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Abstract

Background: Mammalian spermatozoa must undergo capacitation, before becoming competent for fertilization.
Despite its importance, the fundamental molecular mechanisms of capacitation are poorly understood. Therefore, in
this study, we applied a proteomic approach for identifying capacitation-related proteins in boar spermatozoa in
order to elucidate the events more precisely. 2-DE gels were generated from spermatozoa samples in before- and
after-capacitation. To validate the 2-DE results, Western blotting and immunocytochemistry were performed with 2
commercially available antibodies. Additionally, the protein-related signaling pathways among identified proteins
were detected using Pathway Studio 9.0.

Result: We identified Ras-related protein Rab-2, Phospholipid hydroperoxide glutathione peroxidase (PHGPx) and
Mitochondrial pyruvate dehydrogenase E1 component subunit beta (PDHB) that were enriched before-capacitation,
and NADH dehydrogenase 1 beta subcomplex 6, Mitochondrial peroxiredoxin-5, (PRDX5), Apolipoprotein A-I
(APOA1), Mitochondrial Succinyl-CoA ligase [ADP-forming] subunit beta (SUCLA2), Acrosin-binding protein,
Ropporin-1A, and Spermadhesin AWN that were enriched after-capacitation (>3-fold) by 2-DE and ESI-MS/MS.
SUCLA2 and PDHB are involved in the tricarboxylic acid cycle, whereas PHGPx and PRDX5 are involved in glutathione
metabolism. SUCLA2, APOA1 and PDHB mediate adipocytokine signaling and insulin action. The differentially expressed
proteins following capacitation are putatively related to sperm functions, such as ROS and energy metabolism, motility,
hyperactivation, the acrosome reaction, and sperm-egg interaction.

Conclusion: The results from this study elucidate the proteins involved in capacitation, which may aid in the design of
biomarkers that can be used to predict boar sperm quality.
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Background
Ejaculated spermatozoa undergo marked structural and

biochemical changes within the female reproductive

tract before fertilization. Although spermatozoa are mo-

tile and morphologically normal after ejaculation, they

are unable to fertilize an oocyte. Subsequently, sperm-

atozoa are exposed to a new environment where numer-

ous chemicals in the female genital track trigger a cascade

of metabolic and structural alterations associated with

changes in membrane fluidity, intracellular bicarbonate

and calcium levels, cAMP, PKA activity, and tyrosine phos-

phorylation of proteins [1-10]. This time-dependent ac-

quisition of fertilizing competence has been termed

“capacitation” [11,12]. Proteomic studies have been con-

ducted to elucidate the molecular mechanisms underlying

capacitation for humans [13], mice [14], hamsters [15],

boars [16], and bulls [17]. In most cases, these studies iden-

tified specific set of proteins and tyrosine-phosphorylated

proteins that are involved in capacitation [13-17]. Mature

spermatozoa are unable of transcription, translation, and

protein synthesis [18]. However, a new viewpoint has

been presented that ejaculated spermatozoa are capable
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of utilizing mRNA transcripts for protein translation dur-

ing their functional maturation [19]. Simultaneously, it is

well accepted that spermatozoa acquire their functionality

via post-translational protein modifications such as phos-

phorylation [20,21]. It has been demonstrated that freeze-

thawing of human spermatozoa results in differential

expression of twenty-seven proteins compare to their fresh

ejaculate [20]. This study suggested that cryopreservation

may be induced spermatozoa dysfunction due to protein

degradation and protein phosphorylation [20,21]. There-

fore, it is a matter of paramount importance to detect a

set of differentially expressed proteins associated with cap-

acitation as well as other functional state of spermatozoa.

Successful fertilization requires that spermatozoa com-

plete to capacitate at right time both in vitro and in vivo.

Therefore, measuring the fraction of a sperm population

that is able to capacitated will possibly be an excellent

criteria to measure semen quality. Literature demon-

strated that the prediction of male fertility of mammals

still depends on conventional sperm analysis, such as

sperm morphology [22-24], motility [25-27], and sperm

penetration assays [28,29], and their clinical value has

been disputed [30]. Therefore, the accurate and broadly

applicable methods for semen assessment might help to

analyze male fertility.

Recent advances through performing two-dimensional

electrophoresis (2-DE) for the separation of proteins and

mass spectrometry (MS) for peptide sequencing have fa-

cilitated protein identification, leading to the rapid ex-

pansion of sperm proteomic research. A previous study

in our laboratory established a suitable in vitro assay of

male fertility for performing fertility-related proteomics

of bull spermatozoa [31]. Therefore, the present study

employed proteomic outlining of boar spermatozoa fol-

lowing capacitation in order to elucidate this extremely

important event. A comprehensive and comparative prote-

omic study was carried out to explore the changes in

protein expression (>3-fold) during capacitation. Sperm

motility (%), motion kinematics, capacitation status, and

tyrosine phosphorylation were analyzed using combined

computer-assisted sperm analysis (CASA), Hoechst 33258/

chlortetracycline fluorescence assessment (H33258/CTC),

and Western blotting, respectively. Next, the 2-DE re-

sults were confirmed using Western blotting and im-

munocytochemistry. Finally, related signaling pathways

were constructed based on the differentially expressed

proteins.

Results
Sperm motility, motion kinematics, capacitation status,

and tyrosine phosphorylation

To measure the motility parameters of before- and after-

capacitation spermatozoa, we performed CASA tech-

nique as described in the Methods. A variety of motion

parameters, including hyperactivated motility (HYP), cur-

vilinear velocity (VCL), and mean amplitude of head lat-

eral displacement (ALH) were significantly increased in

after-capacitation compare to before-capacitation sperm-

atozoa (P < 0.05, Table 1). However, straight-line velocity

(VSL) was significantly decreased in after-capacitation

(P < 0.05, Table 1). In present study, the dual staining

method was performed to evaluate the changes in capaci-

tation status both before- and after-capacitation spermato-

zoa. The acrosome reacted (AR) and capacitated (B)

patterns were significantly increased in after-capacitation

(P < 0.05), while the non-capacitated (F) pattern was

significantly decreased in after-capacitation spermatozoa

(P < 0.05). It has been demonstrated that capacitation of

mammalian spermatozoa are associated to the activation

of a cAMP/PKA-dependent signaling pathways followed

by up-regulation of protein tyrosine phosphorylation

[8,9]. Therefore, next we measured the levels of tyro-

sine phosphorylation in both groups of spermatozoa.

Four different tyrosine phosphorylated protein bands

(approximately 18, 26, 34, and 36 kDa) were signifi-

cantly increased in after-capacitation (P < 0.05, Figure 1)

compare to before-capacitation spermatozoa.

Proteomic analysis and identification of capacitation

proteins

A total of 224 protein spots were detected, and 10 spots

showed significantly different expression (>3-fold differ-

ence; P < 0.05) between the before- and after-capacitation

spermatozoa (Figure 2). Among them, 3 spots were

enriched in the before-capacitation group, while 7 spots

were enriched in the after-capacitation group (Figure 3).

The differentially expressed spots (>3-fold) were identified

by an MS/MS ion search using MASCOT software

(Matrix Science). Notably, the 3 spots in the before-

capacitation group included the Ras-related protein Rab-2

(RAB2), Phospholipid hydroperoxide glutathione peroxid-

ase (PHGPx), and pyruvate dehydrogenase E1 component

Table 1 Sperm motility and motion kinematics following

capacitation

Sperm motility and
motion kinematics

Before-capacitation After-capacitation

MOT (%) 85.33 ± 2.80 87.42 ± 1.77

HYP (%) 5.76 ± 1.42 15.89 ± 2.26*

VCL (μm/s) 119.56 ± 2.22 147.28 ± 5.04*

VSL (μm/s) 75.87 ± 0.97 64.85 ± 1.00*

VAP (μm/s) 81.06 ± 2.48 81.57 ± 2.51

ALH (μm) 5.9 ± 0.19 6.97 ± 0.24*

Sperm motility and motion kinematics are presented as mean ± SEM, n =3,

*P <0.05. MOT = motility (%); HYP = hyperactivated sperm (%); VCL = curvilinear

velocity (μm/s); VSL = straight-line velocity (μm/s); VAP = average path velocity

(μm/s); ALH = mean amplitude of head lateral displacement (μm).
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subunit beta, mitochondrial (PDHB). On the other hand,

the 7 highly expressed spots in the after-capacitation

group were NADH dehydrogenase 1 beta subcomplex 6

(LOC733605), Peroxiredoxin-5, mitochondrial (PRDX5),

Apolipoprotein A-I (APOA1), Succinyl-CoA ligase [ADP-

forming] subunit beta, mitochondrial (SUCLA2), Acrosin-

binding protein (ACRBP), ropporin-1A (ROPN1), and

spermadhesin AWN (AWN) (Table 2).

Protein confirmation by western blotting and

immunofluorescence

To validate the 2-DE results, the differentially expressed

proteins were further examined by Western blotting

analysis by using commercially available antibodies. In

after-capacitation spermatozoa, PRDX5 and PHGPx were

detected at ~20 and 22 kDa, respectively. The density of

PRDX5 increased (P < 0.05), while the density of PHGPx

was decreased (P < 0.05) following capacitation. Addition-

ally, these proteins were detected by immunofluorescence

using the corresponding antibodies along with lectin PNA

(to detect the acrosomal region) and DAPI (to detect the

nucleus) in spermatozoa following capacitation. PRDX5

was detected in the midpiece, and PHGPx was detected in

the acrosome and midpiece. These protein expression pat-

terns were similar to the expression patterns detected by

Western blotting (Figure 4).

Signaling pathway

The gene name of each differentially expressed protein

was confirmed by performing a database search, and the

results were imported into Pathway Studio to identify

their signaling pathways. Three pathways were signifi-

cantly correlated with 5 of the proteins (Table 3, P < 0.05).

SUCLA2 and PDHB were significantly correlated with

the tricarboxylic acid cycle, whereas PHGPx and PRDX5

were significantly correlated with glutathione metabolism

(Table 3, P < 0.05). SUCLA2, APOA1, and PDHB were

correlated with adipocytokine signaling and insulin action

(Table 3, P < 0.05). Figure 5 illustrates the cellular path-

ways regulated by the differentially expressed proteins in

spermatozoa [18]. At least 8 proteins were implicated in

different sperm-specific process. These proteins were pu-

tatively related to sperm functions, such as ROS and en-

ergy metabolism, motility, hyperactivation, the acrosome

reaction, and male fertility.

Discussion
Proteomic techniques have enabled the investigation of

sperm-specific cellular processes. Such studies have been

pivotal in identifying and designing valid biomarkers of

male fertility [31,32]. Spermatozoa must undergo capacita-

tion before fertilizing an oocyte [9,10], and the process is

associated with changes in protein content. It is generally

Figure 1 Capacitation status and tyrosine phosphorylation of spermatozoa following incubation in capacitation media. (A) Changes in
capacitation pattern. Data represent mean ± SEM, n =3, *P <0.05. (B) Ratios of tyrosine phosphorylated proteins (optical density [OD] ×mm)/α-tubulin

(OD ×mm). Data represent mean ± SEM, n =3, *P <0.05. The red line indicates the landmark of before-capacitation (BC). (C) Tyrosine-phosphorylated
proteins were probed with anti-Phosphotyrosine (4G10) antibody; lane 1: before capacitation; lane 2: after capacitation.
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believed that spermatozoa are unable to transcription,

translation, and protein synthesis [33,34]. However, re-

ports also exist spermatozoa are capable of synthesis new

proteins [35]. Therefore, proteomic profiling of boar

spermatozoa following capacitation may elucidate the pro-

teins involved in capacitation.

Capacitation is an important pre-requisite to fertiliza-

tion. During this process, tyrosine phosphorylation oc-

curs in spermatozoa, which triggers a change in motion

kinematics and morphology [1-5]. In the present study,

capacitation was induced by heparin and was confirmed

by measuring changes in tyrosine phosphorylation,

sperm motility, motion kinematics, and CTC patterns.

As a result of capacitation, there was a significant in-

crease in tyrosine-phosphorylated proteins, HYP, VCL,

ALH, and capacitation status (P <0.05, Table 1 and

Figure 1). In addition, VSL was a significantly decreased in

after-capacitation (P <0.05, Table 1). These results indicate

that we achieved optimum capacitation in vitro in boar

spermatozoa.

To identify marked changes in protein expression (>3-

fold), spermatozoa were separated by Percoll and ana-

lyzed by 2-DE in before- and after-capacitation (Table 2

and Figure 2). Three proteins were abundant in before-

capacitation, and 7 were abundant in after-capacitation

(Figure 3). Finally, we used Pathway Studio to search for

the identified proteins and construct signaling pathways

involved in the capacitation process. To validate the 2-

DE results, Western blotting and immunofluorescence

were performed with commercially available antibodies

to detect the differentially expressed proteins.

RAB2, PHGPx, and PDHB were decreased after capaci-

tation (Figure 3A). RAB2A and RAB2B are 2 subgroups of

RAB2 proteins [36]. Members of the RAB family of pro-

teins play a critical role in regulating vesicular transport

Figure 2 Separation of proteins by 2-DE. 2-DE gels were stained
with silver nitrate and analyzed using PDQuest 8.0 software. (A) Protein
spots from before-capacitation spermatozoa. (B) Protein spots from

after-capacitation spermatozoa.

Figure 3 Comparison of proteins from before- and after-

capacitation spermatozoa. Differentially expressed (>3-fold)

proteins were determined by comparing before- and after-
capacitation spermatozoa (*P <0.05). The line indicates the landmark
of before-capacitation (BC). (A) Three proteins were significantly

decreased after capacitation. (B) Seven proteins were significantly
increased after capacitation. The data represent the mean ± SEM,
n =3.
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and membrane fusion and are localized to the acrosomal

membrane during acrosome formation in spermatozoa

[36-38]. Capacitated spermatozoa undergo the acrosome

reaction, a process of acrosomal exocytosis [39,40]. There-

fore decreased expression of RAB2 after-capacitation sug-

gests that RAB2 is involved in structural modification of

the acrosome to induce acrosomal exocytosis following

capacitation. On the other hand, PHGPx contributes to

cross-linking in mitochondrial capsules of mammalian

spermatozoa and provides structural stability [41,42].

Therefore, similar to RAB2, the decrease PHGPx in sper-

matozoa after capacitation (Figures 3A, 4I, and J) might

promote acrosomal exocytosis. Foresta et al. reported that

PHGPx was important for fertility [43]. They also reported

that its over-expression increased the resistance of mouse

NSC-34 motor neuron-like cells, which is thought to in-

duce mitochondrial abnormalities in patients with amyo-

trophic lateral sclerosis. In the present study, we identified

PHGPx in the head and tail of spermatozoa (Figure 4) and

predicted its involvement in regulating glutathione metab-

olism based on an analysis in Pathway Studio (Table 3).

These results indicated that before-capacitation spermato-

zoa metabolize glutathione, which may facilitate capacitation

in spermatozoa by promoting the acrosome reaction,

fertilization, and other events.

Another protein that decreased after capacitation was

PDHB (Figure 3A). PDHB is one of 7 subunits of the

pyruvate dehydrogenase complex (PDH) family, which

converts pyruvate to acetyl-CoA during aerobic oxida-

tion of glucose [44-46]. PDHB is a phospho-tyrosine

protein involved in capacitation in human spermatozoa

[47]. In the present study, we used Pathway Studio to

identify PDHB’s potential involvement in regulating the

tricarboxylic acid cycle, adipocytokine, and insulin action

(Table 3). Together with its localization in sperm flagella

[48], these finding provide further insight into PDHB’s

involvement in energy production and metabolism in

order to control sperm motility and hyperactivation dur-

ing capacitation.

The proteins that increased (>3-fold) in after-capacitation

included LOC733605, PRDX5, APOA1, SUCLA2, ACRBP,

ROPN1, and AWN (Figure 3B). PRDX5 is a thioredoxin

peroxidase that protects spermatozoa from oxidative stress

[49,50]. Recently, O’Flaherty and de Souza reported that

PRDX5 was localized to the acrosome, post-acrosome and

midpiece of spermatozoa [51]. Its localization to multiple

Table 2 Differentially expressed (>3-fold) proteins identified by ESI-MS/MS

Spot no. gi no. Symbol Protein description Peptide sequence Mascot
score*

2209 gi|298160982 ROPN1 Ropporin-1A

R.LIIHADELAQMWK.V

105R.VALSNWAELTPELLK.I

R.MLNYIEQEVIGPDGLIK.V

3515 gi|346986351 PDHB
Pyruvate dehydrogenase E1 component subunit

beta, mitochondrial

R.IMEGPAFNFLDAPAVR.V

245K.TYYMSGGLQSVPIVFR.G

K.TTHLITVEGGWPQFGIGAEICAR.I

5206 gi|464526 RAB2 Ras-related protein Rab-2

R.GAAGALLVYDITR.R

248R.DTFNHLTTWLEDAR.Q

R.FQPVHDLTIGVEFGAR.M

5404 gi|89153 APOA1 Apolipoprotein A-I R.DYVAQFEASALGK.H 34

5712 gi|21263966 SUCLA2 Succinyl-CoA ligase [ADP-forming] subunit
beta, mitochondrial

K.LHGGTPANFLDVGGGATVHQVTEAFK.L 44

6207 gi|47523086 PRDX5 Peroxiredoxin-5, mitochondrial

R.LLADPTGAFGK.E

150R.FSMVIEDGIVK.S

K.VGDAIPSVVVFEGEPEKK.V

7106 gi|75052483 ACRBP Acrosin-binding protein
R.FYGLDLYGGLR.M

125
R.VASWLQTEFLSFQDGDFPTK.I

8326 gi|13195731 GPX4
Phospholipid hydroperoxide glutathione

peroxidase

K.TEVNYTQLVDLHAR.Y
109

R.QEPGSDAEIKEFAAGYNVK.F

9117 gi|66990208 AWN Spermadhesin AWN
K.EYVELLDGPPGSEIIGK.I

173
R.ASPFHIYYYADPEGPLPFPYFER.Q

9212 gi|113205666 LOC733605 NADH dehydrogenase 1 beta subcomplex 6 R.IFPGDTILETGEVIPLMK.E 48

*MASCOT score is −10 log (P), where P is the probability that the observed match is a random event. Individual scores >30 indicate identity or extensive homology

(P < 0.05).
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sites indicates its potential involvement in different physi-

ological processes responsible for fertilization in the

spermatozoon. In the present study, we identified PRDX5

in head and midpiece of spermatozoa (Figure 4). Its in-

creased expression after capacitation (Figures 3B, 4I and J)

and its localization suggest that PRDX5 plays an important

role in sperm-oocyte binding as well as regulating energy

production by mitochondria in the midpiece. A similar re-

sult was also reported in an earlier study in boar sperm-

atozoa [52].

APOA1 has been reported to induce cholesterol efflux

in spermatozoa [53,54]. Cholesterol efflux from the

sperm membrane regulates multiple signaling cascades

responsible for motility, hyperactivation, and capacita-

tion [55]. Thérien et al. reported that APOA1 is part of

high-density lipoprotein (HDL) and triggers the acro-

some reaction [56]. The APOA1 is known as a seminal

plasma protein that affects sperm-oocyte binding and

Figure 4 Localization and expression of PRDX5 and PHGPx before- and after-capacitation in porcine spermatozoa. (A and E) Images of

PRDX5 and PHGPx before capacitation (green). (B and F) Merged image of the nucleus (DAPI, blue) and acrosome (lectin PNA, red) with PRDX5
and PHGPx before-capacitation, respectively (green). (C and G) Images of PRDX5 and PHGPx after-capacitation (green). (D and H) Merged image
of nucleus (DAPI, blue) and acrosome (lectin PNA, red) with PRDX5 and PHGPx after-capacitation, respectively (green). Images were obtained

using a Nikon TS-1000 microscope and NIS Elements image software (Nikon, Japan). Bar =10 μm. (I) Ratios of PRDX5 and PHGPx [optical density
(OD x mm)/α-tubulin (OD x mm)] before- and after-capacitation. Data represent mean ± SEM, n =3. Proteins expression ratios with superscripts

were significantly different (*P < 0.05). (J) PRDX5 and PHGPx were probed with anti-PRDX5 and anti-PHGPx antibody.

Table 3 Signaling pathways associated with differentially

expressed proteins as identified by Pathway Studio

Signaling pathways Overlapping entities P-value

Metabolic Pathways

Tricarboxylic acid cycle SUCLA2, PDHB 0.002

Glutathione metabolism PHGPx, PRDX5 0.011

Cell Signaling Pathways

Adipocytokine signaling SUCLA2, APOA1, PDHB 0.008

Insulin action SUCLA2, APOA1, PDHB 0.012

Differentially expressed proteins were entered into Pathway Studio to identify

the corresponding signaling pathways that potentially regulate capacitation.

Among the differentially expressed proteins (>3-fold) of before- and after-

capacitation, at least 5 exhibited regulatory roles in single or more pathways

simultaneously (P < 0.05).
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ultimately male fertility. In present study, APOA1 was

increased after capacitation. It is plausible to suggest that

APOA1 come from fetal bovine serum used in capacita-

tion media. However, we identified this protein in mature

spermatozoa where the seminal plasma had removed com-

pletely by discontinuous Percoll gradients [16,31,52,57].

Therefore, our study provides evidence that APOA1 might

also be present in spermatozoa and play an essential role

in fertilization.

In the present study, we identified increased expres-

sion of ACRBP in after-capacitation. ACRBP regulates

the release of acrosin from the acrosome of spermatozoa

[58]. Acrosin is the major proteinase that lyses the zona

pellucida and facilitates the penetration of the sperm

through the innermost glycoprotein layers of the ovum.

Interestingly, recent study suggested that ACRBP can be

used as marker to predict boar sperm freezability [59].

Therefore, the capacitation-associated increase in ACRBP

plays an important role in the control of male fertility. An-

other capacitation-induced protein is ROPN1. Fujita et al.

reported that ROPN1 is localized to the sperm flagella

[60]. Another study reported decreased expression of

ROPN1 in the spermatozoa of patients with low sperm

motility [61]. Therefore, we hypothesize that ROPN1 con-

tributes to sperm hyperactivation. Indeed, sperm hyperac-

tivation facilitate the release from oviductal storage and

propels them into the oviductal lumen and matrix of the

cumulus oophorus during fertilization.

NADH dehydrogenase and succinyl-CoA ligase are lo-

cated in sites I and II of the mitochondrial electron

transport chain, respectively. Therefore, these enzymes

affect motility and hyperactivation of human spermato-

zoa [62]. NADH dehydrogenase and succinyl-CoA ligase

were identified as substrates of protein kinase A (PKA).

In the present study, LOC733605 and SUCLA2 were in-

creased in after-capacitation (Figure 3B). In addition, we

demonstrated the potential involvement of SUCLA2 in

the tricarboxylic acid cycle, adipocytokine signaling, and

insulin action by Pathway Studio (Table 3). Therefore,

spermatozoa may participate in various metabolic and

cell signaling pathways after capacitation that affects the

subsequent acrosome reaction and fertilization.

The spermadhesin proteins are constituents of boar

seminal plasma, attach to the sperm acrosome thereby

assist sperm-egg interaction [63]. Five spermadhesin pro-

teins were identified in the boar semen, such as PSP-I,

PSP-II, AQN-1, AQN-3, and AWN [64]. A review of lit-

erature demonstrated that spermadhesin AWN regulates

the phospholipid-binding activity in spermatozoa, thus

promoting the capacitation and the acrosomal stabiliza-

tion [65]. Therefore, high levels of AWN after capacita-

tion (Figure 3B) might represent the potentiality of the

Figure 5 Signaling pathways associated with capacitation-related proteins. The pathway was drawn using Pathway Studio 9.0 after a
database search in PubMed. Red denotes the proteins that were abundantly expressed after-capacitation, while blue denotes proteins that were
abundantly expressed before-capacitation. At least 8 proteins were implicated in different sperm-specific process among the 10 proteins.
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capacitated spermatozoa to bind with eggs zona pellucida

during the initial stages of the sperm-egg interaction for

fertilization. Since, only capacitated spermatozoa are able

to undergo the acrosome reaction, binding to the zona

pellucida, and fusion to the oocyte membrane [66]. In

contrast, Dostàlovà et al. [65] reported that the spermad-

hesin content in boar spermatozoa had been lost during

capacitation. This conclusion did not entirely support the

finding of present study. Therefore, further studies are re-

quired to investigate the role of AWN in capacitation, the

acrosome reaction, fertilization, and beyond.

Conclusion
In the present study, we performed comprehensive pro-

teomic profiling of boar spermatozoa under capacitation

conditions. We identified proteins involved in capacita-

tion and their signaling pathways. To the best of our

knowledge, this is the first study to identify 10 proteins

that undergo dramatic changes in expression (>3-fold)

during capacitation in boar spermatozoa. Additionally,

Pathway Studio was used to identify at least 5 proteins

implicated signaling pathways (Table 3) and to illustrate

the cellular pathways regulated by the identified proteins

in spermatozoa (Figure 5). However, a few of the identi-

fied proteins have unknown functions. In addition, some

proteins exhibited various functions, and although they

have diverse roles in the whole organism, their specific

functions in spermatozoa are unknown. Therefore, fur-

ther studies must identify the functions of these proteins

in sperm cells. Likewise, these candidate markers might

be useful for designing diagnostic tools to evaluate and/

or predict fertility-related diseases and male infertility

during capacitation.

Methods
Sample preparation

Semen samples were collected from 12 individual Landrace

males (Sunjin Co., Danyang, Korea) with normal fertility

(pregnancy rate, 90% ±1.44; average litter size, 10.75 ±

0.39), and samples were divided randomly into 3 groups

for experimental replication (n = 4). To avoid individual

male factors, each group’s semen samples were mixed to-

gether. Pooled samples were washed at 500 × g for 20 min

with a discontinuous (70% [v/v] and 35% [v/v]) Percoll

gradient (Sigma, St Louis, MO, USA) to remove seminal

plasma and dead spermatozoa [16]. Then, the washed

samples were divided into 2 groups: before-capacitation and

after-capacitation spermatozoa. For the after-capacitation

samples, further incubation was performed with modified

tissue culture media (mTCM) 199 (containing 10% fetal

bovine serum [v/v], 0.91 mM sodium pyruvate, 3.05 mM

D-glucose, 2.92 mM calcium lactate, 2.2 g/L sodium bicar-

bonate and 10 μg/mL heparin) (Sigma, St Louis, MO,

USA) for 30 min at 37°C under an atmosphere of 5% CO2

in air [26,27,66]. All procedures were performed according

to guidelines for the ethical treatment of animals and ap-

proved by Institutional Animal Care and Use Committee

of Chung-Ang University.

Computer-assisted sperm analysis

To analyze motility and motion kinematics of before-

capacitation sample, the sample was pre-incubated with

mTCM 199 (without 10% fetal bovine serum [v/v] and

10 μg/mL heparin) for 10 min at 37°C under an atmos-

phere of 5% CO2 in air. The same parameters of after-

capacitation sample were analyzed following 30 min

incubation of the sample with capacitation media (men-

tion earlier). A computer-assisted sperm analysis (CASA)

system (sperm analysis imaging system version (SAIS)-

PLUS 10.1; Medical Supply, Seoul, Korea) was used to

analyze sperm motility (%) and motion kinematics. Briefly,

10 μL of sample was placed in a Makler chamber (Makler,

Haifa, Israel). The filled chamber was placed on a stage

preheated to 37°C. Using a 10 × objective in-phase con-

trast mode, the image was relayed, digitized, and analyzed

by SAIS software. The movement of at least 250 sperm

cells was recorded for each sample from more than five

randomly selected fields per replicate.

H33258/CTC assessment of capacitation status

Capacitation status was determined by the dual staining

method (H33258/CTC) described previous [9,10,67] Briefly,

135 μL of treated spermatozoa were added to 15 μL of

H33258 solution (10 μg H33258/mL Dulbecco’s phosphate

buffered saline (DPBS) and incubated for 2 min at room

temperature (RT). Excess dye was removed by layering the

mixture over 250 μL of 2% (w/v) polyvinylpyrrolidone in

DPBS. The supernatant was discarded after centrifuging at

100 × g for 2.5 min. The pellet was resuspended in 100 μL

of DPBS; 100 μl of a chlortetracycline fluorescence (CTC)

solution (750 mM CTC in 5 μL buffer composed of

20 mM Tris, 130 mM NaCl, and 5 mM cysteine, pH 7.4).

Capacitation status was observed with a Microphot-FXA

microscope (Nikon) under epifluorescent illumination

using ultraviolet BP 340–380/LP 425 and BP 450–490/LP

515 excitation/emission filters for H33258 and CTC,

respectively. The patterns of capacitation status in the

spermatozoa were classified as live non-capacitated (F,

bright green fluorescence distributed uniformly over entire

sperm head, with or without a stronger fluorescent line at

the equatorial segment), live capacitated (B, green fluores-

cence over the acrosomal region and a dark post-

acrosomal region), or live acrosome reacted (AR, sperm

showing a mottled green fluorescence over the head, green

fluorescence only in the post acrosomal region, or no

fluorescence over the head) [9,10]. Two slides per sample

were evaluated with at least 400 spermatozoa per slide.
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2DE and gel-image analysis

To extract proteins from the spermatozoa, 50 × 106

spermatozoa were incubated in rehydration buffer con-

taining 7 M urea (Sigma, St Louis, MO, USA), 2 M thio-

urea (Sigma, St Louis, MO, USA), 4% (w/v) CHAPS

(USB, Cleveland, OH, USA), 0.05% (v/v) Triton X-100

(Sigma, St Louis, MO, USA), 1% (w/v) octyl β-D-glucopyr-

anoside, 24 μM PMSF (Sigma, St Louis, MO, USA), 1%

(w/v) DTT (Sigma, St Louis, MO, USA), 0.5% (v/v) IPG

Buffer, and 0.002% (w/v) bromophenol blue at 4°C for 1 h.

Then, 250 μg of solubilized protein from the sperm cells

in 450 μL of rehydration buffer was placed in a rehydra-

tion tray with 24 cm-long NL Immobiline DryStrips

(pH 3–11; Amersham, Piscataway, NJ, USA) for 12 h at

4°C. First dimension electrophoresis was performed using

an IPGphor IEF device and then the strips were focused at

100 V for 1 h, 200 V for 1 h, 500 V for 1 h, 1,000 V for 1 h,

5,000 V for 1.5 h, 10 8,000 V for 1.5 h, and 8,000-90,000

Vhr. After iso-electrofocusing, the strips were equilibrated

a second After iso-electrofocusing, the strips were equili-

brated with equilibration buffer A containing 6 M urea,

75 mM Tris–HCl (pH 8.8), 30% (v/v) glycerol, 2% (w/v)

SDS, 0.002% (w/v) bromophenol blue, and 2% (w/v) DTT

for 15 min at RT. The strips were equilibrated for a second

time with equilibration buffer B (equilibration buffer A

with 2.5% [w/v] iodoacetamide [Sigma] but without DTT

for 15 min at RT. Next, 2-DE was carried out with 12.5%

(w/v) SDS-PAGE gels with the strips at 100 V for 1 h and

500 V until the bromophenol blue front began to migrate

off the gels. The gels were silver-stained for image analysis

according to the manufacturer’s instructions (Amersham,

Piscataway, NJ, USA). The gels were then scanned using

a high-resolution GS-800 calibrated scanner (Bio-Rad,

Hercules, CA, USA). Detected spots were matched and

analyzed by comparing the gels from spermatozoa

before- and after-capacitation using PDQuest 8.0 software

(Bio-Rad, Hercules, CA, USA). The gel from before-

capacitation spermatozoa was used as a control. Finally,

the density of the spots was calculated and normalized as

the ratio of the spot on the after-capacitation gel to that

on the before-capacitation gel.

In-gel digestion

The proteins were subjected to in-gel trypsin digestion.

Excised gel spots were destained with 100 μl of destaining

solution (30 mM potassium ferricyanide and 100 mM so-

dium thiosulfate) with shaking for 5 min. After removing

the solution, the gel spots were incubated with 200 mM

ammonium bicarbonate for 20 min. The gel pieces were

dehydrated with 100 μL of acetonitrile and dried in a vac-

uum centrifuge. The above procedure was repeated 3

times. The dried gel pieces were rehydrated with 20 μL of

50 mM ammonium bicarbonate containing 0.2 μg modi-

fied trypsin (Promega, Madison, WI, USA) for 45 min on

ice. After removing the solution, 30 μL of 50 mM ammo-

nium bicarbonate was added. The digestion was per-

formed overnight at 37°C. The peptide solution was

desalted using a C18 nano column (homemade, Waters

Corp, Milford, MA, USA).

Desalting and concentration

Custom-made chromatographic columns were used for

desalting and concentrating the peptide mixture prior to

MS analysis. A column consisting of 100–300 nL of

Poros reverse phase R2 material (20–30 μm bead size,

Perseptive Biosystems, Framingham, MA, USA) was

packed in a constricted GELoader tip (Eppendorf,

Hamburg, Germany). A 10 mL syringe was used to force

liquid through the column by applying gentle air pres-

sure. Thirty microliters of the peptide mixture from the

digestion supernatant was diluted in 30 μL of 5% for-

mic acid, loaded onto the column, and washed with

30 μL of 5% formic acid. For MS/MS analyses, the pep-

tides were eluted with 1.5 μL of 50% methanol/49%

H2O/1% formic acid directly into a pre-coated borosili-

cate nano-electrospray needle (New Objective, Woburn,

MA, USA).

ESI-MS/MS

Proteins generated by in-gel digestion were subjected to

MS/MS using a nano-ESI on a Q-TOF2 mass spectrom-

eter (AB Sciex Instruments, Framingham, MA, USA).

The source temperature was RT. A potential of 1 kV was

applied to the pre-coated borosilicate nano-electrospray

needles (New Objective, Woburn, MA, USA) in the ion

source, combined with a nitrogen back-pressure of 0–

5 psi to produce a stable flow rate (10–30 nL/min). The

cone voltage was 40 V. A quadrupole analyzer was used to

select precursor ions for fragmentation in the hexapole

collision cell. The collision gas was argon at a pressure of

6–7 × 10−5 mbar and the collision energy was 25–40 V.

Product ions were analyzed using an orthogonal TOF

analyzer that was fitted with a reflector, which was a

micro-channel plate detector, and a time-to-digital con-

verter. The data were processed using a peptide sequen-

cing system.

Database search

A MS/MS ion search was assigned as the ion search op-

tion in MASCOT software (Matrix Science, Boston, MA,

USA). Peptide fragment files were obtained from the

peptide peaks in ESI-MS by ESI-MS/MS. Trypsin was

selected as the enzyme with one potentially missed

cleavage site. ESI-QTOF was selected as the instrument

type. The peptide fragment files were searched within

the database using the Mascot search engine (Matrix

Science, Boston, MA, USA), and results were limited to

Sus scrofa taxonomy. Oxidized methionine was set as a
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variable modification, and carbamidomethylated cysteine

was set as a fixed modification. The mass tolerance was

set at ±1 and ±0.6 Da for the peptides and fragments, re-

spectively. High-scoring was defined as those above the

default significance threshold in MASCOT (P < 0.05,

peptide score >30).

Western blotting

To evaluate the capacitation status, tyrosine phosphory-

lated proteins were detected with an anti-Phosphotyrosine

(4G10) antibody. In order to confirm the 2-DE results,

Western blotting was performed with anti-phospholipid

hydroperoxide glutathione peroxidase (PHGPx) and anti-

peroxiredoxin-5, mitochondrial (PRDX5) antibodies to

quantify 3 individual boar spermatozoa before- and after-

capacitation. Western blotting was performed as described

previously with modification [9,10,68]. The samples were

washed twice with DPBS and centrifuged at 10,000 × g for

5 min. Afterwards, the pellets were re-suspended and in-

cubated with sample buffer containing 5% 2-mercap-

toethanol for 10 min at RT. After incubation, the insoluble

fractions were separated by centrifugation at 10,000 × g for

10 min. The samples were subjected to SDS-PAGEs using

a 12% mini-gel system (Amersham, Piscataway, NJ, USA),

and the separated proteins were transferred to PVDF

membranes (Amersham, Piscataway, NJ, USA). The mem-

branes were blocked with 3% blocking agent (Amersham,

Piscataway, NJ, USA) for 1 h at RT. Tyrosine phosphory-

lated proteins, PHGPx and PRDX5 proteins from before-

and after-capacitation spermatozoa were immunodetected

with an anti-Phosphotyrosine (4G10) mouse polyclonal

antibody (Millipore, Darmstadt, Germany), anti-PHGPx

rabbit polyclonal antibody (Abcam, Cambridge, UK),

and anti-PRDX5 rabbit polyclonal antibody (Abcam,

Cambridge, UK), respectively, that were diluted in 3%

blocking agent (1 μg/ml) for 2 h at RT. Then, the mem-

branes were incubated with an HRP conjugated goat anti-

mouse IgG or anti-rabbit IgG (Abcam, Cambridge, UK)

diluted in 3% blocking agent (1:5,000) for 1 h at RT. The

membranes were washed 3 times with DPBS containing

0.1% Tween-20 (PBS-T). The proteins on the membranes

were detected with an enhanced chemiluminescence

(ECL) technique using ECL reagents. Proteins on mem-

branes were stripped with membrane stripping solution

(2% SDS, 100 mM mercaptoethanol and 62 mM Tris-cl)

after detection. Then, α-tubulin was detected by incuba-

tion with a monoclonal anti-α-tubulin mouse antibody

(Abcam, Cambridge, UK) diluted in 3% blocking agent

(1:10,000) for 2 h at RT. Membranes were incubated

with an HRP-conjugated goat anti-mouse IgG (Abcam,

Cambridge, UK) diluted in 3% blocking agent (1:10,000)

for 1 h at RT. The α-tubulin on the membranes was de-

tected with an ECL technique using ECL reagents. All

bands were scanned with a GS-800 calibrated imaging

densitometer (Bio-Rad, Hercules, CA, USA) and analyzed

with Quantity One software (Bio-Rad, Hercules, CA,

USA). Finally, the signal intensity ratios of the bands were

calculated for tyrosine phosphorylated proteins, PHGPx,

and PRDX5 as compared with α-tubulin.

Immunofluorescence assay

To confirm the cellular localization of PHGPx and PRDX5,

immunocytochemistry was performed in before- and after-

capacitation spermatozoa. Before- and after-capacitation

sperm suspensions were placed on slides and then dried.

The slides were fixed with 3.7% paraformaldehyde for

30 min at 4°C, washed with PBS-T, and blocked with

blocking solution (5% BSA in PBS-T) for 1 h at 37°C. Sam-

ple were incubated with anti-PHGPx and anti-PRDX5

rabbit polyclonal antibodies (Amersham, Piscataway, NJ,

USA) diluted in blocking solution (1:200) and lectin Pea-

nut agglutinin (PNA) conjugated with Alexa Fluor 647

(Molecular Probes, Carlsbad, CA, USA) diluted in block-

ing solution (1:100) overnight at 4°C. Then, the slides were

incubated for 2 h at RT with fluorescein isothiocyanate

conjugated goat anti-rabbit IgG (Abcam, Cambridge, UK)

diluted in blocking solution (1:200) for 2 h at RT. Sperm-

atozoa were counterstained with DAPI. The immunofluor-

escence signals were visualized under × 600 magnifications

with a Nikon TS-1000 microscope using NIS Elements

image software (Nikon, Tyoko, Japan).

Signaling pathway

Pathway Studio (v 9.0, Aridane Genomics, Rockville, MD,

USA) was used to predict the biological functions and sig-

naling pathways of the differentially expressed proteins. A

list of identified proteins was entered into Pathway Studio

in order to determine matching pathways for each protein.

Metabolic pathways and cell signaling pathways were con-

firmed by the PubMed Medline hyperlink that was em-

bedded in each node.

Statistical analysis

The data were analyzed with SPSS (v. 18.0, Chicago, IL,

USA). The student’s two-tailed t-test was used to compare

the capacitation conditions after normality and variance

homogeneity test. P values < 0.05 were considered statisti-

cally significant. All data are expressed as mean ± SEM.

The probabilities of the signaling pathways were deter-

mined using the Fisher exact test (P < 0.05).
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