-

bination of groups of parameters.

4.2 Hardware and Software Specification

The experiments were deployed in our own cluster. The cluster is configured with

1 master and 9 slaves nodes which is presented in fig.3. The cluster has 80 CPU

cores and 60TB local storage. The implemented hardware is suitable for handling

various difficult situations in Spark and MapReduce.

Master Node

To the

Internet

Slave Nodes

Dedicated Switch

Figure 3 Hadoop Cluster Nodes

The detailed Hadoop cluster and software specifications are presented in Table 2.

All our jobs run in Spark and MapReduce. We have selected Yarn as a resource man-

ager, which can help us monitor each working node’s situation and track the details

of each job with its history. We have used Apache Ambari to monitor and profile

the selective workloads running on Spark and MapReduce. It supports most of the

Hadoop components, including HDFS, MapReduce, Hive, Pig, Hbase, Zookeeper,

Sqoop, and Hcatalog" [34]. Besides, Ambari supports the user to control the Hadoop

cluster on three aspects, namely provision, management, and monitoring.

Ahmed et al. Page 9 of 17

Table 2 Experimental Hadoop Cluster

Server Configuration
Processor 2.9 GHz
Main Memory 64 GB
Local Storage 10 TB

Node Configuration

CPU Intel(R) Xeon(R) CPU E3-1231 v3 @
3.40GHz

Main Memory 32 GB
Number of Nodes 10
Local Storage 6 TB each, 60TB total
CPU cores 8 each, 80 total

Software

Operating System Ubuntu 16.04.2 (GNU/Linux 4.13.0-
37-generic x86 64)

JDK 1.7.0
Hadoop 2.4.0
Spark 2.1.0

Workload Micro Benchmarks WordCount, and TeraSort

4.3 Workloads

As stated above, in this study we chose two workloads for the experiments [32, 33]:

WordCount: The wordCount workload is map-dependent, and it counts the

number of occurrences of separate words from text or sequence file. The input

data is produced by RandomTextWriter. It splits into each word by using the map

function and generates intermediate data for the reduce function as a key-value

[35]. The intermediate results are added up, generating the final word count by the

reduce function.

TeraSort: The TeraSort package was released by Hadoop in 2008 [36] to measure

the capabilities of cluster performance. The input data is generated by the TeraGen

function which is implemented in Java. The TeraSort function does the sorting using

the MapReduce, and the TeraValidate function is used to validate the output of the

sorted data. For both workloads, we used up to 600 GB of synthetic input data

generated using a string concatenation technique.

5 The Parameters of Interest and Tuning Approach

Tuning parameters in Apache Hadoop and Apache Spark is a challenging task. We

want to find out which parameters have important impacts on system performance.

The configuration of the parameters needs to be investigated according to work-load,

data size, and cluster architecture. We have conducted a number of experiments

using Apache Hadoop and Apache Spark with different parameter settings. For this

experiment, we have chosen the core MapReduce and Spark parameter setting from

resource utilization, input splits and shuffle groups. The selected tuned parameters

with their respective tuned values on the map-reduce and Spark category are shown

in Tables 3 and 4.

6 Results and Discussion

In this section, the results obtained after running the jobs are evaluated. We have

used synthetic input data and used the same parameter configuration for a realistic

comparison. Each test was repeated 3 times, and the average runtime was plotted

in each graph. For both frameworks, we show the execution time, throughput, and

speedup to compare the two frameworks and visualize the effects of changing the

default parameters..

Ahmed et al. Page 10 of 17

Table 3

Configuration
Hadoop Tuned Values

Parameters Cate-
gory

Resource Utilization
mapreduce.reduce.memory 8GB
mapred.reduce.task 16,384MB, 25,600MB
mapreduce.reduce.cpu.vcores 4

Input Split
mapred.min.split.size,
mapred.max.split.size

128MB (default),
256MB, 512MB,
1024MB

Shuffle

i/o.sort.mb 25, 50, 75, 100
i/o.sort.factor 512, 1024, 1536, 2047
mapreduce.reduce.shuffle.parallelcopies 50, 100, 150, 200
mapreduce.task.io.sort.factor 15, 30, 45, 60

Table 4

Configuration
Spark Tuned Values

Parameters Cate-
gory

Resource Utilization
num-executors 50
executor-cores 4
executor-memory 8GB

Input Split
spark.hadoop.MapReduce.input .filein-
putformat.split.minsize

128MB (default),
256MB, 512MB,
1024MB

Shuffle

spark.shuffle.file.buffer 16k, 32k (default), 48k,
64k

spark.reducer.maxSizeInFlight 32M, 48M (default),
64M, 96M

spark.hadoop.dfs.replication 1
spark.default.parallelism 80, 100, 200, 300

6.1 Execution Time

The execution time is affected by the input data sizes, the number of active nodes,

and the application types. We have fixed the same parameters for the fair compar-

ative analysis, such as the number of executors to 50, executor memory to 8GB,

executor cores to 4.

Figures 4-a and 4-b show how MapReduce and Spark execution time depend

on the datasets’ size and the different input splits and shuffle parameters. The

execution time of MapReduce WordCount workload with the default input split

size (128MB) and shuffle parameter (sort.mb 100, sort.factor 2047) obtained better

execution time for entire data sizes compared to other parameters. Hadoop Map and

Reduce function behave better because of their faster execution time and overlooked

container initialization overhead for specific workload types. This result suggests

that the default parameter is more suitable for our cluster when using data sizes

from 50GB to 600GB.

In fig.4-c the default input splits of Spark is 128MB. Previously, we have men-

tioned that the number of executors, executor memory, and executor cores are fixed.

From the above fig.4-c,we see that the execution time of input split size 256MB

outperforms the default set up until 450GB data sizes. In fact, the default splits

size (128MB) is more efficient when the data size is larger than the 450GB. No-

tably, we can see that the default parameter shows better execution performance

when the data set reaches 500GB or above. The new parameter values can improve

the processing efficiency by 2.2% higher than the default value (128MB). Table 5

presents the experimental data of WordCount workload between MapReduce and

Spark while the default parameters are changing.

Ahmed et al. Page 11 of 17

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

289

639

989

1339

1689

2039

2389

2739

3089

3439

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Mapreduce Input Split (WordCount)
Split-Size-128
Split-Size-256
Split-Size-512
Split-Size-1024

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

298

648

998

1348

1698

2048

2398

2748

3098

3448

3798

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Mapreduce MapSide (WordCount)
sort.mb-25, sort.factor-512
sort.mb-50, sort.factor-1024
sort.mb-75, sort.factor-1536
sort.mb-100, sort.factor-2047

a) b)

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

250

500

750

1000

1250

1500

1750

2000

2250

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Spark Input Split (WordCount)
128mb, Exc 50, EC 4, EM 8
256mb, Exc 50, EC 4, EM 8
512mb, Exc 50, EC 4, EM 8
1024mb, Exc 50, EC 4, EM 8

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

185

385

585

785

985

1185

1385

1585

1785

1985

2185

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Spark Shuffle (WordCount)
PL80, Exc 50, EC 4, EM 8
PL100, Exc 50, EC 4, EM 8
PL200, Exc 50, EC 4, EM 8
PL300, Exc 50, EC 4, EM 8

c) d)

Figure 4 The performance of the WordCount application with a varied number
of input splits and shuffle tasks.

For the Spark shuffle parameter, we have chosen the default serializer, the (JavaSe-

rializer) because of the simplicity and easy control of the performance of the seri-

alization [37]. In this category, the serializer is PL100 object [38]. We can see from

figure 4-d that the improvement rate is significantly increased when we set the PL

value to 300. It is evident that the best performance is achieved for sizes larger

than 400GB. Also, it shows that when tuning the PL value to 300, the system can

achieve a 3% higher improvement for the rest of the data sizes. Consequently, we

can conclude that input splits can be considered an important factor in enhancing

Spark WordCount jobs’ efficiency when executing small datasets.

Figure 5-a is comparing MapReduce TeraSort workloads based on input splits

that include default parameters. In this analysis, we have set (Red_Task and InSp)

value fixed with default split size 128MB. We have changed the parameter values

and tested whether the splits’ size can keep the impact on the runtime. So, for

this reason, we have selected three different sizes: 256MB, 512MB, and 1024MB.

We have observed that with a split size of 256MB, the execution performance is

increased by around 2% in datasets with up to 300GB. On the contrary, when the

data sizes are larger than 300GB, the default size outperforms split size equals

512MB. Moreover, we have noticed that the improvement rates are similar when

the data sizes are smaller than 200GB.

Figure 5-b illustrates the execution performance with the MapReduce shuffle

parameter for the TeraSort workload. We have seen that the average execution

Ahmed et al. Page 12 of 17

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

1868

5868

9868

13868

17868

21868

25868

29868

33868

37868

41868

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Mapreduce Input Split (TeraSort)
Red_Task-16,InSP-25, Siz-128 MB
Red_Task-16,InSP-25, Siz-256 MB
Red_Task-16,InSP-25, Siz-512 MB
Red_Task-16,InSP-25, Siz-1024 MB

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

0

5000

10000

15000

20000

25000

30000

35000

40000

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Mapreduce Shuffle (TeraSort)
Reduce_50, task.io_15
Reduce_100, task.io_30
Reduce_150, task.io_45
Reduce_200, task.io_60

a) b)

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

130

1130

2130

3130

4130

5130

6130

7130

8130

9130

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Spark Input Split (Terasort)
128mb, Exc 50, EC 4, EM 8
256mb, Exc 50, EC 4, EM 8
512mb, Exc 50, EC 4, EM 8
1024mb, Exc 50, EC 4, EM 8

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

108

1108

2108

3108

4108

5108

6108

7108

8108

9108

10108

Ex
ec

ut
io

n
Ti

m
e(

se
c)

Spark Shuffle (Terasort)
buffer-16,maxsizeinfo-32MB
buffer-32,maxsizeinfo-48MB
buffer-64K,maxsizeinfo-96MB
buffer-128,maxsizeinfo-192MB

c) d)

Figure 5 The performance of the TeraSort application with a varied number
of input splits and shuffle tasks.

time behaves linearly for sizes up to 450GB when the parameter change to (Re-

duce_150 and task.io_45) as compared to the default configuration (Reduce_100

and task.io_30). Besides, We have also noticed that the default configuration is

outperforming all other settings when the data sizes are larger than 450GB. So, we

can conclude that by changing the shuffled value, the system execution performance

improves by 1%. In general, this is very unlikely that the default size has optimum

performance for larger data sizes.

Figure 5-c illustrates the Spark input split parameter execution performance anal-

ysis for the TeraSort workload. The Spark executor memory, number of executors,

and executor memory are fixed while changing the block size to measure the exe-

cution performance. Apart from the default block size (128MB), there are 3 pairs

(256MB, 512MB, and 1024MB) of block size is taken into this consideration. Our

results revealed that the block size 512 MB and 1024MB present better runtime

for sizes up to 500GB data size. We have also observed a significant performance

improvement achieved by the 1024 block size, which is 4% when the data size is

larger than 500GB. Thus, we can conclude that by adding the input splits block

size for large scale data size; Spark performance can be increased.

Figure 5-d shows Spark shuffle behaviour performance for TeraSort workloads. We

have taken two important default parameters (buffer=32, spark.reducer.maxSizeIn

Flight=48MB) into our analysis. We have found that when the buffer and max-

SizeInFlight are increased by 128 and 192, the execution performance increased

Ahmed et al. Page 13 of 17

Table 5 The best execution time of MapReduce and Spark with WordCount workload

split sizes (MB) execution time (sec)
MapReduce input splits (WordCount) 128 2376
Spark input splits (WordCount) 256 1392
MapReduce shuffle (WordCount) 100 2371
Spark shuffle (WordCount) 300 1334

Table 6 The best execution time of MapReduce and Spark with Terasort workload

split sizes (MB) execution time (sec)
MapReduce input splits (TeraSort) 256 21014
Spark input splits (TeraSort) 512 & 1024 3780 & 3439
MapReduce shuffle (TeraSort) 150 & 45 24250
Spark shuffle (TeraSort) 128 & 192 6540

proportionally up to 600GB data sizes. Our results show that the default execution

is equal, with a tested value of up to 200GB data sizes. The possible reason for

this performance improvement is the larger number of splits size for different ex-

ecutors. Table 6 presents the experimental data of the TeraSort workload between

MapReduce and Spark, while the default parameters are changing.

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

190

690

1190

1690

2190

2690

3190

3690

Ex
ec

ut
io

n
Ti

m
e(

se
c)

MapRed vs Spark_InputSplit(WordCount)
MapRed-256MB
Spark-256MB
MapRed-512MB
Spark-512MB
MapRed-1024MB
Spark-1024MB

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

147

5147

10147

15147

20147

25147

30147

35147

40147

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

MapRed vs Spark_InputSplit(Terasort)
MapRed-256MB
Spark-256MB
MapRed-512MB
Spark-512MB
MapRed-1024MB
Spark-1024MB

a) b)

Figure 6 The comparison of Hadoop and Spark with WordCount and
TeraSort workload with varied input splits and shuffle tasks.

Figure 6-a illustrates the comparison between Spark and MapReduce for Word-

Count and TeraSort workloads after applying the different input splits. We have

observed that Spark with WordCount workloads shows higher execution perfor-

mance by more than 2 times when data sizes are larger than 300GB for WordCount

workloads. For the smaller data sizes, the performance improvement gap is around

10 times. Fig. 6-b shows a TeraSort workload for MapReduce and Spark. We can

see that Spark execution performance is linear and proportionally larger as the

data size increase. Also, we noticed that the runtime for MapReduce jobs are not

as linear in relation to the data size as Spark jobs. The possible reason could be

unavoidable job action on the clusters and as a result that the dataset is larger

than the available RAM. So, we conclude that MapReduce has slower data sharing

capabilities and a longer time to the read-write operation than Spark [4].

6.2 Throughput

The throughput metrics are all in MB per second. For this analysis, we only con-

sidered the best results from each category. We have observed that MapReduce

Ahmed et al. Page 14 of 17

throughput performance for the TeraSort workload is decreasing slightly as the

data size crosses beyond 200GB. Besides, for the WordCount workload, the MapRe-

duce throughput is almost linear. For the Spark TeraSort workload, it can be ob-

served that the throughput is not constant, but for the WordCount workload, the

throughput is almost constant. In this analysis, the main focus was to present the

throughput difference between WordCount and TeraSort workload for MapReduce

and Spark. We found that WordCount workload remains almost stable for most of

the data sizes, and concerning the TeraSort workload, MapReduce remain stable

than Spark (see Figure 7).

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

0.015

0.070

0.125

0.180

0.235

0.290

0.345

Th
ro

ug
hp

ut
(M

B/
se

c)

Throughput of Wordcount workload (Input Splits)

Mapreduce-256MB
Spark-256MB

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

0.013

0.053

0.093

0.133

0.173

0.213

Th
ro

ug
hp

ut
(M

B/
se

c)

Throughput of Terasort workload (Input Splits)
 Mapreduce 1024 MB
Spark 1024MB

a) b)

Figure 7 Throughput of WordCount and TeraSort workload.

6.3 Speedup

Figures 8(a, b, c) show the Spark’s speed up compared to MapReduce. Figures 8(a

and b) depicts individual workload speedup. The best results are taken into this

consideration from each category in order to get a speedup. From the above figures,

we can see that as the data size increases, WordCount workload speedup decreases

with some non-linearity. Besides, we can see that the TeraSort speedup decreases

when data reaches sizes larger than 300GB. Notably, as the data size increases

to more than 500GB for both workloads, the speedup starts to increase. Figure

8(c) illustrates the speedup comparison between the workloads. It can be seen that

the TeraSort workload outperforms WordCount workload and achieves an all-time

maximum speedup of around 14 times. The literature presents that Spark is up to

ten times faster than Hadoop under certain circumstances and in normal conditions,

and it only achieves a performance two to three times faster than MapReduce [39].

However, this study found that Spark performance is degraded when the input data

size is big.

7 Conclusion
This article presented the empirical performance analysis between Hadoop and

Spark based on a large scale dataset. We have executed WordCount and Terasort

workloads and 18 different parameter values by replacing them with default set-up.

To investigate the execution performance, we have used trial-and-error approach

for tuning these parameters performing number of experiments on nine node clus-

ter with a capacity of 600GB dataset. Our experimental results confirm that both

Ahmed et al. Page 15 of 17

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

1.677

1.727

1.777

1.827

1.877

Sp
ee

du
p

Wordcount Speedup of Mapreduce over Spark
Wordcount (Input splits)

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

7

8

9

10

11

12

13

14

Sp
ee

du
p

Terasort Speedup of Mapreduce over Spark
Terasort (Input splits)

a) b)

50 100 150 200 250 300 350 400 450 500 550 600
Data Size(GB)

1.68
2.68
3.68
4.68
5.68
6.68
7.68
8.68
9.68

10.68
11.68
12.68
13.68
14.68

Sp
ee

du
p

Terasort Speedup of Mapreduce over Spark
Wordcount (Input splits)
Terasort (Input splits)

c)

Figure 8 Spark over MapReduce speedup on input splits and shuffle.

Hadoop and Spark systems performance heavily depends on input data size and

right parameter selection and tuning. We have found that Spark has better perfor-

mance as compared to Hadoop by 2 times with WordCount work load and 14 times

with Tera-Sort workloads respectively when default parameters are tuned with new

values. Further more, the throughput and speedup results show that Spark is more

stable and faster than Hadoop because of Spark data processing ability in memory

instead of store in disk for the map and reduced function. We have also found that

Spark performance degraded when input data was larger.

As future work, we plan to add and investigate 15 HiBench workloads, consider

more parameters under resource utilization, parallelization, and other aspects, in-

cluding practical data sets. The main focus would be to analyze the job performance

based on auto-tuning techniques for MapReduce and Spark when several parameter

configurations replace the default values.

Author’s contributions

Ahmed was the main contributor of this work. He has done an initial literature review, data collection,
experiments, prepare results, and drafted the manuscript. Andre and Teo deployed and configured the physical
Hadoop cluster. Andre also worked closely with Ahmed to review, analyze, and manuscript preparation. Teo
and Rashid helped to improve the final paper.

Acknowledgements

The authors acknowledge Sibgat Bazai for his valuable suggestions.

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable
request.

Ahmed et al. Page 16 of 17

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was not funded.

Author details
1School of Natural and Computational Sciences, Massey University, Albany, 0745 Auckland, New Zealand.
2School of Natural and Computational Sciences, Massey University„ 0745 Auckland, New Zealand. 3School of
Natural and Computational Sciences, Massey University„ 0745 Auckland, New Zealand. 4Department of
Mechanical and Electrical Engineering, Massey University„ 0745 Auckland, New Zealand.

References

1. Apache Hadoop Documentation 2014. http://hadoop.apache.org/
2. Verma, A., Mansuri, A.H., Jain, N.: Big data management processing with hadoop mapreduce and spark

technology: A comparison. In: 2016 Symposium on Colossal Data Analysis and Networking (CDAN), pp.
1–4 (2016). IEEE

3. Management Association, I.R.: Big Data: Concepts, Methodologies, Tools, and Applications. IGI Global,
United States (2016)

4. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mccauley, M., Franklin, M., Shenker, S., Stoica,
I.: Fast and interactive analytics over hadoop data with spark. Usenix Login 37, 45–51 (2012)

5. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Communications of the
ACM 51(1), 107–113 (2008)

6. Wang, G., Butt, A.R., Pandey, P., Gupta, K.: Using realistic simulation for performance analysis of
mapreduce setups. In: Proceedings of the 1st ACM Workshop on Large-Scale System and Application
Performance, pp. 19–26 (2009)

7. Samadi, Y., Zbakh, M., Tadonki, C.: Comparative study between hadoop and spark based on hibench
benchmarks. In: 2016 2nd International Conference on Cloud Computing Technologies and Applications
(CloudTech), pp. 267–275 (2016). IEEE

8. Ahmadvand, H., Goudarzi, M., Foroutan, F.: Gapprox: using gallup approach for approximation in big data
processing. Journal of Big Data 6(1), 20 (2019)

9. Samadi, Y., Zbakh, M., Tadonki, C.: Performance comparison between hadoop and spark frameworks
using hibench benchmarks. Concurrency and Computation: Practice and Experience 30(12), 4367 (2018)

10. Shi, J., Qiu, Y., Minhas, U.F., Jiao, L., Wang, C., Reinwald, B., Özcan, F.: Clash of the titans: Mapreduce
vs. spark for large scale data analytics. Proceedings of the VLDB Endowment 8(13), 2110–2121 (2015)

11. Veiga, J., Expósito, R.R., Pardo, X.C., Taboada, G.L., Tourifio, J.: Performance evaluation of big data
frameworks for large-scale data analytics. In: 2016 IEEE International Conference on Big Data (Big Data),
pp. 424–431 (2016). IEEE

12. Li, M., Tan, J., Wang, Y., Zhang, L., Salapura, V.: Sparkbench: a comprehensive benchmarking suite for
in memory data analytic platform spark. In: Proceedings of the 12th ACM International Conference on
Computing Frontiers, pp. 1–8 (2015)

13. Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y., Zhang, S.:
Bigdatabench: A big data benchmark suite from internet services. In: 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), pp. 488–499 (2014). IEEE

14. Marcu, O.-C., Costan, A., Antoniu, G., Pérez-Hernández, M.S.: Spark versus flink: Understanding
performance in big data analytics frameworks. In: 2016 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 433–442 (2016). IEEE

15. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou, Y., Lanteri, S., Leduc, J.,
Melab, N., et al.: Grid’5000: a large scale and highly reconfigurable experimental grid testbed. The
International Journal of High Performance Computing Applications 20(4), 481–494 (2006)

16. Mavridis, I., Karatza, E.: Log file analysis in cloud with apache hadoop and apache spark (2015)
17. Gopalani, S., Arora, R.: Comparing apache spark and map reduce with performance analysis using

k-means. International journal of computer applications 113(1) (2015)
18. Gu, L., Li, H.: Memory or time: Performance evaluation for iterative operation on hadoop and spark. In:

2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013
IEEE International Conference on Embedded and Ubiquitous Computing, pp. 721–727 (2013). IEEE

19. Lin, X., Wang, P., Wu, B.: Log analysis in cloud computing environment with hadoop and spark. In: 2013
5th IEEE International Conference on Broadband Network & Multimedia Technology, pp. 273–276 (2013).
IEEE

20. Petridis, P., Gounaris, A., Torres, J.: Spark parameter tuning via trial-and-error. In: INNS Conference on
Big Data, pp. 226–237 (2016). Springer

21. Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T.: A survey of open source tools for machine
learning with big data in the hadoop ecosystem. Journal of Big Data 2(1), 24 (2015)

22. HiBench Benchmark Suite. https://github.com/intel-hadoop/HiBench
23. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10 (2010). IEEE

http://hadoop.apache.org/
https://github.com/intel-hadoop/HiBench

Ahmed et al. Page 17 of 17

24. Luo, M., Yokota, H.: Comparing hadoop and fat-btree based access method for small file i/o applications.
In: International Conference on Web-Age Information Management, pp. 182–193 (2010). Springer

25. Taylor, R.C.: An overview of the hadoop/mapreduce/hbase framework and its current applications in
bioinformatics. In: BMC Bioinformatics, vol. 11, p. 1 (2010). Springer

26. Vohra, D.: Practical Hadoop Ecosystem: A Definitive Guide to Hadoop-Related Frameworks and Tools.
Apress, California (2016)

27. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with mapreduce: a
survey. AcM sIGMoD Record 40(4), 11–20 (2012)

28. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing with working
sets. HotCloud 10, 95 (2010)

29. Kannan, P.: Beyond hadoop mapreduce apache tez and apache spark. San Jose State University. URL:
http://www. sjsu. edu/people/robert. chun/courses/CS259Fall2013/s3/F. pdf (02.08. 2016) (2015)

30. Spark Core Programming. https://www.tutorialspoint.com/apache_spark/apache_spark_rdd.htm
31. HiBench Benchmark Suit. https://github.com/intel-hadoop/HiBench
32. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite: Characterization of the

mapreduce-based data analysis. In: 2010 IEEE 26th International Conference on Data Engineering
Workshops (ICDEW 2010), pp. 41–51 (2010). IEEE

33. Chen, C.-O., Zhuo, Y.-Q., Yeh, C.-C., Lin, C.-M., Liao, S.-W.: Machine learning-based configuration
parameter tuning on hadoop system. In: 2015 IEEE International Congress on Big Data, pp. 386–392
(2015). IEEE

34. Ambari. https://ambari.apache.org/
35. Xiang, L.-H., Miao, L., Zhang, D.-F., Chen, F.-P.: Benefit of compression in hadoop: A case study of

improving io performance on hadoop. In: Proceedings of the 6th International Asia Conference on
Industrial Engineering and Management Innovation, pp. 879–890 (2016). Springer

36. O’Malley, O.: Terabyte sort on apache hadoop. Report, Yahoo! (2008).
http://sortbenchmark.org/YahooHadoop.pdf

37. Apache Tuning Spark 1.1.1. https://spark.apache.org/docs/1.1.1/tuning.html
38. Spark Configuration. https://spark.apache.org/docs/latest/configuration.html
39. Rathore, M.M., Son, H., Ahmad, A., Paul, A., Jeon, G.: Real-time big data stream processing using gpu

with spark over hadoop ecosystem. International Journal of Parallel Programming 46(3), 630–646 (2018)

https://www.tutorialspoint.com/apache_spark/apache_spark_rdd.htm
https://github.com/intel-hadoop/HiBench
https://ambari.apache.org/
http://sortbenchmark.org/YahooHadoop.pdf
https://spark.apache.org/docs/1.1.1/tuning.html
https://spark.apache.org/docs/latest/configuration.html

Figures

Figure 1

Hadoop MapReduce architecture [1]

Figure 2

Spark work�ow [30]

Figure 3

Hadoop Cluster Nodes

Figure 4

The performance of the WordCount application with a varied number of input splits and shu�e tasks.

Figure 5

The performance of the TeraSort application with a varied number of input splits and shu�e tasks.

Figure 6

The comparison of Hadoop and Spark with WordCount and TeraSort workload with varied input splits
and shu�e tasks.

Figure 7

Throughput of WordCount and TeraSort workload.

Figure 8

Spark over MapReduce speedup on input splits and shu�e.

	Abstract
	Introduction
	Related Work
	Difference Between Hadoop and Spark
	Experimental Setup
	Cluster Architecture
	Hardware and Software Specification
	Workloads

	The Parameters of Interest and Tuning Approach
	Results and Discussion
	Execution Time
	Throughput
	Speedup

	Conclusion

