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ABSTRACT The small battery capacities of the mobile robot and the un-optimized planning efficiency of 

the industrial robot bottlenecked the time efficiency and productivity rate of coverage tasks in terms of speed 

and accuracy, putting a great constraint on the usability of the robot applications in various planning strategies 

in specific environmental conditions. Thus, it became highly desirable to address the optimization problems 

related to exploration and coverage path planning (CPP). In general, the goal of the CPP is to find an optimal 

coverage path with generates a collision-free trajectory by reducing the travel time, processing speed, cost 

energy, and the number of turns along the path length, as well as low overlapped rate, which reflect the 

robustness of CPP. This paper reviews the principle of CPP and discusses the development trend, including 

design variations and the characteristic of optimization algorithms, such as classical, heuristic, and most 

recent deep learning methods. Then, we compare the advantages and disadvantages of the existing CPP-based 

modeling in the area and target coverage. Finally, we conclude numerous open research problems of the CPP 

and make suggestions for future research directions to gain insights. 

INDEX TERMS Coverage path planning, exploration, heuristic algorithm, deep reinforcement learning.

I. INTRODUCTION 

Mobile robots such as unmanned aerial vehicles (UAVs), 

unmanned ground vehicles (UUVs), autonomous underwater 

vehicles (AUVs), autonomous surface vehicles (ASVs), and 

industrial robots have been used to perform autonomous area 

coverage tasks for field exploration. Although the industrial 

robot arm generally manipulates the end-effector to reach the 

goal position along a predetermined path to cover a specified 

target area, such a method is not optimized to avoid static or 

dynamic obstacles in the path space domain. Hence, 

autonomous robots must overcome the obstacles by resolving 

the coverage path planning (CPP) problem for interacting in a 

complex environment.  

CPP has become a hot research topic in robotic applications 

such as autonomous cleaning [1, 2], lawn mowing [3], 

structural inspection [4, 5], agriculture [6, 7], and surveillance 

[8], including exploration, mapping, search, and rescue [9, 10]. 

Robotic end-effector could also be beneficial from CPP such 

as surface treatment applications (milling [11], laser cleaning 

[12], spray painting [13, 14], fused deposition modeling 

printing, and manufacturing inspection [15, 16]). CPP is the 

determination of the path that cover all points from an initial 

state to a final state while detecting and avoiding obstacles in 

a target environment [17]. The goal of the CPP algorithm is to 

compute the optimal path and project a collision-free 

trajectory to ensure the robot fully covers an area of interest 

(AOI) within a certain time. Firstly, a decomposition 

technique decomposes the AOI into a set of sub-areas. Then, 

it sets an initial position of the robot and determines the 

covering direction of each sub-area. Effective optimization 

solver computes the sequence connection of the sub-areas to 

cover each cell. Finally, the robot covers all the sub-areas by 

using simple movements such as back-and-forth motion. The 

concept of the CPP is illustrated in Fig. 1. The robustness and 

performance of CPP efficiency are based on several 

parameters, such as the percentage of covered area, travel 

time, path overlap rate, and energy consumption of robots.  

CPP is an integral part of mobile robot exploration to deal 

with area coverage optimization. Area coverage is generalized 

as a completely or partially enclosed area with a non- 
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FIGURE 1.  The concept of coverage path planning (CPP). 

 

overlapping path by robots. Depending on the prior 

knowledge of the surrounding environment with onboard 

sensors, the CPP algorithm can be categorized into off-line 

and online algorithms [18]. The off-line algorithm allows the 

mobile robot to perform the coverage with a static and well-

known environment. The CPP is generally based on global 

sequential point-to-point coverage, and the robot follows the 

route besides obstacle avoidance on the given map. However, 

in practice, the robot needs to deal with an unknown or 

partially known environment. Therefore, the online algorithm 

is preferred, whereby the exploration strategy changes whilst 

the robot moves, executes, acts, and observes the location of 

the obstacle to explore an unknown area within the region of 

interest. The robot will resolve for a suitable path by acquiring 

real-time data from the local sensor and extract distinctive 

features in the dynamic environment. In the end, the robot has 

to create a finite mapping of the environment under 

exploration with the CPP technique [21].  

In the past decade, Galceran and Carreras [18] have 

reviewed CPP for robotics literature. The works reported are 

surveys on an environment modeling based on various surface 

partitioning methods used in solving the CPP problem, i.e. 

cellular, grid-based, and graph-based methods of the 

respective 2D and 3D structures. The literature reported in 

recent years is a review on multi-robot CPP for model 

reconstruction and mapping [19] and specifically a review on 

drones [20]. The difference between past review papers and 

the present review is a comprehensive and state-of-the-art 

study particularly in terms of optimization criteria. In the 

current review article, an extensive review of CPP focusing 

mainly on the classical and heuristic algorithms used to solve 

the optimization problem. The collision-free path, coverage 

cost function (shortest and smoothness paths), and coverage 

sequence (set covering problem, SCP and traveling salesman 

problem, TSP) directly correlate with CPP problems, in which 

how well the optimization problem can be solved. 

Furthermore, no literature review exists on addressing the CPP 

problems using deep reinforcement learning methods. We 

believe that this review will provide a comprehensive 

understanding of CPP in robotics in terms of design variations, 

the characteristic of optimization algorithms, and various 

technical features, i.e. searching time, path optimality, 

dynamic performance, convergence speed, and computational 

complexities. 

This paper provides a review of CPP techniques. The 

remaining of the paper goes as follows. Section II presents 

the objective of CPP and the specific challenges regarding 

the platform, environment, and path optimality. Next in 

Section III gives the recent development of CPP based on 

various classical and heuristic algorithms. The existing 

reviews are related to coverage efficiency issues and 

performance metrics. Section IV analyzes and summarizes 

the applications of various CPP algorithms with the 

advantages and disadvantages and discusses the open 

problems in the CPP for future research to provide the 

directions. Finally, Section V concludes the paper. The 

organization of the paper is shown in Fig. 2. 

II. CHALLENGES IN CPP 

CPP is still an open problem in robotics in improving the 

efficiency of planning an optimal path to cover the target area, 

as well as generating a collision-free pathway with less 

computation. The generated coverage path should be optimal 

to ensure minimal logistical costs, such as overlapping, 

number of turns, travel time, and energy consumption. The 

CPP problems include potential uncertainty failures, unknown 

obstacles in a complex environment, and path optimality, 

which are considered the major challenges in robotics. An 

overview of CPP problems with the objective, challenges, and 

design features is shown in Fig. 3.  

Area coverage using a single robot has been presented in 

many works, whereby only one autonomous vehicle executes 

a simple task in small areas such as room cleaning. In the case 

of broader area coverage, the robot may suffer mission 

incompletion due to uncertainty in malfunction and potential 

failures, such as mechanical or electronic breakdown, sensor 

and actuator faults, and battery drainage. Thus, many 

researchers focus on improving the efficiency of the area 

coverage by deploying multi-robot systems. Multi-robot 

coverage provides more significant advantages over a single 

robot in minimizing operational time and enhancing the 

robustness of CPP [22]. However, developing the CPP 

technology of multi-robot is still challenging to fulfill complex 

and large-scale environments because it must address many 

CPP constraints.  

Meanwhile, limited sensing capability and communication 

bottlenecking are the significant factors to deal with in the face 

of positioning failures of the multi-robot system. Thus, the 

distributed control network system is either broadcasted by 

centralized or decentralized methods to avoid the scalability 

problem in such a limitation [23]. Besides, the strategic 

AOI 

Sub-

area 

2 

Sub-

area 

1 

Sub-

area 3 

Starting 

point 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3108177, IEEE Access

 Author Name: Preparation of Papers for IEEE Access 

 
 

 

VOLUME XX, 2020 3 

resilience of a team robot is equally important, where the 

neighbor robots could overtake re-planning tasks to fill the 

functional gap in the case of robot failure [24]. Improper task 

schedules could also lead to an idling problem. Specifically, 

coordination and task allocation are the core problems in the 

multi-robot distribution for area coverage, highly depending 

on each robot’s position. Therefore, the efficiency of the CPP 

is highly reliant on coordination and task allocation strategies 

in the effort of minimizing the total coverage time and 

balancing the workload of each robot. In the end, the multi-

robot system could provide system redundancy and high fault-

tolerant compared to a single robot.  

Environmental factors like wind, wave, and underwater 

current are still considered a great challenge for the CPP in 

robotics. Vehicles such as UAV, AUV, and human-centered 

intelligent robots [25] must stabilize themselves in a position 

when collecting the data under the physical influence of the 

FIGURE 2.  The organization of the paper. 

environmental conditions as well as the impact of human 

motion. Other than counteracting with external forces, 

obstacle avoidance is also a common practice to prevent 

physical damage to the vehicle by physical collision. The CPP 

for large-scale environments (especially multi-robot systems) 

is often an off-line planned algorithm due to the limited 

onboard sensor and battery limitation. Generally, many CPP 

techniques of robots are only considering in a two-

dimensional (2D) workspace due to the complexity of 

kinematic and dynamic constraints. That, in turn, limiting the 

robots capable of three-dimensional (3D) space coverage, 

especially in an underwater environment [26]. Despite the 

simplicity in the 2D model that only requires a small amount 

of computation. Hence, many studies create a 2D model on a 

cross-section of a surface, neglecting the height information in 

3D modeling since most robots can perform 2D specific area 

coverage tasks. However, the significant aspect of the CPP 

problem in the artificial 2D workspace is the overlapped 

coverage of the sensor footprint along the sweeping path [10]. 

In reality, the height at a constant depth varies when UAV or 

AUV covers the region of interest (ROI) on a non-planar 

surface (large degree of the surface slope). When the 

environment is prior known, cellular decomposition is the 

simplest method to segment the region into smaller sub-areas, 

either regular grid cells or polygon shapes [27, 28, 29]. CPP in 

the 3D space mainly focuses on the target coverage in such a 

way as to cover the critical ROI for evaluating the quality of 

the structure (3D model). The effective coverage of the target 

area can be achieved by generating viewpoints and optimizing 

the sequence of visiting the viewpoints. However, most 

research works only focused on 3D targets with a smooth 

surface (less interest in rough surface or hidden surface) [30].   

Path optimality is related to the shortest coverage path or 

TSP, where typically in terms of planning a path with minimal 

travel cost to visit all points through the multi-ROIs. Thus, it 

introduces a significant challenge to address the CPP problem 

since TSP and CPP problems are NP-hard [31]. Many 

integrated TSP and CPP studies on finding the visiting order 

for the set of regions by TSP solver, as well as planning the 

optimal path to fully cover all the sub-regions in the back and 

forth manner [32, 33, 34]. Hence, the connection of local and 

global coverage paths should be concerned to address the 

integrated TSP and CPP problems, including coverage path in 

each ROI, the sequence of visiting order within sub-regions, 

and the entry-exit path. Additionally, in a 3D surface, single 

or multi-robot typically generate a set of viewpoints to cover 

the target surface areas through view planning and find the 

shortest path with collision-free to visit the selected viewpoint 

[35, 36]. The view planning problem in model-based is 

typically regarded as an SCP that the goal is to reduce the 

number of viewpoints, then the TSP or multi-TSP solves the 

set of selected viewpoints for tackling the path planning 

problem [23]. Therefore, the challenge of the CPP path 

optimality is to minimize the total travel time along the 

coverage path and reduce the turning cost.

SECTION II. CHALLENGES IN CPP 
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FIGURE 3.  The objective and challenges in coverage path planning (CPP) problems. 

 

III. RELATED ALGORITHMS 

CPP algorithms can be categorized into two approaches, 

classical algorithms, and heuristic-based algorithms. The 

summarized details of CPP algorithms according to the 

characteristics of the algorithms are classified as shown in   

Fig. 4. Notably, sampling-based planning and bio-inspired 

algorithms are hot research topics for solving CPP problems. 

There are ten highlights in the existing literature, i.e. random 

walk, chaotic coverage path planner, spanning tree coverage, 

artificial potential field, sampling-based planning algorithms, 

dynamic programming, greedy search and graph search 

algorithms, evolutionary algorithms, human-inspired 

algorithms, and other classical-heuristic algorithms.  

A. RANDOM WALK 

Random walk (RW) is a stochastic process that describes the 

animal search pattern or movement in the attempt to scan and 

explore the unexplored area [37]. Different variants of the RW 

have been studies for environmental exploration and coverage 

[38, 39]. There are two methods for area coverage based on 

the RW, i.e. fixed linear method and variable step method. 

Robot of fixed linear approach randomly turns at an angle and 

frequently moves at the straight line until it collides with the 

wall or obstacle boundaries. Hasan et al. [40] introduced CPP 

algorithms that involve the RW, spiral motion, boustrophedon 

motion, and wall follower in the cleaning system. Liu et al. 

[41] proposed an online random coverage method that 

improves the coverage rate. However, to ensure that the robot 

covers the whole area, the variable step method computes a set 

of RW directions based on the probability distribution of step 

lengths taken by the robot. 

The variable step method is popular in a collaborative 

mobile robot swarm system, including Brownian motion 

(BM) [42] and Lévy flight (LF) [43]. The robot based on BM 

repeatedly moves in a step length with a given distribution (i.e. 

Gaussian or von Mises [44]) and randomly turns in a direction. 

Conversely, the robot of LF travels a distance in which the step 

length depends on Lévy's probability distribution [45]. The 

BM step length is of finite variance, whereas the LF step 

length is of infinite variance. Therefore, BM has a high target 

density (local walk) and short-range movement compared to 

LF (global walk). Martinez et al. [46] proposed a swarm robot 

using BM-based RW to enhance area coverage. Each robot is 

considered a particle whose motion is controlled by signals in 

the environment. In [47], pheromone-based communication 

[48] is utilized to control multi-robots and the LF search 

strategy is implemented to improve the efficiency of searching 

and coverage in an unknown environment. Whereas [49] 

proposed gradient following combined with the LF approach 

using a virtual pheromone-based model in the control to 

provide better performance in area coverage. 

The main advantage of the random walk approach is that 

the platform does not require sensors for localization. The 

robot only requires simple onboard sensors to sense and detect 

the boundaries of an area for obstacle avoidance. Thus, it is 

very flexible and easy to deploy due to a simple algorithm 

with less memory requirement. However, the RW path valid  
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 FIGURE 4.   The classification of coverage path planning (CPP) algorithms. 

 

only for a small environment and hard to cover all areas in the 

presence of obstacles. The robot may also cross the same path 

several times, leading to an inefficient overall path. 

B. CHAOTIC COVERAGE PATH PLANNER 

Chaotic CPP is a deterministic technique that consists of a 

chaotic system to generate a coverage trajectory based on 

chaotic motion. Chaotic CPP ensures high coverage efficiency 

in the entire workspace in terms of the robot’s trajectory, 
guaranteeing faster coverage in the working space because the 

motion is pre-determined. Arnold's dynamical system is a 

well-known chaotic system, first introduced by Sekiguchi and 

Nakamura [50]. A controller is designed and built with a 

combination of chaotic dynamic variables and kinematic 

equations of the mobile robot to construct chaotic motion. This 

system could also perform surveillance tasks by achieving the 

highest coverage rate without the requirement of obstacle 

avoidance along the boundaries [51].  

In the case of a 3D non-linear chaotic system, the Lorenz 

dynamical system and Chua circuit are similar to the Arnold 

dynamical system. In [52], the Lorenz system speeded up the 

workspace coverage by utilizing the hyperchaotic technique 

with a non-linear open-loop controller, showing a good 

chaotic characteristic compared to the Arnold system and RW
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[53, 54]. Chua patterns used in mobile robot also provides a 

better coverage performance [55, 56]. A random number 

generators based on chaotic attractors using the Chua circuit, 

Lorenz system, and multiple scroll attractors have been 

proposed in the CPP [57]. Nasr et al. [58] utilized a multi-

scroll Chua chaotic mirror mapping method to determine the 

low-cost coverage path. 

Standard (Taylor–Chirikov) and logistic map are both the 

discrete-time dynamical system model of a 2D iterated map 

and 1D iterated map, respectively. Volos et al. [59, 60] design 

a chaotic logistic map random bit generator to generate the 

coverage trajectory for the mobile robot. Angular 

transformations could further improve the evenness of the 

coverage path planner [61]. Whereas [62] implemented a 

pseudo-random bit generator combined with an inverse 

pheromone method, achieving less memory requirement while 

providing higher coverage in a given terrain. In the case of the 

standard map, [63] presented the terrain space covering using 

a discontinuous control law. Whilst [64, 65] suggested a fusion 

strategy with the iteration cycles between large and small 

divided regions as well as mapping (affine transformations) 

correspond to the standard map. Meanwhile, Li et al. [66] used 

a 2D Chebyshev map with a similar affine transformation 

technique for chaotic CPP. 

Most of the chaotic CPP motion does the exploration and 

surveillance mission in an unpredictable random, small 

number of steps and provides fast scanning in an unknown 

environment compared to RW because RW is not continuous 

[67]. Thus, the continuous motion of chaotic CPP enables the 

robot to move in searching and finding the target effectively 

with a more uniform coverage density. However, the existing 

literature only highlighted the coverage rate, ignoring the cost 

of coverage time. The unpredictable trajectory is also hugely 

dependent on the kinematic motion of the robot subjected to 

kinematic constraint, and it needs to be studied.  

C. SPANNING TREE COVERAGE 

The spanning-tree coverage (STC) based CPP algorithm sub-

divides the workspace into a finite sequence of disjoint cells, 

either by cell decomposition-based method or grid-based 

method [68, 69]. Then, it constructs a spanning tree of the 

graph in the corresponding mega cells that spit into four sub-

cells, whereby the size of the corresponding cells equals the 

size of the robot. This algorithm enables the robot to cover 

each unoccupied cell by finding the optimal path using a tree 

traversal algorithm, such as depth-first search. However, the 

robot fails to cover the mega-cell if an obstacle within an entire 

mega-cell occupies a sub-cell. In [70], the authors proposed a 

full-STC algorithm, where a robot can cover the free sub-cells 

to maximize the area coverage. The STC has been extended in 

focusing on the online strategy for a multi-robot system to 

increase the coverage efficiency [71, 72]. However, the 

traveled path is dependent on the initial positions of each robot 

and might lead to backtracking issues among other robots. The 

robots suffer from a high overlap rate, significantly 

deteriorating energy efficiency. Kapoutsis et al. [73] proposed 

an area division algorithm concerned with the initial positions 

of robots to optimal cell assignment in matrix conditions. A 

minimum spanning tree is constructed in each divided space 

for balanced task assignment. Still, it cannot deal with the 

pathway through the free sub-cells situation in which the cells 

are occupied by obstacles, especially in robot placement along 

the same axis. In [74], the workspace is divided into different 

cell sizes based on the hierarchical quadtree structure, 

following the construction of the spanning tree by considering 

different edge lengths. This method could minimize the 

repeated coverage and balance the task assignment, but 

introduces over-segmentation in the cell, leading to extra task 

costs. 

Gao and Xin [75] proposed the STC algorithm based on 

auction and bidding processes for solving multi-robot CPP. In 

[76], a pseudo-STC is constructed to create the virtual edges, 

providing that the obstacles occupy the mega-cells. The wall 

following algorithm enables the robot to move along the 

obstacle boundary through the sub-nodes. Meanwhile, Pham 

et al. [77] improved the algorithm to find the optimal path, 

focusing on minimizing the backtracking and increasing the 

coverage rate by considering the mega-cells that are partially 

occupied by obstacles in building the C-space boundary 

contour. The path is planned through the spanning-tree edge 

in an anti-clockwise direction to find the next unvisited mega-

cell. In the case of the next mega-cell that is partially occupied 

by obstacles, the robot moved along the C-space edge and 

returned to the parent node. The experimental results show that 

the proposed algorithm achieves a high coverage rate as 

compared to the full-STC method. Similarly, [78] proposed 

the adjacency graphs structure based on connectivity between 

the minor nodes to allow the robot to cover the mega-cells that 

are partially occupied by obstacles. Typically, the robot-based 

online CPP needs to provide sensing feedback, resulting in 

considerable energy usage. Hence, [21] proposed a hybrid 

CPP without the aid of scanners by combining the frontier-

based exploration and STC algorithm to improve energy 

efficiency. 

In the latest studies, most of the multi-robots-based STC 

algorithms rely on centralized control techniques, involving 

communication and task allocation. The sensor information 

significantly burdens computation and memory complexity. 

That might result in system failures when a breakdown occurs 

in the central control agent. Dong et al. [79] proposed an 

artificially weighted STC based on a decentralization strategy 

to perform the coverage task in a distributed manner. The tasks 

burdened by each robot are equally distributed and the 

algorithm could re-generate the STC path if the robot failure 

occurred. Thus, the system could ensure the completion of the 

coverage task in the case of robot failure. However, the path 

re-planner could ignore the task burdened by the operating 

robots, leading to an unbalanced workload problem. Fault 

tolerance is still a big challenge in a real-world situation.
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D. DYNAMIC PROGRAMMING 

Dynamic programming (DP) is an approach for solving 

optimization problems by recursively dividing the complex 

problem into a set of simple sub-problems and recombining 

the results of all the sub-problems to obtain the solution [80]. 

The DP problem exhibits the overlapping sub-problems and 

optimal substructure in CPP to optimize the sequence of global 

coverage sub-spaces based on the distance matrix [81]. In [82], 

the DP and TSP reduction could optimize a greedy 

construction of a set of segments and the connection of all the 

segments respectively to find the shortest coverage path and 

minimize the number of turns. The DP framework is 

developed in [83] to optimize the coverage overlaps within an 

area of interest. Coombes et al. [84] used the bottom-up 

strategy to save memory space and accelerate through the 

recombination process of the decomposed cells. A DP has 

been used to solve the TSP in CPP with global planning for 

finding the shortest path that sequentially covers all the regions 

[33]. However, the generated tour might not be optimal due to 

the enormous scale of the problem. Thus, [34] proposed the 

nearest neighbor-based or genetic algorithm (GA) based 2-Opt 

algorithm to solve many regions, further optimizing the tours 

by the DP-based exact approach. Cheng et al. [85] introduced 

the graph model of the environment according to the sets of 

morphology layer and stripe layer, requiring cost calculation 

of each strip layer to be memorized by DP, developing re-

calculations precaution to speed up the computation. 

However, the robot cannot adapt to a complex dynamic 

environment. Ghaddar and Merei [86] suggested an online 

CPP algorithm by utilizing DP to improve performance in 

terms of adaptability and energy efficiency. 

E. ARTIFICIAL POTENTIAL FIELD 

The artificial potential field (APF) algorithm is commonly 

used in detecting obstacles when the robot is towards the goal 

position. A fictional repulsive force and attractive force are 

created in the surrounding obstacles and around the goal 

respectively to ensure the robot in achieving the target while 

keeping the distance between the robot and obstacles [87]. 

Sutantyo et al. [88] employed the LF algorithm to explore the 

unknown environment. The dispersion is enhanced by adding 

the APF technique for producing the repulsion among the 

robots. In [89], the coverage path is re-planned by calculating 

the cost according to the artificial potentials when the sensor 

detects the defect for surface treatment. However, the robot 

may fail to escape from the dead zone due to the APF method 

has a local optimum problem. Hence, Wei et al. [90] 

implemented the inspection strategy by combining the APF 

and particle swarm optimization (PSO) algorithms to 

overcome the problem of local optimal by optimizing the 

speed and position of particles. Wang et al. [91] introduced a 

potential field based on the information gain and path cost, in 

which the robot can find the optimized trajectory to avoid 

being trapped in local minima. In [92], the authors improved 

the APF algorithm by introducing the concept of seeds for 

CPP in a grid environment. Different kinds of path seeds can 

be generated according to the environment map to cover the 

area. Huang et al. [93] utilized the APF method to cover the 

area by the formation control of the multi-robot system. The 

simulation results proved that the approach achieves better 

area coverage and real-time planning. In a specific case such 

as a robot pass through a narrow space, the robot might not 

able to reach the target. Hence, Jiang and Deng [94] improved 

the APF algorithm by modifying the repulsive potential 

function to avoid the obstacles in the inspection mission 

effectively. Despite all the research effort, there is still a lack 

of planning for collision avoidance between multiple robots 

when simultaneously access to the goal under the potential 

field. 

F. SAMPLING-BASED PLANNING ALGORITHMS 

The traditional algorithm applies a random sampling method 

to a coverage issue for solving a planning problem [95, 96]. 

Recently, probability sampling-based planning (SBP) 

algorithms have been used to solve complex planning 

problems heuristically and optimally. Generally, the algorithm 

is the process of mapping the environment from configuration 

space by using a node sampling strategy (random generation 

of a set of nodes in the search environment). The probabilistic 

completeness of SBP is effective for optimizing sensor-based 

(visual-based) inspection in terms of exploration. SBP based 

planner includes probabilistic roadmap (PRM) [97] and 

rapidly exploring random tree (RRT) [98].  

 

1) PROBABILISTIC ROADMAP 

The PRM planner is a process of planning and query by 

establishing a roadmap for creating a path in the configuration 

space [99]. The planning phase randomly generates the 

number of nodes in the robot’s configuration space and 
connects the pairs of nodes in a straight line without crossing 

the obstacles to form a roadmap. Then, the query phase plans 

a path between initial and goal configuration by using the 

result from the planning phase [100]. Dias et al. [101] 

deployed grid-based PRM for search and rescue in an 

earthquake situation. PRM is widely used to optimize path and 

obstacle avoidance by combining a search algorithm such as 

the A* algorithm [97]. In [102], the collision-free path and 

optimal sequence path between the measurement position of 

an industrial robot are generated based on PRM and A* 

algorithm, respectively. The simulation result shows that the 

proposed algorithm could reduce the cycle time by adding a 

TSP solver. However, the PRM method limits the robot 

coverage area near the boundaries and obstacles due to the 

random placement of nodes. The PRM also removes the 

corresponding nodes and edges when an obstacle collision 

occurs. Besides, the PRM may lead to high complexity and 

computation time despite the advantage of probabilistic 

completeness with massive nodes.
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2) RAPIDLY EXPLORING RANDOM TREE 

The RRT algorithm is an efficient search planner by using an 

incremental technique in tree structure form to construct a 

graph to search and explore in the free or obstacle 

configuration space [103]. The algorithm is designed to search 

in high dimensional spaces effectively and handle 

kinodynamic planning.  The RRT is faster than PRM for a 

single-query problem because the algorithm does not require 

a sampled configuration to build a roadmap during the 

learning phase [1034]. Zaheer et al. [105] analyzed that the 

RRT has better performance in terms of computation time and 

has a better smooth path compared to PRM. Meanwhile, [106] 

proposed a bidirectional search approach between the initial 

and goal trees to rapidly grow towards each other, making a 

connection on both trees to generate the shortest path for 

uniform searching. However, the generated path based on 

RRT is not optimal in solving the planning problem. The 

modified variant of RRT called RRT* can improve path 

quality by providing an asymptotically optimal solution [107]. 

Englot and Hover [35] presented a CPP based on the 

sampling-based approach to solve both coverage sampling and 

multi-goal planning problems independently. The first 

coverage sampling problem determines the minimal set of 

views that provide guaranteed coverage. Then, the multi-goal 

planning problem addresses a shorter tour that visits all the 

views. The approach asymptotically finds the globally optimal 

solution to improve the feasible coverage path by using the 

RRT* algorithm. Similarly, [108] proposed a rapidly 

exploring random tree of trees algorithm to find the optimal 

coverage path for real-time 3D reconstruction. A meta-tree 

structure contains multiple sub-trees, and each sub-tree grows 

according to its own RRT* planner for every number of 

iterations to provide full visibility. However, the algorithm 

requires a large memory to store notes in the tree, leading to 

high planning costs. Hence, an optimal CPP algorithm is 

utilized based on two-scale algorithms to produce the shortest 

coverage path by reducing memory requirement [109]. The 

multi-directional fixed nodes RRT* algorithm is developed to 

generates a minimum cost trajectory planning for each point 

of interest (POI) from a given initial point to a goal point by 

exploring the neighborhood. Then, the GA is used to find the 

shortest path to visit a sequence of POIs by dealing with the 

problem of TSP, following a return to the initial point. 

Similarly, [110] utilized an incremental random inspection 

roadmap search to optimize the number of POIs in the 

constructed graph. The tree is iteratively generated based on 

RRT, constructing the roadmap that induces the subset of the 

POIs. Then, it computes the shortest path to cover the POIs 

with a suitable graph search algorithm. The results [109, 110] 

show that the approach can minimize coverage planning time 

by limiting the size of memory (number of nodes in the tree). 

Faghihi et al. [111] introduced a random kinodynamic 

inspection tree (RKIT) algorithm, integrating the CPP 

problem and kinodynamic planning problem. In the 3D model 

structure, the starting point and goal point are located at the 

center of the front and back faces, respectively. Then, the 

structure is remodeled in which several hypothetical cubes are 

developed where the size of the cubes in respect to the 

dimension of the front (or back) face and sensor coverage. The 

path-creating module computes the intermediate points that 

refer to the critical points (outward spiral path, helix spiral path, 

and inward spiral path). Finally, the coordinate of the 

intermediate point on a given area is taken to perform 

sampling by RKIT in every iteration. The algorithm also 

utilized a steering function to deal with differential constraints 

effectively. Hence, the authors proved that the algorithm 

successfully identifying a feasible coverage plan in 3D 

structure. Nevertheless, the research study does not involve the 

simulation result in the presence of static and dynamic 

obstacles.  

The recent development of the RRT* algorithm has realized 

a breakthrough in terms of searching time and path cost 

(shorter and smooth path). However, fewer related studies 

tackle the narrow passage problem when the robot is 

performing the coverage task. Therefore, the robot moves 

through a narrow unstructured environment cluttered with 

obstacles using RRT* variant (to optimize the area coverage 

in near difficult regions) would be an interesting research 

endeavor in the future. 

 

3) VIEW PLANNING AND MOTION PLANNING 

Apart from the sensor-based planning method [112, 113], the 

sampling-based view planning approach [114, 115] is another 

solution for solving the optimization problem, requiring both 

view planning and motion planning tasks [116, 117]. View 

planning mainly applies to modeling applications and 

exploration tasks [118]. The sensors are crucial to enable the 

robot vision system to handle the viewpoint planning problem 

and CPP problem for target covering. The SCP and TSP solve 

the minimal set of viewpoints to cover the whole target 

structure and the viewpoints, respectively [119, 120]. Then, 

the variant of planning algorithms solves the coverage 

planning problems, i.e. greedy strategy, optimal strategy, or 

decompose planner [36]. In addressing the online CPP 

problem, most studies utilized the next-best-view (NBV) 

approach [121] for solving suitable view selection in which the 

viewpoint is planned based on the current robot location and 

the information acquired from the sensor. The robot onboard 

sensor explores and senses the target region before the planner 

generates the viewpoint to reconstruct the structure model 

[122, 123].  

Meanwhile, [115] proposed a structural inspection planner 

(SIP) by implementing the Lin-Kernighan-Helsgaun (LKH) 

algorithm [124] to optimize the tour of viewing poses. 

Palomeras et al. [125] introduced the NBV planner by using 

probabilistic analysis for utility calculation. Osswald et al. 

[126] used the inverse reachability map combined with the 

NBV algorithm to improve robot poses and viewpoint 

planning problems by filtering possible view candidates. 

Ardiyanto and Miura [127] presented a visibility coverage
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based on polygon search using skeletonization technique to 

generate coverage viewpoints and improve the viewpoint 

planner further to minimize the energy consumptions of the 

robot's movement, thus, maintaining visibility of a moving 

target [128]. However, the robot may fail to track if an 

occlusion occurred. 

The sequential viewpoint is part of the viewpoint planning 

problem as well, requiring modeling of information gain in a 

3D environment, such as voxel [129] or surface mesh [130] in 

the NBV planning. Wu et al. [131] proposed the learning-

based NBV to compute an optimal viewpoint by estimating a 

set of voxels for planning the next scan following the ray 

casting along the voxels. The inverse kinematic solver 

computes collision avoidance as well as finding a good 

sequence of the viewpoint by using the calibration of relative 

position between the onboard sensor and viewpoints [131, 

132]. Mansouri et al. [133, 134] utilized the structure from 

motion method to reconstruct the target region, generating 

high-quality cover map 3D data. This method highlighted the 

cost-effectiveness compared to laser or range scanning. 

Meanwhile, [135] presented multi-view cameras based on 

structure from motion in CPP. Meng et al. [136] constructed 

3D models using the probabilistic volumetric map based on 

Octomap structure [137] and the information gain could select 

the frontier viewpoints for solving the variant of TSP. 

Paratama et al. [138] proposed a search space CPP algorithm 

to maximize the information gain of the waypoints and 

calculate the entropy of each waypoint based on Octomap in 

the heuristic cost function. The experiment results showed that 

the proposed algorithm could provide a higher coverage 

percentage as compared to SIP, LKH with RRT, and LKH 

with Euclidean heuristic methods. 

Most research focuses on large unknown search space 

without looking at less informative areas, leading to inaccurate 

and incomplete structure models, disregarding global path, 

and results in long path overlapping. Hence, most researchers 

studied the receding horizon planning approaches, including 

NBV planner and exploration planner, utilize the RRT or 

RRT* algorithm to explore an unknown environment [122, 

139, 140, 141]. The optimization process repeats in the next 

iteration in such a way that, only the first viewpoint is 

executed, and the path is selected based on the best viewpoint. 

However, the robot often falls into dead-end sub-optimal traps 

due to the limited look-ahead sensing for a fixed horizon. 

Thus, Jung et al. [142] introduced a multi-layer CPP 

technique, dividing the 3D model structure into several layers 

and resample viewpoints in each layer to obtain the local path, 

following all the layers connected for global coverage. 

Oleynikova et al. [143] introduced an online local re-planning 

to maximize exploration gain by deploying an intermediate 

goal selection strategy. Providing a collision-free path in 

exploration in an unknown indoor environment with narrow 

and large-scale space is challenging. Thus, [144, 145] 

presented the combination of local and global exploration 

techniques by utilizing a sampling-based algorithm and 

frontier exploration. Similarly, Almadhoun et al. [146] 

proposed a switching approach between the frontier and 

adaptive grid viewpoint generators to enhance the qualities in 

terms of local minima avoidance and utility function. 

However, high coverage density in a particular area increases 

the traveled cost. Thus, Schmid et al. [147] studied the 

potential influence of information gain and cost formulation 

on tackling the balance between the gain and cost in the utility 

function. To improve the completeness of the target coverage, 

[147, 148] introduced an informative sampling algorithm to 

maximize the utility value in terms of global coverage and 

trajectories by using an online approach, reducing the 

sampling range by employing a streaming set cover algorithm. 

Furthermore, Jing et al. [149] proposed a novel CPP 

framework, including viewpoint generation, path primitive 

generation, visibility estimation, primitive coverage graph 

encoder formulation, and coverage graph search. The 

computation of an iterative adaptation of uniform could 

provide full coverage by generating viewpoint in high fidelity 

mesh model following point-to-point connecting based on 

RRT* [150]. The Voronoi-based re-meshing algorithm down-

samples the mesh model of the structure to improve the 

inspection path with guaranteed coverage. Glorieux et al. [15] 

presented a targeted viewpoint sampling strategy by 

combining both SCP and TSP. The self-adaptive differential 

evolution algorithm could optimize the best next viewpoint, 

following the implementation of RRT for collision avoidance. 

The results showed the reduction of inspection cycle-time and 

travel costs by up to 23.8% and 22.7% as compared to the 

greedy approximation method. However, most of the existing 

sampling algorithms cannot generate accurate maps in high-

dimensional search space. Thus, Hou et al. [151] use the Gibbs 

sampling technique (Markov Chain Monte Carlo) to produce 

accurate occupancy maps by decomposing the sample space 

using the NBV algorithm to estimate the conditional 

probability of each voxel for 3D surface reconstruction. The 

coverage ratio could be further enhanced by using the CPP 

algorithm as well as NBV, which could be planned in real-

time to maximize the information gain by applying a Monte 

Carlo tree search [152].  

There are many prior works concerning the optimization 

problem in viewpoint planning and coverage planning to 

improve the coverage efficiency and to ensure the quality of 

viewpoint planners. The high demand for high geometric 

accuracy also results in the high computation complexity of 

the algorithm. Hence, it is still challenging to have a balance 

between the model quality (completeness and accuracy) and 

the computation time. Moreover, the feasibility of real-time 

applications with an implementation in large-scale space is a 

complicated task worthy of future study. 

G. GREEDY SEARCH AND GRAPH SEARCH 

ALGORITHMS 

The greedy algorithm is the well-known heuristic approach 

used to solve optimization problems by constructing a solution 
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through a sequence of choices available without changing on 

subsequent steps once the choice is made at every step [153]. 

The algorithm often looks for the best choice by making a 

locally optimal choice to obtain a globally optimal solution. 

The greedy algorithm, (i.e.  Dijkstra’s algorithm) is simple, 

easy to implement, and generally fast but the algorithm does 

not guarantee to find the globally optimal solution due to the 

short-term solution [154]. The graph search algorithms such 

as A* algorithm, D* algorithm, and Theta* algorithm typically 

combine the boustrophedon motion or spiral pattern to plan 

and optimize the coverage path. The search algorithm finds the 

shortest path between a pair of nodes in a graph to move from 

the current blind position to the uncovered area when the robot 

falls into the dead zone or encounters an obstacle, re-planning 

the path to identify the next position of the robot to escape the 

blind nodes; otherwise, the robot continually follows the 

zigzag or spiral path if no obstacles are detected. The tasks 

repeat until the ROI is fully covered. Hence, the search 

algorithms are important to address the CPP problem and 

improve search efficiency. However, it is still challenging for 

path searching in the large grid map due to the large 

computation cost. 

 

1) DEPTH-FIRST SEARCH AND BREADTH-FIRST 
SEARCH ALGORITHMS 

The depth-first search (DFS) or breadth-first search (BFS) is 

the recursive algorithm for searching the nodes based on the 

graph data structure [155]. Both algorithms provide good 

performance in terms of time complexity, but each algorithm 

has its drawbacks. The DFS fails in infinite depth spaces and 

does not guarantee to find an optimal solution (shortest 

coverage path), whereas the BFS consumes large memory 

space due to the high branching factor in the search space. The 

DFS optimizes the sequence path with the benefit of minimum 

overlapped and several turns for CPP [156, 157, 158]. Kabir 

et al. [159] utilized the DFS technique to create a cleaning 

trajectory by generating a sequence of setups. However, the 

robot is relatively complex with heavy computing due to the 

multiple degrees of freedom. Barrientos et al. [160] suggested 

a waveform planner based on the BFS technique that can be 

applied over the grid-based workspace to generate the 

coverage path with a minimum number of turns. Wang et al. 

[161] proposed a CPP method to reduce the uncovered area by 

employing the BFS algorithm. However, this approach causes 

an uncovered edge, and the robot may fail to operate in the 

corner. In [2], a knowledge reasoning for robot CPP combines 

with the BFS to avoid the dynamic obstacles under an 

uncertain environment, lowering repetition rate and 

computation time. Miao et al. [162] proposed a distribution 

technique by using sub-map decomposition and BFS methods. 

This technique decomposes an unknown map into several sub-

areas, distributes each robot to select the nearest sub-areas to 

be covered by using a spiral pattern. Both DFS and BFS 

algorithms can effectively optimize the coverage paths in the 

case of a small graph.  

 

2) DIJKSTRA’S ALGORITHM 

Dijkstra’s algorithm applies a generalized graph searching 
technique for solving a single source shortest path issue with 

non-negative costs for all the edges [163]. The algorithm 

obtains the shortest path tree by visiting vertices from the 

starting node according to the cost function in each neighbor 

vertex. Almadhoun et al. [164] presented an efficient path 

coverage by employing Dijkstra’s algorithm to explore and 
visit all the nodes with minimum cost in an indoor 

environment. Yehoshua et al. [165] introduced a spiral STC 

approach to optimize coverage path, following with Dijkstra’s 
algorithm to find the minimum weighted path. Then, an 

approximation algorithm builds each pair of the connected 

area to solve the TSP, obtaining a higher expected percentage 

coverage path. Cheng et al. [84] used Dijkstra’s algorithm to 
calculate the shortest path between the stripe layer subgraphs 

(fast path searching), reducing the total action cost to achieve 

maximum area coverage within the strip layer in the attempt 

to minimize the revisited nodes. Rosa et al. [166] presented the 

task planning of a multi-robot system by using Dijkstra’s 
algorithm with a honeybee (hexagonal) structure. Zhang et al. 

[167] improved Dijkstra’s algorithm by considering the cost 
function of turning times and angles.  Nevertheless, the search 

path is not optimal in terms of travel distance [166, 167].  

 

3) A* ALGORITHM 

The A* algorithm determines a neighbor vertex by estimating 

the cost of the path from the current vertex towards the goal 

according to the heuristic function [168]. The algorithm 

chooses the best node to find the shortest path instead of 

searching the whole map. The algorithm based on the cost 

function has been used to minimize the number of turns and 

reduce the processing time of the path search [169, 170]. Viet 

et al. [171] implemented CPP by utilizing the A* algorithm 

with a backtracking approach to obtain optimal coverage, 

albeit large memory is needed to store the backtracking points. 

Cai et al. [172] described the concept of the A* algorithm to 

search the shortest path from escaping the dead node to an 

uncovered area. However, it finds difficulty in covering the 

cells around the obstacles if the robot moves in a diagonal 

path. Also, the robot revisits the cell at a high overlapping rate 

without covering the other cells during obstacle avoidance. 

Thus, Le et al. [173] proposed a modified A* algorithm for 

CPP by determining the boundary waypoints and obstacle 

waypoints, reducing the revisiting ratio by 7.01%, and 

increasing the coverage ratio by 6.4% as compared to 

traditional A*.  The A* algorithm can outperform DFS and 

BFS algorithm if the location of the target is known. 

 

4) D* ALGORITHM 

The D* algorithm is effective for pathfinding in a dynamic 

environment [174]. The algorithm is a variant of the optimal 

A* algorithm capable of re-planning the path by applying the 
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cost path optimization solution when the robot encounters the 

obstacle. Dakulovic et al. [175] computed the cost value in the 

D* algorithm to avoid revisiting nodes and reduce the 

overlapping path in the path re-planning process. Maurovic et 

al. [176] implemented an active SLAM to explore a dynamic 

environment by modifying the D* algorithm with negative 

edge weights. The D* lite algorithm improved path re-

planning efficiency by obtaining the information from a 

previous search (shorter than D*) [177]. Luo et al. [178] 

employed the D* lite re-planning algorithm as a global path 

planner to generate a collision-free path in an unknown 

environment and used the ant colony optimization (ACO) to 

plan the sequence of the waypoint path to address the TSP, 

minimizing the overall distance along the planned trajectory 

in exploring a terrain. In [179], an improved version of the D* 

lite algorithm, namely the AD* algorithm could find the 

optimal path through online re-planning for dynamic obstacle 

avoidance. In general, the D* Lite algorithm is more efficient 

than the A* algorithm in the path re-planning process when 

obstacles exist because the D* lite algorithm having previous 

information data during the first search but the A* algorithm 

needs to re-plan the path from the beginning. Thus, the 

selection of the algorithm is dependent on different 

requirements in the specific task. 

 

5) THETA* ALGORITHM 

The A* and D* algorithms discrete search methods cannot 

find the shortest path in continuous space since the generated 

paths are created by grid edges. Thus, the Theta* algorithm is 

based on any angle pathfinding solver [180], and the Lazy 

Theta* algorithm can address the limitation. The shortest path 

generation is based on a pair of points on a grid map that 

follows the vertex parent to be any vertex instead of the vertex 

parent having to be a neighbor of the vertex (A* algorithm). 

Choi et al. [181] presented an online CPP of the cleaning robot 

using the Theta* algorithm and boustrophedon motion to 

optimize the local backtracking path. The recalling pass 

knowledge determines the backtracking points when the robot 

reaches an ending point after performing a boustrophedon 

motion before planning the shortest backtracking path to the 

next starting point. Similarly, the cost and goal selection 

functions could reduce the coverage time of multi-robot CPP 

in an unknown environment [182]. However, the algorithm 

failed to generate a global optimization solution in terms of 

path length. In the case of 3D space, Lazy Theta* algorithm is 

more suitable to perform on cubic grids due to the high number 

of neighbors per node as compared to 2D space (square grids). 

Faria et al. [183] implemented frontier cell exploration with 

Lazy Theta* algorithm to explore and avoid the obstacle in the 

3D Octomap framework. Meanwhile, [184] improved the 

efficiency of the Lazy Theta* algorithm by reducing the 

number of generated neighbors to reduce the computation cost 

with a fewer number of line-of-sight checks. Faria et al. [185] 

added the flyby sampling technique in the exploration system, 

including frontier and Lazy Theta* planner for global 

searching, CPP, and target inspection to produce a smooth 

path and cover the region without overlapped albeit the path 

length is not guaranteed to be optimal.  

H. EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms (EAs) are based on natural or genetic 

evolution in which the algorithms tend to find a better solution 

for solving optimization problems [186]. EAs consist of 

variation operators (crossover and mutation) and evaluation of 

the fitness function. The fitness function determines the 

qualities of individuals’ solutions by giving a corresponding 

score value to everyone. The calculation of the fitness function 

can be expressed as an objective function for solving 

optimization problems to minimize or maximize the value of 

the fitness function [187]. EAs play an important role in 

building genetic searching more efficiently for solving real-

world CPP optimization problems in mobile robots.  

 

1) GENETIC EVOLUTION 

The GA is a meta-heuristic population-based stochastic 

algorithm inspired by the idea of natural laws of biogenetics 

[188] as well as survival and breeding of the fittest for solving 

search problems [189]. GA can produce a near-optimal 

solution to solve path planning problems rapidly with parallel 

processing implementation. The GA algorithm is an ideal way 

that has been introduced by Wang and Bo [190] to solve the 

TSP in CPP. Hameed et al. [191, 192] presented a GA by 

optimizing the selection of driving direction and sequence of 

track from the perspective of less overlap path and minimum 

cost. Shen et al. [193] used the GA to optimize the energy 

efficiency based on the order of path connection between 

multiple fields. Ellefsen et al. [194] employed a multi-

objective planner with EA in AUV to plan a coverage 

trajectory for underwater surface inspection with non-

dominated sorting GA to generate the collision path on 

purpose, establishing the planner with penalizing strategy. 

This method could provide a better balance in terms of 

coverage and energy usage compared to circling and 

sampling-based CPP. In [195], the computation time of the 

GA-based approach for TCP-CPP is faster than DP-based 

when the free space is decomposed into many cells. Due to the 

limitation of power usage and communication distance, Sun et 

al. [22] applied the GA for multiple robots to solve task 

allocation problems with the multi-TSP model.  

The GA has a good global search capability in an area 

coverage but has poor stability due to large search space 

complexity, requiring high computation time [196].  Hence, 

Sadek et al. [197] introduced multi-objective GA combining 

with DP for online CPP, improving the speed of convergence 

toward the optimal value when a deterministic crossover 

process replaces the randomized crossover process in             

GA [198]. Batista and Zampirolli [199] described the 

implementation of the GA with a near-optimal sequence of 

CPP for pool cleaning. The double fitness function could 

compute the chromosome’s efficiency to reduce the energy
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consumption of the robot. In [200], the simulated annealing 

algorithm and the GA algorithm could generate the global and 

multiple local area coverage paths, respectively. Both 

algorithms are processed in parallel to reduce the computation 

cost. The simulation result proved that the algorithm has good 

stability in finding the shortest path after the 37th iteration. Liu 

et al. [201] applied the optimization algorithm to combine the 

GA and neural network to generate a cooperative path. The 

GA optimizes the weights and thresholds of the neural 

network through the learning process, providing a 93.74% 

coverage rate and a 4.25% repetition rate. Still, there is room 

for improvement on the convergence efficiency of GA and the 

combination of algorithms is a very promising solution. 

Differential evolution (DE) is an EA that alternative to GA 

[202]. In every iteration, the trial vector generation is an 

important step in the DE process to solve optimization 

problems, including differential mutation, recombination, and 

selection [203]. The performance is dependent on the selection 

of the control parameter and the mutation strategy. DE has 

several advantages, such as quick convergence and robustness 

[204]. Vesterstrom et al. [205] conducted the experiments over 

numerical benchmarks and demonstrated the DE has a better 

performance compared to GA and PSO. For the robot task 

planning problem, Xiao et al. [206] modified the DE algorithm 

by combining the roulette and multi-neighborhood operations 

(to solve local optimal solution), the de-crossover strategy (to 

increase the convergence speed), and the multi-population 

integration strategy (to get high computing resources). The DE 

optimal path model could provide good performance as 

compared to the shortest path model under limited energy 

usage. Gonzalez et al. [207] utilized the DE algorithm to 

optimize the coverage path (zig-zag path) by reducing the 

distance cost. The combination of DE and fast matching 

square could generate a smooth trajectory concerning turning 

radius while avoiding collision with obstacles at minimum 

distance cost in four different 3D environments. 

 

2) SWARM INTELLIGENCE 

Swarm intelligence is introduced by Beni and Wang [208], 

inspired by the collective social behavior of living organisms 

[209]. It refers to the collective intelligence that emerges from 

the cooperation of swarm agents [210]. The objective of 

swarm intelligence is to develop a probability-based search 

algorithm in optimization problems. Therefore, swarm 

intelligence algorithms have been used to solve global and 

non-linear optimization problems in the real world due to the 

advantage of flexible ability and high efficiency [211]. There 

are several classes of optimization algorithms in CPP, namely, 

PSO [212], ACO [213], and bee colony optimization (BCO) 

[214]. The CPP-based swarm intelligence algorithm utilizes 

particle population movements to find the shortest path or 

reach a target with minimum duration to provide the optimal 

coverage solution.  

The PSO is a meta-heuristic algorithm based on the social 

behavior patterns of organisms involving the swarming of the 

natural population [215]. Lee et al. [216] conducted an online 

CPP based on PSO to provide a smooth coverage path in a 

high-resolution grid map. In [217], the clustering distribution 

factor and PSO algorithm could cover the area in each division 

map. Sahu and Choudhury [218] used PSO to generate a 

trajectory for covering the targets globally. Y. H. Lin applied 

single-objective PSO [219] and multi-objective PSO [220] to 

optimize dynamic route planning. Wang et al. [221] 

demonstrated that the CPP based on the PSO approach has less 

redundant coverage as compared to the cattle method.  

Overall, the PSO has global searchability in the initial stage, 

but the swarm can easily trap in local minima, leading to a 

slow convergence rate during the lately searching process. 

Couceiro et al. [222] used the Darwinian PSO algorithm to 

divide the swarm into several small cooperative swarms (sub-

groups) to provide the ability for escaping locally optimal 

solutions based on reward and punishment mechanisms. In 

[223], a collection of the sampled paths feed into the PSO 

framework could optimize the cost function in terms of the 

quality and the efficiency of a coverage path. Then, the global 

best particle updates the particle exploration with minimal cost 

selected from the camera view, overcoming the limitation of 

premature convergence. However, the computation time is 

still huge on the different model sizes. Besides, the 

performance of the PSO algorithm has a possibility of rapid 

deterioration when it deals with multi-dimensional search 

space [224]. Thus, [225] proposed a cooperatively coevolving 

particle swarm optimization (CCPSO2) technique for solving 

large-scale optimization problems. Sun et al. [226] proposed a 

combined approach (CCPSO2 and modified GA) to find the 

optimal solution sensor deployment problem and solve the 

TSP, respectively, achieving better coverage and obstacle 

avoidance in all the respective sub-regions, albeit lacks 

experimental results. 

The ACO is a probabilistic technique that bio-mimics the 

behavior of ants and the process of searching foods by 

searching the optimal path route to solve the complex 

optimization problem [227]. Implementing the ACO 

algorithm for solving the path optimization problems has 

several advantages, such as strong robustness [228, 229] and 

parallel computation [230, 231]. However, the algorithm 

could easily trap in the local optimum as well as slow 

convergence speed [232, 233]. Thus, [234] proposed an 

improved ACO algorithm using a pheromone updating rule to 

avoid trapping into the local minimum. Chibin et al. [235] 

used the ACO algorithm to optimize the coverage of the sub-

area following the distance matrix. Zhou et al. [265] 

introduced an ACO algorithm by optimizing block sequence 

to solve TSP. Whilst [237] presented a global inspection 

routing optimization based on the ACO algorithm. Max-Min 

Ant System (MMAS) is another improved ACO algorithm to 

solve the local optimum problem by bounding the pheromone 

value between the maximum and minimum value [238]. 

Karakaya [239] applied MMAS for UAVs to plan the desired 

paths for target coverage. Tewolde and Sheng [240] compared 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3108177, IEEE Access

 Author Name: Preparation of Papers for IEEE Access 

 

VOLUME XX, 2020 13 

the CPP performance in spray painting between GA and ACO 

algorithms and showed that the ACO algorithm can reduce the 

coverage path length by 13% relative to the GA algorithm. 

Chen et al. [13] improved the accuracy of the spraying path by 

using an exponential mean Bézier curve and trajectory 

optimization based on ACO or GA, further enhancing the 

smooth path by optimizing the trajectory on the Bézier surface 

[241]. Gao et al. [242] proposed an improved ACO algorithm 

to optimize the coverage performance by reducing the number 

of turns in multi-robot CPP in simulated 2D grid space. Ye et 

al. [12] improved the algorithm by randomly calculating the 

transition probability and updating the pheromone besides the 

acceleration factor, improving the global searchability despite 

the randomness of the algorithm could induce failure. Dentler 

et al. [243] utilized a waypoint follower based on ACO 

combined with a chaotic solution of a dynamical to enhance 

the coverage efficiency. However, high-risk crash scenarios 

might occur due to poor localization precision. Le et al. 

presented the cleaning robot (hTetro) [244] and tiling robots 

(hTetrakis [245] and hTrihex [246]) for CPP by using GA and 

ACO algorithms to reduce energy consumption. Also, each 

robot type can change shape to provide high efficiency of 

coverage in a given workspace. Han et al. [247] used the glider 

to glide through the navigation points with back-and-forth 

motion to cover the sea level with the ACO algorithm to find 

the shortest path to avoid obstacles, which is challenging with 

the influence of a thermocline that changed the 

communication radius. 

The BCO is another swarm intelligence based on a bio-

inspired machine learning algorithm similar to ACO and PSO. 

Caliskanelli et al. [248] introduced a pheromone signaling 

algorithm based on BCO [249] for multi-robot coverage as 

well as a hybrid BCO-ACO pheromone signaling technique to 

solve the loss of communication network problems in multiple 

robots [250]. Firefly algorithm (FA) is a nature-inspired 

optimization algorithm [251] that has been widely used in 

coverage and exploration of the unknown area, especially 

mine disarming tasks [252, 253]. The goal of multi-robots is 

to explore and cover the area for mining as well as finding the 

optimal path for obstacle avoidance. Palmeiri et al. [254] 

compared the performance of FA, PSO, and BCO in the 

coordination of the swarm robotics system in terms of energy 

consumption. FA also has better performance to globally 

cover all the nodes than the ACO algorithm, reducing the 

computation time by 7.2% and decreasing the coverage path 

length by 2.5% in the case of grid size 10 x 10 of dynamic 

sloped terrain [255]. Nevertheless, there is no significant 

improvement in the path length if it increases the robot 

density. Henrio et al. [256] suggested the hyper-parameters 

tuning based on Bayesian optimization to apply on the FA for 

addressing the optimization problems. The grey wolf 

optimizer (GWO) is one of the recent meta-heuristic 

algorithms that mimic the hunting behavior and social 

leadership of grey wolves [257], whereby alpha, beta, delta, 

and omega are the categories of the moving of wolves [258, 

259]. Kamalova and Lee [258] used the coordinated multi-

robot exploration (CME) and GWO algorithm for multi-robot 

exploration to achieve optimal coordination and optimize the 

coverage area effectively, achieving better performance 

compared to the deterministic CME algorithm. Although the 

average coverage is 97.98% in four different obstacle maps, 

the obstacle avoidance constraint remains a challenge. 

Meanwhile, [260] conducted a similar experiment based on a 

multi-objective GWO algorithm to demonstrate the robot 

coverage capability, but the robots kept revisiting the 

previously explored area, leading to a long executing time. 

Besides, the GWO algorithm finds difficulties in obtaining 

global optimal solutions and dealing with dynamic obstacles 

due to step size mechanisms. Thus, Ge et al. [261] improved 

the local optimal solution by combining GWO and fruit fly 

optimization algorithm. Also, Dewangan et al. [259] proved 

that the improved GWO algorithm has better exploration 

ability and local optimal avoidance. Kamalova et al. [262] 

implemented the global waypoints control method in frontier-

based exploration to generate the frontier points that lie on the 

open regions of uncertainties (the sensor does not receive any 

transmitted signal) and create the global waypoint based on the 

input parameters of the array of frontier points. The GWO 

algorithm could estimate the next global waypoint by 

calculating the average of three distances from the current 

robot position to the frontier point positions (mean alpha 

points, mean beta points, and mean delta points), thus, 

achieving high searching actions compared to the PSO 

algorithm. The robot has a high capability to avoid the 

obstacle, although it ultimately results in long-distance 

traveled. 

 

3) ECOLOGY 

The ecological algorithm is a bio-inspired algorithm from 

nature, and it has been used in engineering and robotics as an 

optimization method. Invasive weed optimization (IWO) is a 

well-known algorithm that utilizes an ecological behavior 

based on the colonizing property and distribution of weed in 

nature [263]. IWO algorithm has better global convergence 

and robustness in terms of optimization search capacity [264, 

265]. The algorithm transforms the weed individuals into a 

positive integer by an encoder to reform its population (the set 

of all weeds) to solve TSP problems [266]. Ghalenoei et al. 

[267] employed the discrete IWO algorithm in a centralized 

manner for multiple task assignments, resulting in less 

computation time relative to GA. Zhuang et al. [268] presented 

the local and global coverage holes’ detection and healing in 
the wireless sensor by using IWO and DE algorithms. 

Sandamurthy and Ramanujam [269] proposed the CPP based 

on a discrete IWO algorithm with an improved 2-Opt operator 

for harvesting robots. The IWO algorithm optimizes the 

collecting path (or TSP) according to the distribution patterns 

of spreading invasive weed whilst the partition strategy uses 

the Mahalanobis distance method, effectively optimizing the 

path and providing maximum coverage of 76% compared to 
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existing graph traversal techniques. The performance of the 

generated path could be further improved using online 

methods in terms of coverage. 

I. HUMAN-INSPIRED ALGORITHMS 

The human-inspired algorithm is one of the sub-intelligence 

algorithms that mimic the human brain for learning to 

optimize decision-making in path planning. In recent years, 

the algorithm has been studied in the field of exploration tasks 

especially addressing coverage planning in a large dynamic 

environment. The algorithm can avoid collision with obstacles 

along the trajectory but still involves the considerable 

computation burden and local minima problem. 

 

1) NEURAL NETWORK 

The neural network is a well-known model and one of the most 

important in the field of robotics. It has been widely used and 

applied to robot motion planning and control of the robotic 

system. Besides, it also plays a crucial part in enhancing the 

performance of CPP. Yang and Luo [270] presented a non-

learning neural network-based CPP approach for cleaning 

robots to avoid obstacles while planning a collision-free 

coverage path, but the environment is assumed to be off-line. 

Thus, [271] proposed a biologically inspired neural network 

(BINN) for real-time CPP under a dynamic environment. The 

BINN structure gives better performance in the CPP of mobile 

robots since the learning process is not needed (less 

computation). This approach has been further improved to 

reduce the path planning time and provide a low overlapping 

coverage area [272, 273]. However, the model is not suitable 

for long-term online planning due to high energy 

consumption. Yan et al. [274] introduced a neurodynamics 

model in the real-time 2D grid map building that could be 

applied to robot coverage through the neural activity 

landscape, building a dynamic map and solving the CPP in an 

unknown environment effectively. Meanwhile, [275] 

presented a workspace model and guidance of multiple robots 

using the neural dynamics method. Although the multi-robot 

system increases the time efficiency of the area coverage, the 

system has a high deployment cost. Yang et al. [276] 

employed the BINN approach with pedestrian and obstacle 

avoidance strategy to optimize the collision-free CPP 

trajectory. Singha et al. [277] applied the BINN algorithm by 

modifying the backtracking technique to improve the 

computing efficiency of neural activities, overcoming the 

dead-lock issue. 

In CPP based on the BINN approach, the algorithm requires 

high complexity and large calculation that leads to the high 

cost. Besides, the robot must wait at the current blind location 

until the neural activity value of the deadlock is smaller than 

the neighboring locations (or decay) to escape from the 

deadlock. Consequently, low-efficiency problems may occur 

in the mobile robot, and it is not suitable for long-term online 

planning. Thus, a Glasius bio-inspired neural network 

(GBNN) is an improved algorithm to decrease the time taken 

of CPP, especially in escaping from the dead-lock situation. 

Zhu et al. [278] proposed the GBNN model to deal with CPP 

in building the 2D grid map. Whilst [279] further built on the 

3D grid map in static and dynamic environments based on the 

GBNN approach. Although the model has high computation 

cost, the robot could plan the path to cover the area under a 2D 

or 3D environment without collision. Sun et al. [280] 

introduced the cooperative multiple robot system using the 

GBNN algorithm with the centralized planning for CPP in the 

2D static environment, dramatically decreasing time 

complexity and reducing the repeated coverage in the region 

by 13.4% compared to the BINN method. Kwon and 

Thangavelautham [281] presented the artificial neural tissue 

control algorithm (sparse and variable topology neural 

network with adaptive activation functions) to address the 

coverage task. The advantages of using the controller are the 

non-central controller and no communication between agents 

of limited onboard sensors.  Samarakoon et al. [282] enhanced 

the area coverage by using a reconfigurable robot and 

compared two similar performance techniques (feed-forward 

neural network and adaptive neuro-fuzzy inference system). 

Meanwhile, [283] investigated the tradeoff between energy 

usage and area coverage using a fuzzy inference system. The 

neural network algorithm has high computation cost and time 

complexity, especially in focusing on CPP in a large-scale 

environment, which still has the potential to be optimized in 

the future. 

 

2) REINFORCEMENT LEARNING AND DEEP LEARNING 

Reinforcement learning (RL) is one of machine learning 

where the agent learns to reach the desired goal by dealing 

with sequential decision-making [284]. RL is neither 

supervised learning nor unsupervised learning but instead 

learns from the experience by trial-and-error rule. Markov’s 
decision process (MDP) is the framework for describing RL 

problems. The basic concept of RL is illustrated in Fig. 5. The 

agent takes the possible action, by interacting with an 

uncertain environment under the given state, st at each of a 

sequence of time steps, t. As a result, the environment will 

provide feedback to the agent while changing into a new state, 

st+1 and the agent receives the reward, rt from the environment. 

By providing new data (st, at, rt, st+1), the agent can learn to 

self-optimize through iterations to generate the policy, π from 

a training process.  

Figure 5. The agent-environment interaction in reinforcement learning.  
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RL is widely used in robotic applications [285], especially 

in recent CPP work. Although the classical DP can solve the 

optimal planning problem, it has difficulty solving large-scale 

Markov decision problems due to the computation of the 

transition probability matrices. Thus, RL has been developed 

to generate near-optimal solutions for solving complex and 

large MDPs [286]. A model-free approach based on RL has 

recently been successfully applied in real-world problems 

even if the environment model is incomplete [287]. Shakeri et 

al. [288] highlighted that RL could be utilized for CPP. Jing et 

al. [289] proposed 3D surface inspection on a production line 

using an MDP and ε-greedy forward tree search (FTS) method 

to generate an online-based inspection planning policy, 

proving that the ε-greedy FTS performed better than the NBV 

method by reducing 24% of the average cycle time among 

eight target models. The proximal policy optimization (PPO) 

algorithm is the policy gradient method that can be 

implemented in industrial coverage spray painting [14]. Le et 

al. [290] used the PPO algorithm based on the RL reward 

function to solve the TSP optimization problem in finding a 

low-cost path. In [291], the PPO algorithm with intrinsic 

rewards could provide a high coverage ratio and prevent a 

frequent collision. However, the coverage efficiency could 

decrease due to environmental change. Piardi et al. [292] 

presented a Q-learning algorithm by employing a grid map to 

optimize the CPP trajectory. Meanwhile, [293] deployed a 

distributed Q-learning algorithm for cooperative multi-agent 

with an information map to enhance the coverage efficiency, 

providing stable local optimal coverage solution in limited 

communication distance. 

In real-world problems, the larger state-action (knowledge) 

space may lead to the issue of retrieving the value for all state-

action pairs because the size of the table that stores related 

knowledge is limited. Hence, deep RL replaces the tabular 

function as function approximation to avoid collecting large-

scale data, such as Deep Q-network (DQN) approach in 

mobile robot exploration and path planning [294, 295]. 

Sometimes, trained DQN tends to be unstable because the 

deep Q-learning overestimates the action value. Thus, Luis et 

al. [296] designed a double deep Q-learning CPP to perform 

patrolling tasks effectively. Piciarelli and Foresti [297] fed a 

bi-dimensional relevance map into a convolutional layer in 

which the network is trained by employing double DQN for 

optimizing the area coverage of relevant zones according to 

the observation. The results indicated that the RL approach is 

better than the zig-zag path [296, 297], but only a single form 

of the result is presented. Chen et al. [298] combined the n-

step Q-learning and fitted Q-iteration without using the replay 

buffer to train the network for solving the CPP problem, 

reducing the path length and number of turns by 21.8% and 

38.6%, respectively, but it is hard to deal with online CPP with 

the high search cost of planners.  

Typically, DQN suffers from slow convergence speed and 

excessive randomness during training. Hence, actor-critic 

methods were developed to accelerate the optimization and 

training processes such as deep deterministic policy gradient 

(DDPG) algorithm and asynchronous advantage actor-critic 

(A3C) network. The DDPG model relies on architecture with 

experience replay that frequently uses each sample from the 

environment and separates the target network.  Whereas an 

A3C network utilizes the gradient descent algorithm to 

optimize network controllers. The algorithm leverages deep 

learning in continuous action spaces. Based on the DDPG 

algorithm (the combination of policy gradient and DQN), 

[299] proposed multi-AUVs using the online and offline RL 

to perform coverage within the field of interest and the 

communication range. Both RL approaches have high 

efficiency as compared to the RW method and both have 

similar performance, albeit the total traveled angle of the 

online RL approach is more than off-line RL. The cost of 

exploration in a complex environment could be high, 

especially in dealing with obstacles. Hence, Hu et al. [300] 

enhanced the learning speed of DDPG by integrating it with a 

prioritized experience replay algorithm. Niroui et al. [301] 

developed the A3C network with frontier exploration to 

generate a robot path in an unknown map. Meanwhile, Cao et 

al. [302] used a similar algorithm with the dual-stream Q-

learning technique for target search to explore the unknown 

environment, but the task allocation is a problem. The cleaning 

robot (hTetro) uses an actor-critic with an experience replay 

algorithm (off-policy implementation of A3C) to enhance the 

coverage time and energy efficiency, reducing the coverage 

time by 25.88% and 29.11% as compared to ACO and GA 

methods, respectively [303]. Kyaw et al. [304] addressed the 

TSP on decomposed cells by using a long short-term memory 

network (building units for layers of a recurrent neural 

network), slightly reducing the path length and overlapping 

rate. [290, 303, 304] demonstrated the efficiency of the RL 

approach (or deep RL approach) for finding the solution of the 

TSP. However, the model is only best suited for a self-

reconfigurable robot in a 2D workspace, otherwise, it could 

significantly increase the number of turns, leading to a costly 

path in the conventional robot. Hence, the adaptability of the 

RL approach with suitable robot platforms in a dynamically 

changing environment is still a big challenge in robotics. 

J. OTHER CLASSICAL AND HEURISTIC ALGORITHMS 

There are many other classical and heuristic algorithms for 

exploration and CPP. The boustrophedon motion and the 

internal spiral algorithm are simple CPP algorithms that are 

commonly performed in each cell by back and forth (zigzag) 

pattern and spiral path. Koval et al. [305] presented the multi-

agent exploration and coverage based on boustrophedon 

motion with a PRM planner. Balampanis et al. [306] created a 

Delaunay triangulation mesh model to produce coverage 

waypoint by utilizing the spiral pattern. Meanwhile, [307, 308] 

proved that the smooth spiral path has better coverage with 

minimal path length compared to the boustrophedon motion, 

but less attention to the curvature of the complex surface. A 

Voronoi partition approach is a common modeling technique
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that is applied in the distributed coordination for a multi-robot 

system [309]. Although the Voronoi partition-based coverage 

using the STC algorithm can cover the area with a non-

overlapping path, prior knowledge of the environment is 

required to complete the task. Brick and Mortar is a heuristic 

search algorithm for multi-agent exploration to search and 

cover the area of interest. Ferranti et al. [310] presented the 

idea of using the Brick and Mortar algorithm by thickening the 

block of visited or wall cells without losing connectivity of 

explored or unexplored cells. The algorithm marks the visited 

cells provided that the latter does not block the path between 

two cells, either explored or unexplored cells in the 

neighborhood. The algorithm shows better performance in 

terms of speed and coverage. However, the algorithm might 

stop executing because the agents strictly avoid the visited 

terrain instead of finding a way to visit unexplored areas. 

Becker et al. [311] used a multi-agent flood (MAF) algorithm 

to explore unknown terrain by finding the point of interest. 

Blatt et al. [312] combined the wavefront frontier detection 

algorithm with the MAF algorithm to increase searching speed 

as well as using the Bug2 algorithm with edge following 

technique to bypass the obstacle and find the frontier points 

along the straight line from the start position to the end 

position. 

Xiao et al. [313] proposed an improved CPP method to 

overcome the drawbacks of hierarchical clustering and 

iterative self-organizing field planning algorithms in terms of 

computation and overlap rate. The local search and the cost 

path could be improved by utilizing the nearest neighbor 

insertion algorithm and variable neighborhood strategy. 

Meaclem et al. [314] and Ding et al. [315] used the k-means 

clustering method and the density-based spatial clustering 

algorithm, respectively to partition the regions and assign the 

robots in each region for area coverage. Azpurua et al. [32] 

segmented the environment into sub-hexagonal cells and 

divided them into sub-regions by the k-means algorithm. 

Although the robot can execute the planned path, the wind 

disturbance could significantly influence the robot’s 
performance. Tang et al. [316] used CCPSO2, k-means 

clustering with a feedback mechanism, and GA combined 

with A* algorithm for sensor deployment, area partition, and 

CPP. Miao et al. [317] proposed a map decomposition and 

sub-map cleaning according to the types of edge corners 

(concave or convex) around the boundaries of the wall and 

obstacles for multi-robot distribution. Each distributed robot 

can cover the area in different assigned tasks and cover the 

whole map in a large environment but lacks experiment results 

[316, 317]. 

Ma et al. [318] presented the CPP algorithms to deal with 

the area coverage issues, especially in the dead zone and 

obstacle boundaries. A quadtree segmentation method could 

build a neuron map to split the map into different levels of sub-

blocks before the Hilbert curve traversal algorithm traversed 

each mode to obtain the path. Liang et al. [319] applied the 

path generator strategy with the Hilbert curve techniques for 

data collection to maximize area coverage. A supervisory 

control-based algorithm has also been implemented in a multi-

robot system to enhance exploration efficiency [320]. Song 

and Gupta [321] introduced the ε* algorithm using an 

Exploratory Turing Machine (ETM) to supervise the robot for 

performing the CPP. The waypoint initiation is based on 

multi-scale potential surfaces then forms 2D multi-level tape 

to enable adaptive decision-making. The algorithm forms the 

baseline coverage based on a resilience approach in multi-

robots [24]. An implementation in a re-planning algorithm 

according to the game-theoretic framework, whereby each 

robot is supervised by a discrete event system, holding the 

promise of resilience if robot failure occurred. Although the ε* 

algorithm has low computation complexity, the robot can trap 

in the local optimum. Hence, Shen et al. [322] deployed the 

onboard sensor to update the map information by using ETM 

with Dubins path, avoiding trapped near the obstacles. 

IV. DISCUSSION AND FUTURE RESEARCH DIRECTION 

The review compared the CPP technique of various algorithms 

and described the robot deployment methodology depending 

on the environment modeling involved in the CPP of a known 

or unknown environment. Table I to VII shows the summary 

of the CPP methods by analyzing each technique's benefits 

and limitations, and their main contributions in tackling the 

coverage tasks.  Notably, most studies have been conducted in 

the simulated environment, if not deployed in off-line mode 

due to the constraint within the respective field of research, 

such as hardware platforms and environmental conditions. 

Hence, some of the researchers have made assumptions for 

online deployment in a dynamic environment. However, 

existing works still lack a robust solution for inefficiency, 

unreliability (task execution), and instability in the real 

environment. Some of the CPP algorithms are not well 

developed, leading to poor optimization for coverage 

efficiency and obstacle avoidance. Table VIII listed the 

detailed descriptions of the technical properties of the motion 

planning problem, whilst Figure 6 shows their respective 

features comparison of different algorithms in a typical 

grading scale. Table IX shows computational complexities in 

big O-notation by analyzing each kind of algorithm. Table X 

illustrates a performance comparison of the seven algorithms 

regarding the coverage efficiency, optimization criteria, and 

future trends.  

Randomized algorithms (e.g. random walk and chaotic 

CPP) are well-known for random or unpredictable trajectories 

in the motion plan. They are widely used in low-end swarm 

robotics without the need for map information, effectively 

searching and exploring an unknown environment. They 

provide a very simple random motion, running in O(log n), 

which only records the current vertex, n, and count the number 

of steps taken. Some works (i.e. the searching efficiency in 

terms of step length, the number of visited cells, and coverage 

time) have been considered key aspects in futures steps.
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In any case, the STC algorithm could optimize a covering 

path in each area, addressing the single robot coverage 

problem and provide the least coverage repetition to cover all 

accessible grids. Other improvement methodologies such as 

spiral STC, full-STC, and smooth STC could achieve a 

maximum coverage rate over the original STC. Those STC 

methodologies compute the coverage path in linear time, O(n), 

where n is the number of grid cells (sub-cells). An extension 

of multi-robot STC follows a proper selection from various 

cellular decomposition techniques to shorten the coverage 

time in a large area. STC is simple, responsive to change in the 

environment, but only suitable to operate under no 

circumstances of the dynamic obstacles due to the path 

generated is predetermined. The new spanning tree could be 

constructed based on the remaining uncovered grid cells by 

using a path re-planning algorithm to cope with dynamically 

changing in the environment, yielding additional computation 

time.  

APF algorithm is a simple calculation that provides fast 

planning speed of obstacle avoidance path by building a model 

according to attraction and repulsive forces analogy. APF does 

not need global information; thus, the robots can effectively 

avoid the obstacle in real-time and coordination control of 

multi-robot. However, the robots can easily fall into the local 

optimum if large or arbitrary obstacles approach the target 

point. This is due to no movement takes place when the 

amounts of repulsive and attractive forces, acting on the robot 

are equal. Besides, the planned path is not an optimal path and 

the adaptability in handling dynamic obstacles is relatively 

poor, leading the robots to easily collide with moving 

obstacles. Although the APF approach only validates local 

obstacle avoidance and is hard to meet high-speed robots' 

requirements, it is still most suitable for low-end swarm robots 

by combining with the randomized algorithm.  

DP is a classical exact-based approach to solve the TSP 

optimization problem. It guarantees to choose the best solution 

within an acceptable time in finding the global optimum. 

Nevertheless, the time complexity increases to address the 

largest tour, leading to high computation power. Hence, 

approximation approaches had gained attention to solve large-

scale TSP, i.e. metaheuristic evolutionary algorithms. 

Evolutionary algorithms were proven to be effective to deal 

with single or multiple objective optimization problems. For 

example, GA often finds the best solution to address the 

combinational optimization problems (i.e. task allocation). 

PSO requires few parameters and takes less time to reach the 

target with computationally simple. On this account, it is 

sensitive to control parameters, directly influencing the 

performance. Whereas, the ACO algorithm has high 

efficiency in finding the shortest TSP, but is not practical in 

performing real-time planning due to large memory to store in 

a pheromone matrix. FA achieves fast convergence speed and 

simplicity due to minimum parameters adjustment. Albeit the 

metaheuristic algorithms have robust global or local 

searchability, they tend to fail into local minima.  

Recent trending includes hybrid algorithm (the combination 

of local search heuristic and evolutionary algorithm, i.e. 2-opt 

algorithm and IWO [269] or two heuristic algorithms, i.e. GA 

and PSO [226]) in optimizing the CPP solution. The hybrid 

algorithm incurred a high computation time but delivers better 

coverage efficiency in terms of TSP optimization. The 

selection of best-suited hybrid algorithms from various 

metaheuristic algorithms for a specific CPP problem is still 

uncertain due to lacking benchmarks or satisfactory solutions.  

In graph theory, search algorithms are probably the most 

widely used in shortest path finding between two nodes. BFS 

and DFS algorithms are the basic graph search techniques to 

get the shortest path due to their blind search strategy (without 

information about the environment). They can provide better 

searching in small problems but are often inefficient in terms 

of time and memory. Their time complexities are ( )O m n , 

where n is the number of vertices (nodes) and m is the number 

of edges. In contrast, informed search algorithms, i.e. 

Dijkstra's algorithm, A* algorithm, and D* algorithm, are 

highly efficient heuristic search techniques to find the 

solution. Dijkstra's algorithm is a classical backtracking 

solution for tackling the CPP problem, a logical choice for 

indoor CPP implementation for a small distance when the 

 
TABLE I 

RANDOMIZED ALGORITHMS 

Contributions  

(coverage mission) 
Approaches 

Ref. 

No. 

Environment 

modeling 
Coverage Research 

Comments 

Advantages Disadvantages 

1. Robot swarm model 

for searching task. 

2. Unpredictable rapid 

search to find the 

explosive or unknown 

target (rescuing 

human). 

Random 

walk (RW) 

 

[40] 

[47] 
2D Off-line Simulation 

1. Simple algorithm 

2. No robot localization 

3. Less computation 

1. Less coverage 

efficiency in the 

presence of obstacles 

2. High area overlapping 

rate 

[41] 2D Online Experiment 

[43] 

[45] 
3D Off-line Experiment 

[44] 2D Off-line Experiment 

Chaotic 

coverage 

path 

planning 

[53] 

[54] 
2D Off-line Simulation 

1. Fast scanning versus RW 

2. Guarantee coverage in a 

defined region. 

3. Sensitive upon initial 

conditions 

4. No robot localization 

1. Same as RW 

2. High cost of coverage 

time  [57] 3D Off-line Simulation 

[62] 

[63] 
2D Off-line Simulation 

 [65] 

[66] 

2D, Cellular 

decomposition 
Off-line Simulation 
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robot escapes from the dead zone. Whereas A* and D* 

algorithms are the fastest approaches known so far to speed up 

the search in the large and complex search space, but they do 

not often guarantee to provide the least-cost path due to their 

heuristic strategy.  

The time and space complexities of Dijkstra's algorithm are 

O(n log n) and O(n), respectively, in finding the single source 

shortest path. In most cases, the O(n2) is the best possible 

solution to compute the shortest distance for all pairs of 

vertices for dense graphs. The complexities of A* and D* are 

highly dependent upon their heuristic functions (estimate the 

cost from the given vertex to goal), reducing the complexity to 

a lower degree, i.e. O(log n), which enable for online 

implementation, yielding to             O(n2 log n) or O(n2) if 

utilizing a binary heap to implement the priority queue. The 

only difference between them is the capability to meet the 

requirement of mobile robots in a dynamic environment: A* 

relays on the nodes with the lowest value of the summation of 

the cost path from the start node to any given vertex and the 

heuristic function, whereas D* relays on the nodes with the 

lowest value of estimated cost by comparing the goal node and 

current node (A* - forward search; D* - backward search). 

Thus, the D* algorithm has a better solution to address a 

complex problem, i.e. dynamic environment, as it can handle 

this situation based on updating the reverse search process 

(incremental search) to re-plan the path.  

Alternatively, D* lite (based on lifelong planning A*) is 

more preferable as it is simple to implement (shorter than D*), 

utilizing one tie-breaking criterion when comparing priorities 

(simplifying maintenance). However, the complexity of the 

D* or D* lite could dramatically increase when the search 

space is relatively large due to many re-planning executions. 

Also, an unrealistic distance could be produced if there is a lot 

of moving obstacles. Overall, the A* algorithm has a high 

search efficiency in a static environment (i.e. shortest 

backtracking path for a mobile robot). Whereas, D* lite 

algorithm is better suited for dealing with changes in obstacle 

features (i.e. industrial robotic manipulator for inspection).  

In most cases, the paths are constrained to the edges in 

dealing with a discrete grid-based map (regular patterns), 

leading to the generated path is not being the best shortest path. 

The theta* algorithm overcomes this shortcoming with an any-

angle search method based on the utilization of a line-of-sight 

check (LoS-Check). It is best suited for large-scale coverage 

in an unknown environment, mainly deployed by holonomic 

aerial robots to find the next starting point since the planned 

path is fast and smooth. Alternatively, sampling-based 

planning algorithms such as PRM and RRT could specifically 

deal with the motion planning problem for non-holonomic 

constraints. RRT algorithm (single-query planner) is 

preferable in solving single start and goal states, but it fails to 

converge to the optimal solution. Hence, the RRT*, a variant 

of RRT, eventually claims to reach convergence towards the 

optimal solution by employing local rewiring operations.  

Although it is more promising to solve the shortest path 

problem in a significantly large search space and the unknown 

cluttered environment with narrow corridors, it requires 

additional smoothing and re-planning algorithms to follow the 

shortest path and avoid the dynamic obstacles, respectively. 

This is due to the elimination of unnecessary waypoints in the 

path pruning process, generating a linear piecewise path, 

resulting in not being feasible for a robot with kinodynamic 

constraint. Similarly, theta* algorithm might deal with the 

same issue, it needs to further implement the post-processing 

technique to achieve a kinematically-feasible path. Despite

 
TABLE II 

SPANNING TREE COVERAGE ALGORITHM 

Contributions  

(coverage mission) 

Ref. 

No. 

Environment 

modeling 
Coverage Research 

Comments 

Advantages Disadvantages 

A ‘plan and go’ based 
coverage technique, where 

computes a spanning tree and 

the robot visits each cell once 

in a configuration space 

without backtracking search. 

[71] 

[76] 

2D, Cellular 

decomposition 
Off-line Simulation 

1. The cells or grids are 

guaranteed completely 

covered 

2. Better coverage 

performance in the presence 

of the arbitrary obstacles 

3. Random initial positions for 

the robot placement 

1. Hard to cover the free space 

less than four-time of the size 

of the robot 

2. Slightly time-consuming 

when concerning the number 

of turns of the robot 

[72] 2D, Grid-based Online Simulation 

[73] 

[75] 
2D, Grid-based Off-line Simulation 

[74] 
2D, Hierarchical 

quadtree 
Off-line Simulation 

[77] 

[78] 

[79] 

2D, Cellular 

decomposition 
Online Experiment 

 
TABLE III 

ARTIFICIAL POTENTIAL FIELD ALGORITHM 

Contributions 

(coverage mission) 

Ref. 

No. 

Environment 

modeling 
Coverage Research 

Comments 

Advantages Disadvantages 

1. A simple math model to 

develop obstacle avoidance 

strategies. 

2. Avoid collision between 

the multiple robots 

(formation control). 

[89] 2D Online Simulation 1. Quick response 

2. Random initial positions for 

the robot placement 

3. Effective in avoiding the 

local obstacles 

4. Real-time planning 

1. Easy to fall into local 

optimum 

2. Hard to implement in a real-

world situation 

3. Poor to cover the area near 

obstacles 

[90] 

[93] 
2D Off-line Simulation 

[91] 3D OctoMap Off-line Simulation 

[92] 2D, Grid-based Off-line Simulation 

[94] 3D Online Experiment 
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both RRT* and Theta* algorithms have been improved into 

several variants based on LoS-Check to obtain the trade-off 

between the solution quality and the planning time in tackling 

the coverage task, there is still lacking clear solution and 

performance comparison of each algorithm. Due to LoS-

Check and online collision checking, the time complexity of 

the RRT* and Theta* could reach to O(n2) and O(n3 log n), 

respectively. 

For high-quality structural coverage, view planning is the 

top priority for accurate surface modeling. Based on the 

previous studies' findings, the NBV planning approach could 

gain the most informative view that considers the unknown 

area from a given partial model. Nevertheless, this approach 

does not consider the global route of the environment, leading 

to the overlapping path with the previous known views that 

might exist. Some features like holes and sparse surfaces 

might get ignored, resulting in less completeness of the 

constructed model. The receding horizon NBV technique 

achieves higher performance in local exploration, but it is 

prone to local minima due to poor global coverage. It also 

requires a relatively expensive to explore in a large workspace 

because it tends to terminate the exploration prematurely when 

the robot is not closer to the nearest frontier (low-cost 

function). Thus, the computational complexity of this 

technique mainly depends on RRT tree construction, gain 

estimation (using ray casting) and collision checking, giving 

the overall complexity as 

( )( )( )3 4 3
log log / / 1/O n n n V r NM r r+ + , where N is the 

number of horizontal rays, M is the number of vertical rays, r 

is the map resolution and V is the volume of the environment 

to be explored  [122]. In the current research review, the 

combination of fusion-based algorithms provides better 

solutions, utilizing various algorithms' advantages. For 

instance, sampling-based planning with frontier-based 

exploration methods could optimize local and global 

searchability [149, 323]. In addition, the combined receding 

horizon NBV and frontier-based exploration approach could 

reduce the computational complexity of gain estimation from 

inversely quartic growth to inversely linear growth, providing 

the overall complexity as ( )( )3
log / 1/O n n nV NM r r+ +

[144]. There are still many limitations as the performance 

might be degraded due to localization drift and high 

computation requirement for online operation, as well as the 

algorithm is highly dependent on the sensor used and map 

resolution. Hence, there is an endless opportunity for a fusion 

CPP algorithm with high-quality optimization and a correct 

model in a real-world situation for future work.  

Recently, human-inspired approaches have received more 

attention in addressing the CPP problem. The BINN and 

GBNN are the most effective techniques to deal with real-time 

coverage tasks as they do not need a learning process. It

 
TABLE IV 

SAMPLING-BASED PLANNING ALGORITHMS 

Contributions  

(coverage mission) 
Approaches 

Ref. 

No. 

Environment 

modeling 
Coverage Research 

Comments 

Advantages Disadvantages 

1. Handle the CPP 

problem to find the 

uncovered area 

especially in large 

state space (i.e. 

complex, 3D or 

narrow corridor).  

2. Find a collision-free 

connection. 

3. Sample a set of 

points of interest 

(POI) or best views in 

the environment, 

following the shortest 

path to visit all the 

POIs or selected best 

viewpoints by dealing 

with the problem of 

TSP (i.e. meta-

heuristic algorithm). 

Probabilistic 

roadmap 

(PRM)  

[97] 3D Octomap Off-line Simulation 1. Full coverage modeling 

2. Probabilistically 

completeness 

1. High cost in 

computation 

2. Hard to deal with 

dynamic obstacles 

[101] 
3D Octomap,  

Grid-based 
Off-line Simulation 

[102] 3D Off-line Simulation 

Rapidly 

exploring 

random tree 

(RRT) and 

RRT* 

[109] 
2D, Space 

decomposition 
Off-line Simulation 

1. Same as PRM 

2. Low memory 

3. Rapid search 

4. Suitable in high 

dimensional search space 

1. Strong randomness 

2. Easily get stuck (fast 

greedy) 

3. RRT* has a slow 

convergence speed 

4. Lack of handling 

dynamic obstacles 

[110] 2D, Graph layers 
Online 

(Assume) 
Simulation 

[111] 
3D, Hypothetical 

cubes 
Online Simulation 

[112] 3D, Grid-based Online Experiment 

[114] 

[115] 
3D, Triangular mesh Off-line Experiment 

Next best 

view (NBV) 

and 

receding 

horizon 

NBV 

planning 

(RHNBV) 

[131]  
3D Octomap, 

Volumetric 
Off-line Experiment 

1. High-quality modeling 

2. Real-time exploration 

3. Guarantee coverage in 

high dimensional search 

space 

4. Good performance in an 

unknown environment 

1. Relatively expensive in 

computation 

2. Inaccurate structure 

models 

3. May get stuck in local 

minima 

4. Require high accuracy 

of the sensor for 

positioning  

5. Long execution time for 

acquiring a complete view 

[132] 3D, Triangular mesh Off-line Simulation 

[133] 

[134] 
3D, Clustering Off-line Experiment 

[135] 
3D, Voxel 

discretization 
Off-line Simulation 

[139] 

[140]  

3D Octomap, 

Volumetric 
Online Experiment 

[141] 
3D Octomap, 

Volumetric 
Off-line Simulation 

Combined 

RHNBV 

and frontier 

based 

exploration 

(RHNBV-

FE) 

[136] 

[144] 

3D Octomap, 

Volumetric 
Online Experiment 

1. Same as NBV 

2. Local minima 

optimization without 

getting stuck 

3. Maximize the 

information gain (optimal 

frontier) 

1. Computationally 

expensive (slightly lower 

than RHNBV) 

2. Make decisions 

greedily in the exploration 

strategies [324] 

[143] 

[147] 

3D Octomap  with  

signed distance field 
Online Experiment 

[145] 

[152] 
3D, Volumetric Online Simulation 
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utilizes the neural activity landscape for generating an optimal 

path without prior knowledge of the environment and no 

explicit searching procedures in the neural network model. 

Thus, they have a high capability to handle an unknown static 

and dynamic environment. Instead of waiting for the long 

decay time in the neural activity process, the GBNN provides 

a better model in rapidly escaping from deadlock to overcome 

the shortcoming of the BINN. Both models could achieve 

obstacle avoidance in real-time and the complexity is squarely 

proportional to the degree of discretization, O(n2), where n is 

the number of neurons in the system. The BINN has also been 

utilized to deal with the problem of multi-robot formation 

control in coverage planning tasks [325]. Still, somehow the 

optimal path is planned close enough to the obstacles or multi-

robot near-collision situation, leading to difficulty avoiding 

the fast-moving obstacles. The robot might eventually fail 

when moves along the edge of the obstacles, leaving many 

rooms for improvement in planning the strategy in a rapidly 

changing environment. Most studies assume the location of 

the robot is known with prior knowledge of the environment, 

high precision sensing, and ideal communication network due 

to the experimental is often involved high-cost hardware with 

expensive sensor and safety hazard in the workspace. Notably, 

the adaptability of the BINN approach to work in real-world 

applications is still uncertain as there is a big gap between the 

simulation environment and practical experimental. 

More recently, deep and RL started to gain importance in 

addressing the CPP problem, allowing experience-driven 

learning to tackle real-world problems. Several studies based 

on RL have been made to accomplish the coverage task, i.e. 

avoiding collision [291], balancing the coverage ratio and 

energy usage [326], and is beneficial for view planning in 

 
TABLE V 

GREEDY SEARCH AND GRAPH SEARCH ALGORITHMS 

Contributions 

(coverage mission) 
Approaches 

Ref. 

No. 

Environment 

modeling 
Coverage Research 

Comments 

Advantages Disadvantages 

1. Plan the shortest 

return path from the 

target source back to 

the initial position 

after the completion of 

the coverage. 

2. Find the shortest 

backtracking path 

from the current blind 

position to the next 

uncovered region 

when the robot falls 

into the dead zone (or 

detects an ending 

point). 

3. Re-plan the path 

from the current 

position to the newly 

uncovered area when 

the robot encounters a 

static or dynamic 

obstacle. 

4. Find the charging 

station with the 

shortest path and 

return to continuously 

cover the area.  

5. Distribute the 

robots to select the 

nearest target area. 

Depth-first 

search 

(DFS) 

 

[157] 
2D, Cellular 

decomposition 
Off-line Simulation 

1. Simple to implement 

2. Optimal searching to find 

the hidden target 

(uninformed) and all 

pathways in an unknown 

maze environment 

1. BFS consume large 

memory   

2. Not guarantee to find 

an optimal solution 

(shortest path) in a large 

search space and fail in 

unbounded depth 

[158] 
2D, Morse cell 

decomposition  
Off-line Simulation 

[159] 3D Online Experiment 

Breadth-

first search 

(BFS) 

[160] 3D, Grid-based Off-line Experiment 

[161] 
2D, Cellular 

decomposition 
Online Experiment 

[2] 2D, Grid-based Off-line Simulation 

[162] 
2D, Cellular 

decomposition 
Online Simulation 

Dijkstra’s 
algorithm 

[164] 2D, Grid-based Online Simulation 1. Sub-optimize in the 

closest path (when there is 

multiple target area) 

2. Greedy expand to cover 

a large area of the graph 

1. Large memory 

2. Fail on the negative 

edge weights 

3. Performance 

degradation over the 

large distance 

[165] 
2D, Cellular 

decomposition 
Off-line Simulation 

[166] 
3D, Hexagonal  

cell pattern 
Online Simulation 

[167] 
2D, Sub-cell 

decomposition 
Off-line Simulation 

A* 

algorithm 

[168] 

[170] 

[172] 

2D, Grid-based Off-line Simulation 

1. Least cost of 

computation time 

2. High efficiency  

to deal with a single target 

destination 

1. Not guarantee to 

provide the shortest path 

(if overestimating) 

2. Hard to handle the 

dynamic environment 
[171] 

2D, Cellular 

decomposition 
Online Simulation 

[173] 
2D, Grid-based  

pre-built map 

Off-line/ 

Online 
Simulation 

D* 

algorithm 

and D* lite 

[175] 
2D, Cellular 

decomposition 
Online Simulation 

1. Capable of handling in 

the dynamic complex 

environment 

2. Fast re-planning 

1. Hard to implement in 

a large number of 

obstacles 

2. High cost in large 

search space 

[176] 

[179] 
2D, Grid-based Online Experiment 

[177] 2D, Grid-based Online Simulation 

[178] 
2D, Cellular 

decomposition 
Online Simulation 

Theta* 

algorithm 

and Lazy 

Theta* (or 

any angle 

path 

planning 

Theta*) 

[181] 
2D, Cellular 

decomposition 
Online Experiment 

1. Shortest collision-free 

path 

2. Smooth post-processing 

and speed up planning 

[183, 184] 

3. Lazy Theta* is capable 

of finding the shortest path 

in the continuous space 

1. High computation 

time in large search 

space (environment 

complexity) 

2. Ignore the kinematic 

constraints of the robot 

[182] 
2D, Binary cell  

map 
Online Simulation 

[183] 
3D, Regular and 

sparse grid 
Online Experiment 

[184] 
3D Octomap,  

Sparse grid 
Online Experiment 

[185] 
3D Octomap,  

Sparse grid 
Online Simulation 
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solving SCP optimization [327]. Metaheuristic algorithm is 

superior in solving small workspace but can get stuck in local 

minima and the computational complexity exponentially 

increases when the workspace expands. Conversely, the deep 

RL approach is an alternative to solve the optimization 

problem under a large and complex environment, such as 

disinfection tasks in reducing the spread of COVID-19 in 

workspaces [328]. Although deep RL has relatively better 

performance, it is not preferable to tackle small workspaces 

due to the model computation complication of huge agent 

training time and hyperparameter tuning. Performance 

comparison between the deep RL approach and metaheuristic 

 
TABLE VI 

EVOLUTIONARY ALGORITHMS (METAHEURISTIC) 

Contributions 

(coverage mission) 
Approaches 

Ref. 

No. 

Environment 

modeling 
Coverage Research 

Comments 

Advantages Disadvantages 

1. Optimally assign a 

group of robots to 

execute the number of 

tasks in cooperation to 

achieve the overall 

system goals (multi-

robot task allocation 

problem).  

2. Generate an optimal 

coverage sequence 

(shortest path) in each 

sub-region (to solve 

the TSP optimization 

problem). 

3. Optimize the 

objective (or multiple 

objectives) to 

minimize cost 

functions (i.e. 

coverage path length, 

obstacle avoidance, 

energy consumption, 

path smoothness, and 

vehicle kinematic 

constraints). 

 

Genetic 

algorithm 

(GA) 

 

[190] 

[195] 

2D, Cellular 

decomposition 
Off-line Simulation 

1. Global search capability 

2. Provide a  

smooth and time-optimal 

path 

3. Support parallel 

computing or  

multi-objective 

optimization 

4. Effective in solving time 

extended task allocation 

1. Poor stability 

2. High computing 

power and computation 

time 

3. High model 

complexity 

4. Uncertainty 

convergence speed 

[192] 2D, Clustering Off-line Experiment 

[193] 2D, Grid-based Off-line Simulation 

[194] 3D, Triangular mesh Off-line Experiment 

[22] 
2D, Grid, and 

segmentation 
Off-line Experiment 

[197] 

[200] 

2D, Cellular 

decomposition 
Online Simulation 

[199] 
2D, Non- 

Euclidean grid 
Off-line Simulation 

Differential 

evolution 

(DE) 

[206] 3D, Grid-based Off-line Experiment 1. Same as GA 

2. More effective than GA 

1. Same as GA 

2. Many parameters 

adjustment 
[207] 

2D, Cellular 

decomposition 
Online Experiment 

Particle 

swarm 

optimization 

(PSO) 

[216] 2D, Grid-based Online Simulation 1. Easy to implement 

2. Global and local 

searchability 

3. Few parameters can be 

adjusted to obtain the 

global best solution  

1. Premature 

convergence 

2. Easily trap in local 

minima 

3. Slow convergence 

speed in the late phase 

[217] 2D, Grid-based Off-line Simulation 

[220] 3D Online Simulation 

[221] 
2D, Irregular 

polygon region 
Off-line Experiment 

[222] 2D Off-line Simulation 

[223] 
3D, Triangular 

surface 
Online Simulation 

Ant colony 

optimization 

(ACO) 

[235]

[237] 

2D, Cellular 

decomposition 
Off-line Simulation 

1. Global optimization 

2. Distributed computation 

to avoid premature 

convergence 

3. Fast  

convergence speed in the 

late phase 

4. Effective in solving TSP 

5. Optimal task allocation 

1. Uncertain time to 

convergence and slow 

convergence speed in the 

initial speed  

2. Easily trap in local 

minima 

3. Poor performance in 

the large search space 

[236] 
2D, Cellular 

decomposition 
Online Experiment 

[13] 
3D, Triangular 

surface 
Off-line Experiment 

[242] 
2D, Grid-based 

DARP 
Off-line Simulation 

[12] 
2D, Mesh  

division 
Online Experiment 

[243] 3D, Grid-based Off-line Simulation 

[247] 3D 
Online 

(Assume) 
Simulation 

Firefly 

algorithm 

(FA) 

[252] 

[253] 
2D, Grid-based 

Online 

(Assume) 
Simulation 

1. Local searchability 

2. High efficiency  

in solving TSP 

3. Fast convergence speed 

with parameter tuning 

1. Low accuracy 

2. Easily to fall into local 

minima 
[254] 2D, Grid-based 

Online 

(Assume) 
Simulation 

[255] 2D, Grid-based Online Simulation 

[256] 2D, Grid-based 
Online 

(Assume) 
Simulation 

Grey wolf 

optimization 

(GWO) 

[258] 

[260] 
2D, Grid-based Online Simulation 

1. Derivation-free 

mechanism 

2. Free from the 

initialization of  

input parameters 

3. Optimal search 

capability 

1. Slow convergence 

2. Poor local 

searchability [259] 3D, Grid-based Online Simulation 

[261] 2D Off-line Simulation 

[262] 2D Online Experiment 

Invasive 

weed 

optimization 

(IWO) 

[267] 2D Off-line Simulation 1. Simple to implement 

2. Global search capability 

3. Well-adapted to change 

in the environment 

1. Premature 

convergence  

2. Easily trap in local 

minima 

3. Poor exploitation 

ability 

[268] 

2D, Multi-

constrained 

circumstances 

Off-line Simulation 

[269] 2D, Grid-based Off-line Simulation 
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algorithms for holonomic and non-holonomic robots in 

solving TSP are lacking. It is challenging to use deep RL to 

deal with multi-robot CPP tasks in an unknown environment. 

Nevertheless, deep RL offers a promising future direction for 

addressing CPP problems despite being relatively immature. 

Many CPP algorithms and methodologies have been 

presented in the field of robotics research. However, there 

revolves many constraints and technical issues awaiting to be 

explored and addressed. Future research should focus on the 

following directions:  

• Coverage completeness and time-efficiency 

tradeoff: The robot’s number of turns dramatically influences 
the total coverage time. CPP techniques widely adopt back-

and-forth motion due to simple path design compared to spiral 

motion. However, in a large-scale unknown environment, 

seeking coverage completeness often results in a longer path 

and more turning, increasing coverage time and reducing 

efficiency. In a 3D complex structure, the existing algorithm 

is limited to handling the target with hidden parts, which is 

considered a non-interest region and obstacle in most previous 

research, leading to significant time-consuming for a complete 

coverage plan. Therefore, the right balance between the 

coverage completeness and execution time is required to 

optimize the overall coverage efficiency. 

• Robot adaptability versus cost-efficiency: 

Dynamic environmental characteristics might influence the 

robot’s motion and lead to unnecessary performance 
degradation. Robots might lack flexibility and easily get 

trapped in common dead-lock situations. The robot with the 

ability to change operating behavior over time is essential to 

seek a collision-free path under an unknown environment with 

uncertain obstacles. Besides increasing the number of onboard 

sensors in handling complex environments, the computation 

cost might be high. Evolutionary algorithms are typically not 

suitable in low-cost robots due to large memory requirements 

and computationally expensive. Therefore, the computation 

cost factors must be considered for designing a suitable 

environment model for CPP. The hybrid algorithm is an 

exciting development to manage the change in the 

environment with minimum cost.  

• Path smoothness: The coverage and connectivity 

are crucial in wireless sensor networks. With limited 

communication and sensing capabilities, the robot cannot 

regenerate the best path if the unexpected occurs, degrading 

the effective coverage ratio. A kinematic constraint of the 

robot, such as path curvature, is also one of the challenges that 

must be addressed. For fast-moving robots such as drones, 

trajectory smoothing on a sharp turn helps to provide the robot 

with an efficient inertia motion transfer to minimize power 

consumption and prevent premature mechanical damage. 

Hence, there is a need to project a smooth path while following 

the CPP route [329].

 
TABLE VII 

HUMAN-INSPIRED ALGORITHMS (NEURAL NETWORK) 

Contributions 

(coverage mission) 
Approaches 

Ref. 

No. 

Environment 

modeling 
Coverage Research 

Comments 

Advantages Disadvantages 

1. Obtain knowledge 

through the 

exploration of the 

environment via 

sensors to learn a 

model of the 

environment in the 

coverage task.  

2. Embed in a self-

organizing map to 

assign the next robot 

location (or the robot 

takes an action) 

according to the 

neural activity value 

(or action value). 

3. Provide higher 

objective functions 

on visual coverage, 

covering the AOI, 

avoid the obstacle or 

select the best 

backtrack point. 

4. Optimize the SCP 

or TSP solution in an 

extremely large 

workspace. 

Biologically 

inspired 

neural 

network 

(BINN) 

 

[270] 

[271] 

2D, Cellular 

decomposition 
Online Simulation 

1. Simple structure 

2. No learning process 

3. Good real-time 

performance 

4. Good in dealing with an 

unknown static and 

dynamic environment  

5. High efficiency  

to avoid obstacles 

1. Issue of 

overconfidence 

2. Time-consuming to 

escape from deadlock 

3. Slightly less efficient 

in a fast-changing 

environment 

[272] 
2D, Fictitious 

frontier 
Online Simulation 

[273] 

[274] 

[275] 

[276] 

[282] 

2D, Grid-based Online Simulation 

[277] 

[281] 
2D, Grid-based Off-line Simulation 

Glasius  

bio-inspired 

neural 

network 

(GBNN) 

[278] 2D, Grid-based Online Simulation 1. Same as BINN 

2.  High efficiency to 

escape from  

deadlock instead of waiting 

for the neural activity 

process 

The model is slightly 

less efficient in a fast-

changing environment [279] 

3D with 2D 

planning, Grid-

based 

Off-line Simulation 

[280] 
2D, Grid-based, 

Voronoi 
Online Simulation 

Deep 

reinforcement 

learning 

[294] 3D Online Simulation 
1. Completed independent 

from human labeling 

(strong self-learning) 

2. Parallel computing 

3. Fast training speed [300, 

301, 302] 

4. Good in dealing with an 

unknown static and 

dynamic environment 

5. High efficiency to avoid 

obstacles 

1. Slow convergence 

speed in the training 

phase 

2. Sparse reward 

problem 

3. Overestimate the 

action value [294] 

4. High computation cost 

5. Long learning time 

6. Hard to deal with 

continuous state space 

[296] 2D Off-line Simulation 

[297] 2D Online Simulation 

[298] 

[303] 

[328] 

2D, Cellular 

decomposition 
Off-line Simulation 

[299] 
2D, Field  

posterior distribution 
Online Simulation 

 [300] 2D, Grid-based Online Simulation 

 [301] 2D, Grid-based Online Experiment 

 [302] 2D, Grid-based Off-line Experiment 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3108177, IEEE Access

 Author Name: Preparation of Papers for IEEE Access 

 

VOLUME XX, 2020 23 

 
TABLE VIII 

DETAILED DESCRIPTION ABOUT THE PROPERTIES OF MOTION PLANNING PROBLEM  

Types Features Descriptions 
Grading scale Best 

grade 1 2 3 4 5 

A Searching time Rapid search to find unexplored area or target Very slow Slow Moderate Fast Very fast 5 

B Path optimality Shortest coverage path or sequence Poor Fair Average Good Excellent 5 

C Dynamic performance 
Capable of handling in a dynamic 

environment 

Poor Fair Average Good Excellent 5 

D Computational complexities Time and space complex calculation Very low Low Medium High Very high 1 

E Convergence speed Rate of convergence of a sequence Very slow Slow Moderate Fast Very fast 5 

 

 
FIGURE 6.   The performance evaluation of the different algorithms based on five key features (as described in Table VIII). 

Randomized 

algorithm 

Sampling-based 

algorithm 

Graph search 

algorithm 

Evolutionary 

algorithm 

Human-inspired 

algorithm 

* blank (unfilled colour) = either problem dependent or not relevant 
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TABLE IX 

COMPUTATIONAL COMPLEXITIES OF EACH TYPE OF ALGORITHM 

Algorithms Time complexity, 
T

C  Space complexity, 
S

C  Grid size 

Randomized ( ) ( )log
T

O n C O n   ( ) ( )1log
S

O n C O   
n n  

STC ( )O n  ( ) ( )1
S

O n C O   
n n  

APF ( ) ( )log
T

O n C O n   ( ) ( )log
S

O n C O n   
n n  

DP ( )2
2

n
O n   ( )2

O n  
n n  

PRM ( ) ( )log
T

O n n C O n   ( ) ( )log
S

O n C O n   
n n  

RRT/RRT* ( ) ( )2
log

T
O n n C O n   ( ) ( )log

S
O n C O n   

n n  

RHNBV ( )( )( )3 4 3
log log / / 1/O n n n V r NM r r+ +  ( )

S
O n C  V  

RHNBV-FE ( )( )3
log / 1/O n n nV NM r r+ +  ( )

S
O n C  V  

DFS ( )O m n  ( )O m n  
m n  

BFS  ( )O m n  ( )O m n+  
m n  

Dijkstra ( ) ( )2
log

T
O n n C O n   ( ) ( )2

log
S

O n C O n   
n n  

A* ( ) ( )2
log

T
O n C O n   ( ) ( )2

log
S

O n C O n   
n n  

D*/D* lite ( ) ( )2
log

T
O n C O n   ( ) ( )2

log
S

O n C O n   
n n  

Theta*/ Lazy Theta* ( ) ( )2 3
log log

T
O n n C O n n   ( ) ( )2

S
O n C O n   

n n  

Evolutionary ( )2

T
O n C  ( )

S
O n C  

n n  

BINN/ GBNN ( )2
O n  ( ) ( )2

S
O n C O n   

n n  
 

TABLE X 

COMPARISON OF VARIOUS COVERAGE PATH PLANNING ALGORITHMS: PERFORMANCE AND ANALYSIS 

Performance metrics 

Types of coverage path planning algorithms 

Randomized 

algorithms 

Spanning tree 

coverage 

Artificial 

potential field 

Sampling-based 

planning 

Graph search 

algorithms 

Evolutionary 

algorithms 

Human-inspired 

algorithms 

Fast searching time ✓  ✓     

Collision avoidance   ✓ ✓ ✓ ✓ ✓ 

Complete coverage  ✓  ✓   ✓ 

The shortest path between 

two points 
   ✓ ✓  ✓ 

Non-backtracking  ✓      

TSP optimization      ✓ ✓ 

Large-scale structural 

coverage (SCP optimization) 
   ✓   ✓ 

Good real-time performance ✓  ✓ ✓   ✓ 

Low computation cost ✓ ✓ ✓  ✓   

Dynamic environment   ✓ ✓ ✓ ✓ ✓ 

Global path  ✓  ✓ ✓ ✓ ✓ 

Local path ✓ ✓ ✓ ✓    

Experimentally sufficient ✓ ✓   ✓   

Maturity level ✓ ✓ ✓ ✓ ✓ ✓  

Potential future research    ✓ ✓ ✓ ✓ 

 

V. CONCLUSION 

Comprehensive knowledge of the CPP algorithms based on 

classical algorithms and heuristic-based algorithms was 

summarized in this paper. All the elements were listed and 

compared by analyzing the merits and demerits of each 

technique. The challenges that exist in the CPP were critically 

evaluated, involving coverage efficiency and collision 

avoidance in terms of several typical features such as area 

coverage, path length, travel time, repetition rate, and energy 

usage. Most of the approaches were shown the capability of 

the robot to avoid obstacles effectively and cover the area in a 

static and dynamic environment with the highest coverage 

percentage and low overlapped paths. Each algorithm can 

perform well in practice, but still has the limitation in the CPP 

literature. The optimization algorithms may still not well 

develop in solving CPP problems. As such, the SCP, TSP, and 

local minima escaping problems are necessary to be tackled. 

The connection between local and global coverage paths could 

solve the integrated TSP and CPP problems. Still, it is limited 

to handling the target with hidden parts. The issue of 

adaptability in the complex unknown environment still not 

well solving. Deep RL has been applied in various CPP with 

great achievement in recent development. However, the 

current RL techniques are still immature, thus, many 

challenges need to be addressed before carrying out the CPP 
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in the dynamic environment. In a multi-robot scenario, issues 

such as robot distribution and structure of the environment 

should be considered for improving the efficiency of CPP. 

Even though multi-robot can cover the AOI collaboratively, 

transferring data online is still challenging [330]. In future 

work, the performance of the CPP could be improved by 

combining other algorithms to reduce the shortcoming of the 

existing classical algorithms. The hybrid algorithm should be 

the direction of CPP development. Lastly, the researchers 

believed that the experimental results could be conducted from 

real scenarios with the verification of the simulation model.  
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