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ABSTRACT Lung cancer is one of the malignant tumor diseases with the fastest increase in morbidity and

mortality, which poses a great threat to human health. Low-Dose Computed Tomography (LDCT) screening

has been proved as a practical technique for improving the accuracy of pulmonary nodule detection and

classification at early cancer diagnosis, which helps to reducemortality. Therefore, with the explosive growth

of CT data, it is of great clinical significance to exploit an effective Computer-AidedDiagnosis (CAD) system

for radiologists on automatic nodule analysis. In this article, a comprehensive review of the application

and development of CAD systems is presented. The experimental benchmarks for nodule analysis are first

described and summarized, covering public datasets of lung CT scans, commonly used evaluation metrics

and various medical competitions. We then introduce the main structure of a CAD system and present some

efficient methodologies. For the extensive use of Convolutional Neural Network (CNN) based methods in

pulmonary nodule investigations recently, we summarized the advantages of CNNs over traditional image

processing methods. Besides, we mainly select the CAD systems developed by state-of-the-art CNNs with

excellent performance and analyze their objectives, algorithms as well as results. Finally, research trends,

existing challenges, and future directions in this field are discussed.

INDEX TERMS CAD, lung cancer, pulmonary nodules detection, classification, CT scans, CNN.

I. INTRODUCTION

Over the past decades, cancer treatment has been the critical

focus of medical research on human health all around the

world. According to the 2020 cancer report released byWorld

Health Organization, cancer is the second leading cause of

death globally, with an estimated 9.6 million people deaths

in 2018, accounting for one in six deaths [1]. The global

cancer burden is heavy and growing. Among various types of

cancers, lung cancer is the most frequently diagnosed cancer

with the highest rate of incidence and mortality, as shown

in Fig. 1. In the United States, lung cancer death rate contin-

uously declined from 2008 to 2017, yet it still caused more

deaths in 2017 than breast, prostate, colorectal, and brain

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

cancers combined [2]. Many risk factors, such as outdoor

air pollution and the prevalence of tobacco use, contribute to

most of the deaths and disease from lung cancer. However,

lung cancer treatment is becoming more and more unaf-

fordable, and healthcare systems are struggling to provide

new cancer cures for people. Therefore, lung cancer inter-

ventions, including primary prevention, screening, and early

diagnosis, remain a top priority and are more meaningful

for people to reduce financial and psychological barriers [3].

Pulmonary nodule analysis is one of the effective cancer

prevention interventions, consisting of detection step and

classification step.

Generally, pulmonary nodules are characterized as a round

opacity or irregular lung lesions with diameters from approx-

imately 3 mm to 30 mm, which can be solitary or multi-

ple. They are complex in number (single or multiple), size
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FIGURE 1. Most common cancer cases in 2018 all around the world.

(diameters≦8mm or diameters>8mm), shape (round, polyg-

onal or irregular), margins (smooth, lobulated or spiculate),

location (well-circumscribed, juxta-pleural or juxta-vascular)

and density (solid, subsolid or ground glass nodule). Some

types of nodules are shown in Fig. 2. These nodules are

common, and most of them are benign. In many cases,

lesions of pulmonary nodules are often asymptomatic and

can increase the difficulty of diagnosis. However, studies

show that nodules with large size (diameters>8mm), sub-

solid, spiculate, lobulated characteristics are more likely to

be malignant [16], [17]. From [10], the 5-year survival rate

is only 10-15% for patients diagnosed with lung cancer,

while the rate for those with early-stage cancerous lesion

completely resected increased to 65-80%. It is challenging

but essential to determine whether the nodule is malignant in

an early stage.

FIGURE 2. Example of multiple pulmonary nodules: (a) smooth and
well-circumscribed nodule, (b) juxta-pleural nodule, (c) juxta-vascular
nodule, (d) lobulated and solid nodule, (e) subsolid nodule, and
(f) ground glass nodule.

Low-dose computed tomography (LDCT) Screening dra-

matically reduces mortality from lung cancer [8]. To be spe-

cific, the National Lung Screening Trial (NLST), which is

the largest trial to date, demonstrated that a 20.0% decline in

mortality rate among participants at high risk for lung cancer

compared with chest radiography screening. More recently,

the Multicentric Italian Lung Detection Trial showed a 39%

reduction in mortality compared with no early interven-

tion [2], [9]. LDCT screening detects more pulmonary nod-

ules and has lower radiation damage, which is helpful for

radiologists to diagnose early-stage lung cancers and make

treatment plans. Thus, the open datasets, evaluation metrics,

and developing algorithms that we select in this article, are

all related to LDCT acquisition techniques.

With the popularization of LDCT screening techniques,

an enormous increase in CT scans burdens radiologists

heavily. Manual analysis in massive CT scans is becoming

a very tedious and time-consuming task. Therefore, with

the aim of lessening the radiologist’s workload, an effi-

cient Computer-Aided Diagnosis (CAD) system is neces-

sary to facilitate the process of automatically analyzing large

amounts of CT scans. In recent years, CAD systems have

been widely adopted in addressing various diseases [3]. For

its high validity and reliability in clinical diagnosis, the global

CAD market estimated to reach 2.7 billion dollars by 2025,

expanding at a compound annual growth rate of 11.6% over

the forecast period [15]. Specifically, a conventional CAD

system can be divided into a detection system (CADe) and a

diagnostic system (CADx). CADe aims to locate the interest

regions of the lung CT scans to detect abnormal lesions.

CADx is designed to assist radiologists or clinicians in deter-

mining the type, malignancy of the anomalies. In general,

a CAD system for lung cancer lies the emphasis on detec-

tion and classification of pulmonary nodules, consisting of

three stages: (1) preprocessing, (2) nodule detection, includ-

ing candidate nodule detection and false positive reduction,

(3) nodule classification. Preprocessing is mainly conducted

to reduce noise, segment the Regions Of Interest (ROI) in

the lung for narrowing the search range of pulmonary nod-

ules, and normalize the data. In the nodule detection stage,

candidate nodules should be detected as many as possible,

which often results in high sensitivity and low accuracy.

Then the false positive reduction step should be performed to

catch precise nodules marks. Finally, the classification stage

aims to predict the probability of nodule malignancy [4].

Practical algorithms of three stages of CAD development will

be covered in more detail in section III.

Numerous published works have been applied to improve

the performance of CAD systems for pulmonary nodule

analysis. In the case of insufficient resources and dataset,

researchers usually use traditional machine learning meth-

ods such as multiple gray-level thresholding, linear dis-

criminant analysis, distance transformation and Support

Vector Machine (SVM) for quick investigation on lung nod-

ules [18]–[23]. However, using Deep Learning approaches in

various medical imaging tasks has been a mainstream trend

in the past ten years. Deep Neural Networks (DNNs), espe-

cially Convolutional Neural Networks (CNNs) have repeat-

edly been shown the outstanding performance in many open

computer vision competitions, including ImageNet chal-

lenges and Microsoft Common Objects in Context (MS

COCO) challenges. For the high adaptability of CNNs, many

CNN-based models, such as U-Net, Faster Region CNN

154008 VOLUME 8, 2020



W. Cao et al.: Comprehensive Review of CAD of Pulmonary Nodules Based on Computed Tomography Scans

(Faster R-CNN), Mask-RCNN, and Retina-Net [24]–[29],

have been widely applied on nodule detection and classi-

fication tasks, increasing accuracy and robustness of CAD

systems.

This article aims to provide a detailed overview of CAD

systems for pulmonary nodule detection and classification,

which can be used as a study guide for researchers. Com-

pared with the previous surveys [6], [7], this review not only

illustrates the applications, experimental benchmarks, and

construction constitutes of CAD systems but also emphasizes

the introduction of various systems developed based on state-

of-the-art CNNs. Accurately, we completely summarize the

robust and effective algorithms for pulmonary nodule anal-

ysis, which have been validated on public or large datasets

with excellent performance. After eliminating similar papers,

we only detailly analyze those that have shown the best

performance in lung cancer diagnosis to avoid duplicate

content from previous reviews. We mainly focus on works

published in 2019 and 2020 with the latest advancements, yet

a small part of relevant works proposed before 2019 are also

included. Please refer to the Appendix section for details of

the literature collection procedure.

The remainder of this article is organized as follows.

Firstly, the experimental benchmarks on pulmonary nodule

detection and classification, including public datasets of lung

CT scans, widely used evaluation methods, and related com-

petitions, are introduced. Secondly, the complete structure

of CAD systems, as well as some efficient algorithms of

each component, are explicitly presented. Thirdly, workflows

of CNN-based algorithms and traditional image processing

methods are presented, and the advantages of CNN-based

algorithms are summarized. Fourthly, the CAD systems,

which are developed using state-of-the-art CNNs with excel-

lent performance, are analyzed. Finally, research trends, cur-

rent challenges, and prospective directions of CAD system

development for pulmonary nodule analysis are discussed.

II. EXPERIMENTAL BENCHMARKS

For the development of effective CAD systems, there are

three experimental benchmarks for researchers to focus on:

datasets, evaluation metrics, and large-scale competitions for

lung cancer diagnosis. Training pulmonary nodule detec-

tion and classification models require a large volume of

lung CT scans, thus the acquisition of public datasets is

extremely vital. To fairly validate the performance of vari-

ous algorithms, reliable evaluation metrics are necessary. In

addition, large-scale competitions always provide up-to-date

CADmodels, which are trained based on unified datasets and

evaluation standards.

A. PUBLIC DATASETS OF LUNG CT SCANS

1) NLST

Dataset of theNational Lung Screening Trial was collected on

lung cancer diagnoses and deaths throughDec. 31, 2009, with

54000 participants enrolled from 2002 and 2004 randomly

assigning to an LDCT group and a chest radiography group.

Approximately 200,000 image series from over 75,000 CT

exams are available, which include data on participant charac-

teristics, screening exam results, diagnostic procedures, lung

cancer, and mortality [31].

2) VIA/I-ELCAP

The International Early LungCancerAction Program database

wasmade for the performance evaluation of diverse CAD sys-

tems by the ELCAP and Vision and Image Analysis research

groups. 50 LDCT scans with a slice thickness of 1.25mm,

nodule location information, and nodules types are provided.

Particularly, the nodule sizes of this database are relatively

small [32].

3) NELSON

Nederlands-Leuvens Longkanker Screenings Onderzoek trial

was designed to investigate the benefits of LDCT screening

on lung cancer mortality. Data of 15822 participants were

collected since 2003. Datasets were original from images of

the lung with a thickness of 1 mm and reconstructed at an

overlap interval of 0.7 mm [34].

4) LIDC-IDRI

The Lung Image Database Consortium and Image Database

Resource Initiative (LIDC-IDRI) is the largest publicly avail-

able reference database for lung nodules. This database con-

tains 1018 CT scans and associated XML files of two-phase

image annotations from four experiences radiologists. Addi-

tionally, annotation consists of nodule characteristics, types,

and position [36].

5) OTHERS

Datasets of Non-Small Cell Lung Cancer (NSCLC)-

Radiomics, ACRIN-NSCLC-FDG-PET, LungCT-Diagnosis,

and QIN LUNGCT are relatively less-used for improving the

sensitivity of CAD system in contrast experiments. However,

researchers can use these datasets for model robustness and

generalization testing. These datasets can be downloaded

from The Cancer Imaging Archive (TCIA) [42]. The infor-

mation of all datasets is summarized in Table 1.

B. EVALUATION METRICS

The commonly used evaluation metrics of pulmonary nodule

detection and classification are listed below:

1) TPR, FPR, ACCURACY

Ture Positive Rate (TPR), False Positive Rate (FPR), and

accuracy are the primary methods to quantitatively analyze

the experimental results in nodule detection and classifica-

tion. Four variables are used in calculating these three param-

eters: Ture Positive (TP), Ture Negative (TN), False Positive

(FP), False Negative (FN). Specifically, TPR, which is also

called sensitivity or recall, shows the relationship between

TPs and the total number of actual positive samples, using

Eq. (1). FPR is calculated as the ratio between FPs and
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TABLE 1. Diverse public datasets with a large number of lung CT scans.

the total number of actual negative samples, using Eq. (2).

Besides, accuracy describes the closeness of the positive

predicted values to actual samples, using Eq. (3).

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

2) ROC, FROC

Receiver Operating Characteristic curve (ROC) and

Free-Response Operating Characteristic curve (FROC)meth-

ods are generally used to analyze the performance of a

CADe system, which visually estimate the pros and cons

of various comparative algorithms. A ROC curve indicates

the relationship between sensitivity and FPR, with FPR on

the X-axis and sensitivity on the Y-axis. An FROC curve

is similar to a ROC curve except that the number of FPs

per scan replaces the FPR. Particularly, the FROC method

is often used in most competitions related to medical image

processing.

3) CPM

Competition PerformanceMetric (CPM) refers to the average

sensitivity at seven predefined FPRs: 1/8, 1/4, 1/2, 1, 2, 4,

and 8 FPs per scan, which is defined as the final score of

FROC curve. CPM was first proposed in Automatic Nodule

Detection 2009 (ANODE09) [50] and became the evaluation

criteria of most pulmonary nodule detection competitions.

CPM is calculated using Eq. (4). Visually, Fig. 3 shows the

FIGURE 3. The FORC curves and CPMs of various systems.

FORC curves and CPMs of various CAD systems from [30].

CPM =
1

7

∑

i=FPs

s (i),FPs = {
1

8
,
1

4
,
1

2
, 1, 2, 4, 8} (4)

where i represents the number of FP per scan at seven prede-

fined FPR levels, s means the sensitivity of a CAD system,

which can be referred to Eq. (1).

4) AUC, LOGLOSS

The Area Under the Curve (AUC) of the ROC curve and

LogLoss are usually applied to evaluate the algorithms’ abil-

ity to predict malignancy and classify lung cancer. The larger

the AUC, the higher the classification accuracy of a CAD

system. On the contrary, the lower the LogLoss, the better
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TABLE 2. Grand challenges on pulmonary nodules detection and classification.

performance of a CAD system. The definition of LogLoss is:

LogLoss = −
1

n

n
∑

i=1

[

yilog
(

ŷi
)

+ (1 − yi) log
(

1 − ŷi
)]

(5)

where n is the number of patients in the test set, ŷi is the

predicted probability of the image belonging to a patient with

cancer, yi is one if the diagnosis is cancer, zero otherwise.

5) CROSS-VALIDATION

Cross-validation (CV) is a statistical method used to evaluate

the performance of machine learning models. It is largely

used in the phase of training predictive models because it

can avoid overfitting and improve model generalization when

there is not enough available data. Specifically, splitting the

dataset into a test set and a training set in different ways is

the critical part. CV methods contain K-Fold CV, Leave One

Group Out, and Holdout method.

C. LARGE-SCALE COMPETITIONS RELATED TO

PULMONARY NODULE

With the development of CAD, various competitions related

to lung nodules have created a vital learning platform for

researchers. Most of the medical image processing compe-

titions provide datasets, effective evaluation methods, and

reference algorithms, which are suitable learning sources

for researchers and developers. In this article, we choose

large-scale competitions that are related to pulmonary nod-

ule detection and classification. Each of the competitions

contains over 50 even to 3000 participants joined. The

selected competitions consist of ANODE09, Lung Nodule

Analysis 2016 (LUNA16), TianChi Medical AI competi-

tion (TIANCHI) on the intelligent diagnosis of pulmonary

nodules, Kaggle Data Science Bowl 2017 (DSB), Inter-

national Symposium on Biomedical Imaging-Lung Nodule

Malignancy Prediction based on sequential CT scans (ISBI-

LNMP) and Lung Nodule Database-Automatic Lung Cancer

Patient Management (LNDb) [66]. Table 2 shows detailed

information of each competition, including sample data, con-

stituent parts, evaluation criteria, best results, etc.

III. STRUCTURE OF A CAD SYSTEM

For decades, to increase the efficiency of lung cancer diagno-

sis, numerous researches have been done. Potentially, CAD

systems can take advantage of thin cross-section images and

serve as a second interpreter for radiologists for pulmonary

nodule identification. There are a variety of CAD systems

designed with different structures, and the main structure

includes three components: (1) Preprocessing, (2) Nodule

Detection, including candidate nodule detection and false

positive reduction, (3) Nodule Classification. The whole pro-

cedure on how a CAD system works is shown in Fig. 4. Per-

formance varies significantly among CAD systems due to the

CT input, different characteristics of nodules, and especially

the diversity of algorithms. To improve both sensitivity and

specificity, most of the studies are focused on false positive

reduction and nodule classification while using the same

datasets.

In this section, we completely summarize the components

of a CAD system and present practical algorithms that have

been proved the effectiveness on public datasets.

A. PREPROCESSING

Preprocessing is a significant first stage of lung CT image

analysis, because much irrelevant information existing in

raw images that reduces working efficiency and diagnostic

accuracy of a CAD system. The main lung volume, which is

the ROI, is the core searching space while conducting nodule

detection. Therefore, removing distracting components such

VOLUME 8, 2020 154011
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FIGURE 4. The complete workflow of a CAD system.

as chest tissues and image artifacts, recovering or enhancing

useful information are the key goals in this stage. It is illus-

trated that adapting lung segmentation procedures, as a pre-

processing step in a CAD system, can prevent approximately

5% - 17% missing of detected nodules [33]. Specifically, the

contrast of Hounsfield Unit (HU) value between the lung

and surrounding tissue forms the basis of most segmentation

methods, and these methods can be divided into rule-based

approaches and data-based approaches [4].

Generally, thresholding, component analysis, region grow-

ing, morphological operations, and filtering [19], [22], [26],

[51], [52], [62], [67], [68], [96], [109] are often used as

rule-based approaches in preprocessing medical images.

Thresholding and component analysis are the most effective

and quick ways to approximately separate lung volume from

distracting components. Then lung volume can be found

by restricting size and location. Also, using region growing

can identify lung volume from trachea and bronchi. After

determining lung volume, morphological operations, such as

erosion and dilation, can be performed to obtain nonporous,

smooth-bound lung. Various filters, such as Gaussian smooth

filter and arithmetic mean filter, are recommended to reduce

noise or enhance the image quality. These methods can be

combined in various ways to achieve different segmentation

effects. Han et al. [19] used thresholding to simply extract

the chest volume, then applied a two-class high-level vec-

tor quantization algorithm for classifying voxels, followed

by a linear Karhunen-Lo’eve transformation of the local

intensity vectors. Besides, the principal component analy-

sis technique was performed to optimize the vector space.

Liao et al. [62] firstly adopted a Gaussian filter, intensity

and distance thresholding operations to extract the mask of

lung and rule out other tissues, next performedmorphological

operations including convex hull computing and dilation,

to optimize mask extraction. Fig. 5 shows a complete pre-

processing procedure using rule-based approaches.

FIGURE 5. The procedures of preprocessing. (a) Convert the CT image into
HU format, (b) Filtering then thresholding image for binarization,
(c) select the connected domain of lung volume, (d) separate the left and
right lungs, (e) calculate the convex hull on each of lung side. (f) dilate
and merge the two masks, (g) multiply the raw image with the mask, fill
the masked area with tissue luminance, and transform the image to
UINT8, (h) crop the image into a specific size.

Furthermore, data-based approaches with better applicabil-

ity can be used after rule-based operations by training learn-

able models to refine lung segmentation. Soliman et al. [63]

initially identified the background of all 3D chest scans by

region growing and component analysis. They then proposed

a joint 3D Markov-Gibbs Random Field (MGRF) frame-

work, which integrated two appearance sub-models and an

adaptive shape prior sub-model to segment both normal and

pathological lungs. Besides, deep learning techniques, partic-

ularly CNNs can be applied for medical image segmentation

when there is sufficient hardware support. Existing advanced

CNNs such as U-net [64], Mask-RCNN [65], and hybrid

CNNs [69] can also be used for automatic lung segmentation.

Alom et al. [69] proposed a Recurrent CNN (RU-Net) and

a Recurrent Residual CNN (R2U-Net) for medical image

segmentation, both of which were designed based on U-Net

models. The proposed CNNs were evaluated on the LUNA16

dataset to segment lung region and achieved an accuracy

of 99.18%.

In fact, rule-based approaches can also reach similar seg-

mentation performance by manually adjusting parameters as

data-based approaches. However, data-based approaches cost

more time to train a learnable model, and it will be more
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computationally expensive than using rule-based approaches

in optimizing CAD systems. Rule-base approaches are more

convenient options for researchers to preprocess lung CT

images.

B. NODULE DETECTION

Nodule detection involves nodule registration and filtering,

called candidate nodule detection and false positive reduc-

tion, respectively. For decades, various nodule detection tech-

niques have been proposed because of the complexity of

nodule texture, size, shape and location, etc. We roughly

divide diverse techniques into two common categories: tra-

ditional methods and DNN-based methods. The traditional

methods, mainly consisting of classical image processing

methods and machine learning classifiers, determine nod-

ules and eliminate FPs by maximizing the matching rate

between the feature profiles and suspicious area under the

premise of manual-defined specific features. On the other

hand, DNN-based methods, especially CNN-based methods,

refer to black-box operations, which extract implicit features

and tuning system performance automatically. Many practi-

cal algorithms of nodule detection are proposed based on both

the traditional and DNN-based methods [77].

In this part, we briefly introduce useful algorithms which

are developed for candidate nodule detection and false posi-

tive reduction. The effective algorithms proposed in 2019 and

2020 are selected and summarized in Table 3.

1) CANDIDATE NODULE DETECTION

In this stage, the main goal of CAD is to generate as many

candidates as possible without considering the specificity but

sensitivity. The more the pulmonary nodules are detected,

the higher the survival rate of patients. Candidate Nodule

Detection (CNDET) is a procedure to identify suspicious

lesions and provide predicted position and probability of

candidates.

For decades, several traditional methods such as threshold-

ing, region growing, clustering, distance transformations, and

morphological operations [19]–[23], [70]–[73], [83], [100]

have been widely used based on hand-crafted features for

roughly recognizing candidate nodules. El-Regaily et al.

[73] first applied rule-based approaches, including contrast-

enhancing, region growing, rolling-ball algorithm and mor-

phological operations, to extract lung parenchyma as well as

preserve nodules attached to the lung wall. They then used

3D region growing, Euclidean distance transform and 2D

thresholding to capture candidates from depth maps. How-

ever, these classical image processing methods are developed

according to pixel intensity and low-level representatives of

images. Additional filtering or geometric features computing

methods are also needed to optimize candidate nodule gener-

ation [22], [74].

With the popularization of deep learning, more and more

detection algorithms are proposed based on DNN techniques.

So far, a large number of DNN-based methods, specifi-

cally CNN-based methods, are applied to generate candidate

nodules because they can capture both low-level features

and abstract high-level features, which greatly improve the

detection sensitivity. The commonly used network structures

for nodule detection mainly comprise simple CNN, U-Net,

Feature Pyramid Network (FPN), Region Proposal Network

(RPN), Residual Network (ResNet), and Retina-Net. Nearly

all of the detection algorithms are variants of these networks,

[26]–[28], [51], [53]–[57], [61], [75]–[79]. Part of them are

Hybrid networks, which combine multiple structures in cas-

cade mode [24], [28], [62], [68], [90], [99]. Wang et al.

[75] proposed a nodule-size-adaptive model, which is sim-

ilar to Faster R-CNN, to locate candidates with bounding

boxes. Azad et al. [68] developed a Bi-directional ConvL-

STM U-Net with Densely connected convolutions (BCDU-

Net), which use different ways of concatenation to take full

advantages of multiple feature maps for lung nodule recog-

nition and segmentation. Besides, some fusion networks are

also explored using multi-stream structures in order to inte-

grate the power of different networks [25], [65], [80]–[82].

Liu et al. [80] exploited three identical 3D ResUNets to gen-

erate 3D Gaussian blob nodules, then fine-tuned the network

by adding 3D RPN heads resulting in higher sensitivity on

large nodules.

2) FALSE POSITIVE REDUCTION

After the CNDET stage, there are still many FPs decreasing

the efficiency of nodule diagnosis. Excessive FPs will lead to

over-diagnosis, over-treatment, waste of medical resources.

Therefore, it is essential to increase the accuracy of nod-

ule detection by reducing FPs. False Positive Reduction

(FPRED) refers to classify true nodules from extracted can-

didates, which is equivalent to a binary classification task.

There are also many works focusing on FPRED.

In the FPRED stage, a variety of features based on inten-

sity, morphology, or texture should be extracted from candi-

date nodule images and fed to classifiers to determine nodule

and non-nodule candidates. For traditional methods, several

machine learning classifiers are commonly applied to recog-

nize true nodules, for example, SVM, k-Nearest Neighbor-

hood classifiers, linear discriminant classifiers, and various

boosting classifiers [19]–[22], [83], [84]. Naqi et al. [22]

combined geometric texture and Histogram of Oriented Gra-

dient reduced by Principle Component Analysis (HOGPCA)

features into a hybrid feature vector, then fed the extracted

vector to k-Nearest Neighbourhood, Naive Bayesian, SVM,

and AdaBoost to reduce FPs.

In recent years, massive DNN-based methods, specifically

various CNNs, have been proposed to enhance classifi-

cation performance. According to the difference of net-

work structures, we can categorize these networks into

advanced off-the-shelf CNNs [24], [51], [54], [67], [76],

[78]–[80], [94], [100], [105], [108], and multi-stream het-

erogeneous CNNs [53], [58], [72], [75], [85], [86]–[88].

Liu et al. [76] developed a High Sensitivity and Specificity

(HS2) network, which was built by two convolution layers

and three fully connected layers, to track the appearance
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TABLE 3. Practical works for candidate nodule detection and false positive reduction.

changes in continuous CT slices of each nodule candidate on

Location History Images (LHI). Cheng et al. [53] applied a

3D multi-classification network composed of VGG, Incep-

tion, and Dense networks to eliminate FPs, which achieved a

sensitivity of 73% on the TIANCHI dataset.

Besides, optimization strategies such as data augmen-

tation, positive samples balancing via focal loss function,

and Non-Maximum Suppression (NMS) operations [80]can

be used to improve performance for better classification.

For example, At Liu et al. [80] applied Projected Gradient

Descent to generate three types of adversarial samples, then

trained a 3D Dense U-Net with the extracted candidates

and adversarial samples, resulting in a 5.33% improvement

on CPM.
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TABLE 4. Useful works for nodule classification.

C. NODULE CLASSIFICATION

Nodule classification is the final step of CAD systems. Most

of the CAD systems are designed for predicting malignancy

of nodules and determining whether a nodule is cancerous,

but some are designed for nodule type classification [21],

[95]. In this article, wemainly focus on lung cancer diagnosis.

The age, sex, pack-years smoked, and smoking status of

patients can cause nodule lesions. Since cancerous nodules

tend to have large size (diameters>8mm), and uneven surface

with spiculate, lobulated characteristics, measurements of

nodule size and representations of nodule appearance are the

most important research direction to estimate the malignant

probability.

A number of classification techniques are applied in

this stage: (1) machine learning classifiers, such as SVM,

k-Nearest Neighborhood classifiers, Bayesian classifiers,

boosting classifiers, optimal linear classifiers [59], [89], [91];

(2) advanced off-the-shelf CNNs [11], [51], [55], [62],

[92], [93]; (3) CNNs integrated with machine learning

classifiers [28], [90], [97]; (4) multi-stream heterogeneous

CNNs [56], [61], [67], [106]; (5) CNNs trained with transfer

learning algorithms [29], [56], [61], [60], [67], [94], [98],

[106]. As can be seen from the above, there are multi-stream

hybrid CNNs trained with transfer learning techniques.

For instance, Xie et al. [56] performed a 3D multi-view

knowledge-based collaborative (MV-KBC) deep model,

which was built with three pre-trained ResNet-50 networks,

to extract multiple features from nine planes and diagnose

the malignancy of nodules. Table 4 shows the useful works

proposed in 2019 and 2020 on nodule classification.

IV. CNNS VS. TRADITIONAL METHODS

A. WORKFLOW

Rapid improvements in computing power, as well as an

increase in the amount of available data, enable the extensive

use of DNN-based methods in medical image processing.

Particularly, CNNs are responsible for the tremendous influ-

ence in the field of CAD development, and significantly

improve the accuracy in nodule detection and classifica-

tion tasks. CNNs are designed to discover the underlying

relationship between images and automatically extract the

most descriptive features, mainly in an end-to-end manner.

CNNs are typically built by three types of layers (convo-

lution layers, pooling layers and fully connected layers.)

and activation functions. The convolution and pooling layers

perform feature extraction while the fully connected layers

map the extracted features to the final output. And each

fully connected layer is followed by a specific activation

function such as sigmoid, softmax and ReLU. The activa-

tion functions are selected according to different data and
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FIGURE 6. (a) Tradition methods workflow VS. (b) Typical CNNs workflow.

classification tasks. However, traditional methods are to

applied several computer vision techniques for image pro-

cessing. For feature extraction, it is necessary to determine

hand-crafted features and manually select the important ones

in each given image, which heavily depend on the subjective

judgment of researchers. In the following step,machine learn-

ing classifiers need to be performed for nodule classification.

The workflows using typical CNNs and traditional methods

for nodule diagnosis are described in Fig. 6.

B. ADVANTAGES OF CNNs

1) BETTER PERFORMANCE

Unlike traditional methods, CNNs utilize the shared con-

volution kernel to discover potential patterns in different

image categories, which are beneficial for processing not

only single-dimensional but also high-dimensional data. This

characteristic of CNNs enables the exploration of high-level

semantic information from substantial medical images, lead-

ing to better performance in image detection and classifica-

tion tasks.

2) STRONG FLEXIBILITY

CNNs provide strong flexibility and adaptivity on various

datasets. Since CNNs are mathematical models with approx-

imation functions, any dataset that can be quantified can be

used to retrain CNN-based models for both regression and

classification problems. In contrast to traditional methods,

classical image processing methods and machine learning

classifiers tend to be domain-specific [107].

3) AUTOMATED AND EFFICIENT

CNNs are designed based on black-box operations, which are

able to automatically extract descriptive and salient features

corresponding to each target object. However, the difficulty of

traditional methods is to manually define and select specific

features according to different image tasks. As the number of

image categories increases, feature extraction becomes more

time-consuming and energy-draining.

V. STATE-OF-THE-ART

Part of the algorithms in this article involve a small extension

to previously published works, or are just tested with different

datasets. Therefore, only the CAD systems with the best

performance or developed with state-of-the-art CNNs will be

detailedly introduced in this section.

A. MULTI-STREAM FRAMEWORKS

Multi-stream frameworks refer to those developed using

multi-scale, multi-resolution, multi-views input data, or those

designed with multiple networks. Applying multi-stream

frameworks can take advantage of different types of features

for better identifying malignant nodules.

1) MULTI-SCALE GRADUAL INTEGRATION CADE

The Multi-scale Gradual Integration CNN (MGI-CNN)

CADe system, which was designed specifically for false

positive reduction, was adapted byKim et al. [86].MGI-CNN

was proposed to extract morphological and contextual fea-

tures from multi-scale input data. The MGI-CNN consisted

of two main components: Gradual Feature Extraction (GFE)

and Multi-Stream Feature Integration (MSFI). The candidate

nodule patches were first extracted from thoracic CT scans

at three different scales: 40 × 40 × 26, 30 × 30 × 10,

20 × 20 × 6. The extracted patches were fed into ‘zoom-

in’ and ‘zoom-out’ GFE networks next. Then the multiple-

stream features were fused by MSFI to integrate contextual
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information hierarchically. The algorithm was evaluated on

the LUNA16 dataset and obtained CPM scores of 0.908(V1)

and 0.942(V2). Note that the source code is available at:

https://github.com/ ku-milab/MGICNN.

2) MAXIMUM INTENSITY PROJECTION-BASED CADE

This CADe system was developed by Zheng et al. [81]

using Maximum Intensity Projection (MIP)-based CNNs.

The framework of the proposed CADe included four fusion

2DCNNs based on U-Net and a 3DCNN based on VGG-Net.

MIP images were the superposition of maximum grey values

at each coordinate from a set of consecutive slices. Specifi-

cally, ruled-base methods, covering thresholding, component

analysis, and binary morphology operations, were first used

to segment lung volume. Then the MIP images with different

slab thicknesses were generated as input for 2D CNNs to

detect candidates from four streams. All the fused candi-

dates were finally fed into a 3D CNN to reduce FPs. In the

CNDET stage, the MIP-based CADe system was trained on

the LUNA16 dataset and achieved a sensitivity of 95.36%

with 20.4 FPs/scan. In the FPRED stage, the system was per-

formed on the LIDC-IDRI dataset and obtained a sensitivity

of 94.19% with 2 FPs/scan.

3) CLOUD-BASED AUTOMATED CADE

Masood et al. [54] developed a CADe system, which was

integrated cloud computing provided by virtual machines and

software given by a 3D CNN model. In the preprocessing

stage, Median Intensity Projection (MeIP) was applied to

generateMeIP images. Then traditional methods were used to

extract multi-scale, multi-angle, and multi-view patches from

MeIP images. In the CNDET stage, a multi-Region Proposal

Network (mRPN) architecture was built based on a modified

VGG-16 backbone to detect candidate nodules from extracted

patches. They chose seven levels of anchor sizes to generate

nodules of diverse malignant levels: 4×4, 8×8, 12×12, 16×

16, 20×20, 26×26, and 32×32. In the following stage, a 3D

CNNusing amodifiedResNet-10 basic layout was performed

to reduce FPs. The Cloud-based automated CADe systemwas

trained and validated on LUNA16, ANODE09, LIDC-IDR

datasets, achieving sensitivities of 0.988 at 1.97 FPs/scan,

0.976 at 2.3 FPs/scan and 0.988 at 1.97 FPs/scan,

respectively.

4) END-TO-END CADX

Ardila et al. [65] proposed an end-to-end 3DCNN framework

that trained with patients’ current and prior CT volumes for

lung cancer diagnosis. The architecture of the CADx system

consisted of four sectors: (1) Lung segmentation model: a

Mask-RCNN was trained on the LUNA16 dataset to produce

segmentation masks of lung CT scans. (2) Cancer ROI detec-

tion model: a modified 3D Retina-Net was pre-trained on the

LIDC dataset and fine-tuned on the NLST dataset to gener-

ate nodule-like ROIs. (3) Full-volume model: a 3D inflated

Inception V1 was trained on the 1.5 mm3 voxel size CT

volumes for cancer prediction, fine-tuning from a checkpoint

trained on ImageNet. (4) Cancer risk prediction model: a 3D

Inception was applied to extract features from the output of

the (2)(3) models for final malignancy prediction, exploiting

both nodule-level local information and global context from

the entire CT volume. The CADx system achieved the best

performance on NLST data (AUC=0.944).

5) MULTI-VIEW CADX

Xie et al. [56] adopted a U-Net to segment the lung nodules

on a slice-by-slice basis. Next, a 3D multi-view knowledge-

based collaborative (MV-KBC) deepmodel consisting of nine

KBC sub-models was trained to learn multiple characteristics

from nine specific views (sagittal, coronal, axial and six

diagonal planes) on each 3D nodule image. Each sub-models

comprised three pre-trained ResNet-50 networks, which were

applied to extract the overall appearance, heterogeneity in

voxel values, heterogeneity in shapes patches of nodules on

each plane. Besides, a penalty loss function was introduced

to balance the number of positive and negative samples. The

proposed model was tested on the LIDC-IDRI dataset for

nodule classification, resulting in an accuracy of 91.6% and

the AUC of 95.7%.

B. TRANSFER LEARNING

Transfer learning indicates an algorithm that stores knowl-

edge gained while solving a specific task and can be applied

to another relevant task. Initialize or fine-tune models using

pre-trained CNNs can improve the efficiency and accuracy of

CAD systems to some extent.

1) MULTI-PLANAR CADE

Zheng et al. [79] proposed a 2D U-Net++ and a 3D Multi-

Scale Dense CNN to develop the CADe system for small

nodule identification. This CADe system was trained using

images from the axial plane, the coronal plane, and the sagit-

tal plane with transfer learning algorithms. For image prepro-

cessing, the multi-planar lung volumes were segmented using

the same ways as [81]. For candidate nodule generation, the

multi-planar slices and MIP slices served as the input of the

U-Net++ model, which was adapted from efficient-net pre-

trained on ImageNet. The U-Net++model extracted features

from both small and large receptive fields and detected can-

didate nodules on each plane using bounding boxes. Next,

a 3D Multi-Scale Dense CNN, consisting of thirty-two basic

blocks, five transition blocks, and a classifier block, was

applied to exclude suspicious candidates. The Multi-planar

CADe system was trained and validated on the LIDC-IDRI

dataset. It reached a sensitivity of 0.981 when identifying

candidate nodule, and obtained a CPM score of 0.955 after

reducing FPs.

2) MED3D CADX

TheMed3Dwas developed byChen et al. [98] for 3Dmedical

image segmentation and classification using transfer learning

algorithms. The procedure of the Med3D CAD contained

three steps: (1) The 3DSeg-8 dataset with diverse scans
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regions, target organs, and pathologies were collected and

normalized. (2) The Med3D, which consisted of a shared

encoder adapted from ResNets and eight simple decoder

branches, was trained to extract specific features. (3) Transfer

the pre-trained Med3D to different medical tasks. In the

lung cancer diagnosis task, they changed the encoder part

of Med3D to a ResNet classifier for feature extraction, then

added an average pooling layer and a full-connected layer

with (1,1,1) kernel size for malignant nodule classification.

The system evaluation was conducted on the LIDC dataset

with an accuracy of 0.919 and higher network convergence

speed. Note that all pre-trained models and source codes are

provided at: https://github.com/Tencent/MedicalNet.

C. SEMI/UN-SUPERVISED BASED CADe

Semi-supervised learning methods can be used to auto-

matically extract features from a very limited number of

labeled data and a large number of unlabeled data. In con-

trast, unsupervised learning methods are used on unlabeled

data. Semi/un-supervised learning algorithms can increase

the accuracy of lung cancer diagnosis in the case of insuf-

ficient training data.

Wang et al. [99] proposed a FocalMix method, which

was to take advantage of the latest semi-supervised learn-

ing (SSL) algorithms for 3D medical image processing.

FocalMix method mainly included three optimization strate-

gies to improve the effectiveness of lung nodule analysis:

soft-target focal loss, anchor-level target prediction model,

and MixUp augmentation. The labeled images and unla-

beled images were utilized as input data. Firstly, the training

anchors in labeled images were assigned according to the

annotated boxes, while the unlabeled ones were extracted

by the target prediction model. Besides, the target predic-

tion model was designed using both traditional methods

and CNN-based methods in SSL manner, covering image

transformations, morphological operations, and a 3D vari-

ant of FPN. After that, two levels of MixUp augmentation,

which were image-levelMixup andObject-levelMixup, were

applied to each input batch. Additionally, the soft-target focal

loss was used on unlabeled data to train the model. They

evaluated the FocalMix method on the LUNA16 dataset and

NLST dataset, resulting in a CMP score of 0.907. It was

proved that the proposed method outperformed the fully

supervised baseline, and was easy to transfer to other modern

SSL frameworks.

D. SELF-SUPERVISED LEARNING

Self-supervised learning is an approach that makes full use

of unlabeled data to generate the needed information for

supervised feature learning.

1) MODELS GENESIS CADE

The Models Genesis (MG) CADe system was designed by

Zhou et al. [105]. The MG consisted of various 2/3D source

models, which were trained from unlabeled images using

a unified self-supervised learning method. The proposed

system was built in an encoder-decoder architecture and was

applied in different imaging tasks. The MG consolidated four

novel transformations: (1) non-linear, (2) local-shuffling, (3)

out-painting, and (4) in-painting, to recover anatomical pat-

terns. TheMGwas trained from diverse perspectives (appear-

ance, texture, context, etc.) by unifying all tasks into a single

image restoration task via transformation operations. Mod-

els fine-tuned from MG outperformed models learned from

scratch and any 2Dmodels in five target tasks, including both

image segmentation and classification. For nodule and non-

nodule classification tasks, the MG CADe system was tested

on the LUNA16 dataset and achieved the best performance

(AUC=0.982, CPM=0.971). Note that all pre-trainedmodels

are available at: https://github.com/MrGiovanni/ModelsGen

esis.

2) HIGH SENSITIVITY AND SPECIFICITY CADX

Liu et al. [76] developed a CADx using self-supervised learn-

ing. The whole framework of this CADx system comprised

a 3D FPN and a High Sensitivity and Specificity (HS2)

network. In the preprocessing stage, traditional methods such

as Gaussian filters were applied to segment lung region. After

that, a 3D FPN with a self-supervised pre-trained ResNet-

18 was adopted for candidate nodule recognition by using

multi-scale features to improve the resolution of nodules

and parallel top-down path to transfer high-level semantic

features to supplement low-level features. For false positive

reduction, the HS2 network consisting of two convolution

layers and three fully connected layers was performed to track

the appearance changes of each candidate from continuous

CT slices on Location History Images (LHI). The proposed

system achieved CPM scores of 0.957, 0.899, 0.889, 0.871 on

LUNA16, SPIE-AAPM, LungTIME, and HMS Lung Cancer

datasets, respectively.

E. MULTI-TASK CADx

Multi-task learning is a method that solves multiple learn-

ing tasks at the same time and finds out the commonalities

and differences across tasks. Compared with the single-task

training model, multi-task learning can improve the learning

efficiency and accuracy of the specific task model.

Liu et al. [61] proposed a multi-task 2D CNN with

Margin Ranking loss (MTMR-Net) to construct the CADx

system for nodule analysis. The MTMR-Net consisted of

two 2D CNNs in Siamese network architecture for nod-

ule benign-malignant classification task and attribute score

regression task. Besides, a margin ranking loss was employed

to further classify ambiguous nodules, which improved the

discriminating capability of the network. Specifically, each

2D CNN was built with a feature extraction module, a clas-

sification module, and a regression module: (1) The feature

extraction module was designed based on residual blocks

and was trained using parameters from pre-trained ResNet-

15. (2) The classification module contained one fully con-

nected layer followed by a cross-entropy loss for the final

benign-malignant classification. (3) The regression module
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comprised two fully connected layers followed by mean

square error loss for the final attribute score prediction (eight

attribute scores: internal structure, calcification, sphericity,

margin, spiculation, lobulation, and texture). They evaluated

the proposed CADx on the LIDC-IDRI dataset, obtaining

an accuracy of 0.935, a sensitivity of 0.93, a specificity of

0.894, and an AUC of 0.9797, respectively. Note that source

codes are available at: https://github.com/CaptainWilliam/

MTMR-NET.

VI. DISCUSSION

From the investigation mentioned above of advanced CAD

systems, it has been proved that remarkable progress has

been achieved in automatic pulmonary nodule analysis. Par-

ticularly, various advanced CNN-based algorithms have been

applied to improve the accuracy and sensitivity in nodule

detection and classification tasks, thus significantly increas-

ing the effectiveness of CAD systems for lung cancer diag-

nosis in an early stage. Despite more and more intelligent

CAD systems appear with the popularization of CT scan-

ning techniques and deep learning approaches, there are still

problems existing. In this section, we analyze trends from the

research works mentioned above and present some unsolved

challenges and future directions in pulmonary nodule

diagnosis.

A. RESEARCH TRENDS

As shown in Section III and IV, substantial CNN-based

researches have been done for candidate nodule detection,

false positive reduction, and nodule classification. It is

observed that developers tend to perform CNN-based algo-

rithms instead of traditional methods to design CAD systems

in lung cancer identification with the rising of computer

power [7].

From the state-of-the-art CAD systems listed in Section V,

we categorize the corresponding developing strategies into

five CNN groups: (1) multi-stream CNNs [54], [56], [65],

[79], [81], [86], (2) CNNs with transfer learning algo-

rithms [54], [56], [76], [79], [98], (3) CNNs with semi/un-

supervised learning algorithms [99], (4) CNNs with

self-supervised algorithms [76], [105], and (5) multi-task

based CNNs [61]. It is shown that the ratio of using these five

strategies in state-of-the-art CAD systems is 6:5:1:1, while

the ratio of using these five strategies in practical publications

proposed in 2019 and 2020 is 15:8:2:2:2 (see Table 3, 4).

Obviously, multi-stream CNNs are more commonly adopted

than other state-of-the-art strategies, possibly because the

multi-stream framework can exploit comprehensive multi-

modal features, including both low-level image features and

high-level semantic features, leading to higher accuracy

in nodule diagnosis. Furthermore, it is worth noting that

some multi-stream CNNs with transfer learning algorithms

[54], [56], [76], [79] obtain CPM and AUC over 94%, which

outperform most of the other strategies. The reason for its

strong stability and great performance is that the extracted

common features from different disease patterns, as well

as multi-modal features, may have significant benefits for

detection and classification tasks.

B. EXISTING CHALLENGES AND FUTURE DIRECTIONS

1) LACK OF A LARGE AND HIGH-QUALITY

LABELED DATASETS

As is well known, a large amount of high-quality labeled

data is crucial to train an effective deep learning model for

medical image analysis. However, the existing public datasets

of lung CT scans are not labeled in an organized manner,

which results in messy annotated information among differ-

ent datasets. Thus collecting mass lung CT data with accurate

labels remains a big challenge. On the one hand, privacy

issues could be the biggest obstacle for collecting individual

lung CT scans, and some hospital regulations and national

policies also involve personal information protection. On the

other hand, it takes much time for radiologists to annotate the

medical images while works to non-expertise would lead to

misclassification.

To alleviate the dataset scarcity problem, data augmenta-

tion strategies such as cropping, rotation, flipping, or scal-

ing of image patches and relevant labels can be applied to

increase the number and diversity of available training sam-

ples. Besides, Generative Adversarial Networks (GAN) can

also be adopted to synthesize adversarial images as additional

data [110]. When there are sufficient raw CT scans with lack

of labels, advanced off-the-shelf CNNs can be trained on

much or all of the unlabeled data using semi/un-supervised

as well as self-supervised learning methods, which will

reach a better performance than supervised learning meth-

ods [76], [99], [105], [106]. Using transfer learning algo-

rithms to pre-train 3D CNNs on other large-scale datasets,

such as ImageNet, will improve the accuracy in nodule

detection and classification tasks in the case of insufficient

datasets [60], [79].

2) BAD INTERPRETABILITY OF DIAGNOSTIC RESULT

CNN-based models are trained in the black-box procedure,

which can automatically identify and classify pulmonary

nodules, yet provide no explanation of pathogenesis. The

interpretability of models is essential for radiologists to find

out the exact cause of the disease. Only detective results or

diagnosis scores do not significantly help radiologists make a

final diagnosis and draw up an accurate treatment plan. Thus

the CNN-based models, which can discover the relationship

between input data and diagnostic results as well as determine

which features of nodules are responsible for the malignancy,

deserve attention.

To improve the interpretability of CAD system, an infer-

ence model based on the Bayesian network has been con-

structed using the Markov Chain Monte Carlo (MCMC)

method, which can estimate the conditional probability of

each feature [111]. Furthermore, the cause and effect infer-

ence problem could be divided into a feature prediction task

and a benign-malignant classification task [25]. The casual
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relationship between predicted feature scores and diagnostic

results can be observed. For instance, a multi-task CNN

system with margin ranking loss was proposed for nodule

attribute score prediction and cancer diagnosis [61].

3) LACK OF CONTINUOUS LEARNING ABILITY

An effective CAD system for pulmonary nodule diagnosis is

usually required to assist radiologists in making clinical deci-

sions correctly when facing unexpected samples. Therefore,

the continuous learning ability of a CAD system for newmed-

ical image samples identification is vital. However, present

CAD systems are mostly developed using trained models

and applied of actual use, which means that they can only

perform well in statistic environments instead of a dynamic

environment. These systems can not correctly recognize some

unique samples that have not been trained, probably resulting

in wrong diagnosis [77]. It is of great benefit to construct a

CAD system with continuous learning ability to support real-

time changing situations.

One possible direction for building continuously learning-

based systems is to design a new CNN framework with

cloud computing techniques.With the use of cloud computing

techniques, diagnosis records can be sent to cloud storage

to update training datasets so that the proposed CNN can

be trained in a cloud back-end to adapt real-time changes

continuously [54].

VII. CONCLUSION

In this article, wemake a comprehensive review of pulmonary

nodule detection and classification for CT images in devel-

oping a CAD system. The public datasets of lung CT scan,

widely used evaluation methods, and related challenges of

the pulmonary nodule are first introduced and summarized.

Then we describe the detailed procedures on how a CAD sys-

tem works and presented some practical algorithms of each

processing stage. We next compare the differences between

traditional methods and CNNs and summarize the advantage

of CNNs. Besides, the CAD systems that are developed using

state-of-the-art CNNs with excellent performance are filtered

and analyzed. Finally, we make a discussion about research

trends, existing challenges, and future directions of CAD

system development.

It can be concluded from this review that CNN-based

methods are dominant with better performance and out-

perform the traditional methods in both nodule detection

and classification tasks. The exploration of multi-stream,

semi/un-supervised, self-supervised, multi-task, and transfer

learning methods, especially multi-stream and transfer learn-

ing approaches for improving the performance of CAD sys-

tems, deservemore attention. Note that we focus on clarifying

the development of CAD systems and analyzing the effec-

tive CNN-based algorithms. It is believed that this review

can provide a comprehensive reference for researchers and

radiologists.

APPENDIX

Most of the literature pertinent to pulmonary nodules anal-

ysis in CAD development is collected from searches using

the public online database search engines: IEEE Xplore,

Science Citation Index Expanded, arXiv, SpringerLink, and

ScienceDirect. The searching keywords are ‘‘lung cancer’’,

‘‘nodule detection’’, ‘‘nodule classification’’, ‘‘false positive

reduction’’, ‘‘CAD’’, and ‘‘computer-aided diagnosis’’. Com-

bine the keywords using ’’OR‘‘ and ‘‘AND’’ in different

ways. Articles published in 2019 and 2020 with excellent

performance are selected and filtered. Contributions from

other sources can be identified from citations in the above

publications.
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