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Abstract Recently, technologies such as face detection,

facial landmark localisation and face recognition and verifi-

cation have matured enough to provide effective and efficient

solutions for imagery captured under arbitrary conditions

(referred to as “in-the-wild”). This is partially attributed to

the fact that comprehensive “in-the-wild” benchmarks have

been developed for face detection, landmark localisation

and recognition/verification. A very important technology

that has not been thoroughly evaluated yet is deformable

face tracking “in-the-wild”. Until now, the performance
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has mainly been assessed qualitatively by visually assess-

ing the result of a deformable face tracking technology

on short videos. In this paper, we perform the first, to the

best of our knowledge, thorough evaluation of state-of-the-

art deformable face tracking pipelines using the recently

introduced 300 VW benchmark. We evaluate many differ-

ent architectures focusing mainly on the task of on-line

deformable face tracking. In particular, we compare the fol-

lowing general strategies: (a) generic face detection plus

generic facial landmark localisation, (b) generic model free

tracking plus generic facial landmark localisation, as well as

(c) hybrid approaches using state-of-the-art face detection,

model free tracking and facial landmark localisation tech-

nologies. Our evaluation reveals future avenues for further

research on the topic.

Keywords Deformable face tracking · Face detection ·

Model free tracking · Facial landmark localisation ·

Long-term tracking

1 Introduction

The human face is arguably among the most well-studied

deformable objects in the field of Computer Vision. This

is due to the many roles it has in numerous applications.

For example, accurate detection of faces is an essential step

for tasks such as controller-free gaming, surveillance, digital

photo album organization, image tagging, etc. Additionally,

detection of facial features plays a crucial role for facial

behaviour analysis, facial attributes analysis (e.g., gender and

age recognition, etc.), facial image editing (e.g., digital make-

up, etc.), surveillance, sign language recognition, lip reading,

human-computer and human-robot interaction. In this work,

we study the deformable face tracking task and we develop
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the first, to the best of our knowledge, comprehensive evalu-

ation of multiple deformable face tracking pipelines.

Current research has been monopolised by the tasks of

face detection, facial landmark localisation and face recog-

nition or verification. Firstly, face detection, despite having

permeated many forms of modern technology such as digital

cameras and social networking, is still a challenging problem

and a popular line of research, as shown by the recent sur-

veys of Jain and Learned-Miller (2010), Zhang and Zhang

(2010), Zafeiriou et al. (2015). Although face detection on

well-lit frontal facial images can be performed reliably on an

embedded device, face detection on arbitrary images of peo-

ple is still extremely challenging (Jain and Learned-Miller

2010). Images of faces under these unconstrained conditions

are commonly referred to as “in-the-wild” and may include

scenarios such as extreme facial pose, defocus, faces occu-

pying a very small number of pixels or occlusions. Given

the fact that face detection is still regarded as a challeng-

ing task, many generic object detection architectures such as

Yan et al. (2014), King (2015) are either directly assessed

on in-the-wild facial data, or are appropriately modified in

order to explicitly perform face detection as done by Zhu and

Ramanan (2012), Felzenszwalb and Huttenlocher (2005).

The interested reader may refer to the most recent survey by

Zafeiriou et al. (2015) for more information on in-the-wild

face detection. The problem of localising facial landmarks

that correspond to fiducial facial parts (e.g., eyes, mouth,

etc.) is still extremely challenging and has only been possible

to perform reliably relatively recently. Although the history

of facial landmark localisation spans back many decades

(Cootes et al. 1995, 2001), the ability to accurately recover

facial landmarks on in-the-wild images has only become pos-

sible in recent years (Matthews and Baker 2004; Papandreou

and Maragos 2008; Saragih et al. 2011; Cao et al. 2014).

Much of this progress can be attributed to the release of

large annotated datasets of facial landmarks (Sagonas et al.

2013b, a; Zhu and Ramanan 2012; Le et al. 2012; Belhumeur

et al. 2013; Köstinger et al. 2011) and very recently the area

of facial landmark localisation has become extremely com-

petitive with recent works including Xiong and De la Torre

(2013), Ren et al. (2014), Kazemi and Sullivan (2014), Zhu

et al. (2015), Tzimiropoulos (2015). For a recent evaluation

of facial landmark localisation methods the interested reader

may refer to the survey by Wang et al. (2014) and to the

results of the 300 W competition by Sagonas et al. (2015).

Finally, face recognition and verification are extremely pop-

ular lines of research. For the past two decades, the majority

of statistical machine learning algorithms spanning from

linear/non-linear subspace learning techniques (De la Torre

2012; Kokiopoulou et al. 2011) to deep convolutional neural

networks (DCNNs) (Taigman et al. 2014; Schroff et al. 2015;

Parkhi et al. 2015) have been applied to the problem of face

recognition and verification. Recently, due to the revival of

DCNNs, as well as the development of graphics processing

units (GPUs), remarkable face verification performance has

been reported (Taigman et al. 2014). The interested reader

may refer to the recent survey by Learned-Miller et al. (2016)

as well as the most popular benchmark for face verification

in-the-wild in Huang et al. (2007).

In all of the aforementioned fields, significant progress has

been reported in recent years. The primary reasons behind

these advances are:

– The collection and annotation of large databases Given

the abundance of facial images available primarily

through the Internet via services such as Flickr, Google

Images and Facebook, the collection of facial images is

extremely simple. Some examples of large databases for

face detection are FDDB (Jain and Learned-Miller 2010),

AFW (Zhu and Ramanan 2012) and LFW (Huang et al.

2007). Similar large-scale databases for facial landmark

localisation include 300 W (Sagonas et al. 2013b) LFPW

(Belhumeur et al. 2013), AFLW (Köstinger et al. 2011)

and HELEN (Le et al. 2012). Similarly, for face recogni-

tion there exists LFW (Huang et al. 2007), FRVT (Phillips

et al. 2000) and the recently introduced Janus database

(IJB-A) (Klare et al. 2015).

– The establishment of in-the-wild benchmarks and chal-

lenges that provide a fair comparison between state of the

art techniques. FDDB (Jain and Learned-Miller 2010),

300 W (Sagonas et al. 2013a, 2015) and Janus (Klare

et al. 2015) are the most characteristic examples for face

detection, facial landmark localisation and face recogni-

tion, respectively.

Contrary to face detection, facial landmark localisation

and face recognition, the problem of deformable face track-

ing across long-term sequences has yet to attract much

attention, despite its crucial role in numerous applications.

Given the fact that cameras are embedded in many com-

mon electronic devices, it is surprising that current research

has not yet focused towards providing robust and accu-

rate solutions for long-term deformable tracking. Almost all

face-based applications, including facial behaviour analysis,

lip reading, surveillance, human-computer and human-robot

interaction etc., require accurate continuous tracking of the

facial landmarks. The facial landmarks are commonly used

as input signals of higher-level methodologies to compute

motion dynamics and deformations. The performance of cur-

rently available technologies for facial deformable tracking

has not been properly assessed (Yacoob and Davis 1996; Essa

et al. 1996, 1997; Decarlo and Metaxas 2000; Koelstra et al.

2010; Snape et al. 2015). This is attributed to the fact that,

until recently, there was no established benchmark for the

task. At ICCV 2015, the first benchmark for facial landmark

tracking (so-called 300 VW) was presented by Shen et al.
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(2015), providing a large number of annotated videos cap-

tured in-the-wild.1 In particular, the benchmark provides 114

videos with average duration around 1 minute, split into three

categories of increasing difficulty. The frames of all videos

(218595 in total) were annotated by applying semi-automatic

procedures, as shown in Chrysos et al. (2015). Five different

facial tracking methodologies were evaluated in the bench-

mark (Rajamanoharan and Cootes 2015; Yang et al. 2015a;

Wu and Ji 2015; Uricar and Franc 2015; Xiao et al. 2015)

and the results are indicative of the current state-of-the-art

performance.

In this paper, we make a significant step further and

develop the first, to the best of our knowledge, comprehensive

evaluation of multiple deformable face tracking pipelines. In

particular, we assess:

– A pipeline which combines a generic face detection

algorithm with a facial landmark localisation method.

This pipeline is typically assumed in the related tracking

papers, e.g. Wolf et al. (2011), Best-Rowden et al. (2013),

Chrysos et al. (2015), as well as in various implemen-

tations that are (publicly) available, e.g. King (2009),

Asthana et al. (2014), Chrysos et al. (2015), and the

demos given in various conferences. The pipeline is fairly

robust since the probability of drifting is reduced due to

the application of the face detector at each frame. Nev-

ertheless, it does not exploit the dynamic characteristics

of the tracked face. Several state-of-the-art face detectors

as well as facial landmark localisation methodologies are

evaluated in this pipeline.

– A pipeline which combines a model free tracking sys-

tem with a facial landmark localisation method. This

approach takes into account the dynamic nature of the

tracked face, but is susceptible to drifting and thus los-

ing the tracked object. We evaluate the combinations of

multiple state-of-the-art model free trackers, as well as

landmark localisation techniques.

– Hybrid pipelines that include mechanisms for detecting

tracking failures and performing re-initialisation, as well

as using models for ensuring robust tracking.

Some of the above pipelines were used extensively by prac-

titioners, especially the first one. Nevertheless, to the best of

our knowledge, this is the first paper that explicitly refers to

the various alternatives and provides a thorough examination

of the different components of the pipelines (i.e., detectors,

trackers, smoothing, landmark localisation etc.).

1 The results and dataset of the 300 VW Challenge by Shen et al. (2015)

can be found at http://ibug.doc.ic.ac.uk/resources/300-VW/ This is

the first facial landmark tracking challenge on challenging long-term

sequences.

Summarising, the findings of our evaluation show that

current face detection and model free tracking technolo-

gies are advanced enough so that even a naive combination

with landmark localisation techniques is adequate to achieve

state-of-the-art performance on deformable face tracking.

Specifically, we experimentally show that model free track-

ing based pipelines are very accurate when applied on videos

with moderate lighting and pose circumstances. Further-

more, the combination of state-of-the-art face detectors with

landmark localisation systems demonstrates excellent per-

formance with surprisingly high true positive rate on videos

captured under arbitrary conditions (extreme lighting, pose,

occlusions, etc.). Moreover, we show that hybrid approaches

provide only a marginal improvement, which is not worth

their complexity and computational cost. Finally, we com-

pare these approaches with the systems that participated in

the 300 VW competition of Shen et al. (2015).

The rest of the paper is organised as follows. Sect. 2

presents a survey of the current literature on both rigid

and deformable face tracking. In Sect. 3, we present the

current state-of-the-art methodologies for deformable face

tracking. Since, modern face tracking consists of various

modules, including face detection, model free tracking and

facial landmark localisation, Sects. 3.1–3.3 briefly outline

the state-of-the-art in each of these domains. Experimental

results are presented in Sect. 4. Finally, in Sect. 5 we dis-

cuss the challenges that still remain to be addressed, provide

future research directions and draw conclusions.

2 Related Work

Rigid and deformable tracking of faces and facial features

have been a very popular topic of research over the past

twenty years (Black and Yacoob 1995; Lanitis et al. 1995;

Sobottka and Pitas 1996; Essa et al. 1996, 1997; Oliver

et al. 1997; Decarlo and Metaxas 2000; Jepson et al. 2003;

Matthews and Baker 2004; Matthews et al. 2004; Xiao et al.

2004; Patras and Pantic 2004; Kim et al. 2008; Ross et al.

2008; Papandreou and Maragos 2008; Amberg et al. 2009;

Kalal et al. 2010a; Koelstra et al. 2010; Tresadern et al. 2012;

Tzimiropoulos and Pantic 2013; Xiong and De la Torre 2013;

Liwicki et al. 2013; Smeulders et al. 2014; Asthana et al.

2014; Tzimiropoulos and Pantic 2014; Li et al. 2016a; Xiong

and De la Torre 2015; Snape et al. 2015; Wu et al. 2015;

Tzimiropoulos 2015). In this section we provide an overview

of face tracking spanning over the past twenty years up to the

present day. In particular, we will outline the methodologies

regarding rigid 2D/3D face tracking, as well as deformable

2D/3D face tracking using a monocular camera.2 Finally, we

2 The problem of face tracking using commodity depth cameras, which

has received a lot of attention (Göktürk and Tomasi 2004; Cai et al. 2010;

Weise et al. 2011), falls outside the scope of this paper.
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outline the benchmarks for both rigid and deformable face

tracking.

2.1 Prior Art

The first methods for rigid 2D tracking generally revolved

around the use of various features or transformations and

mainly explored various color-spaces for robust tracking

(Crowley and Berard 1997; Bradski 1998b; Qian et al. 1998;

Toyama 1998; Jurie 1999; Schwerdt and Crowley 2000; Stern

and Efros 2002; Vadakkepat et al. 2008). The general meth-

ods of choice for tracking were Mean Shift and variations

such as the Continuously Adaptive Mean Shift (Camshift)

algorithm (Bradski 1998a; Allen et al. 2004). The Mean Shift

algorithm is a non-parametric technique that climbs the gra-

dient of a probability distribution to find the nearest dominant

mode (peak) (Comaniciu and Meer 1999; Comaniciu et al.

2000). Camshift is an adaptation of the Mean Shift algo-

rithm for object tracking. The primary difference between

CamShift and Mean Shift is that the former uses contin-

uously adaptive probability distributions (i.e., distributions

that may be recomputed for each frame) while the latter is

based on static distributions, which are not updated unless

the target experiences significant changes in shape, size or

color. Other popular methods of choice for tracking are linear

and non-linear filtering techniques including Kalman filters,

as well as methodologies that fall in the general category of

particle filters (Del Moral 1996; Gordon et al. 1993), such

as the popular Condensation algorithm by Isard and Blake

(1998). Condensation is the application of Sampling Impor-

tance Resampling (SIR) estimation by Gordon et al. (1993)

to contour tracking. A recent successful 2D rigid tracker that

updates the appearance model of the tracked face was pro-

posed in Ross et al. (2008). The algorithm uses incremental

Principal Component Analysis (PCA) (Levey and Linden-

baum 2000) to learn a statistical model of the appearance in

an on-line manner and contrary to other eigentrackers, such

as Black and Jepson (1998), it does not contain any training

phase. The method in Ross et al. (2008) uses a variant of the

Condensation algorithm to model the distribution over the

objects location as it evolves over time. The method has ini-

tiated a line of research on robust incremental object tracking

including the works of Liwicki et al. (2012b, 2013, 2012a,

2015). Rigid 3D tracking has also been studied by using

generic 3D models of the face (Malciu and Prěteux 2000;

La Cascia et al. 2000). For example, La Cascia et al. (2000)

formulate the tracking task as an image registration problem

in the cylindrically unwrapped texture space and Sung et al.

(2008) combine active appearance models (AAMs) with a

cylindrical head model for robust recovery of the global rigid

motion. Currently, rigid face tracking is generally treated

along the same lines as general model free object tracking

(Jepson et al. 2003; Smeulders et al. 2014; Liwicki et al.

2013, 2012b; Ross et al. 2008; Wu et al. 2015; Li et al.

2016a). An overview of model free object tracking is given

in Sect. 3.2.

Non-rigid (deformable) tracking of faces is important in

many applications, spanning from facial expression analysis

to motion capture for graphics and game design. Deformable

tracking of faces can be further subdivided into i) tracking

of certain facial landmarks (Lanitis et al. 1995; Black and

Yacoob 1995; Sobottka and Pitas 1996; Xiao et al. 2004;

Matthews and Baker 2004; Matthews et al. 2004; Patras

and Pantic 2004; Papandreou and Maragos 2008; Amberg

et al. 2009; Tresadern et al. 2012; Xiong and De la Torre

2013; Asthana et al. 2014; Xiong and De la Torre 2015) or

ii) tracking/estimation of dense facial motion (Essa et al.

1996; Yacoob and Davis 1996; Essa et al. 1997; Decarlo and

Metaxas 2000; Koelstra et al. 2010; Snape et al. 2015). The

latter category of estimating a dense facial motion through

a model-based system was proposed by MIT Media lab in

mid 1990’s (Essa et al. 1997, 1996, 1994; Basu et al. 1996).

In particular, the method by Essa and Pentland (1994) tracks

facial motion using optical flow computation coupled with

a geometric and a physical (muscle) model describing the

facial structure. This modeling results in a time-varying spa-

tial patterning of facial shape and a parametric representation

of the independent muscle action groups which is responsi-

ble for the observed facial motions. In Essa et al. (1994) the

physically-based face model of Essa and Pentland (1994) is

driven by a set of responses from a set of templates that char-

acterise facial regions. Model generated flow has been used

by the same group in Basu et al. (1996) for motion regular-

isation. 3D motion estimation using sparse 3D models and

optical flow estimation has also been proposed by Li et al.

(1993), Bozdaği et al. (1994). Dense facial motion track-

ing is performed in Decarlo and Metaxas (2000) by solving a

model-based (using a facial deformable model) least-squares

optical flow problem. The constraints are relaxed by the

use of a Kalman filter, which permits controlled constraint

violations based on the noise present in the optical flow infor-

mation, and enables optical flow and edge information to be

combined more robustly and efficiently. Free-form deforma-

tions (Rueckert et al. 1999) are used in Koelstra et al. (2010)

for extraction of dense facial motion for facial action unit

recognition. Recently, Snape et al. (2015) proposed a statis-

tical model of the facial flow for fast and robust dense facial

motion extraction.

Arguably, the category of deformable tracking that has

received the majority of attention is that of tracking a set

of sparse facial landmarks. The landmarks are either asso-

ciated to a particular sparse facial model, i.e. the popular

Candide facial model by Li et al. (1993), or correspond to

fiducial facial regions/parts (e.g., mouth, eyes, nose etc.)

(Cootes et al. 2001). Even earlier attempts such as Essa and

Pentland (1994) understood the usefulness of tracking facial
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regions/landmarks in order to perform robust fitting of com-

plex facial models (currently the vast majority of dense 3D

facial model tracking techniques, such as Wei et al. (2004),

Zhang et al. (2008), Amberg (2011), rely on the robust

tracking of a set of facial landmarks). Early approaches for

tracking facial landmarks/regions included: (i) the use of tem-

plates built around certain facial regions (Essa and Pentland

1994), (ii) the use of facial classifiers to detect landmarks

(Colmenarez et al. 1999) where tracking is performed using

modal analysis (Tao and Huang 1998) or (iii) the use of face

and facial region segmentation to detect the features where

tracking is performed using block matching (Sobottka and

Pitas 1996). Currently, deformable face tracking has con-

verged with the problem of facial landmark localisation on

static images. That is, the methods generally rely on fitting

generative or discriminative statistical models of appearance

and 2D/3D sparse facial shape at each frame. Arguably,

the most popular methods are generative and discrimina-

tive variations of Active Appearance Models (AAMs) and

Active Shape Models (ASMs) (Pighin et al. 1999; Cootes

et al. 2001; Dornaika and Ahlberg 2004; Xiao et al. 2004;

Matthews and Baker 2004; Dedeoğlu et al. 2007; Papan-

dreou and Maragos 2008; Amberg et al. 2009; Saragih et al.

2011; Xiong and De la Torre 2013, 2015). The statistical

models of appearance and shape can either be generic as

in Cootes et al. (2001), Matthews and Baker (2004), Xiong

and De la Torre (2013) or incrementally updated in order

to better capture the face at hand, as in Sung and Kim

(2009), Asthana et al. (2014). The vast majority of the facial

landmark localisation methodologies require an initialisation

provided by a face detector. More details regarding current

state-of-the-art in facial landmark localisation can be found

in Sect. 3.3.

Arguably, the current practise regarding deformable face

tracking includes the combination of a generic face detection

and generic facial landmark localisation technique (Saragih

et al. 2011; Xiong and De la Torre 2013, 2015; Alabort-

i-Medina and Zafeiriou 2015; Asthana et al. 2015). For

example, popular approaches include successive applica-

tion of the face detection and facial landmark localisation

procedure at each frame. Another approach performs face

detection in the first frame and then applies facial land-

mark localisation at each consecutive frame using the fitting

result of the previous frame as initialisation. Face detection

can be re-applied in case of failure. This is the approach

that is used by popular packages such as Asthana et al.

(2014). In this paper, we thoroughly evaluate variations of

the above approaches. Furthermore, we consider the use

of modern model free state-of-the-art trackers for rigid 2D

tracking in order to be used as initialisation for the facial land-

mark localisation procedure. This is pictorially described in

Fig. 1.

2.2 Face Tracking Benchmarking

For assessing the performance of rigid 2D face tracking sev-

eral short face sequences have been annotated with regards

to the facial region (using a bounding box style annotation).

One of the first sequences that has been annotated for this

task is the so-called Dudek sequence by Ross et al. (2015).3

Nowadays, several such sequences have been annotated and

are publicly available, such as the ones by Liwicki et al.

(2016), Li et al. (2016b), Wu et al. (2015).

The performance of deformable dense facial tracking

methodologies was usually assessed by using markers

(Decarlo and Metaxas 2000), simulated data (Snape et al.

2015), visual inspection (Decarlo and Metaxas 2000; Essa

et al. 1997, 1996; Yacoob and Davis 1996; Snape et al. 2015;

Koelstra et al. 2010) or indirectly by the use of the dense facial

motion for certain tasks, such as expression analysis (Essa

et al. 1996; Yacoob and Davis 1996; Koelstra et al. 2010).

Regarding tracking of facial landmarks, up until recently, the

preferred method for assessing the performance was visual

inspection in a number of selected facial videos (Xiong and

De la Torre 2013; Tresadern et al. 2012). Other methods

were assessed on a small number of short (a few seconds in

length) annotated facial videos (Sagonas et al. 2014; Asthana

et al. 2014). Until recently the longest annotated facial video

sequence was the so-called talking face of Cootes (2016)

which was used to evaluate many tracking methods includ-

ing Orozco et al. (2013), Amberg et al. (2009). The talking

face video comprises of 5000 frames (around 200 seconds)

taken from a video of a person engaged in a conversation.

The talking face video was initially tracked using an Active

Appearance Model (AAM) that had a shape model and a

total of 68 landmarks are provided. The tracked landmarks

were visually checked and manually corrected where neces-

sary.

Recently, Xiong and De la Torre (2015) introduced a

benchmark for facial landmark tracking using videos from

the Distracted Driver Face (DDF) and Naturalistic Driving

Study (NDS) in Campbell (2016).4 The DDF dataset contains

15 sequences with a total of 10,882 frames. Each sequence

displays a single subject posing as the distracted driver in

a stationary vehicle or indoor environment. 12 out of 15

videos were recorded with subjects sitting inside of a vehicle.

Five of them were recorded during the night under infrared

(IR) light and the rest were recorded during the daytime

under natural lighting. The remaining three were recorded

indoors. The NDS database contains 20 sub-sequences of

3 The Dudek sequence has been annotated with regards to certain facial

landmarks only to be used for the estimation of an affine transformation.

4 In a private communication, the authors of Xiong and De la Torre

(2015) informed us that the annotated data, as described in the paper,

will not be made publicly available (at least not in the near future).
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Detection Model Free Tracking Landmark Localisation

Fig. 1 Overview of the standard approaches for deformable face track-

ing. (Top) face detection is applied independently at each frame of the

video followed by facial landmark localisation. (Bottom) model free

tracking is employed, initialised with the bounding box of the face at

the first frame, followed by facial landmark localisation

driver faces recorded during a drive conducted between the

Blacksburg, VA and Washington, DC areas (NDS is more

challenging than DDF since its videos are of lower spatial

and temporal resolution). Each video of the NDS database

has one minute duration recorded at 15 frames per second

(fps) with a 360 × 240 resolution. For both datasets one in

every ten frames was annotated using either 49 landmarks

for near-frontal faces or 31 landmarks for profile faces. The

database contains many extreme facial poses (90◦ yaw, 50◦

pitch) as well as many faces under extreme lighting condition

(e.g., IR). In total the dataset presented in Xiong and De la

Torre (2015) contains between 2000 to 3000 annotated faces

(please refer to Xiong and De la Torre (2015) for exemplar

annotations).

The only existing large in-the-wild benchmark for facial

landmark tracking was recently introduced by Shen et al.

(2015). The benchmark consists of 114 videos with varying

difficulty and provides annotations generated in a semi-

automatic manner (Chrysos et al. 2015; Shen et al. 2015;

Tzimiropoulos 2015). This challenge, called 300 VW, is

the only existing large-scale comprehensive benchmark for

deformable model tracking. More details regarding the

dataset of the 300 VW benchmark can be found in Sect. 4.1.

The performance of the pipelines considered in this paper

are compared with the participating methods of the 300 VW

challenge in Sect. 4.8.

3 Deformable Face Tracking

In this paper, we focus on the problem of performing

deformable face tracking across long-term sequences within

unconstrained videos. The problem of tracking across long-

term sequences is particularly challenging as the appearance

of the face may change significantly during the sequence due

to occlusions, illumination variation, motion artifacts and

head pose. For the problem of deformable tracking, how-

ever, the problem is further complicated by the expectation

of recovering a set of accurate fiducial points in conjunc-

tion with successfully tracking the object. As described in

Sect. 2, current deformable facial tracking methods mainly

concentrate on performing face detection per frame and then

performing facial landmark localisation. However, we con-

sider the most important metric for measuring the success of
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deformable face tracking as the facial landmark localisation

accuracy. Given this, there are a number of strategies that

could feasibly be employed in order to attempt to minimise

the total facial landmark localisation error across the entire

sequence. Therefore, we take advantage of current advances

in face detection, model free tracking and facial landmark

localisation techniques in order to perform deformable face

tracking. Specifically, we investigate three strategies for

deformable tracking:

1. Detection + landmark localisation Face Detection per

frame, followed by facial landmark localisation ini-

tialised within the facial bounding boxes. This scenario

is visualised in Fig. 1 (top).

2. Model free tracking + landmark localisation Model

free tracking, initialised around the interior of the face

within the first frame, followed by facial landmark local-

isation within the tracked box. This scenario is visualised

in Fig. 1 (bottom).

3. Hybrid systems Hybrid methods that attempt to improve

the robustness of the placement of the bounding box for

landmark localisation. Namely, we investigate methods

for failure detection, trajectory smoothness and reini-

tialisation. Examples of such methods are pictorially

demonstrated in Figs. 4 and 8.

Note that we focus on combinations of methods that provide

bounding boxes of the facial region followed by landmark

localisation. This is due to the fact that the current set of

state-of-the-art landmark localisation methods are all local

methods and require initialisation within the facial region.

Although joint face detection and landmark localisation

methods have been proposed (Zhu and Ramanan 2012; Chen

et al. 2014), they are not competitive with the most recent

set of landmark localisation methods. For this reason, in

this paper we focus on the combination of bounding box

estimators with state-of-the-art local landmark localisation

techniques.

The remainder of this Section will give a brief overview of

the literature concerning face detection, model free tracking

and facial landmark localisation.

3.1 Face Detection

Face detection is among the most important and popular tasks

in Computer Vision and an essential step for applications

such as face recognition and face analysis. Although it is

one of the oldest tasks undertaken by researchers (the early

works appeared about 45 years ago (Sakai et al. 1972; Fis-

chler and Elschlager 1973)), it is still an open and challenging

problem. Recent advances can achieve reliable performance

under moderate illumination and pose conditions, which led

to the installation of simple face detection technologies in

everyday devices such as digital cameras and mobile phones.

However, recent benchmarks (Jain and Learned-Miller 2010)

show that the detection of faces on arbitrary images is still a

very challenging problem.

Since face detection has been a research topic for so many

decades, the existing literature is, naturally, extremely exten-

sive. The fact that all recent face detection surveys (Hjelmås

and Low 2001; Yang et al. 2002; Zhang and Zhang 2010;

Zafeiriou et al. 2015) provide different categorisations of the

relative literature is indicative of the huge range of exist-

ing techniques. Consequently, herein, we only present a

basic outline of the face detection literature. For an extended

review, the interested reader may refer to the most recent face

detection survey in Zafeiriou et al. (2015).

According to the most recent literature review Zafeiriou

et al. (2015), existing methods can be separated in two major

categories. The first one includes methodologies that learn a

set of rigid templates, which can be further split in the fol-

lowing groups: (i) boosting-based methods, (ii) approaches

that utilise SVM classifiers, (ii) exemplar-based techniques,

and (iv) frameworks based on Neural Networks. The second

major category includes deformable part models, i.e. method-

ologies that learn a set of templates per part as well as the

deformations between them.

Boosting Methods Boosting combines multiple “weak”

hypotheses of moderate accuracy in order to determine a

highly accurate hypothesis. The most characteristic exam-

ple is Adaptive Boosting (AdaBoost) which is utilised

by the most popular face detection methodology, i.e. the

Viola–Jones (VJ) detector of Viola and Jones (2001, 2004).

Characteristic examples of other methods that employ varia-

tions of AdaBoost include Li et al. (2002), Wu et al. (2004),

Mita et al. (2005). The original VJ algorithm used Haar

features, however boosting (or cascade of classifiers method-

ologies in general) have been shown to greatly benefit from

robust features (Köstinger et al. 2012; Jun et al. 2013; Li et al.

2011; Li and Zhang 2013; Mathias et al. 2014; Yang et al.

2014a), such as HOG (Dalal and Triggs 2005), SIFT (Lowe

1999), SURF (Bay et al. 2008) and LBP (Ojala et al. 2002).

For example, SURF features have been successfully com-

bined with a cascade of weak classifiers in Li et al. (2011), Li

and Zhang (2013), achieving faster convergence. Addition-

ally, Jun et al. (2013) propose robust face specific features that

combine both LBP and HOG. Mathias et al. (2014) recently

proposed an approach (so called HeadHunter) with state-

of-the-art performance that employs various robust features

with boosting. Specifically, they propose the adaptation of

Integral Channel Features (ICF) (Dollár et al. 2009) with

HOG and LUV colour channels, combined with global fea-

ture normalisation. A similar approach is followed by Yang

et al. (2014a), in which they combine gray-scale, RGB, HSV,

LUV, gradient magnitude and histograms within a cascade

of weak classifiers.
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SVM Classifiers Maximum margin classifiers, such as

Support Vector Machines (SVMs), have become popular for

face detection (Romdhani et al. 2001; Heisele et al. 2003;

Rätsch et al. 2004; King 2015). Even though their detection

speed was initially slow, various schemes have been proposed

to speed up the process. Romdhani et al. (2001) propose a

method that computes a reduced set of vectors from the origi-

nal support vectors that are used sequentially in order to make

early rejections. A similar approach is adopted by Rätsch

et al. (2004). A hierarchy of SVM classifiers trained on dif-

ferent resolutions is applied in Heisele et al. (2003). King

(2015) proposes an algorithm for efficient learning of a max-

margin classifier using all the sub-windows of the training

images, without applying any sub-sampling, and formulates

a convex optimisation that finds the global optimum. More-

over, SVM classifiers have also been used for multi-view face

detection (Li et al. 2000; Wang and Ji 2004). For example,

Li et al. (2000) first apply a face pose estimator based on

support vector regression (SVR), followed by an SVM face

detector for each pose.

Exemplar-Based Techniques These methods aim to match

a test image against a large set of facial images. This approach

is inspired by principles used in image retrieval and requires

that the exemplar set covers the large appearance variation of

human face. Shen et al. (2013) employ bag-of-word image

retrieval methods to extract features from each exemplar,

which creates a voting map for each exemplar that functions

as a weak classifier. Thus, the final detection is performed

by combining the voting maps. A similar methodology is

applied in Li et al. (2014), with the difference that specific

exemplars are used as weak classifiers based on a boosting

strategy. Recently, Kumar et al. (2015) proposed an approach

that enhances the voting procedure by using semantically

related visual words as well as weighted occurrence of visual

words based on their spatial distributions.

Convolutional Neural Networks Another category, simi-

lar to the previous rigid template-based ones, includes the

employment of Convolutional Neural Networks (CNNs) and

Deep CNNs (DCNNs) (Osadchy et al. 2007; Zhang and

Zhang 2014; Ranjan et al. 2015; Li et al. 2015a; Yang et al.

2015b). Osadchy et al. (2007) use a network with four con-

volution layers and one fully connected layer that rejects the

non-face hypotheses and estimates the pose of the correct

face hypothesis. Zhang and Zhang (2014) propose a multi-

view face detection framework by employing a multi-task

DCNN for face pose estimation and landmark localization in

order to obtain better features for face detection. Ranjan et al.

(2015) combine deep pyramidal features with Deformable

Part Models. Recently, Yang et al. (2015b) proposed a DCNN

architecture that is able to discover facial parts responses

from arbitrary uncropped facial images without any part

supervision and report state-of-the-art performance on cur-

rent face detection benchmarks.

Deformable Part Models DPMs (Schneiderman and Kanade

2004; Felzenszwalb and Huttenlocher 2005; Felzenszwalb

et al. 2010; Zhu and Ramanan 2012; Yan et al. 2013; Li

et al. 2013a; Yan et al. 2014; Mathias et al. 2014; Ghiasi and

Fowlkes 2014; Barbu et al. 2014) learn a patch expert for each

part of an object and model the deformations between parts

using spring-like connections based on a tree structure. Con-

sequently, they perform joint facial landmark localisation and

face detection. Even though they are not the best performing

methods for landmark localisation, they are highly accurate

for face detection in-the-wild. However, their main disad-

vantage is their high computational cost. Pictorial Structures

(PS) (Fischler and Elschlager 1973; Felzenszwalb and Hut-

tenlocher 2005) are the first family of DPMs that appeared.

They are generative DPMs that assume Gaussian distribu-

tions to model the appearance of each part, as well as the

deformations. They became a very popular line of research

after the influential work in Felzenszwalb and Huttenlocher

(2005) that proposed a very efficient dynamic programming

algorithm for finding the global optimum based on Gener-

alized Distance Transform. Many discriminatively trained

DPMs (Felzenszwalb et al. 2010; Zhu and Ramanan 2012;

Yan et al. 2013, 2014) appeared afterwards, which learn the

patch experts and deformation parameters using discrimina-

tive classifiers, such as latent SVM.

DPMs can be further separated with respect to their train-

ing scenario into: (i) weakly supervised and (ii) strongly

supervised. Weakly-supervised DPMs (Felzenszwalb et al.

2010; Yan et al. 2014) are trained using only the bound-

ing boxes of the positive examples and a set of negative

examples. The most representative example is the work

by Felzenszwalb et al. (2010), which has proved to be

very efficient for generic object detection. Under a strongly

supervised scenario, it is assumed that a training database

with images annotated with figucial landmarks is available.

Several strongly supervised methods exist in the literature

(Felzenszwalb and Huttenlocher 2005; Zhu and Ramanan

2012; Yan et al. 2013; Ghiasi and Fowlkes 2014). Ghiasi and

Fowlkes (2014) propose an hierarchical DPM that explic-

itly models parts’ occlusions. In Zhu and Ramanan (2012)

it is shown that a strongly supervised DPM outperforms,

by a large margin, a weakly supervised one. In contrast,

HeadHunter by Mathias et al. (2014) shows that a weakly

supervised DPM can outperform all current state-of-the-art

face detection methodologies including the strongly super-

vised DPM of Zhu and Ramanan (2012).

According to FDDB (Jain and Learned-Miller 2010),

which is the most well established face detection benchmark,

the currently top-performing methodology is the one by Ran-

jan et al. (2015), which combines DCNNs with a DPM. Some

of the top-performing systems consist of commercial soft-

ware, thus we did use the deep methods of Hu and Ramanan

(2016), Zhang et al. (2016) that are available as open source
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Table 1 The set of detectors used in this paper

Method Citation(s) Rigid template DPM Implementation

DPM Felzenszwalb et al. (2010) � https://github.com/menpo/ffld2

Mathias et al. (2014)

Alabort-i-Medina et al. (2014)

HR-TF Hu and Ramanan (2016) � https://www.cs.cmu.edu/~peiyunh/tiny/

MTCNN Zhang et al. (2016) � https://goo.gl/4BMGeR

NPD Liao et al. (2016) � https://goo.gl/dRXp8d

SS-DPM Zhu and Ramanan (2012) � https://www.ics.uci.edu/~xzhu/face

SVM+HOG King (2015) � https://github.com/davisking/dlib

King (2009)

VJ Viola and Jones (2004) � http://opencv.org

Bradski (2000)

VPHR Kumar et al. (2015) � http://cvit.iiit.ac.in/projects/exemplar/

The table reports the short name of the method, the relevant citation(s) as well as the link to the implementation used

with the method of Hu and Ramanan (2016) reporting the lat-

est best performance in FDDB. Additionally, we employ the

top performing SVM-based method for learning rigid tem-

plates (King 2015), the best weakly and strongly supervised

DPM implementations of Mathias et al. (2014) and Zhu and

Ramanan (2012), along with the best performing exemplar-

based technique of Kumar et al. (2015) . Finally, we also use

the popular VJ algorithm (Viola and Jones 2001, 2004) as a

baseline face detection method. The employed face detection

implementations are summarised in Table 1.

3.2 Model Free Tracking

Model free tracking is an extremely active area of research.

Given the initial state (e.g., position and size of the containing

box) of a target object in the first image, model free tracking

attempts to estimate the states of the target in subsequent

frames. Therefore, model free tracking provides an excellent

method of initialising landmark localisation methods.

The literature on model free tracking is vast. For the rest

of this section, we will provide an extremely brief overview

of model free tracking that focuses primarily on areas that

are relevant to the tracking methods we investigated in this

paper. We refer the interested reader to the wealth of tracking

surveys (Li et al. 2013b; Smeulders et al. 2014; Salti et al.

2012; Yang et al. 2011) and benchmarks (Wu et al. 2013,

2015; Kristan et al. 2013, 2014, 2015, 2016; Smeulders et al.

2014) for more information on model free tracking methods.

Generative Trackers These trackers attempt to model the

objects appearance directly. This includes template based

methods, such as those by Matthews et al. (2004), Baker and

Matthews (2004), Sevilla-Lara and Learned-Miller (2012),

as well as parametric generative models such as Balan and

Black (2006), Ross et al. (2008), Black and Jepson (1998) ,

Xiao et al. (2014). The work of Ross et al. (2008) introduces

online subspace learning for tracking with a sample mean

update, which allows the tracker to account for changes in

illumination, viewing angle and pose of the object. The idea is

to incrementally learn a low-dimensional subspace and adapt

the appearance model on object changes. The update is based

on an incremental principal component analysis (PCA) algo-

rithm, however it seems to be ineffective at handling large

occlusions or non-rigid movements due to its holistic model.

To alleviate the partial occlusion, Xiao et al. (2014) suggest

the use of square templates along with PCA. Another popular

area of generative tracking is the use of sparse representations

for appearance. In Mei and Ling (2011), a target candidate is

represented by a sparse linear combination of target and triv-

ial templates. The coefficients are extracted by solving an ℓ1

minimisation problem with non-negativity constraints, while

the target templates are updated online. However, solving the

ℓ1 minimisation for each particle is computationally expen-

sive. A generalisation of this tracker is the work of Zhang

et al. (2012), which learns the representation for all particles

jointly. It additionally improves the robustness by exploiting

the correlation among particles. An even further abstraction

is achieved in Zhang et al. (2014d) where a low-rank sparse

representation of the particles is encouraged. In Zhang et al.

(2014c), the authors generalise the low-rank constraint of

Zhang et al. (2014d) and add a sparse error term in order

to handle outliers. Another low-rank formulation was used

by Wu et al. (2012) which is an online version of the RASL

(Peng et al. 2012) algorithm and attempts to jointly align the

input sequence using convex optimisation.

Keypoint Trackers These trackers (Pernici and Del Bimbo

2014; Poling et al. 2014; Hare et al. 2012; Nebehay and
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Pflugfelder 2015) attempt to use the robustness of key-

point detection methodologies like SIFT (Lowe 1999) or

SURF (Bay et al. 2008) in order to perform tracking. Per-

nici and Del Bimbo (2014) collected multiple descriptors

of weakly aligned keypoints over time and combined these

matched keypoints in a RANSAC voting scheme. Nebehay

and Pflugfelder (2015) utilises keypoints to vote for the object

center in each frame. A consensus-based scheme is applied

for outlier detection and the votes are transformed based on

the current key point arrangement to consider scale and rota-

tion. However, keypoint methods may suffer from difficulty

in capturing the global information of the tracked target by

only considering the local points.

Discriminative Trackers These trackers attempt to explic-

itly model the difference between the object appearance

and the background. Most commonly, these methods are

named “tracking-by-detection” techniques as they involve

classifying image regions as either part of the object or the

background. In their work, Grabner et al. (2006) propose

an online boosting method to select and update discrimina-

tive features which allows the system to account for minor

changes in the object appearance. However, the tracker fails

to model severe changes in appearance. Babenko et al. (2011)

advocate the use of a multiple instance learning boosting

algorithm to mitigate the drifting problem. More recently,

discriminative correlation filters (DCF) have become highly

successful at tracking. The DCF is trained by performing

a circular sliding window operation on the training samples.

This periodic assumption enables efficient training and detec-

tion by utilizing the Fast Fourier Transform (FFT). Danelljan

et al. (2014) learn separate correlation filters for the trans-

lation and the scale estimation. In Danelljan et al. (2015),

the authors introduce a sparse spatial regularisation term to

mitigate the artifacts at the boundaries of the circular corre-

lation. In contrast to the linear regression commonly used to

learn DCFs, Henriques et al. (2015) apply a kernel regres-

sion and propose its multi-channel extension to enable to the

use of features such as HOG Dalal and Triggs (2005). Li

et al. (2015b) propose a new use for particle filters in order to

choose reliables patches to consider part of the object. These

patches are modelled using a variant of the method proposed

by Henriques et al. (2015). Hare et al. (2011) propose the

use of structured output prediction. By explicitly allowing

the outputs to parametrize the needs of the tracker, an inter-

mediate classification step is avoided.

Part-based Trackers These trackers attempt to implicitly

model the parts of an object in order to improve tracking

performance. Adam et al. (2006) represent the object with

multiple arbitrary patches. Each patch votes on potential

positions and scales of the object and a robust statistic is

employed to minimise the voting error. Kalal et al. (2010b)

sample the object and the points are tracked independently

in each frame by estimating optical flow. Using a forward–

backward measure, the erroneous points are identified and

the remaining reliable points are utilised to compute the

optimal object trajectory. Yao et al. (2013) adapt the latent

SVM of Felzenszwalb et al. (2010) for online tracking, by

restricting the search in the vicinity of the location of the

target object in the previous frame. In comparison to the

weakly supervised part-based model of Yao et al. (2013),

in Zhang and van der Maaten (2013) the authors recommend

an online strongly supervised part-based deformable model

that learns the representation of the object and the represen-

tation of the background by training a classifier. Wang et al.

(2015) employ a part-based tracker by estimating a direct dis-

placement prediction of the object. A cascade of regressors

is utilised to localise the parts, while the model is updated

online and the regressors are initialised by multiple motion

models at each frame.

Given the wealth of available trackers, selecting appro-

priate trackers for deformable tracking purposes poses a

difficult proposition. In order to attempt to give as broad

an overview as possible, we selected trackers from each of

the aforementioned categories. Therefore, in this paper we

compare against 27 trackers which are outlined in Table 2.

SRDCF (Danelljan et al. 2015), KCF (Henriques et al. 2015),

LCT (Ma et al. 2015), STAPLE (Bertinetto et al. 2016a) and

DSST (Danelljan et al. 2014) are all discriminative track-

ers based on DCFs. They all performed well in the VOT

2015 (Kristan et al. 2015) challenge and DSST was the

winner of VOT 2014 (Kristan et al. 2014). The trackers of

Danelljan et al. (2016), Qi et al. (2016); Nam and Han (2016),

Bertinetto et al. (2016b) are indicative trackers that employ

neural networks and achieve top results. STRUCK (Hare

et al. 2011) is a discriminative tracker that performed very

well in the Online Object Tracking benchmark (Wu et al.

2013), while the more recent method of Ning et al. (2016)

improves the computational burden of the structural SVM

of STRUCK and reports superior results. SPOT (Zhang and

van der Maaten 2014) is a strong performing part based

tracker, CMT (Nebehay and Pflugfelder 2015) is a strong per-

forming keypoint based tracker, LRST (Zhang et al. 2014d)

and ORIA (Wu et al. 2012) are recent generative track-

ers. RPT (Li et al. 2015b) is a recently proposed technique

that reported state-of-the-art results on the Online Object

Tracking benchmark (Wu et al. 2013). TLD (Kalal et al.

2012), MIL (Babenko et al. 2011), FCT (Zhang et al. 2014c),

DF (Sevilla-Lara and Learned-Miller 2012) and IVT (Ross

et al. 2008) were included as baseline tracking methods with

publicly available implementations. Finally, the CAMSHIFT

and PF methods (Bradski 1998a; Isard and Blake 1996) are

included as very influential trackers used in the previous

decades for tracking.
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Table 2 The set of trackers that are used in this paper

Method Citation(s) D G P K NN Implementation

CAMSHIFT Bradski (1998a) � http://opencv.org

CCOT Danelljan et al. (2016) � � https://goo.gl/Rnf73K

CMT Nebehay and Pflugfelder (2015) � https://github.com/gnebehay/CppMT

DF Sevilla-Lara and Learned-Miller (2012) � http://goo.gl/YmG6W4

DLSSVM Ning et al. (2016) � https://goo.gl/m4ro8x

DSST Danelljan et al. (2014) � https://github.com/davisking/dlib

King (2009)

FCT Zhang et al. (2014c) � � http://goo.gl/Ujc5B0

HDT Qi et al. (2016) � https://goo.gl/9KgteR

IVT Ross et al. (2008) � http://goo.gl/WtbOIX

KCF Henriques et al. (2015) � https://github.com/joaofaro/KCFcpp

LCT Ma et al. (2015) � https://goo.gl/8kaO7T

LRST Zhang et al. (2014d) � http://goo.gl/ZC9JbQ

MDNET Nam and Han (2016) � � https://github.com/HyeonseobNam/MDNet

MEEM Zhang et al. (2014a) � https://goo.gl/Bj6typ

MIL Babenko et al. (2011) � http://opencv.org

Bradski (2000)

ORIA Wu et al. (2012) � https://goo.gl/RT3zNC

PF Isard and Blake (1996) � https://goo.gl/tSZcAg

RPT Li et al. (2015b) � https://github.com/ihpdep/rpt

SIAM-OXF Bertinetto et al. (2016b) � � https://goo.gl/sjGgVj

SPOT Zhang and van der Maaten (2014) � � http://visionlab.tudelft.nl/spot

SPT Yang et al. (2014b) � https://goo.gl/EOquai

SRDCF Danelljan et al. (2015) � https://goo.gl/Q9d1O5

STAPLE Bertinetto et al. (2016a) � https://github.com/bertinetto/staple

STCL Zhang et al. (2014b) � https://goo.gl/l29dQg

STRUCK Hare et al. (2011) � http://goo.gl/gLR93b

TGPR Gao et al. (2014) � https://goo.gl/EBw0WI

TLD Kalal et al. (2012) � https://github.com/zk00006/OpenTLD

The table reports the short name of the method, the relevant citation(s) as well as the link to the implementation used. The initials stand for:

(D)iscriminative, (G)enerative, (P)art-based, (K)eypoint trackers, and NN for trackers that employ neural networks

3.3 Facial Landmark Localisation

Statistical deformable models have emerged as an impor-

tant research field over the last few decades, existing at the

intersection of computer vision, statistical pattern recogni-

tion and machine learning. Statistical deformable models aim

to solve generic object alignment in terms of localisation of

fiducial points. Although deformable models can be built for

a variety of object classes, the majority of ongoing research

has focused on the task of facial alignment. Recent large-

scale challenges on facial alignment (Sagonas et al. 2013b, a,

2015) are characteristic examples of the rapid progress being

made in the field.

Currently, the most commonly-used and well-studied face

alignment methods can be separated into two major families:

(i) discriminative models that employ regression in a cas-

caded manner, and (ii) generative models that are iteratively

optimised.

Regression-Based Models The methodologies of this cat-

egory aim to learn a regression function that regresses from

the object’s appearance (e.g. commonly handcrafted fea-

tures) to the target output variables (either the landmark

coordinates or the parameters of a statistical shape model).

Although the history behind using linear regression in order

to tackle the problem of face alignment spans back many

years (Cootes et al. 2001), the research community turned

towards alternative approaches due to the lack of sufficient

data for training accurate regression functions. Nevertheless,

recently regression-based techniques have prevailed in the

field thanks to the wealth of annotated data and effective
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Table 3 The landmark localisation methods employed in this paper

Method Citation(s) Discriminative Generative Implementation

AAM Tzimiropoulos (2015) � https://github.com/menpo/menpofit

Alabort-i-Medina et al. (2014)

ERT Kazemi and Sullivan (2014) � https://github.com/davisking/dlib

King (2009)

CFSS Zhu et al. (2015) � https://github.com/zhusz/CVPR15-CFSS

SDM Xiong and De la Torre (2013) � https://github.com/menpo/menpofit

Alabort-i-Medina et al. (2014)

The table reports the short name of the method, the relevant citation(s) as well as the link to the implementation used

handcrafted features (Lowe 1999; Dalal and Triggs 2005).

Recent works have shown that excellent performance can

be achieved by employing a cascade of regression func-

tions (Burgos-Artizzu et al. 2013; Xiong and De la Torre

2013, 2015; Dollár et al. 2010; Cao et al. 2014; Kazemi

and Sullivan 2014; Ren et al. 2014; Asthana et al. 2014;

Tzimiropoulos 2015; Zhu et al. 2015). Regression based

methods can be approximately seperated into two categories

depending on the nature of the regression function employed.

Methods that employ a linear regression such as the super-

vised descent method (SDM) of Xiong and De la Torre (2013)

tend to employ robust hand-crafted features (Xiong and De la

Torre 2013; Asthana et al. 2014; Xiong and De la Torre

2015; Tzimiropoulos 2015; Zhu et al. 2015). On the other

hand, methods that employ tree-based regressors such as the

explicit shape regression (ESR) method of Cao et al. (2014),

tend to rely on data driven features that are optimised directly

by the regressor (Burgos-Artizzu et al. 2013; Cao et al. 2014;

Dollár et al. 2010; Kazemi and Sullivan 2014).

Generative Models The most dominant representative

algorithm of this category is, by far, the active appearance

model (AAM). AAMs consist of parametric linear mod-

els of both shape and appearance of an object, typically

modelled by Principal Component Analysis (PCA). The

AAM objective function involves the minimisation of the

appearance reconstruction error with respect to the shape

parameters. AAMs were initially proposed by Cootes et al.

(1995, 2001), where the optimisation was performed by a sin-

gle regression step between the current image reconstruction

residual and an increment to the shape parameters. However,

Matthews and Baker (2004), Baker and Matthews (2004) lin-

earised the AAM objective function and optimised it using

the Gauss-Newton algorithm. Following this, Gauss-Newton

optimisation has been the modern method for optimising

AAMs. Numerous extensions have been published, either

related to the optimisation procedure (Papandreou and Mara-

gos 2008; Tzimiropoulos and Pantic 2013; Alabort-i-Medina

and Zafeiriou 2014, 2015; Tzimiropoulos and Pantic 2014)

or the model structure (Tzimiropoulos et al. 2012; Anton-

akos et al. 2014; Tzimiropoulos et al. 2014; Antonakos et al.

2015b, a).

In recent challenges by Sagonas et al. (2013a, 2015), dis-

criminative methods have been shown to represent the current

state-of-the-art. However, in order to enable a fair compari-

son between types of methods we selected a representative

set of landmark localisation methods to compare with in this

paper. The set of landmark localisation methods used in the

paper is given in Table 3. We chose to use ERT (Kazemi and

Sullivan 2014) as it is extremely fast and the implementation

provided by King (2009) is the best known implementation

of a tree-based regressor. We chose CFSS (Zhu et al. 2015)

as it is the current state-of-the-art on the data provided by

the 300W competition of Sagonas et al. (2013a). We used

the Gauss-Newton Part-based AAM of Tzimiropoulos and

Pantic (2014) as the top performing generative localisation

method, as provided by the Menpo Project (Alabort-i-Medina

et al. 2014). Finally, we also demonstrated an SDM (Xiong

and De la Torre 2013) as implemented by Alabort-i-Medina

et al. (2014) as a baseline.

4 Experiments

In this section, details of the experimental evaluation are

established. Firstly, the datasets employed for the evalua-

tion, training and validation are introduced in Sect. 4.1. Next,

Sect. 4.2 provides details of the training procedures and of the

implementations that are relevant to all experiments. Follow-

ing this, in Sects. 4.3−4.7, we describe the set of experiments

that were conducted in this paper, which are summarised in

Table 4. Finally, experimental Sect. 4.8 compares the best

results from the previous experiments to the winners of the

300 VW competition in Shen et al. (2015).

In the following sections, due to the very large amount of

methodologies taken into account, we provide a summary of

all the results as tables and only the top five methods as graphs

for clarity. Please refer to the supplementary material for an

extensive report of the experimental results. Additionally, we
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Table 4 The set of experiments conducted in this paper

Experiment Section Tracking Detection Landmark localisation Failure checking Re-initialisation Kalman Smoothing

1 4.3 � �

2 4.4 � � �

3 4.5 � �

4 4.6 � � � �

5 4.7 � � � �

6 4.8 Comparison against state-of-the-art of 300 VW competition (Shen et al. 2015).

This table is intended as an overview of the battery of experiments that were conducted, as well as providing a reference to the relevant section

provide videos with the tracking results for the experiments

of Sects. 4.3, and 4.5 for qualitative comparison.5,6

4.1 Dataset

All the comparisons are conducted in the testset of the

300 VW dataset collected by Shen et al. (2015). This recently

introduced dataset contains 114 videos (50 for training and

64 for testing). The videos are separated into the following 3

categories:

– Category 1 This category is composed of videos captured

in well-lit environments without any occlusions.

– Category 2 The second category includes videos captured

in unconstrained illumination conditions.

– Category 3 The final category consists of video sequences

captured in totally arbitrary conditions (including severe

occlusions and extreme illuminations).

Each video includes only one person and is annotated using

the 68 point mark-up employed by Gross et al. (2010) and

Sagonas et al. (2015) for Multi-PIE and 300W databases,

respectively. All videos include between 1500 frames and

3000 frames with a large variety of expressions, poses and

capturing conditions, which makes the dataset very challeng-

ing for deformable facial tracking. A number of exemplar

images, which are indicative of the challenges of each cat-

egory, are provided in Fig. 2. We note that, in contrast to

the results of Shen et al. (2015) in the original 300 VW

competition, we used the most recently provided annota-

tions (See footnote 1) which have been corrected and do not

contain missing frames. Therefore, we also provide updated

results following the participants of the 300 VW competi-

tion.

5 In https://youtu.be/Lx5gHvErqX8 we provide a video with the track-

ing results of the top methods for face detection followed by landmark

localisation (Sect. 4.3, Table 6, Fig. 3) for qualitative comparison.

6 In https://youtu.be/SNr39MH3dh8 we provide a video with the track-

ing results of the top methods for model free tracking followed by

landmark localisation (Sect. 4.5, Table 8, Fig. 7) for qualitative com-

parison.

The public datasets of IBUG (Sagonas et al. 2013a),

HELEN (Le et al. 2012), AFW (Zhu and Ramanan 2012) and

LFPW (Belhumeur et al. 2013) are employed for training all

the landmark localisation methods. This is further explained

in Sect. 4.2.1 below.

4.2 Implementation Details

The authors’ implementations are utilised for the trackers, as

outlined in Table 2. Similarly, the face detectors’ implemen-

tations are outlined in Table 1. HOG + SVM was provided

by the Dlib project of King (2015, 2009), the Weakly Super-

vised DPM (DPM) (Felzenszwalb et al. 2010) was the model

provided by Mathias et al. (2014) and the code of Dubout

and Fleuret (2012, 2013) was used to perform the detec-

tion. Moreover, the Strongly Supervised DPM (SS-DPM) of

Zhu and Ramanan (2012) was provided by the authors and,

finally, the OpenCV implementation by Bradski (2000) was

used for the VJ detector (Viola and Jones 2004). The default

parameters were used in all cases. The pre-trained detectors’

models were utilised; only the most confident detection was

exported per frame, there was no effort to maximise the over-

lap with the ground-truth bounding box; in all videos there

is only one person per frame.

For face alignment, as outlined in Table 3, the implemen-

tation of CFSS provided by Zhu et al. (2015) is adopted,

while the implementations provided by Alabort-i-Medina

et al. (2014) in the Menpo Project are employed for the

patch-based AAM of Tzimiropoulos and Pantic (2014) and

the SDM of Xiong and De la Torre (2013). Lastly, the imple-

mentation of ERT (Kazemi and Sullivan 2014) is provided by

King (2009) in the Dlib library. For the three latter methods,

following the original papers and the code’s documentation,

several parameters were validated and chosen based on the

results in a validation set that consisted of a few videos from

the 300 VW training set.

The details of the parameters utilised for the patch-based

AAM, SDM and ERT are the following: For AAM, we

used the algorithm of Tzimiropoulos and Pantic (2014) and

applied a 2-level Gaussian pyramid with 4 and 10 shape com-
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Fig. 2 Example frames from the 300 VW dataset by Shen et al. (2015). Each row contains 10 exemplar images from each category, that are

indicative of the challenges that characterise the videos of the category. a Category 1. b Category 2. c Category 3

ponents, and 60 and 150 appearance components in each

scale, respectively. For the SDM, a 4-level Gaussian pyramid

was employed. SIFT (Lowe 1999) feature vectors of length

128 were extracted at the first 3 scales, using RootSIFT by

Arandjelović and Zisserman (2012). Raw pixel intensities

were used at the highest scale.

Part of the experiments was conducted on the cloud soft-

ware of Koukis et al. (2013) and the web application of Pérez

and Granger (2007), while the rest of the functionality was

provided by the Python libraries of Alabort-i-Medina et al.

(2014), Pedregosa et al. (2011). The source code as well

as the list of errors for the top methods will be released

for the research community in the link https://github.com/

grigorisg9gr/deformable_tracking_review_ijcv2016.

4.2.1 Landmark Localisation Training

All the landmark localisation methods were trained with

respect to the 68 facial points mark-up employed by Sag-

onas et al. (2013a, 2015) in 300W, while the rest of the

parameters were determined via cross-validation. Again, this

validation set consisted of frames from the 300 VW trainset,

as well as 60 privately collected images with challenging

poses. All of the discriminative landmark localisation meth-

ods (SDM, ERT, CFSS) were trained from images in the

public datasets of IBUG (Sagonas et al. 2013a), HELEN (Le

et al. 2012), AFW (Zhu and Ramanan 2012) and LFPW (Bel-

humeur et al. 2013). The generative AAM was trained on less

data, since generative methods do not benefit as strongly from

large training datasets. The training data used for the AAM

was the recently released 300 images from the 600W dataset

(Sagonas et al. 2015), 500 challenging images from LFPW

(Belhumeur et al. 2013) and the 135 images of the IBUG

dataset (Sagonas et al. 2013a).

Discriminative landmark localisation methods are tightly

coupled with the initialisation statistics, as they learn to

model a given variance of initialisations. Therefore, it is

necessary to re-train each discriminative method for each

face detection method employed. This allows the landmark

localisation methods to correctly model the large amount of

variance present between detectors. On aggregate 5 different

detector and landmark localisation models are trained. One

for each detector and landmark localisation pair (totalling

4) and a single model trained using a validation set that

estimates the variance of the ground truth bounding box

throughout the sequences. This model is used for all track-

ers.

4.2.2 Quantitative Metrics

The errors reported for all the following experiments are with

respect to the landmark localisation error. The error metric

employed is the mean Euclidean distance of the 68 points,

normalised by the diagonal of the ground truth bounding

box (
√

width2 + height2). This metric was chosen as it is

robust to changes in head pose which are frequent within the

300 VW sequences. The graphs that are shown are cumula-

tive error distribution (CED) plots that provide the proportion

of images less than or equal to a particular error. We also

provide summary tables with respect to the Area Under the

Curve (AUC) of the CED plots, considered up to a maxi-

mum error. Errors above this maximum threshold, which is

fixed to 0.08, are considered failures to accurately localise

the facial landmarks. Therefore, we also report the failure
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Table 5 Exemplar deformable tracking results that are indicative of the fitting quality that corresponds to each error value for all video categories

Category
Error

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1

2

3

The area under the curve (AUC) and failure rate for all the experiments are computed based on the Cumulative error distributions (CED) limited at

maximum error of 0.08

rate, as a percentage, which marks the proportion of images

that are not considered within the CED plots. Table 5 shows

some indicative examples of the deformable fitting quality

that corresponds to each error value for all video categories.

When ranking methods, we consider the AUC as the pri-

mary statistic and only resort to considering the failure rate

in cases where there is little distinction between methods’

AUC values.

The indicative speed metric (times) reported in the out-

comes is measured on 100 frames of a single video with

640 × 360 resolution. Note that the utlised detectors’ perfor-

mance is highly affected by the resolution. The times were

measured in a single machine with a i7 processor, 3.6 GHz,

all in CPU mode, with 8GB RAM and report the time in sec-

onds. The implementations were not optimised to minimise

the computational complexity, i.e. the public implementa-

tions in C/C++ have a considerable advantage.

4.3 Experiment 1: Detection and Landmark

Localisation

In this experiment, we validate the most frequently used facial

deformable tracking strategy, i.e. performing face detection

followed by landmark localisation on each frame indepen-

dently. If a detector fails to return a frame, that frame is

considered as having infinite error and thus will appear as

part of the failures in Table 6. Note that the AUC is robust

to the use of infinite errors. In frames where multiple bound-

ing boxes are returned, the box with the highest confidence is

kept, limiting the results of the detectors to a single bounding

box per image. A high level diagram explaining the detection

procedure for this experiment is given by Fig. 1.

Specifically, in this experiment we consider the 8 face

detectors of Table 1 (DPM, HR-TF, MTCNN, NPD, SS-

DPM, HOG + SVM, VJ, VPHR) with the 4 landmark

localisation techniques of Table 3 (AAM, CFSS, ERT, SDM),

for a total of 32 results. The results of the experiment are given

in Table 6 and Fig. 3. The results indicate that the AAM per-

forms poorly as it achieves the lowest performance across

all face detectors. The discriminative CFSS and ERT land-

mark localisation methods consistently outperform SDM.

From the detectors point of view, it seems that the strongly

supervised DPM (SS-DPM) is the worst and provides the

highest failure rates. On the other hand, the weakly super-

vised DPM (DPM) outperforms the rest of the detectors in the

first two categories in terms of both accuracy (i.e. AUC) and

robustness (i.e. Failure Rate), while in the third one, the deep

detector of Zhang et al. (2016) outperforms marginally DPM.

In all three categories the state-of-the-art deep networks fetch

top results, however they do not seem to be consistently bet-

ter than DPM or VPHR of Kumar et al. (2015). The detailed

graphs per method (32 methods in total), as well as a video

with the results of the top five methods (see footnote 5) are

deferred to the supplementary material.

4.4 Experiment 2: Detection and Landmark

Localisation with Reinitialisation

Complementing the experiments of Sect. 4.3, the same set-up

was utilised to study the effect of missed frames by assum-

ing a first order Markov dependency. If the detector does not

return a bounding box in a frame, the bounding box of the

previous frame is used as a successful detection for the miss-

ing frame. This procedure is depicted in Fig. 4. Given that

the frame rate of the input videos is adequately high (over

20 fps), this assumption is a reasonable one. The results of

this experiment are summarised in Table 7 and in Fig. 5. As

expected, the ranking of the methods is almost identical as

the previous experiment of Sect. 4.3, with the minor differ-

ences emerging from the threshold of the different detectors.
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Table 6 Results for experiment 1 of Sect. 4.3 (detection + landmark localisation) (Color table online)

Method Category 1 Category 2 Category 3 Complexity

Detection
Landmark

AUC
Failure

AUC
Failure

AUC
Failure Timing

Localisation Rate (%) Rate (%) Rate (%)

DPM

AAM 0.447 29.445 0.466 21.158 0.376 33.261
CFSS 0.764 3.789 0.767 1.363 0.717 5.259 2.087

ERT 0.772 3.493 0.765 1.558 0.714 6.100

SDM 0.673 3.800 0.646 1.369 0.585 5.880

HR-TF

AAM 0.468 32.754 0.538 25.240 0.451 29.833

-
CFSS 0.735 2.363 0.646 13.735 0.677 4.793
ERT 0.571 8.898 0.509 18.335 0.538 12.128
SDM 0.654 5.499 0.592 14.170 0.612 6.371

MTCNN

AAM 0.323 51.474 0.406 36.283 0.203 65.005

3.204
CFSS 0.732 8.553 0.722 8.524 0.720 5.685

ERT 0.630 12.299 0.614 10.167 0.636 8.040
SDM 0.690 8.203 0.674 8.567 0.684 5.772

NPD

AAM 0.337 52.230 0.320 48.941 0.263 54.173
CFSS 0.492 38.135 0.507 35.571 0.491 34.052 0.203

ERT 0.461 38.781 0.463 35.787 0.461 34.746
SDM 0.451 39.769 0.471 35.754 0.455 34.839

SS-DPM

AAM 0.474 37.473 0.502 33.807 0.161 77.932

12.400
CFSS 0.609 21.773 0.566 24.261 0.244 65.926
ERT 0.635 21.445 0.608 21.638 0.243 67.407
SDM 0.582 21.225 0.537 21.748 0.217 67.602

SVM+HOG

AAM 0.493 25.891 0.487 22.414 0.380 36.728
CFSS 0.707 12.953 0.663 16.318 0.579 21.422 0.038

ERT 0.705 13.285 0.653 16.500 0.570 22.303
SDM 0.654 13.252 0.619 16.312 0.480 21.367

VJ

AAM 0.453 24.277 0.532 19.500 0.413 25.640
CFSS 0.660 18.986 0.651 17.805 0.641 15.061 0.052

ERT 0.658 19.292 0.646 17.839 0.653 14.942
SDM 0.524 19.249 0.548 17.769 0.505 15.347

VPHR

AAM 0.463 34.436 0.636 12.737 0.519 23.065

30.200
CFSS 0.747 4.860 0.743 3.255 0.652 11.287
ERT 0.725 6.834 0.700 6.328 0.624 13.490
SDM 0.661 7.367 0.655 6.239 0.549 15.206

Colouring denotes the methods’ performance ranking per category: � first � second � third � fourth

The area under the curve (AUC) and Failure Rate are reported. The top four performing curves are highlighted for each video category. The current

implementation of HR-TF cannot be executed to CPU mode, thus it would be unfair for the rest of the timing comparisons to include its GPU

performance

For instance, the SVM + HOG that has a high threshold,

i.e. in the previous experiment it ‘missed’ several challeng-

ing frames, can benefit further from the Markov dependency,

while the VPHR one has exactly the same statistics as it

returned a detection in every single frame in the previous

experiment.

In order to better investigate the effect of this reinitial-

isation scheme, we also provide Fig. 6 that directly shows

the improvement. Specifically, we plot the CED curves with

and without the reinitialisation strategy for 3 top performing

methods, as well as the 3 techniques for which the high-

est improvement is achieved. It becomes evident that the

top performing methods from Sect. 4.3 do not benefit from

reinitialisation, since the improvement is marginal. This is

explained by the fact that these methods already achieve a

very high true positive rate. The largest difference is observed

for methods that utilise AAM. As shown by Antonakos et al.

(2015b), AAMs are very sensitive to initialisation, due to the

nature of Gauss-Newton optimisation. Additionally, note that

we have not attempted to apply any kind of greedy approach

for improving the detectors’ bounding boxes in order to pro-

vide a better AAM initialisation. Since the initialisation of a
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(a) (b) (c)

Fig. 3 Results for experiment 1 of Sect. 4.3 (detection + landmark localisation). The top 5 performing curves are highlighted in each legend. Please

see Table 6 for a full summary

Detection Landmark Localisation

Initialise From 

Previous Frame

Fig. 4 This figure gives a diagram of the reinitialisation scheme proposed in Sect. 4.4. Specifically, in case the face detector does not return a

bounding box for a frame, the bounding box of the previous frame is used as a successful detection for the missing frame

frame with failed detection is achieved by the bounding box

of the previous frame’s landmarks, it is highly likely that its

area will be well constrained to include only the facial parts

and not the forehead or background. This kind of initialisa-

tion is very beneficial for AAMs, which justifies the large

improvements that are shown in Fig. 6. For the graphs that

correspond to all 32 methods, please refer to the supplemen-

tary material.

4.5 Experiment 3: Model-free Tracking and Landmark

Localisation

In this section, we provide, to the best of our knowledge,

the first detailed analysis of the performance of model free

trackers for tracking “in-the-wild” facial sequences. For this

reason, we have considered a large number of trackers in

order to attempt to give a balanced overview of the per-

formance of modern model trackers for deformable face

alignment. The 27 trackers considered in this section are

summarised in Table 2. To initialise all trackers, the tightest

possible bounding box of the ground truth facial landmarks

is provided as the initial tracker state. We also include a base-

line method, which appears in results Table 8, referred to as

PREV, which is defined as applying the landmark localisa-

tion methods initialised from the bounding box of the result

in the previous frame. Obviously this scheme is highly sen-

sitive to drifting and therefore we have included it as a basic

baseline that does not include any model free tracking. A

123



Int J Comput Vis (2018) 126:198–232 215

Table 7 Results for experiment 2 of Sect. 4.4 (detection + landmark localisation + initialisation from previous frame) (Color table online)

Method Category 1 Category 2 Category 3

Detection
Landmark

AUC
Failure

AUC
Failure

AUC
Failure

Localisation Rate (%) Rate (%) Rate (%)

DPM

AAM 0.572 18.840 0.621 10.617 0.493 21.711
CFSS 0.765 3.415 0.769 0.815 0.720 4.786

ERT 0.773 3.221 0.767 1.156 0.716 5.620

SDM 0.674 3.727 0.654 1.129 0.579 6.006

HR-TF

AAM 0.468 32.754 0.538 25.240 0.451 29.833
CFSS 0.735 2.363 0.653 12.844 0.677 4.786
ERT 0.571 8.877 0.513 17.519 0.538 12.132
SDM 0.654 5.483 0.598 13.288 0.612 6.368

MTCNN

AAM 0.323 51.474 0.406 36.283 0.203 65.005
CFSS 0.748 6.055 0.760 2.717 0.726 4.388

ERT 0.639 10.429 0.633 5.503 0.639 7.220
SDM 0.705 5.747 0.711 2.604 0.689 4.674

NPD

AAM 0.337 52.227 0.320 48.941 0.264 54.141
CFSS 0.494 37.742 0.511 34.841 0.499 32.625
ERT 0.463 38.436 0.467 35.036 0.466 33.521
SDM 0.452 39.416 0.476 34.984 0.462 33.467

SS-DPM

AAM 0.507 32.867 0.526 28.781 0.175 75.646
CFSS 0.609 21.734 0.576 22.070 0.248 65.421
ERT 0.636 21.397 0.622 18.459 0.246 66.905
SDM 0.594 21.306 0.569 18.444 0.227 67.653

SVM+HOG

AAM 0.627 13.770 0.643 11.210 0.526 20.215
CFSS 0.759 5.009 0.747 4.186 0.632 12.179
ERT 0.750 6.002 0.717 6.428 0.615 13.963
SDM 0.685 6.218 0.676 6.325 0.522 13.234

VJ

AAM 0.570 18.339 0.593 15.612 0.546 16.831
CFSS 0.685 14.945 0.686 12.619 0.660 11.612
ERT 0.679 15.783 0.675 12.862 0.672 11.543
SDM 0.536 16.452 0.573 13.175 0.530 12.779

VPHR

AAM 0.482 28.893 0.636 12.737 0.519 23.065
CFSS 0.747 4.860 0.743 3.255 0.652 11.287
ERT 0.725 6.834 0.700 6.328 0.624 13.490
SDM 0.661 7.367 0.655 6.239 0.549 15.206

Colouring denotes the methods’ performance ranking per category: � first � second � third � fourth

The area under the curve (AUC) and failure rate are reported. The top four performing curves are highlighted for each video category

high level diagram explaining the detection procedure for

this experiment is given by Fig. 1.

Specifically, in this experiment we consider the 27 model

free trackers of Table 2, plus the PREV baseline, with the 4

landmark localisation techniques of Table 3 (AAM, CFSS,

ERT, SDM), for a total of 112 results. The results of the

experiment are given in Table 8 and Fig. 7. Please see the

supplementary material for full statistics.

By inspecting the results, we can firstly notice that most

generative trackers perform poorly (i.e. ORIA, DF, FCT,

IVT), except LRST which achieves decent performance

for the most challenging video category.The discriminative

approaches of SRDCF and SPOT are consistently perform-

ing very well, however the trackers employing deep neural

networks fetch the most accurate outcomes, consistent with

the latest VOT competition outcomes. Additionally, simi-

lar to the face detection experiments, the combination of all

trackers with CFSS returns the best result, whereas AAM

constantly demonstrates the poorest performance. Finally,

it becomes evident that a straightforward application of

the simplistic baseline approach (PREV) is not suitable for

deformable tracking, even though it is surprisingly outper-

forming some model free trackers, such as DF, ORIA and

FCT. For the curves that correspond to all 112 methods as

well as a video with the tracking result of the top five methods

(see footnote 6), please refer to the supplementary mate-

rial.
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Fig. 5 Results for experiment 2 of Sect. 4.4 (detection + landmark localisation + initialisation from previous frame). The top five performing curves

are highlighted in each legend. Please see Table 7 for a full summary

(a) (b) (c)

Fig. 6 Results for experiment 2 of Sect. 4.4 (detection + landmark

localisation + initialisation from previous frame). These results show

the effect of initialisation from the previous frame, in comparison to

missing detections. The top three performing results are given in red,

green and blue, respectively, and the top three most improved are given

in cyan, yellow and brown, respectively. The dashed lines represent the

results before the reinitialisation strategy is applied, solid lines are after

(Color figure online)

4.6 Experiment 4: Failure Checking and Tracking

Reinitialisation

Complementing the experiments of Sect. 4.5, we investi-

gate the improvement in performance of performing failure

checking during tracking. Here we define failure checking

as the process of determining whether or not the currently

tracked object is a face. Given that we have prior knowl-

edge of the class of object we are tracking, namely faces,

this enables us to train an offline classifier that attempts to

determine whether a given input is a face or not. Furthermore,

since we are also applying landmark localisation, we can per-

form a strong classification by using the facial landmarks as

position priors when extracting features for the failure check-

ing. To train the failure checking classifier, we perform the

following methodology:

1. For all images in the Landmark Localisation training

set, extract a fixed sized patch around each of the 68

landmarks and compute HOG (Dalal and Triggs 2005)

features for each patch. These patches are the positive

training samples.

2. Generate negative training samples by perturbing the

ground truth bounding box, extracting fixed size patches

and computing HOG.

3. Train an SVM classifier using the positive and negative

samples.
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Table 8 Results for experiment 3 of Sect. 4.5 (model free tracking + landmark localisation) (Color table online)

Method Category 1 Category 2 Category 3 Complexity

Rigid Landmark
AUC

Failure
AUC

Failure
AUC

Failure Timing
Tracking Localisation Rate (%) Rate (%) Rate (%)

PREV

AAM 0.375 50.652 0.465 38.273 0.095 87.734

0
CFSS 0.545 27.358 0.618 19.865 0.199 72.991
ERT 0.340 57.266 0.438 42.011 0.073 89.959
SDM 0.497 36.606 0.505 32.843 0.194 74.111

CAMSHIFT

AAM 0.030 94.900 0.053 88.051 0.023 95.604
CFSS 0.062 86.809 0.128 72.524 0.079 79.926 0.012

ERT 0.032 93.046 0.030 90.007 0.026 92.336
SDM 0.039 89.794 0.072 81.808 0.031 89.295

CCOT

AAM 0.561 22.570 0.673 9.905 0.412 34.298

1.500
CFSS 0.719 7.748 0.771 1.235 0.698 4.305

ERT 0.667 10.516 0.724 4.043 0.570 10.485
SDM 0.654 9.099 0.703 2.458 0.592 9.737

CMT

AAM 0.574 20.323 0.691 8.424 0.478 26.334

0.038
CFSS 0.748 2.635 0.758 1.871 0.595 16.506
ERT 0.653 6.950 0.716 2.847 0.498 21.136
SDM 0.669 3.808 0.706 2.184 0.529 18.427

DF

AAM 0.270 60.722 0.290 57.404 0.224 67.165

0.185
CFSS 0.467 38.756 0.460 35.465 0.348 51.761
ERT 0.337 48.838 0.344 46.094 0.246 59.526
SDM 0.358 47.286 0.365 43.672 0.275 57.901

DLSSVM

AAM 0.566 21.800 0.671 8.052 0.403 32.896

0.126
CFSS 0.762 2.503 0.748 0.459 0.612 15.256
ERT 0.680 6.075 0.640 4.557 0.456 23.011
SDM 0.694 3.860 0.659 1.609 0.512 20.291

DSST

AAM 0.510 28.620 0.675 8.442 0.246 59.761
CFSS 0.670 13.018 0.764 0.605 0.380 44.205 0.014

ERT 0.549 17.341 0.686 2.434 0.286 48.893
SDM 0.552 14.509 0.686 1.558 0.304 46.433

FCT

AAM 0.341 51.592 0.549 20.288 0.148 76.888
CFSS 0.527 29.347 0.706 9.409 0.319 53.043 0.009

ERT 0.384 40.603 0.619 11.989 0.187 65.215
SDM 0.418 38.522 0.627 12.524 0.203 63.803

HDT

AAM 0.422 40.148 0.558 23.500 0.268 56.182

1.047
CFSS 0.631 19.268 0.684 9.6100 0.534 26.399
ERT 0.491 27.749 0.615 15.983 0.343 37.566
SDM 0.525 26.141 0.603 14.280 0.399 35.811

IVT

AAM 0.429 40.724 0.424 42.699 0.245 61.675

0.020
CFSS 0.580 28.005 0.533 28.225 0.423 42.244
ERT 0.507 31.802 0.477 32.773 0.329 47.033
SDM 0.517 30.971 0.464 33.706 0.348 45.664

KCF

AAM 0.550 25.025 0.672 8.731 0.376 39.221
CFSS 0.693 11.221 0.741 2.847 0.554 16.889 0.011

ERT 0.642 13.318 0.716 3.714 0.438 24.838
SDM 0.626 12.119 0.694 3.069 0.444 22.686

LCT

AAM 0.534 26.336 0.670 9.248 0.435 31.694

0.172
CFSS 0.706 10.527 0.770 0.627 0.644 12.88
ERT 0.660 12.903 0.731 1.898 0.531 16.123
SDM 0.650 12.025 0.710 2.172 0.568 14.761

LRST

AAM 0.537 26.997 0.633 13.419 0.426 32.878

1.738
CFSS 0.704 10.873 0.759 1.600 0.649 13.526
ERT 0.629 13.191 0.698 4.429 0.531 16.712
SDM 0.643 12.730 0.696 4.040 0.580 15.249

MDNET

AAM 0.579 19.944 0.649 9.354 0.500 24.893

3.101
CFSS 0.780 1.789 0.780 0.383 0.706 7.520

ERT 0.758 2.390 0.762 0.812 0.632 9.972
SDM 0.734 2.137 0.732 1.238 0.653 8.647
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Table 8 continued

Method Category 1 Category 2 Category 3 Complexity

Rigid Landmark
AUC

Failure
AUC

Failure
AUC

Failure Timing
Trackin g Localisatio n Rate (%) Rate (%) Rate (%)

MEEM

AAM 0.493 29.022 0.605 12.299 0.370 41.680

0.102
CFSS 0.761 3.534 0.775 0.420 0.662 11.236

ERT 0.647 8.874 0.728 0.989 0.545 13.223
SDM 0.666 7.283 0.717 0.998 0.598 13.071

MIL

AAM 0.445 32.327 0.544 21.654 0.185 67.093

0.075
CFSS 0.683 11.420 0.710 4.128 0.380 45.910
ERT 0.536 16.881 0.603 10.413 0.237 57.771
SDM 0.589 14.693 0.626 8.746 0.268 56.023

ORIA

AAM 0.364 48.718 0.566 21.17 0.128 77.014

0.076
CFSS 0.501 34.015 0.665 10.617 0.273 60.909
ERT 0.436 38.251 0.640 12.491 0.227 61.343
SDM 0.395 43.986 0.634 12.144 0.188 66.970

PF

AAM 0.297 54.275 0.428 34.680 0.108 78.217

0.088
CFSS 0.546 29.095 0.616 15.296 0.415 38.101
ERT 0.399 37.648 0.457 26.530 0.240 50.804
SDM 0.445 35.104 0.504 23.351 0.294 48.817

RPT

AAM 0.477 32.206 0.617 12.181 0.379 39.640

0.348
CFSS 0.725 5.751 0.768 0.271 0.627 13.324
ERT 0.587 12.897 0.709 2.388 0.506 18.698
SDM 0.620 9.191 0.708 0.925 0.538 17.539

SIAM-OXF

AAM 0.498 31.921 0.648 11.879 0.500 25.496

0.220
CFSS 0.714 8.200 0.740 2.333 0.653 10.420
ERT 0.648 12.077 0.688 6.239 0.564 15.538
SDM 0.633 11.398 0.671 5.540 0.567 13.775

SPOT

AAM 0.535 25.227 0.680 7.058 0.253 57.121

0.154
CFSS 0.769 2.330 0.774 0.435 0.546 27.414
ERT 0.638 6.809 0.728 1.095 0.411 30.458
SDM 0.679 3.244 0.715 0.532 0.472 28.562

SPT

AAM 0.141 77.871 0.105 81.087 0.051 90.949

1.438
CFSS 0.267 64.039 0.216 67.550 0.157 76.707
ERT 0.178 70.526 0.123 76.454 0.084 83.288
SDM 0.202 68.807 0.144 74.203 0.102 82.150

SRDCF

AAM 0.545 26.056 0.675 7.824 0.437 31.827

0.206
CFSS 0.731 6.810 0.779 0.155 0.687 8.145

ERT 0.636 11.251 0.743 0.980 0.544 11.666
SDM 0.650 7.929 0.726 0.435 0.587 10.788

STAPLE

AAM 0.503 28.187 0.673 8.049 0.389 35.118

0.035
CFSS 0.686 8.048 0.767 0.541 0.656 6.787

ERT 0.573 15.567 0.702 2.653 0.486 14.487
SDM 0.587 12.706 0.692 2.367 0.533 11.666

STCL

AAM 0.075 87.172 0.124 80.074 0.035 92.878
CFSS 0.163 73.950 0.176 72.289 0.095 84.473 0.015

ERT 0.086 82.045 0.121 77.580 0.050 88.695
SDM 0.094 80.686 0.121 76.740 0.049 89.385

STRUCK

AAM 0.543 25.041 0.648 13.282 0.360 42.496

0.028
CFSS 0.728 7.741 0.741 4.411 0.585 21.050
ERT 0.596 11.148 0.685 5.528 0.430 27.139
SDM 0.643 8.866 0.681 4.965 0.488 25.156

TGPR

AAM 0.504 26.583 0.634 13.148 0.361 42.843

1.353
CFSS 0.721 6.866 0.757 1.901 0.625 13.714
ERT 0.606 10.166 0.689 3.854 0.454 21.866
SDM 0.623 7.892 0.687 4.067 0.488 20.143

TLD

AAM 0.373 42.618 0.507 18.837 0.269 55.885

0.066
CFSS 0.622 14.940 0.678 7.502 0.469 29.592
ERT 0.410 30.337 0.544 14.952 0.302 38.877
SDM 0.456 25.006 0.564 11.676 0.333 37.440

Colouring denotes the methods’ performance ranking per category: � first � second � third � fourth � fifth
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(a) (b) (c)

Fig. 7 Results for experiment 3 of Sect. 4.5 (model free tracking + landmark localisation). The top five performing curves are highlighted in each

legend. Please see Table 8 for a full summary

For the experiments in this section, we use a fixed patch size

of 18×18 pixels, with 100 negative patches sampled for each

positive patch. The failure checking classification threshold

is chosen via cross-validation on two sequences from the

300 VW training videos. Any hyper-parameters of the SVM

are also trained using these two validation videos.

Given the failure detector, our restart procedure, is as fol-

lows:

– Classify the current frame to determine if the tracking has

failed. If a failure is verified, perform a restart, otherwise

continue.

– Following the convention of the VOT challenges by Kris-

tan et al. (2013, 2014, 2015), we attempt to reduce the

probability that poor trackers will overly rely on the out-

put of the failure detection system. In the worst case, a

very poor tracker would fail on most frames and thus

the accuracy of the detector would be validated rather

than the tracker itself. Therefore, when a failure is iden-

tified, the tracker is allowed to continue for 10 more

frames. The results from the drifting tracker are used in

these 10 frames in order reduce the affect of the detector.

The tracker is then reinitialised at the frame it was first

detected as failing at. The next 10 frames, as previously

described, already have results computed and therefore

no landmark localisation or failure checking is performed

in these frames. At the 11th frame, the tracker continues

as normal, with landmark localisation and failure check-

ing.

– In the unlikely event that the detector fails to detect the

face, the previous frame is used as described in Sect. 4.4.

The diagram given in Fig. 8 gives a pictorial representation

of this scheme.

The results of this experiment are given in Table 9 and

Fig. 9. In contrast to Sect. 4.5, we only perform the experi-

ments on a subset of the total trackers using CFSS. We use 3

among the top performing trackers (SRDCF, RPT, SPOT) as

well as FCT which had mediocre performance in Sect. 4.5.

The results indicate that SRDCF is the best model free track-

ing methodology for the task.

In order to better investigate the effect of this failure

checking scheme, we also provide Fig. 6 which shows the

differences between the initial tracking results of Sect. 4.5

and the results after applying failure detection. The perfor-

mance of top trackers (i.e. SRDCF, SPOT, RPT) does not

improve much, which is expected since they are already able

to return a robust tracking result. However, FCT benefits from

the failure checking process, which apparently minimises its

drifting issues.

4.7 Experiment 5: Kalman Smoothing

In this section, we report the effect of performing Kalman

Smoothing (Kalman 1960) on the results of the detectors

of Sect. 4.3 and the trackers of Sect. 4.5. This experiment

is designed to highlight the stability of the current land-

mark localisation methods with respect to noisy movement

between frames (or jittering as it often known). However,

when attempting to smooth the trajectories of the tracked

bounding boxes themselves, we found an extremely nega-

tive effect on the results. Therefore, to remove jitter from

the results we perform Kalman smoothing on the landmarks

themselves. To robustly smooth the landmark trajectories, a

generic facial shape model is constructed in a similar man-

ner as described in the AAM literature by Cootes et al.

(2001). Specifically, given the sparse shape of the face con-

sisting of n landmark points, we denote the coordinates of

the i-th landmark point within the Cartesian space of the
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Detection Model Free Tracking Landmark Localisation

SVM

0.95 0.75 0.2

Extract Patches Around 

Landmark Estimates 
Facial Classifier

Re-detect and then 

continue tracking

Failure Checking

Fig. 8 This figure gives a diagram of the reinitialisation scheme pro-

posed in Sect. 4.6 for tracking with failure detection. For all frames

after the first, the result of the current landmark localisation is used to

decide whether or not a face is still being tracked. If the classification

fails, a re-detection is performed and the tracker is reinitialised with the

bounding box returned by the detector

Table 9 Results for experiment 4 of Sect. 4.6 (model free tracking + landmark localisation + failure checking) (Color table online)

Method Category 1 Category 2 Category 3

Rigid Landmark
AUC

Failure
AUC

Failure
AUC

Failure
Trackin g Localisation Rate (%) Rate (%) Rate (%)

FCT

CFSS

0.693 13.414 0.763 1.661 0.516 32.376
RPT 0.745 6.239 0.769 0.697 0.704 6.108

698.2157.0243.31886.0TOPS 0.570 22.913

SRDCF 0.748 5.999 0.772 0.505 0.698 6.657

Colouring denotes the methods’ performance ranking per category: � first � second � third

The area under the curve (AUC) and failure rate are reported. The top 3 performing curves are highlighted for each video category

image I as xi = [xi , yi ]
T . Then a shape instance of the

face is given by the 2n × 1 vector s =
[

xT
1 , . . . , xT

n

]T
=

[x1, y1, . . . , xn, yn]T . Given a set of N such shape samples

{s1, . . . , sN }, a parametric statistical subspace of the object’s

shape variance can be retrieved by first applying Generalised

Procrustes Analysis on the shapes to normalise them with

respect to the global similarity transform (i.e., scale, in-plane

rotation and translation) and then using Principal Compo-

nent Analysis (PCA). The resulting shape model, denoted

as {Us, s̄}, consists of the orthonormal basis Us ∈ R
2n×ns

with ns eigenvectors and the mean shape vector s̄ ∈ R
2n .

This parametric model can be used to generate new shape

instances as s(p) = s̄ + Usp where p = [p1, . . . , pns ]
T is

the ns × 1 vector of shape parameters that control the lin-

ear combination of the eigenvectors. The Kalman smoothing

is thus learnt via Expectation-Maximisation (EM) for the

parameters p of each shape within a sequence (Fig. 10).

The results of this experiment are given in Table 10 and

Fig. 11. These experiments also provide a direct comparison

between the best detection and model free tracking based
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(a) (b) (c)

Fig. 9 Results for experiment 4 of Sect. 4.6 (model free tracking + landmark localisation + failure checking). The top five performing curves are

highlighted in each legend. Please see Table 9 for a full summary

(a) (b) (c)

Fig. 10 Results for experiment 4 of Sect. 4.6 (model free track-

ing + landmark localisation + failure checking). These results show the

effect of the failure checking, in comparison to only tracking. The results

are coloured by their performance red, green, blue and orange, respec-

tively. The dashed lines represent the results before the reinitialisation

strategy is applied, solid lines are after (Color figure online)

techniques. In categories 1 and 2 the Kalman smoothing

applied to the model free trackers followed by the discrimi-

native landmark localisation methods of ERT or CFSS score

better, with the trackers MDNET and SRDCF being the top

performers. In category 3 the DPM and the deep tracker

MTCNN achieve the top performance, because they are less

prone to drifting (in comparison to trackers) in the most chal-

lenging clips of the dataset.

In order to better investigate the effect of the smooth-

ing, we also provide Fig. 12 which shows the differences

between the initial tracking results and the results after apply-

ing Kalman smoothing. This comparison is shown for the best

methods of Table 10. It becomes obvious that the improve-

ment introduced by Kalman smoothing is consistent, but

marginal.

4.8 300 VW Comparison

In this section we provide results that compare the best

performing methods of the previous Sects. (4.3–4.7) to

the participants of the 300 VW challenge by Shen et al.

(2015). The challenge had 5 competitors. Rajamanoharan

and Cootes (2015) employ a multi-view Constrained Local

Model (CLM) with a global shape model and different

response maps per pose and explore shape-space cluster-

ing strategies to determine the optimal pose-specific CLM.

Uricar and Franc (2015) apply a DPM at each frame as

well as Kalman smoothing on the face positions. Wu and

Ji (2015) utilise a shape augmented regression model, where

the regression function is automatically selected based on

the facial shape. Xiao et al. (2015) propose a multi-stage

regression-based approach that progressively provides ini-

123



222 Int J Comput Vis (2018) 126:198–232

Table 10 Results for experiment 5 of Sect. 4.7 (Kalman Smoothing) (Color table online)

Method Category 1 Category 2 Category 3

Detection or Landmark
AUC

Failure
AUC

Failure
AUC

Failure
Tracking Localisation Rate (%) Rate (%) Rate (%)

DPM
CFSS 0.766 3.741 0.770 1.317 0.724 5.234

ERT 0.777 3.442 0.772 1.509 0.721 6.082

SDM 0.678 3.728 0.652 1.354 0.592 5.786

MTCNN CFSS 0.734 8.507 0.725 8.518 0.726 5.685

FCT

AAM 0.342 51.503 0.552 20.172 0.149 76.765
CFSS 0.529 29.283 0.709 9.358 0.320 53.061
ERT 0.386 40.506 0.623 11.937 0.188 65.121
SDM 0.419 38.506 0.629 12.515 0.204 63.730

MDNET CFSS 0.784 1.754 0.783 0.341 0.713 7.466

RPT
CFSS 0.727 5.722 0.772 0.252 0.632 13.331
ERT 0.589 12.765 0.713 2.303 0.507 18.687
SDM 0.622 9.169 0.710 0.888 0.539 17.535

SPOT

AAM 0.536 24.998 0.682 6.957 0.254 56.803
CFSS 0.773 2.237 0.777 0.417 0.551 27.323
ERT 0.640 6.745 0.731 1.074 0.412 30.296
SDM 0.681 3.194 0.717 0.508 0.474 28.548

SRDCF

AAM 0.546 25.988 0.676 7.697 0.440 31.499
CFSS 0.734 6.815 0.783 0.131 0.693 8.134
ERT 0.637 11.145 0.746 0.922 0.544 11.572
SDM 0.652 7.905 0.729 0.414 0.588 10.774

TLD
CFSS 0.624 14.827 0.681 7.477 0.473 29.548
SDM 0.457 24.965 0.566 11.645 0.335 37.389

Colouring denotes the methods’ performance ranking per category: � first � second � third � fourth

The area under the curve (AUC) and failure rate are reported. The top four performing curves are highlighted for each video category

(a) (b) (c)

Fig. 11 Results for experiment 5 of Sect. 4.7 (Kalman Smoothing). The top five performing curves are highlighted in each legend. Please see

Table 10 for a full summary

tialisations for ambiguous landmarks such as boundary and

eyebrows, based on landmarks with semantically strong

meaning such as eyes and mouth corners. Finally, Yang et al.

(2015a) employ a multi-view spatio-temporal cascade shape

regression model along with a novel reinitialisation mecha-

nism.

The results are summarised in Table 11 and Fig. 13. Note

that the error metric considered in this paper (as described in
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(a) (b) (c)

Fig. 12 Results for experiment 5 of Sect. 4.7 (Kalman Smoothing).

These results show the effect of Kalman smoothing on the final land-

mark localisation results. The top three performing results are given in

red, green and blue, respectively, and the top three most improved are

given in cyan, yellow and brown, respectively. The dashed lines rep-

resent the results before the smoothing is applied, solid lines are after

(Color figure online)

Table 11 Comparison between the best methods of Sects. 4.3–4.7 and the participants of the 300 VW challenge by Shen et al. (2015) (Color table

online)

Method
Category 1 Category 2 Category 3

AUC
Failure

AUC
Failure

AUC
Failure

Rate (%) Rate (%) Rate (%)

DPM + ERT + Kalman 0.775 3.472 0.770 1.527 0.719 6.111

DPM + ERT + previous 0.771 3.262 0.764 1.205 0.714 5.692

DPM + CFSS + Kalman 0.764 3.784 0.767 1.326 0.721 5.255

MDNET + CFSS + Kalman 0.784 1.754 0.783 0.341 0.713 7.466
MTCNN + CFSS + Kalman 0.734 8.507 0.725 8.518 0.726 5.685

MTCNN + CFSS + previous 0.748 6.055 0.760 2.717 0.726 4.388

SRDCF + CFSS + Kalman 0.732 6.847 0.780 0.131 0.690 8.206
SRDCF + CFSS 0.729 6.849 0.777 0.167 0.684 8.242

Yang et al (2015a) 0.791 2.400 0.788 0.322 0.710 4.461
Uricar and Franc (2015) 0.657 7.622 0.677 4.131 0.574 7.957

Xiao et al (2015) 0.760 5.899 0.782 3.845 0.695 7.379
Rajamanoharan and Cootes (2015) 0.735 6.557 0.717 3.906 0.659 8.289

Wu and Ji (2015) 0.674 13.925 0.732 5.601 0.602 13.161

Colouring denotes the methods’ performance ranking per category: � first � second � third � fourth � fifth

The area under the curve (AUC) and failure rate are reported. The top five performing curves are highlighted for each video category

Sect. 4.2.2) differs from that of the original competition. This

was intended to improve the robustness of the results with

respect to variation in pose. Also, as noted in Sect. 4.2, the

300 VW annotations have been corrected and thus this exper-

iment represents updated results for the 300 VW competitors.

The results indicate that Yang et al. (2015a) outperforms the

rest of the methods for the videos of categories 1 and 2,

whereas the deep network of Zhang et al. (2016) combined

with CFSS and Kalman smoothing or initialisation from pre-

vious are the top performing for the challenging videos of

category 3. Moreover, it becomes evident that methodologies

which employ face detection dominate category 3, whereas

in categories 1 and 2 the model free trackers dominate.

5 Discussion and Conclusions

In Sect. 4 we presented a number of experiments on

deformable tracking of sequences containing a single face.

We investigated the performance of state-of-the-art face

detectors and model free trackers on the recently released

300 VW dataset (see footnote 1). We also devised a number

of hybrid systems that attempt to improve the performance

of both detectors and trackers with respect to tracking fail-

ures. A summary of the proposed experiments are given in

Table 4.

Overall, it appears that modern detectors are capable

of handling videos of the complexity provided by the
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Fig. 13 Comparison between the best methods of Sects. 4.3–4.7 and the participants of the 300 VW challenge by Shen et al. (2015). The top five

methods are shown and are coloured red, blue, green, orange and purple, respectively. Please see Table 11 for a full summary (Color figure online)

300 VW dataset. This supports the most commonly pro-

posed deformable face tracking methodology that couples a

detector with a landmark localisation algorithm. More inter-

estingly, it appears that modern model free trackers are also

highly capable of tracking videos that contain variations in

pose, expression and illumination. This is particularly evi-

dent in the videos of category 2 where the model free trackers

perform the best. The performance on the videos of category

2 is likely due to the decreased amount of pose variation

in comparison to the other two categories. Category 2 con-

tains many illumination variations which model free trackers

appear invariant to. Our work also supports the most recent

model free tracking benchmarks (Kristan et al. 2015 and Wu

et al. 2015) which have demonstrated that DCF-based track-

ers are currently the most competitive along with the deep

neural network approaches. However, the performance of the

trackers does deteriorate significantly in category 3 which

supports the categorisation of these videos in the 300 VW

as the most difficult category. The difficulty in the videos

of category 3 largely stems from the amount of pose vari-

ation present, which both detectors and model free trackers

struggle with.

The DPM detector provided by Mathias et al. (2014) is

very robust across a variety of poses and illumination condi-

tions. The more recent face detector of Zhang et al. (2016)

outperforms the rest employed methods in the challenging

category 3, however it seems less robust than the DPM detec-

tor in the easier categories. The recent advances in the model

free trackers, dictate the MDNET tracker of Nam and Han

(2016) as a top performing method, which outperforms the

pre-trained detectors in the first two categories. MDNET

belongs to the discriminatively learned Convolutional Neu-

ral Networks trackers with their architecture having several

shared CNN layers along with a branched last layer during

the training. During the inference, the last layer is discarded

and a new layer that is updated online is added. This online

update capability of the last layer makes the tracker very

robust to abrupt changes and a top performing method in

all tracking benchmarks. The SRDCF tracker of Danelljan

et al. (2015) from the category of trackers with discrimina-

tively learned correlation filters (DCF) consists an alternative

top performing method. DCF trackers are currently a very

popular method of choice for bounding box based track-

ing. They capitalise on a periodic assumption of the training

samples to efficiently learn a classifier on all patches in the

target neighborhood. Nevertheless, the periodic assumption

may introduce unwanted boundary effects, which severely

degrade the quality of the tracking model. SRDCF incor-

porates a spatial regularization component in the learning

to penalize correlation filter coefficients depending on their

spatial location. The CFSS landmark localisation method

of Zhu et al. (2015) outperforms all other considered land-

mark localisation methods, although the random forest based

ERT method of Kazemi and Sullivan (2014) also performed

very well. In contrast to the conventional Cascade Regres-

sion approaches that iteratively refine an initial shape in a

cascaded manner, CFSS explores a diverse shape space and

employs a probabilistic heuristic to constrain the finer search

in the subsequent cascade levels. The authors argue that this

procedure prevents the final solution from being trapped in a

local optimum like similar regression techniques. The exper-

imental results support the claim of the authors of Zhu et al.

(2015) as the videos contain very challenging pose variations.

The stable performance of both the best model free track-

ers and detectors on these videos is further demonstrated

by the minimal improvement gained from the proposed

hybrid systems. Neither reinitialisation from the previous

frame (Sect. 4.4), nor the failure detection methodology pro-

posed (Sect. 4.6) improved the best performing methods with

any significance. Such hybrid systems could be very use-

ful, though, in case of person re-appearance, multiple person

cross-overs. Furthermore, smoothing the facial shapes across
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the sequences (Kalman) also had a very minimal positive

improvement, which can be attributed to the human factor,

nonetheless the usage of this smoothing could be more useful

for reducing the amount of jiterring in consecutive frames.

In comparison to the recent results of the 300 VW com-

petition (Shen et al. 2015), our review of combinations of

modern state-of-the-art detectors and trackers found that very

strong performance can be obtained through fairly simple

deformable tracking schemes. In fact, only the work of Yang

et al. (2015a) outperforms our best performing methods in

the easier categories of 1 and 2, while the difference shown by

Fig. 13 appears to be marginal. However, the overall results

show that, particularly for videos that contain significant

pose, there are still improvements to be made.

To summarise, there are a number of important issues that

must be tackled in order to improve deformable face tracking:

1. Pose is still a challenging issue for landmark localisa-

tion methods. In fact, the videos of 300 VW do not even

exhibit the full range of possible facial pose as they do

not contain profile faces. The challenges of considering

profile faces have yet to be adequately addressed and

have not be verified with respect to current state-of-the-

art benchmarks.

2. In this work, we only consider videos that contain a single

visible face. However, there are many scenarios in which

multiple faces may be present and this represents further

challenges to deformable tracking. Detectors for exam-

ple, are particularly vulnerable to multi-object tracking

scenarios as they require extending with the ability to

determine whether the object being localised is the same

as in the previous frame.

3. It is very common for objects to leave the frame of the

camera during a sequence, and then reappear. Few model

free trackers are robust to reinitialisation after an object

has disappeared and then reappeared. When combined

with multiple objects, this scenario becomes particularly

challenging as it requires a re-identification step in order

to verify whether the object to be tracked is one that was

seen before.

We believe that deformable face tracking is a very exciting

line of research and future advances on the field can have an

important impact on several areas of Computer Vision.
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dez, G., et al. (2015). The visual object tracking vot2015 challenge

results. In IEEE proceedings of international conference on com-

puter vision workshops (ICCV’W).

Kristan, M., Matas, J., Leonardis, A., Vojíř, T., Pflugfelder, R., Fernan-
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