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Abstract

A new general reflectance model for computer graphics is presented.

The model is based on physical optics and describes specular, di-

rectional diffuse, and uniform diffuse reflection by a surface. The

reflected light pattern depends on wavelength, incidence angle, two

surface roughness parameters. and surface refractive index. The for-

mulation is self consistent in terms of polarization, surface rough-

ness, maskin@hadowing, and energy. The model applies to a wide

range of materials and surface finishes and provides a smooth tran-

sition from diffuse-like to specular reflection as the wavelength and

incidence angle are increased or the surface roughness is decreased.

The model is analytic and suitable for Computer Graphics appli-

cations. Predicted reflectance distributions compare favorably with

experiment. The model is applied to metallic, nonmetallic, and plas-

tic materials, with smooth and rough surfaces.

CR Categories and Subject Descriptors: 1.3.7—[Computer

Graphics]: Three-Dimensional Graphics and Realism; I.3.3—

[Computer Graphics]: Picture/fmage Generation: J.2—[Physical

Sciences and Engineering]: Physics.

Additional Key Words and Phrases: reflectance model, specular

and diffuse reflection, comparison with experiment.

1 Introduction

Photorealistic image generation is an active research area in Com-

puter Graphics. Ray-tracing and Radiosity have been developed to

obtain realistic images for specular and diffuse environments, re-

spectively, However, applications of these methods to general en-

vironments have been hindered by the lack of a broadly-applicable

local light reflection model. To obtain a true global illumination so-

lution of a general environment, a physically based reflection model

of general applicability is needed.

A comprehensive light reflection model is presented in this pa-

per. The model compares favorably with experiment and describes

specular, directional diffuse, uniform diffuse and combined types of
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reflection behavior. The model is analytic and provides a smooth

transition from specular to diffuse-like behavior as a function of

wavelength, incidence angle and surface roughness.

As illustrated in Figure 1, we classify the reflection process from
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Figure 1: Reflection processes at a surface

an arbitrary surface as consisting of first-surface reflections and

multiple surface and/or subsurface reflections. The first-surface re-

flection process is described by physical optics and is strongly di-

rectional. As the surface becomes smooth this part evolves toward

specular or mirror-like behavior. As the surface becomes rough, a

diffuse-like behavior due to diffraction and interference effects be-

comes more important and, at larger roughnesses. it controls the di-

rectional distribution of the first-surface reflected light. The model

partitions energy into specular and diffuse-like components accord-

ing to the roughness of the surface. The multiple surface and sub-

surface reflections sketched in Figure 1 are geometrically complex,

but may be expected to be less strongly directional than the first-

surface reflected light. Hence, they are approximated as uniform

diffuse. Our model leads to analytic expressions suitable for the full

range of surface roughnesses and thus is useful for implementation

in computer graphics.

The present model builds on, and extends, existing models from

optics [3] [5]. h allows for polarization and masking/shadowing ef-

fects. The model extends the geometric optics model of Cook [8]

to the physical optics region, and correctly includes specular reflec-

tion as the surface roughness is decreased. The model is physically

based in contrast to empirical approaches [13].

The following sections provide a conceptual introduction, the

model, a comparison with physical experiments, and example im-

plementations. The mathematical derivation of the model appears in

Appendix A. For unpolarized incident light, the reflectance model

is summarized in Appendix B.
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projected area of the surface (Figure 5)

bidirectional reflectance distribution function

correlation coefficient, equation (48)

complex coefficient of polarization state

distribution function, equation (78)

scalar and vector electric fields

Fresnel reflection coefficient, equation (44)

Fresnel reflectivity

Fresnel matrix, equation (44)

geometrical factor, equation (76)

Green’s function, equation (2)

surface roughness function, equation (9)

intensity

unit tensor

unit imaginary number, i.e., i = ~

wave number, i.e., k = 2r~A

wave vector

unit vector in wave direction

length

length dimensions of the surface

summation index

refractive index

local surtldce normal, unit vector

bisecting unit vector, equation (51 )

incident polarization state vector, equation (34)

Gaussian distribution function, equation (3)

dktance from origin to field point

positional vector to field point

positional vector of a surface point

shadowing function, equation (23)

s and p polarization unit vectors

transformation matrix, equation (39)

wave vector change, equation (20)
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J=i
unit vectors in Cartesian coordinates

surface height

area of bounding surface, Figure 2

delta function

horizontal distance vector, equation (28)

polar and azimuthal angles (Figure 5)

wavelength

Gaussian distributed random function

bidirectional reflectivity, equation (4)

directional-hemispherical reflectivity

hemispherical-directional reflectivity

apparent variance of z = ~(z, y)

variance of z = <(x, y)

autocorrelation length, equation (48)

solid angle

Subscripts

ambient

bkecting

bidirectional

directional-diffuse

incident

p polarization

reflected

s polarization

specular

uniform-diffuse

Cartesian coordinates

surface points

Superscripts

local plane

complex conjugate

Table 1: Nomenclature

2 Theory of light reflection of surface reflection models, known as “physical or wave optics”

This section introduces the principal techniques often used to an-

alyze the reflection of an electromagnetic wave by a general sur-

face [3] [5]. The improved model presented later in this paper uses

all of these techniques.

models, to be derived [5]. “Physical opti;s’’-uses a complete “phys-

ical or wave description of the reflection process, thus allowing for

diffraction and interference effects. Wave effects must be included

if a reflection model is to describe both specular and diffuse-like

reflection from a surface.

2.1 Kirchhoff theory

Consider the geometry sketched in Figure 2. According to classical

electromagnetic theory, the scalar electromagnetic field ,?3(~) at an

arbitrary point in space can be expressed as a function of the scalar

field E, and its normal derivative ~.E, /th on any enclosing surface

r. The governing equation is [5]

where G’ is the free space Green’s function given by [ 12]

(2)

Equation (I) is an integral representation of the wave equation and

is known as the Kirchhoff integral of scalar diffraction theory.

For a single reflecting surface, the domain of integration r re-

duces to the area of the reflecting surface. This has allowed a class

I I

)’

t

I

I I

Figure 2: Geometry for application of the Kirchhoff integral. il is

the local surface normal.
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2.2 Tangent plane approximation

For reflection processes, the Kirchhoff formulation reduces the gen-

eral problem of computing the field everywhere in space to the sim-

pler one of determining the field on the reflecting surface, However.

even this is a complex task, and the so-called “tangent plane approx-

imation” is often used. This is done by setting the value of the field

at a given point on the surface to be the value that would exist if the

surface were replaced by its local tangent plane. This is sketched

in Figure 3 where E, and E., are the incident and scattered fields,

respectively, and F’(O) is the local Fresnel (electric field) reflection

coefficient. The approximation is valid when the local radius of

curvature of the surface is large compared to the wavelength, The

reflected field depends on the Fresnel reflection coefficients for hor-

izontal and vertical polarizations, as well as on the local slorre and

position of the refle~ting point.

%A!’=’(e)””

Figure 3: Tangent plane approximation for a reflecting surface. The

statistical pammeters r and ~ for the surface are indicated schemat-

icallyy.

2.3 Statistical surfaces

The complete geometrical specification of a reflecting surface is

rarely known, but information at length scales comparable to the

radiation wavelength is required when the Kirchhoff theory is used.

However, smaII scale variations of the electromagnetic field on the

surface are averaged out when viewed from a distance. This averag-

ing over points on a surface is statistically equivalent to averaging

over an entire class of surfaces with the same statistical description.

Interesting quantities, such as the reflected intensity in a given di-

rection, can then be obtained by a weighted average of the Kirchhoff

integral,

Frequently, the height distribution on a surface (Figure 3) is as-

sumed to be Gaussian and spatially isotropic, Under such condi-

tions, the probability that a surface point falls in the height range z

to : + dz is given by p(~)dz, with a probability distribution

1 ~–(z:p”o~)
p(:). —

V’&,,
(3)

A mean value of J = 0 is assumed and uo is the rms roughness

of the surface. To fully specify an isotropic surface a horizontal

length measure is also needed. One such measure is the aurocor-

re/ation Ierrgfh ~ (defined in equation (48)), which is a measure of

the spacing between surface peaks. The rms slope of the surface is

proportional to cr[~/r,

2.4 Shadowing and masking

The effect of self-shadowing and self-masking by a rough sur-

face (Figure 4) was introduced in computer graphics by Blinn [6]

and Cook [8]. This effect manifests itself at large angles of in-

cidence or reflection, where parts of the surface are shadowed

and/or masked by other parts, reducing the amount of reflection.

Beckmann [4] argued that to first order, the effect of shadow-

1 Shadowing Masking

Figure 4: Shadowing and masking.

ing/masking can be obtained by using a multiplicative factor which

accounts for the fraction of the surface that is visible both to the

source and the receiver. Such a concept was used by both Blinn

and Cook in their geometrical optics approaches, but the V-groove

shadowing/masking factor the y used [20] is first-derivative discon-

tinuous. Marry other shadowing/masking factors have appeared in

the literature. Of these, the one due to Smith [ 16] is continuous in

all derivatives and has been found to agree with statistical numerical

simulations of a Gaussian rough surface [7].

2.5 Discussion

An early comprehensive model of light reflection from a rough sur-

face, using physical optics, was introduced by Beckmann [5]. Beck-

mann applied the scalar form of the Kirchhoff theory, used the tan-

gent plane approximation, and performed a statistical average over

the distribution of heights to get the reflected intensity. The Beck-

mann distribution function was used by Blinn and Cook for their

computer graphics applications.

Stogryn applied a more general, vector form of the Kirchhoff the-

ory, thus taking polarization effects and the correct dependency of

the Fresnel reflectivity into account [18]. Furthermore, he used a

more complete statistical averaging scheme that averages over both

height and slope. However, shadowin~masking was not consid-

ered, and the derivation of the reflected intensity was limited to spe-

cial cases of incident polarization. A more general model, which

accounts for polarization, Fresnel, and shadowing/masking effects,

has been described by Bahar [ I ] [2]. However, it is difficult to im-

plement because it relies on the solution of a set of coupled integro-

differential equations.

Finally, it should be noted that these models were very rarely

compared with experimental results.

3 An improved model

This section presents an improved light reflection model of broad

applicability. Section 3, I summarizes the techniques and key as-

sumptions; Section 3.2 presents the improved model. Details of

the mathematical derivation appear in Appendix A and a full set of

equations for unpolarized incident light in Appendix B.

3.1 Techniques and key assumptions

To develop a general reflection model which avoids many of the lim-

itations of previous models, the overall formulation of Beckmann

was used, but with the following improvements:

● The vector form of the Kirchhoff diffraction theory is used.

This allows, for the first time, a complete treatment of polar-

ization and directional Fresnel effects to be included. Such
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effects are required for a comprehensive formulation. The

model perrnits-abitraryincident polarization states (e.g., plane,

circular, unpolarized, partially polarized, etc.) and includes

effects like depolarization and cross-polarization.

The surface averaging scheme of Stogryn [18] is employed

with its improved representation of the effects of surface

height and slope. Averaging of the Kirchhoff integral is over

a four-fold joint probability function (i.e., height, slope, and

two spatial points).

The scheme of Stogryn [18] is extended to average only over

the illuminated (unshadowed/unmasked) parts of the surface.

This requires a modified probability function with an eflec-

tive roughness, u, given by equation (53). When roughness

valleys are shadowed/masked (Figure 4), the effective surface

roughness can be significantly smaller than the rrns roughness,

ao, especially at grazing angles of incidence or reflection. For

the first time, the concept of asseffective roughness, which de-

pends on the angles of illumination and reflection, is applied.

The geometrical shadowing/masking factor of Smith [16] is

introduced as a multiplicative factor. The function has appro-

priate smoothness and symmetry.

Wktt the above, the model leads to a fairly-complex integrrd for-

mulation. Simplifications result by making the local tangent-plane

approximation and assuming gentle roughness slopes. These as-

sumptions should be realistic for many surfaces over a wide range

of radiation wavelengths. Significantly, the assumptions lead to an

analytical form for the light reflection medel.

3.2 The improved light-reflection model

The light reflection model is presented in terms of the bidirectional

reflectivity pbd, aiso cakd the bidirectional reflectance distribu-

tion function (BRDF). The coordinates are shown in Figure 5, to-

gether with the propagation unit vectors (ka, ~r) and the polarization

unit vectors (ii, ~) for the polarization components perpendicular (S)

and parallel (j) to the incident and reflecting planes (i.e., the (~, 2)

planes). The total BRDF is defined as the ratio of the total reflected

I

I
I
I
I
I
I
I
I

/

I .-
/’I ~i x./’1

i ,0”
$.

Figure 5: Coordinates of illumination and reflection.

intensity (i.e., the sum of reflected s and p intensities) in the direc-

tion (0., 4,) to the energy incident per unit time and per unit area

onto the surface from the direction (Oi, @i) [14]. The incident en-

ergy flux may be expressed in terms of the incident intensity Ii and

the incident solid angle &i:

(4)

The BRDF may also be defined for each polarization component

of the reflected intensity (see Appendix A). Equation (4) gives the

frequently-used total BRDF.

We propose a bidirectional reflectivity consisting of three com-

ponents:

Pbd = Pbd, sp + Pbd,dd + Pbd,ud (5)

The additional subscripts correspond to specular (sp), directional-

diffuse (cM), and uniform-diffuse (d) reflection. The first two com-

ponents in (5) result from the first-surface reflection process (see

Figure 1) and are respectively due to specular reflection by the mean

surface and diffraction scattering by the surface roughness. The

third component, taken as uniform diffuse, is attributed to multiple

surface m-djor subsurface reflections.

An example of a light intensity distribution corresponding to

equation (5) is shown in Figure 6. A general reflecting surface is

%Ad!4==
Figure 6: Example of a light intensity distribution.

assumed, with some specular reflection, some diffraction scatter-

ing due to roughness, and some multiple or subsurface scattering.

The specularly-reflected part is contained within the specular cone

of reflection. The diffraction-scattered part shows a directional dis-

tribution which is far from ideal diffuse. The last partis uniform

diffuse (Lambertian).

An analytic form for the first two terms in (5) is derived in Ap-

pendix A. Wkh the local-tangent-plane and gentle-slope assump-

tions for the first-surface reflection process, and for arbitrary inci-

dent polarization, we have:

Pbd,sp =
P. .A=lF12e-g. S.A

COSOid~i COS81dW~
(6)

~(iib, tib, p) S T2 mgme-g
E

22

Pbd,dd =
VWT.—. — exp(–

COS 0: . COS Or 167r
—)~!.~ 4m

m.]

(7)

Pbd,ud = a(x (8)

where p, is the specular reflectivity of the surface, A is a delta func-

tion which is unity in the specular cone of reflection and zero other-

wise, IF12 is the Fresnel reflectivity which depends on the index of

refraction (fi(A)) of the surface material [14, p. 100], g is a function

of the effective surface roughness given by

g = [ (2 Tu/A) (Cos 01 + Cos0.)]2, (9)

S is the shadowing function (see equation (23)), F is a function

involving the Fresnel reflection coefficients (see equations (68) and
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(59), (60)), p is the polarization state vector of the incident light (see

equation (34)), [..V is a function which depends on the illumination

and reflection angles (see equation (20)), and a(A) is a parameter to

be discussed later.

For convenience and for the special case of incident unpolarized

light, the governing equations are gathered together and presented in

Appendix B. The directional-diffuse term in this appendix (equation

(7 I )) uses nomenclature to permit comparison with the geometric

optics model of Cook-Torrance [8].

The physical basis of the three reflection components in (5) is

discussed in the following subsections, Before proceeding, we note

that the dependence of the specuku component on o!w, drops out

if equation (5) is converted to an intensity basis by multiplying by

1, cos O,d~,. From (6), the specular term becomes PS1, A, which

is the well known form used in Ray-tracing. The specular intensity

is then independent of d~,, but the directional-diffuse and uniform-

diffuse intensities are proportional to d~,.

3.2.1 Specular contribution: ,ow,,,l,

The specular term accounts for mirror-like reflection from the mean

plane of the reflecting surface. The term is proportional to the Fres-

nel or mirror reflectivity, IFlz. For rough surfaces, the speculw term

is reduced by the roughness and shadowing factors e–(~ and S, re-

spectively.

For a smooth surface, as the wavelength of the incident light be-

comes large relative to the projected surface roughness, i.e., ~ >>

mcos t9,, the specular term is not attenuated since g ~ O and

S ~ 1, Also in this limit, the specular component dominates the

first-surface reflection process, since the contribution from equa-

tion (7) diminishes as g ~ O. For smooth surfaces, equation (6)

reduces m

/F1’/cosO,dw,, (lo)

which is the usual form of the bidirectional reflectivity for a specular

surface.

3.2.2 Directional diffuse contribution: pM,,M

When the wavelength of the incident light is comparable to or

smaller than the projected size of surface roughness elements (i.e.,

A ~ a cos 0, ), the first-surface reflection process introduces diffrac-

tion and interference effects. The reflected field is spread out to the

hemisphere above the reflecting surface. We call this directional

d@ue, to indicate that the field is diffused to the hemisphere but

may have a directional, nonuniform character.

The reflected light pattern given by equation (7) depends on sur-

face statistics through the effective roughness a and the autocol ie-

Iation length ~. For smooth surfaces. as u/J or g approach zero, the

bidirectional reflectivity given by equation (7) diminishes to zero.

For rough surfaces. with a/J or g large, equation (7) describes the

directional distribution of the first-surface reflected light. The re-

flected pattern can be complex with maximal values in the specular

direction for slightly rough surfaces, at off-specular angles for inter-

mediate roughnesses, or at grazing reflection angles for very rough

surfaces.

3.2.3 Uniform diffuse contribution: p~~,,.d

The light reflected by multiple surface reflections or by subsurface

reflections is generally more difficult to describe analytically than

light reflected by the tirst-surface reflection process. This contribu-

tion is small for metallic (opaque) surfaces with shallow roughness

slopes. However, the contribution can be important for surfaces

with large slopes, or for nonmetals if significant radiation crosses the

first surface and is reflected by subsurface scattering centers (e.g..

paints, ceramics, plastics).

Estimates of the multiple-reflection process within surface

V-grooves, based on geometrical optics, have been carried

out [ 10] [ 17]. Also. estimates of the subsurface scattering are avail-

able [14]. The analytical results often suggest that the reflected field

due to these two processes maybe approximated as nearly direction-

ally uniform. Therefore, the multiply-reflected and/or subsurface

scattered light is approximated as uniform-diffuse (i.e., Lambertian),

and we denote it by a(~).

The coefficient a(~) can be estimated theoretically if the V-

groove geometry is applicable, or if the subsurface scattering param-

eters are known. Alternatively, a(~) can be estimated experimen-

tally if equation (5) is integrated over the reflecting hemisphere, and

the results are compared with measured values of the directional-

hemispherical reflectivity. p,f},. This reflectivity is equal to the

hemispherical-directional reflectivity P~d (for the case of uniform

incident intensity [ 14]), and which can be easily measured using an

integrating sphere reflectometer. For the present paper, in the ab-

sence of additional surface or subsurface scattering parameters, or

experimental measurements, we will treat a( A) as a constrained, but

otherwise free, parameter. The constraint is based on energy con-

servation and gives an upper bound for a(~).

3.3 Discussion

The theoretical model described by equation (5) allows specu-

lar, directional-diffuse, and uniform-diffuse reflection behavior as

sketched in Figure 6. The governing equations in general form are

given in equations (5) to (8) and Appendix A, or for unpolarized

incident light in Appendix B. The actual reflection patterns depend

on wavelength, incidence angle, surface roughness and subsurface

parameters, and index of refraction. The model provides a unified

approach for a wide range of materials and surface finishes, and is

in a form suitable for use in computer graphics.

4 Comparison with experiments

In this section we compare the reflection model with experimen-

tal measurements. Appropriate comparison experiments appear

only infrequently in the literature, since well-characterized sur-

faces as well as good wavelength and directional resolution are

required. The measurements selected for comparison consist of

BRDF’s for roughened aluminum [19], roughened magnesium ox-

ide ceramic [19j, sandpaper [9], and smooth plastic [ 1t]. The com-

parisons cover a wide range of materials (metallic, nonmetallic) and

reflection behavior (specular, directional diffuse, uniform diffuse).

Polar comparisons are presented in Figures 7 to 10. Results are

shown in the plane of incidence; the polar angle is Or and the curve

parameter is the angle of incidence 0,. Theoretical predictions are

shown with solid lines and experimental measurements with dashed

lines. The polar radius is the BRDF normalized with respect to the

specular reflecting ray direction, i.e.,

P)),](O,, 0; er. 9,)

pbd(e,, o; Ot, 0)
(1[)

Results for an aluminum surface (very pure; measured rough-

ness: cm = 0.28prn ) are shown in Figures 7 and 8, respectively,

for wavelengths of A = 2.Op m and 0.5pm. These figures illus-

trate the effects of wavelength and incidence angle. The autocor-

relation length and measured hemispherical reflectance were not

reported. Therefore, values of ~ = 1.77pm and a(~) = O were se-

lected as best tits at both wavelengths. Several points can be noted.
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Figure 7: Normalized BRDF’s of roughened aluminum as ob-

tained from theory (solid lines) and experiment (dashed lines)

for incidence angles of 0, = 10°, 45°, and 75°. J = 2. O#rrz.

This is the same surface as in Figure 8. The surface shows

strong specular reflection at this wavelength.

Figure 9: Normalized BRDF’s of roughened magnesium ox-

ide ceramic as obtained from theory (solid lines) and experi-

ment (dashed lines) for incidence angles of f3~= 10”,45°,60°,

and 75”. J = 0.5prr2. The surface shows strong uniform dif-

fuse and emerging specular reflection.

When aO is small compared to A, as in Figure 7, strong specular re-

flection occurs. The angular width of the measured specular peak

is determined by the solid angles of incident and received light in

the experiments (dw, = do,+ = n/1024). To allow comparisons,

the theoretical peaks have been averaged over the same solid an-

gles. For incidence at 01 = 10°, the reflected pattern displays both

specular and directional diffuse components. In Figure 8, when the

roughness is more comparable to the wavelength, a strong direc-

tional diffuse pattern appears, and for 0~ = 10°,30”,45°, and 60°,

the reflected intensity is maximal at larger-than-specular angles. For

8, = 75°, a specular peak emerges as the surface appears somewhat

smoother to the incident radiation.

A comparison with a magnesium oxide ceramic (very pure; mea-

sured roughness: O. = 1.90Nrrt, but model best fit U. = 1.45~rn)

at A = 0.5,urn is displayed in Figure 9. This surface shows nearly

uniform diffuse behavior at f3, = 10° and an emerging specular peak

for larger values of 0,. The model employed best-fit parameters of

7 = 13.2Prn and a(~) = 0.9, the latter expressing the relatively

stronger role of subsurface scattering as compared to the aluminum

surface. Significantly, the experimental and theoretical trends in

Figures 7 to 9 for both the metal and the nonmetal are in qualitative

accord. Importantly, both materiafs display an emerging specular

peak as the angle of incidence is increased, and, for the metal, as

the wavelength is incremed. Further, the metal shows a strong di-

rectional diffuse pattern, and the nonmetal a strong uniform diffuse

i80
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Figure 8: Normalized BRDF’s of roughened aluminum as ob-

tained from theory (solid lines) and experiment (dashed lines)

for incidence angles of 0, = 10°, 30°, 45°, 60°, and 75°.

J = 0.5pm. This is the same surface as in Figure 7. The

surface shows strong directional diffuse and emerging specu-

lar reflection at this wavelength.

Figure 10: Normalized BRDFs of sandpaper as obtained from

theory (solid lines) and experiment (dashed lines) for normal

incidence, 8, = 0°. A = 0.5pm. The surface shows a large

reflectance at grazing reflection angles.

pattern, both of which are in accord with the model.

A dramatically different reflection pattern is displayed in Fig-

ure 10, corresponding to 220 grit sandpaper at 0, = 0° and J =

0.55pm. Parameters used for the comparison are UO/T = 4.4 and

a(~) = O. For very rough surfaces, only the ratio aO/T is required,

not 00 and r separately [5]. Although the large ratio of UO/T chal-

lenges the gentle slope assumption of the model, the agreement be-

tween experiment and theory is striking as both display large re-

flected intensities at grazing angles of reflection.

A comparison of experiment and theory in terms of absolute

BRDF’s is shown in semilog form in Figure 11 for a smooth blue

plastic at A = 0.46pm. The shape of the specular spikes is deter-

mined by the geometry of the incident and receiving optical systems.

The distributions for four incidence angles reveal a linear combina-

tion of specular and uniform diffuse behavior. Tlris is consistent

with the model (equations (5) to (8)). For a smooth surface with

ao = O, the directional-diffuse term drops out and the specular term
reduces to equation ( 10). The directional-hemispherical reflectiv-

ity at @i = 0° and ~ = 0.46pm was measured (pdh = O.195) and

yields the value a(A) = 0.15 used for the uniform diffuse term in the

model. The agreement between experiment and theory in Figure 1I

in terms of shape and absolute magnitude is encouraging.

In conclusion, the experimentally-measured directional distribu-

tions in Figures 7 to 1I show a wide range of behavior and com-

plexity. The present model describes the major features of the dis-
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,’

I

-90 -60 .30 0 70 60 90

0,

Figure II: Absolute BRDF’s for smooth blue plastic as obtained

from theory (solid lines) and experiment (dashed lines) for inci-

dence angles of 0, = 15°, 30°, 45°, and 60°. A = 0.46pn~. This

surface shows a typical smooth plastic reflection pattern with com-

bined specular and uniform diffuse behavior.

tributions

5 Example scenes

The reflection model described by equations (5) to (8) can be in-

corporated in ray-tracing or extended radiosity [15] methods. We

have employed ray tmcirtg. A single reflected ray is used together

with ambient and point source illumination. The reflected intensity

is given by

.\r(

II(A) = ~{lm,)l’.(-’” .s.~+ (Pb(i.dd)t + m]

1,,(,4)

(12)

where .Y1 is the number of light sources. subscript i denotes the

ith light source, the terms inside the braces respectively correspond

10 the three terms in equation (5), p~,,l(A) is the hemispherical-

directional reflectivity of the surface (taken as a function of A only,

and found from experiment or by integrating (5) over the inci-

dent hemisphere), and lU is the uniform ambient illumination. The

directional-diffuse term is included only for light sources. To in-

clude a directional-diffuse term from the environment, a distributed

ray-tmcer or an extended radiosity method [15] must be employed.

Figure 12 displays six aluminum cylinders in front of a brick

wall. Each cylinder is rendered in isolation. Cylinders (a) to (f)

are in order of increasing surface roughness. Other parameters are

T = 3.01[nt for cylinders (a) to (e) and ~ = 16.Oprn for cylinder

(f), and o(A) = 0. Note that (he sharp specular image in the top

faces of the cylinders diminishes, but is not blurred, with increasing

surface roughness, and the image of the Iight source on the front ver-

tical face spreads out. These are characteristics, respectively, of the

specular iurd directional diffuse terms in the reflection model that

are derived from physical optics. Note also that the apparent rough-

ness of a given cylinder varies with viewing angle. The top and lat-

eral edges can appear specular or nearly specular at grazing angles,

even when the vertical face on the front side appears to be rough,

A slight color shift is also apparent for a given rough surface (i.e.,

as A in rro/A varies). For visible light, this is most apparent in the

blue shift on the front faces of the cylinders. The enhanced red shift

of the specular images is not so apparent. Clearly, the specular and

directional diffuse terms of the model vary with wavelength, inci-

dence angle, and roughness, and are responsible for the realism of

the cylinders in Figure 12.

The aluminum cylinders (a) to (c) in Figure 13 illustrate limiting

cases of each of the three terms in the reflection model. Cylinder (a)

in Figure 13 is the same as cylinder (f) in Figure [2. Cylinder (b)

is a smooth cylinder described by the specular term, in which the

reflectance is a function of incidence angle according to the Fres-

nel reflectivity. Specular images are apparent on the top and lateral

edges. (To emphasize the specular images, we have set the ambient

illumination term to zero in rendering cylinder (b), ) Cylinder (a)

represents the directional diffuse term in the limit of UO/A -t ~

with c70/T fixed at 0.16 (i.e., a limiting form for very rough sur-

faces). Cylinder (c) is ideal diffuse and is described by the uniform

diffuse term. Note tbe striking differences between the three cylin-

ders,

Figure 14 illustrates a scene consisting of a rough aluminum
cylinder (at) = O.18pTn. T = 3.Oprn, a(~) = O), a rough copper

sphere (cro = O.13prrz, ~ = 1.2pTn, a(~) = 0), and a smooth plastic
cube (u,, = O. T = 2.0p77t, a(~ = ().551inL) = 0.28), all resting on a

rough plastic table (OO = 0.20pv~. ~ = 2,0pm, a(A = 0.55u7rz ) =

0.28). The cube and table have the same Fresnel reflectivity.

Several effects can be noted in Figure 14. On the faces of the

cube, the specular image varies with reflection angle, an effect

caused solely by the Fresnel reflectivity IFIZ in equation (6), The

specular images on the table top also vary with reflection angle (and

disappear), but this is caused mainly by roughness effects (i.e., e -” )

in equation (6). The cylinder in Figure 14 corresponds to cylin-

der (a) in Figure 12 and displays some of the specular and direc-

tional diffuse characteristics of that image.

Figure 14 gives a hint of the comprehensiveness of the light re-

flection model derived in this paper. Several materials of different

roughnesses appear. A given surface can display specular or diffuse-

like behavior depending on reflection angles and surface properties,

Specular images appear or disappear based on correct physical prirr-

ciples. The high level of realism in Figure 14 is due to a physically-

correct treatment of specular, directional diffuse, and uniform dif-

fuse effects by the reflection model,

6

1.

2.

3.

4.

5.

6.

Conclusions

The general reflection model given by equations(5) to (8). in a

single formulation, describes specular, directional diffuse. and

uniform diffuse behavior. For unpolarized incident light, the

model reduces to the form given in Appendix B. All of the

parameters of the model are physically based.

The model compares favorably with experimental measure-

ments of reflected radiation for metals, nonmetals, and plas-

tics, with smooth and rough surfaces.

The model accurately predicts the emergence of specular re-

flection with increasing wavelength or angle of incidence, or

decreasing surface roughness.

Tfre model predicts a directional-diffuse pattern which can

have maximal values at specular, off-specular, or grazing arr-

gles, depending on surface roughness.

The model is in analytical form and can improve the realism

of synthetic images.

The model can be employed for my-tracing or extended ra-

diosity [ 15] methods.
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(a) 00 = 0.18 (b) oo = 0.28 (c) uo = 0.38 (d) cro = 0.48 (e) 00 = 0.58 (f) a0 = 2.50

Figure 12: Aluminum cylinders  with  different  surface roughnesses. uo is in pm.  T = 3.Opm for cylinders  (a) to (e) and 7 = 16.Opm  for
cylinder(f). Note  that  the specular and directional-diffuse  reflection characteristics  vary with  reflection angle and roughness.

7. The  model highlights  the need for tabulated  databases of pa-

rameterized  bidirectional  reflectivities.  The  parameters  in-

clude two surface roughness parameters  (a~, T), the index of

refraction (as a function of wavelength),  and the constrained
parameter  a(X). The latter can be inferred from measured
hemispherical  reflectivities.

In conclusion, the reflection model is comprehensive,  physically-
based, and provides an accurate transition  from specular  to diffuse-
like reflection. Further,  the model is computable  and thus  useful for

graphics applications.

(a)00 = 2.5 (b)uo  = 0.0 (c) diffuse

Figure 13: Aluminum cylinders  in extreme limiting  cases. Each
cylinder  corresponds  to one of the three terms in the reflection

model. 00 is in pm. (a) Directional  diffuse reflection; (b) Ideal

specular  reflection; (c) Uniform diffuse (Lambertian)  reflection.
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A Appendix: Derivations

A.1 Reflected intensities

The reflected intensities for thes and p components of polarizations

are given by [14][ 18]

R2
dZr(Or, &; Oi, @,), = ~ ,cos O < Ii. fi.(@12 >

r

R2 .
dIr(er, &;o,, @,)T) = ~ co~o < Ijr Er(fi)\2 > (13)

,. r

where the coordinates are m shown in Figure 5, fi,(~) is the re-

flected field in vector form, R is the distance from the origin to

an arbitrary point in space, A is the area of the reflecting surface

projected on the x-y plane, and s_,, pr are unit polarization vectors,

given by

k,xi
&=-

Ikr x ;I

P. = S, X kv (14)

which are normal and parallel, respectively, to the plane formed by

the viewing direction and the mean surface normal. The symbol <>

denotes an average over the joint probability distribution function

of the random rough surface characterized by

2 = ((z, rJ). (15)

The reflected field can be expressed in terms of the scattered field

on the surface by using the vector form of the Kirchhoff diffraction

theory [12]:

E.(E) = ~ (j-irk,).

/
e -ZET’{-iZr x (~, ~ fi)-(~ x E) x fi}dr

r

(16)

where ~,, ~r are wave vectors in the incident and reflection direc-

tions, Ikl = 27r/A is the wave number, F is the position vector for

a point on the surface, and the tensor ~ – k~k, = s,.4, + P,pr is

introduced to to make the reflected field transverse.

Substituting (16) into (13), we have

1
dis = J

—,kr.7<1 -
A COS f),(47r)2 . e

{ik@r (fi., x h)+~: [(V x ~,) x fi]}drl’ >

1
dIP =

A COS &.(4m)2 /
< I e-’ir 7.

{2ksr. (E, Xfi)-p; [(v x E,)x fiJ}dr12 >

(17)

To evaluate the right side of ( 17), the surface element dr is ex-

pressed in terms of the planar surface area dA = dr dg by

dr = dA/(n . i) (18)

Further, the squares of the absolute values of the integrals in ( 17)

can be expanded in terms of double surface integrals. We find

/
<1 e -’~’”~{}drl’ >=

r
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< HdA ] dAze
—17(F,

A

(
e

_zi,.Fl{}j (e-J.F2{

F2)

)
*

, /(ii, . i)(iL2 . 2) >

(19)

where u is the wave vector change
. .

?7= k(kr – k,), (20)

* denotes a complex conjugate, {} refers to the terms in braces

in (17), and the subscripts refer to points on area elements dAl and

dA2 .

The <> in (19) commutes with the surface integral and a term

of the form

<e -13”’(+~’){}l{} ;/(til “Nfiz 2) > (21)

results. Since the surface is assumed to be isotropic and stationary,

(21 ) is a function only of xl – X2 and w – yz. Thus, by making the

change of variables

Z’=XI— Z2
//

x = X2

Y’=?J– Y2 ~“ = y2 (22)

the integrals over z“ and y“ may be carried out separately to give

a factor S A, where S is the fraction of the surface that is both il-

luminated and viewed and represents the shadowing function given

by [16]:

s = S,(ea) . we,) (23)

where

St(f?i) = (1 – +erfc(
T cot oi
~))/(A(cot @t)+ 1)

1 T cot e,
sr(e,) —))/(A(cot O,) + 1)= (1 – ~ erfc( ZOO

(24)

and

(
A(cot8)=~ ~.~ – erfc( ~)) (25)

Hence, the reflected intensities in ( 17) are

s
+02 +m

dI, = JJ dz’dy’ e-’c”fi13, (26)
Cos 0.(4,T)2 _m _=

s
+Cxz +Cc

dIP = // dz’dy’ e-iz’;BP (27)
Cos e,.(47r)2 _ ~ _m

where
~= x’? +y’y (28)

and

B, = < e-’u’;’c’ -c2)F(iil, fi2), >

Bp = <e
–[J.:(CI –tl)~(fi, , ti2)p >

(29)

where

.++-
~(fi,, fil)p = e–’k’”(r’‘r2)/(7i[ .i?)(iiz . .2)

~({ik{, ~(-E.x ii) -- P. [(v x E) x fil}),

~({M. (ES x ?i)-p. [(v x Es)x ?d});

(31)

The functions B, and BP in (29) depend only on z’ and y’. No-

tice that dIs and dIP are the s and p polarized reflected intensities,

respectively. The total reflected intensity, as used in equation (4), is

given by

dIv = dI, + dIp (32)

A.2 Tangent plane approximation

The reflected intensities in (26) and (27) are expressed in terms of

the scattered field ~, on the surface. In turn, E+Sdepends on the

incident field, and may be related to the incident field by using the

local tangent plane approximation.

For the case of a unidirectional incident field, we have

k, = EOe*Ez”Fp (33)

P = Ca;t + Cp@i (34)

where ,?30is the wave amplitude, p is the polarization state vector of

the incident radiation, CS,CPare called the polarization coefficients),

and 4:, pi are unit polarization vectors with respect to the plane of

incidence (ii, 2). The unit vectors are given by

k,xi
~i=-

/k, X 51

Pi = ~% X k, (35)

Equation (33) can be written in the more compact matrix form

(36)

&,;, decompose into incident local pol~zation unit vectors ~~,

~~ with respect to the local incident plane (ki, h), given by

kiX?i-n
s,=—

Ikt x nl

P? = Xxk (37)

Therefore,

(:)=Ttn”(o (38)

where Ti. is the transformation matrix from incident coordinates to

local coordinates

(39)

Substituting (38) into (36), we have the incident field in terms of

;:, p: as

(40)

Reflections of the 3;, j~ fields are found from the local Fresnel re-

flection coefficients for each component of polarization, i.e.,

IFor example: for s polarization, c. = 1.0, CP = 0, for p tmlarization,

Cs=o!cp=l.
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where F,, and & are the Fresnel reflection coefficients for s and

p polarizations, respectively [14, p. 100]. The unit vectors .;;, ~~

are the local polarization unit vectors for reflection from the tangent

plane:

i-,. x il.,, _
.s,. – —

Ii-rx ill
(42)

.,!_
P. – i; x i-,.

where ~,. is the unit vector in the specular direction from the tangent

plane, given by

tip = i, – 2(i, fl)ri (43)

Using the Fresnel matrix

we have in more compact form

($)+’($)

(44)

(45)

From equations (40) and (45 ), the scattered field on the surface

can be expressed as a linear combination of the Fresnel reflection

coefficients

(46)

The scattered field is a function of the incident polarization state,

the local sutiace normal it, the Fresnel reflection coefficients -F, and

F;, of the sutiace, and the incident and reflection directions k,. k,.

A.3 Representation of thesurface

Specification of the surface topography is required to carry out

the surface integrals and surface averages appearing in equa-

tions(26). (27) and (29). Without Iosinggenerality, we assume the

surface to be Gaussian distributed [5], i.e., we assume the surface

height in ( 15) 10be a stationary normally distributed random process

whose mean value is zero, In addition weassume thesurface to be

directionally isotropic. Inappropriate two-point joint probability

function is given by

whererz =(.rl–,rj )~+(yl– yl)z, rr~isthe variance ofzl =C(.rl,yi)

and Z2 = ~(.r2, yZ), and C’(r) isthe correlation coefficient, which is

assumed to be [5]

~’(r) = f-:

where ~ is the autocorrelation length.

The parameters crc,and T are the only

required for the surface integrations.

(48)

two surface parameters

A.4 Analytic evaluation of the integrals

Substituting (46) into (29) to(31 ), L?,and f?;, are expressed in terms

of known quantities and depend on the surface only through the nor-

mals n 1and n? at two surface points. Further. the integrals in equa-

tions (26) and (27) can be written as:

+x +x

// f–’;”’i<f“;’”<’‘f ’’Firzl, n:, p) > d.rd,rj
—x —x

(49)

Stogryn [ 18] has shown that an integral and average of the form in

(49) can be approximately evaluated under either of the following

two conditions:

● the surface is very rough (i.e., (v.c)~ >> I )

. the surface has gentle slopes (i.e. ( ~ ) << 1)

As a result, (49) reduces to

+x +x

F(fif,, rit,, p)
II

c “-’i”< < f-’; ’’~”-~” > d.r(iy

—x .—%

(50)

where ~ is evaluated at iu,, which is the unit vector bisecting ~“,and

~,. given by

h, – i,
(51)

“b= ,~v _ ~,,

Furthermore, the <> in (50) can be shown to be [5]:

<(
—Lr.z(:, —fjl >={ —(,.-I-II ~’{vll (52)

where C’(q) is given by (48).

Note that u in (52) is the effective surface roughness, not ~0.

This is because the surface averaging is carried over illuminated

and visible parts only, rr is given by [4]:

ml)
m. (53)

where zo depends on (3,. and 0, and is the root of the following

equation

and

(54)

The double integral in (50) can be evaluated analytical y [5]:

+x +-x

Iv = H c “<’7 <e-’i’’c’ -<” >dxdy

—Z. -x

“’$%+”exp ( – l~Vr>/4m) (56)

,,,. I
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where LZ, L ~ are the dimensions of the reflecting surface. Since

we are only interested in cwzs when Lm, LY >> A, the firstterm is
nonzero only in the specular direction and zero otherwise. For the

case of unidirectional incidence with solid angle&i and Lx, Lv >>

A, the averaged form of the first term in (56) is

A SZ~C2(Vz~z)Si~C2(Vy~9) -+ (27r~)2 . A/(c@ - COSL%.) (57)

Hence, (56) becomes

N = e-g ~(27rJ)2 A/(dw, . COSO,)+

arbitrarily-polarized incident light. In most applications, however,

we are only interested in the BRDF for unpolarized incident light.

The expressions for the BRDF am greatly simplified for this spe-

cial but useful case. For convenience, the BRDF equations for un-

polarized incident light are presented in this appendix. The reader

should refer to Figure 5 and the nomenclature list in Table 1 for the

angular coordinates and other physical parameters that appear in the

reflectance model:

Pbd (~, ~0, T, ii(~), a(~))

Pbd,sp ● Pbd,dd ● Pbd,ud (69)

P.
A

COS6adW~
(70)

Pbd
.

.

.

w

x gme–g
XT2 — . exp (–v~vr2/4m) (58)

~!.~
m. I

Next, 3, and YP in (30) and(31 ) are evaluated. First, fij, fiz are

replaced by tib defined in (51). Then they are substituted into (30)

and (31 ). After lengthy vector manipulations, we find

~(iib, fib, p). = b . [C,M., +cpA!fsp[2 (59)

~(ftb, &, p)P = 6. IC,MPS + CPMPP[2 (60)

where

M88 = (Fs@t ~r)(jr ~k~)+F’P(~i ~kr)(~r ki)) (61)

M,, = - (l’s(&i ~&)@r ~ki) - Fp(ji ~r)(~r ~ii)) (62)

MPP = (Fs(~i ~kr)(sr ~Li)+ Fp(jt ~Lr)(jr ~k.)) (63)

M,. = (F.(ji ~~r)(;r ~ii) - Fp(~t ~kr)@r ~ii)) (64)

Pbd,sp

IF12 G.S. D
—.

T
(71)

COSO; COSOr
Pbd,dd

Pbd,ud

P.

A

a(~) (72)

Iqz . e-g . s (73)

{

1 if in specular cone

O otherwise
(74).

;(F:+F;) = f(e,, e., n(A)) (75).

G

[(ii . kr)2+ ($, . i~)z] (76)

S(ea, e. , uo/T) (77)s

D

=272 w

E

gme-g
—. —
4~2 . exp( –V&T2 /4m) (78)

m!. m

The Fresnel reflection coefficients F. and FP in (61) to (64) are

evaluated at the bkecting angle given by Cos– i (Ik, – k, 1/2).

Using (59)-(65) and (58) in (26) and (27), we find an analytical

expression for the reflected intensity

dI, =
IE012

x(fib, fib, p). . N
Cos r9,(47r)2

dIP =
IEO[2

~(hb, fib, p)P . N
Cos er(4?r)*

(66)

where the square of the absolute value of the incident field amplit-

ude, IE012, is related to the incident intensity Ii by

IE012 = I,&, (67)

Note that the right side of (66) has the correct dimensions of inten-

sity since N has dimension [L*] whereas the 2% have dimension

[L-2].

Finally, substituting (67) into (66) and using (4) and (32), we get

exactly the firsttwo terms in (5), given that

.?@i, & p) = fi(fib,fib,p)~ +$’(?&, &,, p)P (68)

since the BRDF defined in (4) is the total BRDF, which is the sum

of the BRDF’s for the reflected s and p components.

B Appendix: Governing equations of the re-

flectance model for unpolarized incident

light

Equations (5) to (8) together with the defining equations for all

the symbols in (5) to (8) completely define the general BRDF for

186

~=1

[(2~&/A) (COSOi + COSOj.)]2 (79)

(80)

9

u

.

. cm. [1 +(3)2]–”*
Uo

;(K,+K.) . exp(– ~) (81)
0

tZln01 f erfc( & COtd~) (82)

J
Ir
— Zo
2

.

.

=

.

tan0.. erfc( & cot Or) (83)

(85)

k,xri

m’
p,=;rxkr (86)

where ii is the index of refraction, p= is the specular reflectivity,

A is a delta function, IF I* is the Fresnel reflectivity for unpohw-

ized light [14, p. 100] evaluated at the bisecting angle given by

COS-’ (Ii, – ki 1/2), G is a geometrical factor, S is the shadow-

ing/masking factor given in equation (23), and D is a distribution

function for the dwectional diffuse reflection term.


