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Abstract: Vehicle insurance is a very important source of income for insurance companies, and it is
closely related to the driving style performed by driving behavior. Different driving styles can better
reflect the driving risk than the number of violations, claims, and other static statistic data. Subdivide
the vehicle insurance market according to the personal characteristics and driving habits of the
insured vehicles, and studying the personalized vehicle insurance products, will help the insurance
companies to improve their income, help the drivers to change their bad driving habits, and thus
help to realize the healthy development of the vehicle insurance industry. In the past 20 to 30 years,
more and more insurance companies around the world have launched vehicle usage-based insurance
(UBI) products based on driving style analysis. However, up to now, there are few comprehensive
reports on commercial vehicle UBI products and their core driving risk assessment methods. On
the basis of literature indexing on the Web of Science and other academic platforms by using the
keywords involved in vehicle UBI, over 100 relevant works of literature were screened in this paper,
and a detailed and comprehensive discussion on the driving style evaluation methods and the design
of commercial vehicle UBI products during the past 20 to 30 years has been made, hoping to get a full
understanding of the possible factors affecting driving style and the collectible data that can reflect
these factors, and to get a full grasp of the developing status, challenges and future trends in vehicle
insurance branch of the Internet of Vehicles (IoV) industry.

Keywords: vehicle insurance; usage-based insurance (UBI); driving style; driving behavior; driving
risk evaluation

1. Introduction

It is of no doubt that vehicle usage-based insurance (UBI) is competitive in the com-
mercial vehicle insurance market. Vehicle UBI, as its name suggests, is a type of vehicle
insurance, in which the premium is adjusted and determined via specific vehicle usage
behavior and its corresponding risk level. The insurance company that carries out vehicle
UBI products usually extracts the corresponding risk type parameter for different driving
behaviors and habits of insured vehicles during their underwriting cycle by means of data
collection, adjusts the premium accordingly on the basis of the premium of traditional
commercial vehicle insurance in the next cycle, and finally determines the differentiated
premium for the insured vehicles. Till now, there are still no clear standards for the differ-
entiated premium adjusting mechanism of vehicle UBI products, which can judge the risk
type only for a certain type of driving parameter (such as driving mileage [1], or driving
speed [2]), or the comprehensive risk type for multiple driving parameters [3].

At present, in the risk judgment of vehicle UBI based on single driving parameters, the
common evaluation mechanisms are pay-as-you-drive (PAYD) [1,4] and pay-as-you-speed
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(PAYS) [2]. PAYD mechanism takes mileage parameters as the basis for risk judgment,
its extreme situation is “there is no risk if you don’t drive”. PAYD mechanism believes
that the more mileage an insured vehicle drives in the underwriting cycle, the greater the
probability of risk it faces. Similarly, the PAYS mechanism takes the speed parameter as
the basis for risk judgment, its extreme situation is “there is no risk if you don’t exceed the
speed limit”. PAYS mechanism believes that the more times an insured vehicle exceeds
the speed limit on roads in the underwriting cycle, the greater the probability of risk it
faces. The determination of risk parameters of PAYS is more complex than that of PAYD. It
needs the support of vehicle positioning technology to determine whether the vehicle has
overspeed behavior on a specific road.

In terms of risk judgment for vehicle UBI based on multiple driving parameters, the
most common concept is pay-how-you-drive (PHYD) [4]. PHYD is a risk assessment mech-
anism for insured vehicles that comprehensively considers multiple driving parameters,
including time duration, road section, real-time speed, real-time acceleration, mileage, and
so on in each period of driving. The biggest difference between PHYD and PAYD and
PAYS is that the risk assessment of insured vehicles is carried out dynamically, and the
corresponding risk assessment parameters can be changed every time the vehicle is driven,
rather than making regular later static analysis on the driving mileage or overspeed times
in a specific period of insurance cycle [5].

On the basis of literature indexing on the Web of Science and other academic platforms
by using the keywords involved in vehicle UBI, in this paper, over 100 relevant pieces
of literature were screened to make a comprehensive review on not only driving style
evaluation issues, but product design as well. In this section, the background of vehicle
UBI products and their related concepts have been given, the remainder of this paper is
organized as follows: the types and advantages of commercial vehicle UBI products are
discussed in Section 2. Then in Section 3, a detailed and comprehensive discussion on
both micro and macro driving style evaluation methods is made. In Section 4, the design
of commercial vehicle UBI products during the past 20 to 30 years is made. Finally, the
conclusion and comments are drawn in Section 5.

2. Vehicle UBI and Its Advantages
2.1. Overview of Commercial Vehicle UBI Products

In Europe and America, commercial vehicle UBI products have been already imple-
mented for 20~30 years. The implementation strategies of commercial vehicle UBI products
are different, and the premium determination method can also be described as “a hundred
schools of thought”. From the different vehicle UBI products, it can also be found that
there is no unified standard for the driving risk assessment of vehicle UBI products, and
the implementation of products can be regarded as moving forward in exploration. Of
course, it must also be pointed out that not all European countries have carried out vehicle
UBI products very smoothly. There are also some countries whose nationals are relatively
conservative in sharing travel trajectories and do not accept such forms of insurance prod-
ucts with driving data collection during the underwriting cycle as the mean of premium
adjustment and determination [6].

Progressive, an insurance company in the United States, launched its first generation
of vehicle UBI product Autograph as early as 1998. The product uses global positioning
system (GPS) for data collection of driving behavior, but the specific pricing mechanism is
not disclosed. Later, Progressive has launched its second-generation UBI product Tripsense.
In 2008, its third-generation UBI product Myrate came out, which technically did not use
GPS to collect data from insured vehicles and pays more attention to the protection of user
privacy. In specific operations, Myrate only collects driving time and mileage information
through an onboard data transceiver module [7]. In addition to Progressive insurance,
General Motors also embedded auto financial services in its product OnStar since the year
2004 and provided PAYD auto insurance services [8]. The vehicle UBI product was launched
by Norwich Union Insurance Company in the UK in 2006. The product adopts a more
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radical strategy in its commercial implementation mode, that is, for those insured vehicles
with low driving risk, it gave an ultra-low rate of 1 penny per mile [6]. However, the
implementation strategy of Norwich Union was not highly recognized, and its vehicle UBI
products were forced to go offline two years later. The mainstream vehicle UBI products in
the UK were later replaced by products launched by another company called Coverbox [9].

Other European countries have also launched some representative vehicle UBI prod-
ucts. Octo Telematics in Italy has established its own ICT system for the vehicle UBI
products, which can dynamically analyze the driving behavior of drivers, and has success-
fully promoted over 800,000 users. Octo Telematics has established an average speed file
with a resolution of 15 min for main roads, which can be effectively utilized for govern-
ment traffic guidance and management [10]. The representative vehicle UBI product in
Belgium and Netherlands is Polis Direct, which has a linear premium policy in driving
kilometers [11]. In addition, Denmark is also one of the countries which have successfully
implemented PAYD and PAYS products. To be specific, PAYD in Denmark can provide a
discount of up to 30% of the premium; in addition, PAYS in Denmark can help effectively
restrain overspeed behavior on various speed-limited roads [2].

2.2. The Advantages of Commercial Vehicle UBI Products

For policyholders, the biggest advantage of promoting vehicle UBI products lies in the
mechanism of calculating differentiated premiums based on the risk type of insured vehicles
and their corresponding drivers. Such a mechanism has taken more comprehensive factors
related to driving risk into consideration, so that low-risk and cautious drivers can obtain
the benefits from a premium policy, and their cross-subsidy to high-risk policyholders can
be effectively avoided. For insurance companies, the advantage of promoting vehicle UBI
products can better help the underwriting process, which means that insurance companies
can not only accurately grasp the first-hand data of policyholders, but also fully grasp their
driving habits.

Vehicle UBI products has been launched around the mid-1990s in developed countries,
and the most common form of UBI products in its early developing stage was PAYD. PAYD
products also developed rapidly in Europe at the beginning of the 21st century [12]. In the
academic field, with the obvious achievements of PAYD products in the vehicle insurance
industry in developed countries, the reports on the advantages of vehicle UBI products are
gradually increasing. Greenberg has discussed the generation motivation, implementation
mechanism, and advantages of PAYD products [13].

In addition to the fairer premium calculation and the regulatory effect on driving,
vehicle UBI products also have some other hidden advantages. As mentioned above, the
PAYD product pays attention to the risk corresponding to driving mileage, so then it can on
some level restrict unnecessary travel to a certain extent, and can thus play a positive role
in reducing accidents. Edlin et al. have analyzed the external impact of traffic accidents
and demonstrated the role of policy means (including policies on vehicle UBI products
implementation) in promoting traffic safety [14]. Parry and Litman have successfully
demonstrated the positive role of PAYD products in reducing urban traffic accidents [4,15].
Bolderdijk et al. have demonstrated that the premium paid for driving significantly reduced
the speed violations of young drivers by setting up a control group [16]. Dijksterhuis et al.
have pointed out that vehicle UBI products can not only enable policyholders to improve
product participation through the instant feedback provided by the interface of the on-
board modules provided by the products, but also enable them to be guided to adopt safer
driving styles [17], as shown in Figure 1.
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prompts; (b) reward prompts; (c) punitive prompts [17].

Apart from traffic accidents, fuel consumption and emissions of vehicles are closely
related to their usage. Tselentis et al. have pointed out that drivers who use PAYD and
PHYD products must pay a premium according to their exposure to public roads, such an
economic mechanism can help to reduce traffic congestion and pollution emissions, and
thus help to promote environmental protection [5].

3. Core Driving Style Analysis Method of Vehicle UBI

Vehicle UBI will of no doubt go through a very complex process of research, pilot,
demonstration, and optimization before it is finally presented to users as a product. Among
them, the driving style evaluation algorithm used to identify driving risks is the core of
vehicle UBI products. The data collected for vehicle UBI products is a direct reflection
of micro-driving behavior, and the analysis of micro-driving behavior can finally form a
macro driving style classification.

3.1. Research on Differentiated Micro Driving Style
3.1.1. Driving Style Influenced by Cultural Environment

As mentioned above, the macro driving style is composed of micro driving behavior,
and driving behavior is affected by many factors, among which the cultural environment
factor is a very important aspect. The cultural environment factor includes driving environ-
ment and driver, and these two aspects will be discussed here in this section in detail.

1. Driving environment

Driving behavior may be affected by the driving environment. Doshi et al. have
pointed out that different geographical conditions and congestion may change the driving
habits of each driver to a great extent [18]. Schorr et al. have demonstrated that road
infrastructure has a certain impact on the safety of driver behavior by collecting necessary
data [19]. Wang et al. have also demonstrated that the change in driver’s behavior depends
largely on road characteristics by quantifying various parameters of driver’s behavior
on different road categories, including relative speed, leading speed, accelerator release,
brake activation parameters, and so on [20]. Li et al. have proposed that the three-axis
angular velocity, acceleration, vehicle speed, and other parameters in the low-cost inertial
measurement unit (IMU) can be used to solve the road slope grade by estimating the
vehicle pitch angle, so as to realize the high-precision identification of the geographical
environment of different driving roads [21]. For road congestion, Nai et al. have established
an optimized road congestion classification method, which is expected to be used as an
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environmental reference in the premium actuarial process of PHYD commercial vehicle
insurance products to correct the real risk level corresponding to the assessed driving
style [22]. In the past year, more scholars have noticed that the road environment may have
a great impact on driving and tried to test driving behavior by simulating different driving
scenarios through the latest virtual reality (VR) technology. Shi et al. pointed out through
the analysis of the driving behavior of the participants in the virtual driving scene that the
geometric characteristics of the road and environmental elements will have varying degrees
of impact on the driver’s emotion and behavior [23]; while Goedicke et al. have tried to
realize the computer-driven vehicle from the interaction between driving environment and
driving behavior [24].

The condition of the road surface is also one of the influencing factors of driving
behavior. Dixit et al. have established a traffic two-fluid model to evaluate the traffic
capacity of cities in different environments of dry and wet roads, at the same time, they
have found that drivers are more conservative when the roads are wet, which can also
be used as an index to evaluate safe driving [25]. By collecting real vehicle driving data,
Weng et al. have studied different driving behavior modes of drivers under different road
environments of asphalt, concrete, grassland, and gravel routes, and tried to accurately
classify the road surface conditions through driving behavior data analysis [26].

The driving behavior of surrounding vehicles on the road will also affect the driving
behavior. Chu et al., Guerrier et al., Okuda et al., and Gao et al. have all discussed the
impact of merging or cut-in behavior from the ramp on the driving behavior of vehicles
on highway or city main roads and have pointed out that there are significant differences
in the behavior of different drivers towards the vehicles merging or cut-in, which may
cause different levels of risk [27–30]. Ma et al. have collected data through video and
questionnaire and have analyzed the impact of surrounding vehicle density on the lane
changing frequency of the target vehicle by using mathematical statistics, their results have
shown that there is a strong correlation between the two [31]. Wang et al. have introduced
the driving mode of surrounding vehicles into the driving risk assessment model of the
target vehicle, and have fully considered the speed, rapid acceleration, and deceleration
of surrounding vehicles, as well as the relative relationship between the driving mode
of surrounding vehicles and the driving mode of the target vehicle, and have employed
convolutional neural network (CNN) combined with long-short term memory (LSTM) to
analyze the characteristics hidden in multi-vehicle data [32].

2. Driver

As mentioned above, the driver may be affected by multiple factors, among which the
influence of cultural factors in the local area cannot be ignored. Parker et al. and Lajunen
et al. have proved that social culture has an impact on the driving behavior of people in
specific areas, and vehicle insurance should be differentiated in terms of premium [33,34];
Xie et al. have also proved that regional differences also have a significant impact on
peoples’ driving styles [35].

The age and gender differences of drivers will also have a significant impact on driving
behavior. Ozkan et al. have reviewed the impact of age and gender on driving behavior [36].
In terms of age-influencing factors, Laapotti et al. have pointed out that young men and
women do have a higher tendency to overspeed [37]. Donmez et al. have conducted
a driving simulator, which has studied 53 young drivers aged from 18 to 21, and have
demonstrated that young drivers have a higher tendency to distract from driving tasks [38].
Freund et al. have pointed out that the elderly have more stable driving behavior [39]. In
terms of gender influencing factors, Lyu et al. have pointed out that compared with female
drivers, male drivers prefer to drive at high speed in the deceleration lane and take more
severe braking measures [40].

The personality of the driver will also significantly affect driving behavior. West et al.
has summarized the personality of seizing time, being competitive and vigilant, and being
ambitious as type-A personality, and have studied the driving behavior habits of people
with such personality, and the dialectical relationship between abnormal conditions such
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as social panic and speeding has been also demonstrated [41]; Garrity et al. have pointed
out that personality and emotion have an impact on driving behavior [42]. Lajunen et al.
have discussed the relationship between radical style and radical driving [43].

Driving behavior, as a reflection of driving habit, is not formed in a short time, and
is closely related to the growth environment of drivers. Hartos et al. and Beck et al. have
pointed out that parents have a certain impact on their children’s driving risk [44,45];
Bianchi et al. have proved that driving is affected by both living environment and par-
ents [46]; McKay et al. have made an empirical analysis on the influence of parents on their
children’s driving habits [47]; while Shope et al. have especially pointed out that in terms
of high-risk driving habits, children have a stronger inheritance from their parents [48].

It must be admitted that the emotional state and psychological pressure of the driver
are also factors that cannot be ignored that affect the driving behavior in a specific driving
process. Westerman et al. have specifically analyzed the potential relationship between
psychological fluctuation and illegal driving in the face of pressure and deviation from the
correct driving path [49]. Lanata et al. have used the changes in the autonomic nervous
system (ANS) to study the effects of heart rate variability, respiratory activity, and skin
electrical response caused by emotion on the time response of the driver’s steering wheel
angle correction [50]. Yang et al. have considered the behavioral differences between
drivers of different genders when driving with a high mental load and have discussed
the impact of mental load on driving behavior through auditory tests [51]. Danaf et al.
have studied some aggressive driving behaviors including repeated lane changes that
may be caused by time pressure, congestion, and accidental delay [52]. Magnana et al.
have analyzed the impact of high-pressure events (such as self-fatigue, traffic congestion,
and poor visibility) on drivers’ driving behavior [53]. Kim et al. have compared the
characteristics of engine speed, vehicle speed, lane change, and turning reflected in the
driving behavior of “normal” and “overload” drivers, and have pointed out that “overload”
drivers are prone to perform danger behavior [54]. Requardt et al. have conducted
experiments on normal drivers, trying to explain the driving state of depression, anxiety,
and positive and neutral emotions in different driving styles [55]. Wang et al. have
established a driver intention recognition model considering the emotional factors of
drivers by collecting real driving and simulation experimental data and have realized the
accurate prediction of emotional drivers’ intention [56].

The decrease in visual visibility caused by climatic conditions will also affect the
drivers’ driving behavior. One of the factors that cannot be ignored that affects the driver’s
visual perception ability is fatigue, Grabarek et al. have pointed out that fatigue will reduce
the driver’s physical and mental efficiency, reduce the visual perception ability, and then
cause accidents. [57]. Wang et al. have pointed out that under the condition of insufficient
visual feedback, the driving performance of drivers will decline to varying degrees [58].
Roche et al. have demonstrated the impact of different visibility on driving operation with
the help of some visual and tactile feedback parameters of drivers in the actual driving
environment [59].

Vehicle performance also has an impact on driving behavior to a certain extent. Hor-
swill et al. have studied the impact of vehicle brands on driving behavior and believed
that expensive vehicles with more luxurious and good safety performance are more likely
to breed relatively dangerous driving operations [60]. Colombaroni et al. have pointed
out that different components of vehicle infrastructure will lead to different behaviors of
drivers on roads with different types of traffic and geometric shapes, which will bring
different potential risks [61].

The influence of cultural environment on driving style discussed in this part can be
summarized in Table 1. It can be seen that the driving environment includes not only the
surrounding geographical environment where the vehicle is located (such as road terrain,
road conditions, road visual effects, etc.), but also the road environment where the vehicle is
driving (such as the degree of congestion and the driving behavior of surrounding vehicles,
etc.); the driver’s influence on driving behavior includes the regional differences of the
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driver, as well as the driver’s age, gender, personality, growth environment, psychological
state during driving, etc.

Table 1. Research on the influence of cultural environment on driving style.

Research Objects Main Influence Factors Detailed Factors Literatures

Driving style influenced by
cultural environment

Driving environment

Geographical conditions [18–21]
Congestion [22]

Road visual effects [23,24]
Road surface conditions [25,26]

Behavior of surrounding vehicles [27–32]

Driver

Cultural Factors [33–35]
Age and gender differences [36–40]

Personality of driver [41–43]
Growth environment of driver [44–48]

Emotional state and psychological pressure of driver [49–56]
Decrease of visual visibility [57–59]

Vehicle performance [60,61]

3.1.2. Driving Style Reflected by Collectable Data

With the continuous progress of information and communication technology, almost
all kinds of sensors configured nowadays in the car have a stronger ability in driving data
acquisition. At the same time, the acquisition of driving data no longer depends only on the
vehicle itself, smartphones, in recent years, have also become an important way to obtain
driving data. In addition, the fineness of the obtained driving data from various sources has
also been greatly improved, which provides a greater possibility for quantitative evaluation
of driving intention and accurate judgment of driving risk by employing big data analysis
and artificial intelligence (AI) algorithms [62]. However, there is not so much research on
data-based differentiated micro driving style analysis, which involves refining driving risks
and developing vehicle UBI products.

As mentioned above, smartphones, as a carrier for driving data collection and driving
behavior analysis, have been discussed by more and more scholars in recent years. Hu et al.
have tried to identify driving risk factors in different environments through smartphones,
by combining with geographic network information and dynamic traffic data [63]; Bejani
et al. have tried to extract the necessary features in the driving process, classify driving
style and apply it to driving risk assessment with the help of multi-sensors in smartphones
and CNN algorithms [64].

At present, the research on driving style based on available data is mostly seen in the
research on realizing low energy consumption or high ride comfort. Martinez et al. have
summarized that driving style has an important impact on vehicle energy management and
driving safety [65]. Barabino et al. have made a horizontal comparison of the subjective test
of driving style and acceleration parameters collected based on Intelligent Transportation
System (ITS) tools, trying to establish a comfort measurement table to provide reference
suggestions for higher ride comfort [66]. Mata-Carballeira et al. have conducted an in-depth
analysis of driving data of 20 drivers of different age groups and driving experience levels,
and have assessed the driving characteristics, so as to give references for the development
of autonomous vehicle driving from the perspective of both ecological driving and ride
comfort [67].

There is a lot of research on driving style based on available data aimed at realizing
safe driving. Wang et al. have effectively analyzed the driving safety of vehicle following
behavior based on natural driving data and considering the heterogeneity, scarcity, and
diversity of traffic accidents [68]. Liu et al. have also studied the safety of car-following
behavior, analyzed the speed and acceleration data sets recorded by the navigation system
using the actual road data sets in China and Switzerland, and have tried to find out
the safety indicators that can reflect driving and car-following behavior [69]. Cheng
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et al. have proposed a vehicle behavior safety assessment method based on the improved
Dempster-Shafer (D-S) evidence theory through the analysis of vehicle collision accident
data, which realizes the perception of driving environment and driving state and provides
a characteristic basis for the safety assessment of driving behavior [70]. Yin et al. have
proposed a new driving risk estimation method for processing multi-source driving data,
by considering the vehicle and road-related information at the same time, the risk level of
behavior at each driving time section can be divided, and their method has been proved
to be superior to many machine learning methods [71]. Liu et al. have found that most
drivers only decelerate significantly before approaching the stop sign, and brake and stop
at a short distance, therefore, they have proposed a set of acceleration/deceleration (A/D)
time ratio and A/D distance ratio indices to describe the risk level caused by different
braking style [72].

Driving style analysis based on collectible data accounts for a large proportion of
the analysis on driving micro intention. Llorca et al. have developed an unsupervised
pattern recognition framework, based on the unlabeled data obtained by smartphone
sensors, the self-organizing mapping, deep self-encoder, and partition clustering algorithm
in the framework are used to identify overtaking behaviors with different intentions [73].
Xu et al. have established a multi-layer perception (MLP) neural network (NN) based
on real vehicle test data to establish a model for four types of mild aggressive driving
behaviors on the highway, so as to provide a driving style closer to manual driving for
unmanned driving [74]. Fugiglando et al. have also used unsupervised learning technology
to learn a bunch of parameters such as brake pedal pressure, steering wheel angle, steering
wheel momentum, engine speed, vehicle speed, and acceleration, to realize the effective
classification of micro driving intention [75]. Christopoulos et al. have proposed an
overspeed intention recognition method based on a deep neural network (DNN) structure,
based on the automatic learning function of different types of road speeds collected by
smartphones [76]. Cheng et al. have established a driving simulator and have conducted
a variety of classification studies on the intention of car-following behavior of drivers in
China and Germany [77]. Chen et al. have designed a robust H∞ output feedback controller
to track and discuss the change of steering style of specific drivers in the left turn lane in
their early and later stages [78].

As mentioned at the beginning of this section, although there are many pieces of
research on quantitative analysis of micro driving behavior based on data, there are few
reports on driving behavior analysis to design vehicle UBI products. To establish the
risk evaluation of different driving operations and apply it to PHYD commercial vehicle
insurance, Zheng et al. have proposed a set of risk evaluation index systems of driving
style in plain cities and have verified the objectivity and effectiveness of the proposed
dynamic driving evaluation index system through the analysis of real vehicle driving
examples [79]. Subsequently, Nai et al. have designed an effective visualization method
for various indicators applied to driving risk assessment established in the previous study
by using a hexagonal eye diagram, to provide timely tips for drivers and standardize the
behavior of policyholders when UBI products are commercially available [80]. Chen et al.
have compared the driving behaviors extracted from the video surveillance system based
on the multi-objective particle swarm optimization (MOPSO) method and gave the driving
risk level classification of specific driving actions from “safe” to “very risky” [81].

Some studies on micro-driving-style analysis may not be applied to vehicle UBI
products, but at least for the purpose of evaluating the corresponding driving behavior risk,
which can provide some references for the design of vehicle UBI products. Yan et al. have
applied a Bayesian network (BN) to extract five main factors forming significant driving
risk from a variety of basic driving parameters: driver status, gender, experience, vehicle
status, and environment [82]. Han et al. have also focused on multiple driving parameters
including vehicle speed, throttle opening, braking force, acceleration, vehicle position,
steering angle, and yaw angle, and have tried to use the method of combining fuzzy logic
and full Bayesian theory to evaluate the probability value of whether there is risk in specific
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driving behavior [83]. He et al. used relative spatial reconstruction (PSR) and CNN to
classify the input driving data, so as to effectively characterize different driving styles of
various risk modes such as normal driving, drunk driving, driving when using mobile
phones, and reckless driving [84]. Liao et al. have constructed an analytic hierarchy process
(AHP) model to rate the severity of multiple abnormal driving behaviors with different
priorities and to effectively classify the risk level of drivers [85].

The relevant research on driving style based on collectible data discussed in this
section can be summarized in Table 2.

Table 2. Studies on driving style based on collectible data.

Literature Research Objects Algorithms or Methodologies

[63]
Use smartphone data to realize driving feature

recognition and risk assessment in
different environments

Collaborative perception of geographic data and
road condition data

[64] CNN

[65]
Use the available data to evaluate the driving style in

terms of energy consumption and comfort

Review

[66] Integration of subjective and objective driving
comfort evaluation

[67] Self-organizing map-based data analysis

[68]

Use available data to identify dangerous driving
behavior of vehicles

Car following behavior modeling

[69] Extract safety indicators from driving speed and
acceleration data

[70] D-S evidence theory
[71] Hazard classification of time-sharing driving action
[72] A/D time ratio and A/D distance ratio analysis

[73]

Micro driving intention recognition using available data

Unsupervised learning
[74] MLP-NN
[75] Unsupervised learning
[76] DNN, wavelet algorithm
[77] Driving simulator design
[78] H∞ output feedback

[79]

Research for the purpose of designing insurance
products or at least evaluating the risk of different

driving styles

Establishment of risk evaluation index system
[80] Visualization of risk assessment indicators
[81] MOPSO
[82] BN
[83] Fuzzy logic and total Bayesian theory
[84] CNN and PSR
[85] AHP

It can be seen that the emergence of smartphones makes it possible for driving data
to be accurately collected. The fusion of multi-source data can bring a more reliable basis
for the description of driving style. Driving data with higher resolution can be applied not
only to the judgment of micro driving intention, but also to the quantitative calibration
of micro driving style including but not limited to vehicle UBI products. However, data-
based driving style analysis has still not been used in vehicle UBI products quite much,
which can also reflect commercial vehicle insurance still take a very cautious attitude in the
methodology of identifying the risk levels of different micro driving styles.

3.2. Research on Differentiated Macro Driving Style

Differentiated macro driving style is a macro manifestation of micro behavior. It is also
an index that actuaries pay the most attention to and requires the most detailed design in
the process of vehicle UBI product design. It directly determines the objectivity of the risk
evaluation of a specific policyholder. Of course, it also directly determines the premium.

In terms of the classification of macro driving style, French et al. have proved that
factors affecting micro driving behavior such as age, gender, and personality will also be
reflected in the macro style; in addition, driving mileage also has a certain impact on the
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formation of style [86]. In the classification of styles, different conclusions may be drawn
due to different research methods. The representative of simple classification can be seen in
the research of Johnson et al., which just divides driving styles into 2 types—“radical” and
“non-radical” [87]; Tricot et al. also believe that driving styles can be simply divided into
3 categories: peaceful type, radical type and ordinary type [88]; Qi et al. believe that driving
status plays a role in the connection between driving behavior and its corresponding style,
and have divided driving status into 3 categories: “aggressive”, “cautious” and “moderate”
from the data collected by onboard detection sensors [89]; likewise, Yang et al. have also
divided driving safety levels into “normal” driving, “low-risk” driving and “high-risk”
driving, and analyzed the effectiveness of several different clustering algorithms in dividing
driving behavior risk levels under different traffic flow and driver distraction scenarios [90].
Based on the analysis of a large number of survey data, Taubman-Ben-Ari et al. have
divided driving style into 8 types: free type, anxiety type, adventure type, anger type, high-
speed type, danger aversion type, caution type, and patience type [91]. Wang et al. have
referred to the complex influence factors during driving as driving primitives and have
designed a probability framework based on driving primitives, which can quantitatively
measure the similarity of human driving behavior and form the clustering of driving
types [92].

Based on the classification of macro driving styles, some scholars have also made
detailed research on identifying specific driving styles or classification methodologies of
driving styles. For identifying specific driving style, Boyce et al. have summarized the
similar characteristics of radical drivers and have pointed out that young drivers often
have a radical style and are prone to speeding violations [93]; Musselwhite have also
made a detailed classification for radical drivers. They have combined driving with the
environment and given four sub-dimensions: unintentional adventure, environmental
feedback adventure, computational adventure, and continuous adventure [94]; Cura et al.
have developed NN models based on LSTM and CNN respectively, focusing on acceleration,
deceleration, and lane change behavior, and have conducted more detailed style analysis
on aggressive bus drivers [95]; Gatteschi et al. have conducted a further subdivision study
on the aggressiveness of driving behavior to non-motor vehicles [96]. For classification
methodologies of driving styles, Abdelrahman et al. have proposed a framework for
calculating driver risk status judgment based on baseline driving events and risk probability
prediction, and have realized effective prediction of driving risk level with the help of
machine learning (ML) model [97]; also based on ML algorithms, Yuksel et al. have
proposed a high-precision and low-cost driver risk assessment black box system based on
the driving data that can be obtained from accelerometers and gyroscope sensors and have
specifically pointed out that the system can be used in vehicle UBI products [98].

At the beginning of this section, it has been mentioned that the different risk coef-
ficients reflected in driving style are the core of the premium determination of vehicle
UBI products, and the driving style evaluation is usually obtained by quantifying and
refining the micro behavior represented by the original driving data using specific cluster-
ing analysis methods. However, just as micro driving behavior analysis, the research on
refining macro driving style is also mostly based on road condition analysis and energy
consumption calculation. Huang et al. have used 11 basic driving parameters to evaluate
driving style and identify road conditions and congestion [99]. In the research on the core
method of driving style evaluation for energy consumption calculation, Ericsson used
62 basic driving parameters to determine the driving style and studied the relationship
between specific driving styles and energy consumption [100]. Langari et al. and Jeon
et al. have reduced the driving style evaluation parameters used for energy consumption
analysis to 31 and 24 respectively [101,102]; Lin et al. have used only 2 driving evaluation
parameters for energy consumption style recognition [103]. As for calculation methods,
Lin et al. and Johannesson et al. have used acceleration and speed parameters to establish
style evaluation state vector and homogeneous Markov model respectively and used these
models in driving energy consumption style judgment and prediction [104,105]. In their
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patent, Tanoue et al. have focused on refining the collected basic driving data such as speed
and mileage and used the concerned energy efficiency to evaluate whether the driving style
is energy-saving [106].

The very research on mapping the macro driving style classification into vehicle UBI
products and thus forming a new dimension to determine the driving risk of policyholders
are still really hard to be found at present because it on some level involves commercial
secrets, but there are also some sporadic research reports. Cripe has provided a driving
style evaluation method of non-real-time collection of driving mileage data based on the
PAYD concept, such a method has tried to find the corresponding relationship between
specific mileage and risk coefficient [107]. Based on driving cases, Walcott Bryant et al.
have studied the driving behavior of policyholders and have created a new risk assessment
method for different driving styles based on the traditional premium determination model
of insurance products [108]. Wang et al. have especially pointed out that it is difficult
to find an effective method to explain the deep correlation between driving style and its
corresponding quantitative risk value and have tried to propose a driving risk assessment
method based on fuzzy multi-criteria decision-making (MCDM) suitable for PHYD vehicle
insurance premium actuary and have verified the effectiveness and reliability of this method
through examples [109]. Only during the past year or two have the scholars tried to employ
specific driving parameters to analyze the risk of different driving styles with the help of
clustering algorithms based on AI algorithms, Zhang et al. and Sun et al. have used 3 key
parameters related to speed and 2 key parameters related to vehicle interval respectively
to effectively realize driving style clustering and to distinguish aggressive drivers and
non-aggressive drivers [110,111].

The relevant research on differentiated macro driving styles discussed in this part can
be summarized in Table 3. It can be seen that although more and more emerging algorithms
have been applied to the analysis of macro driving style in recent years, only a few of these
have been applied to the research of vehicle UBI products, which means that there is still a
long way to go to regard the risk level of macro driving style as a dimension of premium
determination in-vehicle UBI products.

Table 3. Research on differentiated macro driving style.

Research Objects Detailed Research Objects Research Focus/Methodologies Literatures

Differentiated macro
driving style

Types of Macro driving style

Style formation factors [86]

Style type division
2 style types [87]
3 style types [88–90]
8 style types [91]

Similarity driving behavior clustering [92]

Specific driving style identification
and classification methodologies

Radical or aggressive drivers identification [93–96]
Style classification based on ML algorithms [97,98]

Driving style classification based on
different purpose

Road condition identification [99]

Energy consumption
(parameters considered)

64 utilized [100]
31 utilized [101]
24 utilized [102]
2 utilized [103]

Energy consumption
Style evaluation state vector [104]

Homogeneous Markov model [105]
Setting a set of evaluation indices [106]

Macro driving style classification
specific for UBI products

Relationship between driving mileage and risk [107]
Premium determination based on modification of model in

traditional commercial vehicle insurance product [108]

Fuzzy MCDM evaluation model for PHYD [109]
Driving style clustering [110,111]
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4. Design of Vehicle UBI Products
4.1. Research on Types of Policyholder and Implementation Methods of Vehicle UBI Products

Vehicle UBI will no longer treat all premiums of similar vehicle models equally as
traditional commercial vehicle insurance products but will fluctuate on the basis of the
original premium according to the driving behavior of policyholders. Finkelstein et al.
have clearly pointed out in their research that the policyholders are different from each
other and have different attitudes towards risk [112]. It is easy to see that the differentiated
premium will inevitably lead to the speculative behavior of policyholders with different
purchase psychology in the implementation process of vehicle UBI products. Therefore,
dividing different types of insurance users and discussing the implementation methods of
vehicle UBI products are of great significance for insurance companies to control risks, and
maximize product benefits.

Generally, policyholders can be roughly divided into two categories. One is “risk
positive” users, who are risk-averse and often actively buy all kinds of insurance products;
the other is “risk negative” users, who are not sensitive to the existence of risk unless the risk
is large enough to a specific extent. For the research on “risk positive” users, Hemenway
described their common characteristics and believed that they belong to high-quality users
for insurance companies, their behavior habit is to avoid risks, so they will not bring too
many risks to insurance companies [113]; and Dedonder et al. have also pointed out that
risk positive users are willing to insure, whether they are at risk or not [114].

As mentioned above, policyholders of different risk types will show different attitudes
and even speculation in the process of choosing vehicle insurance products, and speculation
is the risk cost that insurance companies need to control. Especially when information and
communication technology is not introduced, or when the risk of insured vehicles is evalu-
ated at the beginning of the implementation of vehicle UBI products, insurance companies
can only master the limited basic driving data, or just the driving skill statement of poli-
cyholders. In these cases, the control of speculative risk is particularly important. Cohen
emphasized in his research that the biggest problem in the implementation of differentiated
policies based on vehicle UBI is the information asymmetry between policyholders and
insurance companies [115]. Of course, studies by Corbett, Lajunen et al., Dunning et al., and
Horswill et al. have also shown that information asymmetry sometimes does not necessar-
ily come from the difference in the risk types of policyholders, but from the overestimation
of policyholders’ driving skills, and they have also pointed out that drivers generally
believe that their driving skills are higher than the general level [116–119]. To eliminate the
impact of speculation on the risk expenditure of insurance companies, Sundstrom tried
to establish a mapping relationship between drivers’ description of each micro-operation
skill in driving and its driving risk assessment and have found the actual hidden risks of
policyholders in the form of a questionnaire survey on driving operation [120].

In addition to the research on the implementation strategy of vehicle UBI products to
eliminate speculative risks as much as possible, there are many studies on the implemen-
tation scheme of vehicle UBI products themselves. Zantema et al. have pointed out that
the joint assessment of driving risk by PAYD and PHYD has strong objectivity, at the same
time, they have especially studied the discount mechanism of vehicle UBI products and
have given a reasonable discount range for low-risk customers [121]. Handel et al. have
proposed an implementation scheme of vehicle UBI products based on smartphones, to
encourage users to use vehicle UBI products based on behavior data collected by the mobile
client, their scheme considers both driving behavior and smartphone client usage in the
underwriting cycle when calculating the premium [122]. Nai et al. proposed an “either-or”
initial implementation strategy for PHYD products for both cautious and reckless drivers
and have divided the policyholders into 4 quadrants into two dimensions of user division
and contract implementation, as shown in Figure 2. Through theoretical analysis, they
have demonstrated their ability to provide the maximum utility for the insured vehicles
and ensure the reliable profit of the insurance company [123]. It can be seen that in the
environment of information asymmetry between policyholders and insurance companies,
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more research is required on the implementation of vehicle UBI products, so that the
evaluation results of differentiated driving styles can be fully supported in the product
implementation stage.
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In terms of the implementation of vehicle UBI products, it should also be pointed
out that with the gradual popularization of semi-autonomous and autonomous vehicles,
they are gradually bringing changes to the commercial vehicle insurance industry. On
the positive side, vehicle accidents will be significantly reduced, but on the negative side,
the identification of accident responsibility will become more complex, and the subject
of responsibility for accidents will no longer be just the driver, but the original equip-
ment manufacturers (OEMs) and their developers as well. In recent years, some scholars
have discussed the identification methods of accident liability for semi-autonomous and
autonomous vehicles [124], and some scholars have also studied the driving risk quantifica-
tion methods for them [125,126]. However, only literature [126] mentioned the UBI product
form of an autonomous vehicle. It can be seen that in the era of autonomous vehicles,
there are still many thorny issues required to be further studied, including the definition of
responsibility subject, product form design, and the coexistence mode of manual driving
and autonomous vehicle UBI products, etc.

4.2. Research on the Architecture of Data Processing System for Vehicle UBI

The implementation of vehicle UBI products depends on mastering the information
of insured vehicles, especially when implementing vehicle UBI insurance products based
on the PHYD concept. Real-time collection of vehicle driving data is a necessary means
to fully grasp the information of policyholders and then analyze their risk types [127].
Therefore, UBI data processing architecture is essential in the implementation of vehicle
UBI products. Basically, the architecture should include an on-board data transceiver
module for user-driving data acquisition, a data transmission channel, and a remote data
center for data analysis and application, during recent years, in combination with the
latest edge computing technology, some scholars have also transformed this architecture as
“end-edge-cloud” based on the concept of IoV [128], its system structure for vehicle UBI
products can be shown in Figure 3.
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The development of smartphones also has an impact on the data processing system
architecture of vehicle UBI products and forms a new deformation form based on the system
architecture shown in Figure 3. Handel has pointed out that smartphones can replace the
onboard data transceiver module as the driving behavior data acquisition terminal [129].
Sathyanarayana et al. have mentioned that the smartphone can not only collect basic driving
data such as speed and mileage through the cellular mobile network but also obtain other
information such as vehicle altitude. It can make the evaluation more accurate, and the use
of a smartphone is easier to be accepted by people than the installation of an on-board data
transceiver module [130]. Azzopardi et al. have pointed out that remote communication
can bring new vitality to the traditional premium actuary system and establish a new
product form of insurance even for vehicle fleets of companies [131]. Handel et al. have
pointed out that smartphones can provide an extensible solution for vehicle insurance,
drivers can check the dynamic description of the risk level, and the dynamic calculation of
the premium is determined by the dynamic sensing based on the time, place and mode of
travel realized by UBI applications on smartphones [132]. Li et al. have made full use of
smartphone-embedded accelerometers and gyroscope sensors to provide a more rational
method for premium calculation of vehicle UBI products [133].

It can be seen that with the development of wireless communication technology,
emerging edge computing, and other technologies, the data processing architecture of
vehicle UBI products can be carried out through the cooperation of the vehicle end layer,
edge layer, and cloud layer. Just as described in Section 3.1.2, while becoming an important
driving data collection tool, smartphones can also implement the relevant calculation rules
in the vehicle UBI products, which can be linked with the local policies of the edge layer
and the global policies of the cloud layer according to the needs of the insurance company.
A sound data processing architecture can provide a more accurate and fair hardware
foundation for the development of vehicle UBI products.

5. Conclusions and Comments

Due to the fact that the risk evaluation method of vehicle UBI products based on
different driving styles reflected by dynamic driving parameters, is not yet fully mature
or involves trade secrets, there is no unified standard so far. Therefore, for the vehicle
UBI industry, the relevant risk assessment technology can be described as “a hundred
schools of thought”, and there is still no absolute authority. In addition, due to the different
geographical conditions and cultures of various countries, the driving style influencing
factors to be considered in the corresponding vehicle UBI products are also different. To
implement vehicle UBI products in any country, it is also important to find a set of targeted
evaluation methods that can objectively and rationally evaluate regional cultural differences
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as well as driving behavior. Moreover, to make the core driving risk evaluation method
properly play its role, it also needs to cooperate with a reasonable implementation scheme
and a sound system architecture design.

Based on the comprehensive discussion of the driving style evaluation method consid-
ering various factors and the design of commercial vehicle UBI products in this paper, it can
be found that from the research on the characteristics of policyholders and the implementa-
tion scheme, to the research on system architecture design of vehicle UBI products related
data transmission, processing, and analysis, from the research on the micro behavior and
macro driving style of vehicle drivers, to the research on the core method of driving risk
evaluation for different driving styles, a complete theoretical framework has not yet been
formed. For the research on just one aspect of driving behavior, although there are some
mature research methods and research results reported, their directionality for the applica-
tion in differentiated commercial vehicle insurance is not very clear, and the corresponding
research methods cannot be copied or mapped to the research on vehicle UBI products.
Therefore, the current situation, challenge, and future research directions of vehicle UBI
products can be summarized as follows:

(1) As the driving risk assessment based on driving style will eventually be applied
to vehicle UBI products, which will involve the vital economic interests of policyholders,
insurance companies have been very cautious about the application of corresponding
driving risk assessment algorithms in the past decades, but it is certain that scholars’
research on a more objective evaluation of driving risks reflected by different driving
styles has never stopped. Although some studies on driving style recognition have not
been directly applied to automobile insurance products, the evaluation of driving risk is
also involved.

(2) The rapid development of information and communication technology, the pop-
ularity of smartphones and smart terminals, and the application of artificial intelligence
algorithms aimed at classification are the main characteristics of the times with the develop-
ment of the Internet of vehicles in recent years. In this context, the driving risk evaluation
methods, especially the dynamic risk evaluation methods based on driving style suitable
for vehicle UBI products based on new forms of driving data collection, namely the deep
correlation between driving data, driving style and even driving risk, is worth to be further
explored and developed.

(3) To some extent, differentiated commercial vehicle insurance involves ethical issues
and discrimination against some types of people, therefore, its implementation in different
countries and regions will undoubtedly be subject to some policy constraints. In addition,
as the core methodology of driving risk assessment, in-vehicle UBI products often involve
the business secrets of an actuary, even if some scholars are engaged in this research
area, the related methodologies have been rarely disclosed. Moreover, the penetration of
autonomous vehicles brings more unknown factors and greater uncertainties to the design
and implementation of vehicle UBI products, therefore, there is still a long way to go for
vehicle UBI products to form a widely accepted product form.
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