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Abstract With the intensifying energy crisis and envi-

ronmental pollution, the Energy Internet and corresponding

patterns of energy use have been attracting more and more

attention. In this paper, the basic concept and characteris-

tics of the Energy Internet are summarized, and its basic

structural framework is analyzed in detail. On this basis,

couplings between the electric power system and other

systems such as the cooling and heating system, the natural

gas system, and the traffic system are analyzed, and the

operation and planning of integrated energy systems in

both deterministic and uncertain environments are com-

prehensively reviewed. Finally, the research prospects and

main technical challenges of the Energy Internet are

discussed.

Keywords Energy Internet, Combined cooling heating

and power (CCHP), Integrated natural gas and electric
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1 Introduction

In the 21th Century, traditional patterns of energy use

based on centralized conversion of fossil energy have been

facing many challenges such as the energy crisis and

environmental pollution [1]. It has been recognized that

solutions mainly include two aspects, i.e., developing

renewable energy sources (e.g., solar, wind and biological

energy) and improving the efficiency of energy use. As

shown in the ‘‘EU Energy Road Map 2050’’ [2], it was

forecast that more than 55% of global energy demand is

expected to be satisfied by renewable energy sources by

2050. In such an era, a sustainable energy supply system

with high energy efficiency is required. Therefore, it is

urgent to create an integrated energy system to optimally

coordinate various renewable energy sources and different

energy systems [3]. Combining this context with Internet

technology, Jeremy Rifkin proposed the vision of the

Energy Internet (EI) in 2011, which can make full use of

distributed renewable energy, and improve energy effi-

ciency and electric power system reliability [4]. The ulti-

mate goal of the Energy Internet is to realize distributed

and renewable energy systems [5]. The concept, framework

and composition of the Energy Internet have been contin-

uously developed since then.

Compared with the existing energy system, the Energy

Internet can be regarded as a peer-interconnected sharing
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network with advanced power electronic technology, new-

energy technology and information technology. With those

technologies, the coordination and two-way energy and

information flow can be realized [6]. Also, the Energy

Internet can be interpreted as an integrated energy supply

system, i.e., the electric power system tightly coupled with

other energy networks such as the natural gas network, the

traffic network and the information network [7, 8], as

shown in Fig. 1. In this figure, the electric power system is

the conversion hub between various forms of energy and is

the core of the EI, since it owns significant advantages in

energy transmission efficiency and it carries the most

convenient form of energy for end-users. In the Energy

Internet, different energy systems are coupled through

energy transformation devices (e.g., micro-turbine, electric

vehicle (EV), power to gas (P2G), or vehicle to grid

(V2G)). For instance, using P2G technology, surplus

renewable energy can be transformed into methane, and

then used to supply natural gas load [9].

In contrast with traditional energy supply systems, the

EI generally has such characteristics as utilizing renewable

energy [10], plug and play (PnP) of distributed devices and

EVs [11], and balancing energy supply and demand via

wide-area energy sharing, energy router and efficient

information management [12, 13]. Therefore, many

developed countries have carried out related research on

the EI. In the US, the Future Renewable Electric Energy

Delivery and Management research center was built to

develop a high-efficiency distribution system with high

penetration with PnP of distributed generators (DGs)

[14, 15]. In Germany, the ‘‘E-Energy’’ project was pro-

posed, which aimed at establishing an intelligent energy

system based on information and communication technol-

ogy [16, 17]. In Switzerland, the Vision of Future Energy

Networks project proposed two key elements of the EI: a

hybrid energy hub and an energy interconnector [18, 19].

However, research about EI exploration and practice is still

in the preliminary stage, and a deep and comprehensive

survey on the EI is needed.

In this paper, we will first give a comprehensive review

of the concept, characteristics, framework and develop-

ment of the Energy Internet. Then, Sects. 2, 3 and 4 ana-

lyze different EI systems, i.e., a combined cooling heating

and power system, an integrated natural gas and electric

power system, and an integrated electric and traffic system

respectively. In those sections, state-of-the-art research on

operation and planning methods for such integrated energy

systems are reviewed from the perspectives of determin-

istic environment and uncertain environment. Finally, the

research prospects and main technical challenges of the

Energy Internet are discussed in Sect. 5.

2 Operation and planning optimization of CCHP

system

2.1 Combined cooling heating and power system

As an important type of distributed generation, com-

bined heat and power (CHP) plants can supply heat energy

and electric energy at the same time. Compared with sep-

arate generation of heat and electric power, the fuel

economy and overall efficiency of CHP are higher [20]. As

refrigeration technology has advanced in recent years,

Fig. 1 Basic structural framework of Energy Internet
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combined cooling heating and power (CCHP) plants have

become one of the most promising, practical and flexible

resources in electric power systems [21]. A CCHP system

includes electric power generation, heating and cooling

[22], and the production of heating, cooling and electric

energy can be balanced with load requirements to improve

the overall energy efficiency from 40% to 70%–90% [23].

In addition, a CCHP system has the advantages of emission

reduction and cascaded energy use.

As shown in Fig. 2, a CCHP system generates electricity

by means of a micro-turbine (MT) or a reciprocating

engine. It recycles waste heat through the heat recovery

unit and bromide absorption refrigerator; then the waste

heat is used to satisfy thermal demands.

Mathematically, the MT-based CCHP model can be

formulated as follows [24]:

QMT ¼ Pe 1� ge � g1ð Þ=ge
Qhe ¼ QMTKhe

Qco ¼ QMTKco

8

<

:

ð1Þ

where QMT, Pe, ge and g1 represent heat discharge allow-

ance, output power, generating efficiency and heat loss

coefficient of the MT, respectively; Qhe, Qco are the total

heating and cooling generation; and Khe, Kco are equivalent

thermal coefficient and refrigeration coefficient consider-

ing losses and the typical average daily temperature.

2.2 Objectives and constraints

The integration of CCHP into electric power systems

has significant effects on branch power flow and nodal

voltages. The conversion of heat energy is tightly coupled

with electric power generation in a CCHP system, thus

affecting the electric power balance. Therefore, much

research has addressed electric power system optimization

with CCHP.

2.2.1 Objective function

As shown in Table 1, considering different factors, the

objective function of CCHP optimization problems gener-

ally includes the following aspects:

1) Maximizing the economic benefits. This requires

minimizing the power generation costs and satisfying

the energy demands in the most economical way

[24–29]. In general, the significant costs are the power

generation costs of DGs and conventional energy

sources, the operational cost of the MT, and the costs

of power exchange between the CCHP system and the

electric power system.

2) Maximizing the overall benefits including the eco-

nomic benefits, the environmental benefits, and the

heating and refrigeration benefits [24]. The use of

fossil fuels can produce greenhouse gases and harmful

gases (e.g. nitrogen oxides, sulfur dioxide), thus it is

necessary to calculate pollution costs when consider-

ing environmental factors. Moreover, since heating

and refrigeration can make profits, the overall benefits

should consider the heating and refrigeration profits.

The objective function can be formulated as:

C ¼ C0 þ Cpo � Che � Cco ð2Þ

where C0 is the total cost including power generation

costs, operational costs and power exchange costs; Cpo

is the total pollution cost of different energy sources

according to the formulae that can be found in

[28–30]; and Che, Cco are the heating and refrigeration

profits, calculated based on the heating/cooling power

and unit price.

2.2.2 Constraints

Since CCHP system is a power plant combining cooling,

heating and electric generation, the constraints applying to

electric power system optimization with CCHP generally

includes the following aspects:

1) Electric power system constraints. They can be

derived from the constraints in typical electric power

system optimization models, including voltage con-

straints, current constraints, electric power balance

constraints, maximum installed capacity constraints

and active power constraints of DGs [31, 32].

2) Cooling and heating system constraints. They mainly

refer to the heating/cooling load balance constraints

and the operational constraints of heating/cooling units

[32, 33]. The latter generally comprises the generation,

transmission and storage constraints of the cooling and

heating system, e.g., the heat constraints of the gas

Electric

refrigerator

Bromide

refrigerator

Heat recover

unit

Gas

system

Boiler

Grid
Power flow
Heating flow
Cooling flow

Space heating/

hot water

Cooling demand

Electrical demand

Micro

turbine

Fig. 2 Configuration of CCHP system with indicated electrical and

thermal power flow

A comprehensive review of Energy Internet: basic concept, operation and planning methods… 401

123



boiler, the output constraints of the bromide refriger-

ator, heating/cooling storage constraints, and the

capacity constraints of heating/cooling transmission

lines.

2.3 Planning and scheduling methods

Since uncertainties exist in operation, e.g. the uncer-

tainties of load and renewable power output, the operation

and planning of electric power systems with CCHP can be

divided into two parts.

2.3.1 Deterministic methods

In deterministic approaches, uncertainties are neglected,

and planning and scheduling algorithms are relatively sim-

ple. Linear programming (LP) [34, 35], nonlinear program-

ming (NLP) and mixed integer linear programming (MILP)

[36, 37] have been widely applied to the CCHP optimization

problem. Rong et al. modeled the hourly trigeneration

problem as a LPmodel considering the joint characteristic of

three energy components and proposed the Tri-Commodity

Simplex (TCS) algorithm to minimize the total production

and purchasing costs, as well as CO2 emissions costs [34].

Although LP offers significant advantages, it requires lin-

earization of non-linear constraints in systems with CCHP,

which introduces calculation errors. Thus, mathematically,

NLP seems to be a more rigorous and accurate method,

especially when considering the logistical constraints for the

equipment [38, 39]. A notable example is [38], which pro-

posed a non-linear cost-minimization model to obtain the

optimal operational strategy for a CCHP system. These

deterministic approaches provide important insight into the

operation optimization of electric power systems with

CCHP, however, they cannot deal with uncertainties such as

load uncertainties.

2.3.2 Methods for handling uncertainties

The uncertain parameters can be generally classified into

two categories including technical parameters and

Table 1 Summary of objective functions and constraints for integrated energy systems

System Major objective functions Major constraints

Other system constraints Electric power

system constraints

CCHP-related system Economic benefits

Overall benefits including economic benefits,

environmental benefits, and heating and refrigeration

benefits

Heating/cooling load balance

constraints

Heat constraints of the gas

boiler

Output constraints of bromide

refrigerator

Heating/cooling storage

constraints

Capacity constraints of

heating/cooling transmission

lines

Integrated natural gas and

electric power system

Capital benefits

Energy benefits

Gas flow balance constraint

Gas transmission constraints

Natural gas capacity constraints

P2G constraints

Electric power

balance

constraints

Voltage constraint

Current constraint

Electric generator

constraints

Integrated electric and

traffic system

Stabilize the fluctuations of electric power system

Optimal planning of charging stations

Capacity constraint of charging

lines and substations

Constraints of charging devices

EVs batteries capacity

constraints

Charging power constraints of

EVs

V2G power constraints

Traffic network constraints
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economical parameters [40]. Specifically, in the operation

and planning of a CCHP system, the former includes

outages of lines and generators and uncertain demand and

generation, and the latter includes the uncertainties of fuel

prices and environmental policies. Due to the complexity

of optimization under uncertainties, it is necessary to adopt

more effective methods to analyze the operation and

planning of a CCHP system [41]. Up until now, state-of-

the-art methods can be generally categorized into three

main classes as follows.

a) Probabilistic methods

In probabilistic methods, the random variables are

modeled by probability density functions, and appli-

cable methods include the chance-constrained pro-

gramming method and the two-stage stochastic

programming method [42]. For chance-constrained

optimization, the constraints are formulated in proba-

bilistic terms and thus decision-makers can know the

likelihood of meeting the constraints [43]. In [44],

Niknam et al. proposed chance constrained program-

ming to handle multi-objective economic load dispatch

using a jointly distributed random variables method.

For the two-stage stochastic programming method, the

effects of decisions after uncertain variables are real-

ized can be well represented. A specific case in [45]

shows that this method could handle uncertainties in

the optimal sizing of cogeneration systems, where it

firstly calculates the optimal capacities of CHP and

boiler before uncertainties such as errors of the elec-

trical and thermal loads are realized, and secondly

determines the operational strategy by using realized

scenarios.

b) Fuzzy methods

In fuzzy analysis methods, the uncertain parameters are

described by using the membership function, and fuzzy

membership can be obtained by subjective investigation

[46, 47]. These methods are commonly used to quantify

uncertain factors such as social and other qualitative

indices, for which probability distributions are not

available. For instance, Jing et al. [48] proposed Fuzzy

Multi-Criteria Decision Making and evaluated the

complex relationship between CCHP systems and

society, economy, and the environment. Fuzzy set the-

ory has also beenwidely applied to deal with insufficient

data and uncertain load demand [49]. In [50], a multi-

objective model based on fuzzy programming was

proposed to minimize cost and maximize demand sat-

isfaction. Combined uncertainties of price and load have

been dealt with using fuzzy programming [51, 52]. In

[47], uncertainties associated with electrical demand,

thermal demand, and the prices of electricity and natural

gas were modeled by using fuzzy sets as a percentage

change from their nominal values. Then a hybrid opti-

mization method was used to determine the desired

optimal CCHP configuration.

c) Robust optimization

Robust optimization uses intervals to model uncertain

variables and thus does not need accurate probability

distribution functions and fuzzy membership functions.

In [53], a model based on robust optimization was pre-

sented to consider uncertain load and price in the context

of Energy Analysis-Based Optimization of Trigenera-

tion (EABOT). The goal of [53] was to achieve optimal

operation with high probability. However, up until now,

research in this field is still limited.

In summary, useful research ideas have been presented

for CCHP-related optimization. With the increasing

numbers of highly-coupled distributed devices, more

focus should be given on different random and fuzzy

factors in electric power systems. Although a hybrid

‘‘possibilistic’’ andprobabilisticmodel has beenproposed

[54], most of the current research adopts a probabilistic

model or fuzzy model to deal with all uncertainties,

calling for deep and comprehensive research.

3 Coupling of electric power system and natural

gas system

3.1 Integrated natural gas and electric power

system

An integrated gas and electricity network is one of the

most important energy systems in economic and environ-

mental terms. The coordinated operation and planning of the

gas network, electricity generators, and transmission and

distribution networks can reduce energy consumption and

lead to an optimal structure for the combined systems. Up

until now, a large number of studies have been done to ana-

lyze the interaction of the gas and electric networks in joint

planning. For example, the study towards coordinated plan-

ning has been undertaken in the United States [55, 56], and

some common problems related to the development of nat-

ural gas and electricity networks (operation costs, network

expansion costs, optimal placement of gas-fired generation

plants) have been analyzed in Europe [57]. Although the

research in this area starts late in China, related concepts and

models have been already proposed, such as a smart energy

network based on multiple energy sources [58].

With the development of shale gas reserves and P2G

technologies [59, 60], and the potential roles of gas in clean

energy systems, the proportion of gas energy and gas-fired

power generation in energy systems has seen significant

growth, and the power network and gas network become
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more tightly coupled. Referring to [9], the surplus output of

renewable energy sources can be transformed into methane

using P2G technology, and then used to supply natural gas

load, as shown in Fig. 3. This achieves bidirectional energy

flow between the electric power system and the natural gas

system. Since natural gas is easy to store, the large-scale

storage of renewable energy can be realized.

3.2 Objectives and constraints

3.2.1 Objective function

Generally, the objective function includes the following

aspects.

1) Maximizing the capital benefits. This is the main

research direction for the coordinated planning of

natural gas and electric power systems. It can mini-

mize the total cost of two energy systems, which

include investment costs and operational costs of all

generator units and natural gas production, storage,

and transportation [61, 62].

2) Maximizing the energy benefits. As the energy supply

network of the EI, minimizing losses in the natural gas

system and the electricity system is also an important

optimization objective in their coordinated planning

[63].

3.2.2 Constraints

In the integrated natural gas and electric power system,

besides the electric power system constraints described in

Sect. 2.2.2, the following constraints related to natural gas

systems are considered.

1) Gas flow balance constraint [66, 67]. This constraint

requires that the sum of gas production is equal to the

total consumption including any losses.

2) Gas transmission constraints, mainly referring to the

strength and stability constraints for pipelines and their

gas flow constraints [64].

3) Natural gas capacity constraints, i.e., the capacity

constraints of gas production units and gas storage [62].

4) P2G constraints, mainly including the cost and tech-

nical constraints of P2G facilities. The former com-

prises investment costs, operational costs and

maintenance costs of P2G. The latter mainly includes

the constraints related to carbon dioxide and hydrogen,

such as hydrogen storage constraints and carbon

dioxide capture constraints. Although P2G technology

is costly at present, it may become one of the cheapest

ways to produce energy in the future [65].

3.3 Planning and scheduling methods

3.3.1 Deterministic methods

In the field of deterministic optimization, state-of-the-art

models are mainly aimed at minimizing the investment and

operational costs and optimizing the capacity and location

of new facilities. Different methods and models have been

presented based on MILP [66–69]. For instance, a long-

term and multistage model for supply and interconnection

expansion planning of integrated electricity and natural gas

networks was proposed in [67] to determine the optimal

location of new facilities; Unsihuay et al. presented another

integrated planning approach for hybrid power and natural

gas systems [69]; and an energy hub and coupling matrix

were proposed in [70–72] to achieve the optimal energy

conversion between gas and electricity. The goal was to

minimize the operational costs of the two networks. Par-

ticularly, this method can be used for more than two energy

systems and a notable example is shown in [72], in which

optimal operation of multi-energy systems was investi-

gated through the coupling matrix method.

3.3.2 Methods for handling uncertainties

Besides the uncertain factors of the electric power system,

the uncertainties of the integrated natural gas and electric

power system also include the failure of pipelines, gas pro-

duction and gas demand, and the gas price. As shown in

Table 2, the operation and planning of this integrated system

is approached mainly by two methods. The first one is the

probabilistic method. For instance, a two-stage stochastic

programming method was proposed in [73] for optimal

security-constrained unit commitment in hybrid hydro and

natural gas systems. Also, this method was used in [74] to

evaluate the effect of emergencies in integrated power and

natural gas system. Sun et al. adopted a three-point estimate

P2G

Power grid

Energy

transformation

devices

Natural gas system

Gas load

EV

CCHP

Nuclear

energy

Gas storage

Natural gas

sources

Micro

turbine

Gas
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Thermal power

& Hydropower

Biomass

energy
Fuel cell
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turbine

Power

load

Fig. 3 Configuration of an integrated natural gas and electric power

system indicating electrical and gas power flow
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method based on the Nataf transformation to tackle the

uncertainty of and the correlation between different energy

loads tominimize total cost [75]. The other one is the interval

optimization based method. In this context, Bai et al. [76]

proposed an operating strategy based on interval optimiza-

tion for integrated natural gas and electric power systems to

improve the overall system operation and optimize the

energy flow. In the proposed model, wind uncertainty and

demand response were also considered and wind power

uncertainty was represented using intervals.

Since most optimization models just take the sum of

investment costs and operation costs of the two systems as

the objective function, and rarely consider the stability of

the integrated system, their optimization results are not

comprehensive enough to assure secure as well as eco-

nomic operation.

4 Operation and planning of integrated electric

and traffic system

4.1 Integrated electric and traffic system

EVs and charging facilities are becoming an important

part of city planning and infrastructure in many countries,

and the plug-and-play of EVs has a significant impact on

the Energy Internet. Taking EVs and charging facilities

(e.g., charging piles and charging stations) as the bridge,

the interaction between the electric distribution system and

the traffic system is deepening constantly. On the one hand,

EVs in aggregation can act as large-scale distributed

energy storage devices to contribute to system regulation

such as stabilizing the fluctuations of DGs [77] and shifting

peak load [78], and on the other hand, the randomness of

EV charging can compromise the stability of the electric

power system [79, 80].

Up to now, many studies have been carried out and dif-

ferent mathematical models have been developed for the

operation and planning of integrated electric and traffic

systems. This research mainly focus on two major aspects.

One is the coordinated operation of EVs and the power grid.

It generally includes investigating the impact of EVs on the

electric power system, the optimal scheduling of EV

charging, stabilizing the fluctuations of DGs, peak demand

and frequency control through EVs, and so on [78–80]. The

other aspect is the coordinated planning of integrated electric

and traffic systems, which mainly refers to planning of

charging stations [81–84] and power system planning with

EVs and charging stations [85–88]. Since the optimal loca-

tion and sizing of charging stations could minimize the total

costs of charging stations while satisfying the charging

demands of EVs and supporting the optimal distribution

network expansion planning, it could be one of the most

important research topics to be studied in depth for the EI.

4.2 Objectives and constraints

4.2.1 Objective function

As discussed above, different models have been estab-

lished for the operation and planning of integrated electric

and traffic systems, and the objective functions generally

aim to achieve:

1) Stabilizing the fluctuations of the electric power

system [80]. This mainly refers to stabilizing the

renewable power generation fluctuations and load

fluctuation. Although the randomness of EV charging

can compromise the stability of electric power system,

the aggregated impact of EVs can contribute to system

regulation as large-scale distributed energy storage to

stabilize the fluctuations of DGs and shift peak load,

using V2G technology.

2) Optimal planning of charging stations [83, 84]. This

refers to the optimal locating and sizing of charging

stations and includes both the total costs and the social

benefits. Therefore, the objective function includes the

investment costs, operational costs and maintenance

costs of charging stations, the cost of network losses,

and charging costs to users. In general, it can be

formulated as:

CA ¼ C1 þ C2 þ C3 þ C4 ð3Þ

where C1 is the investment cost of charging stations;

C2 is the operational costs and maintenance costs of

Table 2 Summaries of the methods in the integrated energy systems

System Deterministic method Major methods for handling uncertainties

Probabilistic methods Non-probabilistic methods

Fuzzy method Interval based method

CCHP-related system [34–39] [42–45] [46–52] [53]

Integrated natural gas and electric power system [66–72] [73–75] \ [76]

Integrated electric and traffic system – [91–95] [96, 97] [98, 99]
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charging stations, including the staff salaries, equip-

ment depreciation costs, and equipment maintenance

costs; C3 is the network loss costs; and C4 is the

charging costs to users, which can be measured by the

journey to charging stations and the waiting time at

them. It measures the service capacity of charging

stations, and is influenced by the traffic network and

traffic flows.

4.2.2 Constraints

Corresponding to the objective functions mentioned

above, the integrated electric and traffic system constraints

include electric power system constraints (similarly to

Sect. 2.2.2) and traffic-related system constraints, with the

latter including:

1) Charging station constraints. These include the capacity

constraint of charging lines, the capacity constraint of

substations, and the constraints of charging devices [84].

2) Electric vehicle constraints. These include the capacity

constraint of EV batteries, the charging power con-

straints of EVs, and the V2G power constraints

[89, 90].

3) Traffic network constraints. The traffic system and the

electric power system have complex mutual influence.

Traffic flows can affect the planning of charging stations

and the construction of the power system. In turn, the

distribution of charging stations also influences traffic

flows. Traffic flows are also greatly affected by user

behavior and charging strategies. Therefore, the oper-

ation and planning of integrated electric and traffic

systems is mainly constrained by traffic flows, traffic

congestion levels, the road conditions and the potential

to extend the road network, user behavior, weather

conditions, and other factors [84, 85].

4.3 Mathematical methods

The randomness of EV charging behavior introduces

inherent uncertainty to an integrated electric and traffic

system, and deterministic planning methods cannot be

used. Methods for handling uncertainties in an integrated

electric and traffic system can be classified into two major

categories as follows.

4.3.1 Probabilistic methods

Probabilistic methods have been widely used in opti-

mizing integrated electric and traffic systems, such as the

two-stage optimization method [91, 92], the chance con-

strained optimization method [93, 94], and the point

estimate method [95]. For instance, a two-stage optimiza-

tion method was proposed in [91] to minimize the energy

losses in a microgrid with different penetrations of hybrid

EVs (HEVs). In the first stage, a convex quadratic objec-

tive function was established for active power management

of HEVs, and the daily energy requirement of HEVs was

calculated from a stochastic model of their owners’

behavior. Then, the second stage managed reactive power

of HEVs when employed as capacitors. In addition, Waqar

et al. presented a multi-objective chance constrained pro-

gramming model to investigate the economic implications

of V2G on microgrids containing renewable energy sources

and to optimize their operational planning [93].

4.3.2 Non-probabilistic methods

Fuzzy logic methods are often used to account for

uncertain factors when determining the location of charg-

ing facilities and strategies for energy management

[96, 97]. In [96], the fuzzy TOPSIS method was applied to

select optimal locations for EV charging stations. Using

multi-criteria decision making, [96] established an evalu-

ation index system for charging station site selection,

which includes environmental, economic and social

criteria.

Interval-based methods also play an important role in

the optimization and scheduling of integrated electric and

traffic systems. For instance, a new method based on robust

optimization was proposed to plan sustainable integration

of HEVs into the electric grid in [98]. Interval power flow

analysis was used in distribution system optimization to

achieve the dispatch of each electric vehicle charging based

on the statistical model [99]. In that work, a cluster-based

strategy was proposed for the scheduling of EV charging,

in which uncertainties such as charging power were mod-

elled by intervals.

Several analysis methods have been developed for

planning charging stations and for planning distribution

systems with charging stations. However, they are usually

based on existing road networks and traffic flows, which

may not be sufficient for practical application. Although

the traffic flow, traffic density and road network models

have been proposed in [84, 85], additional research is

needed on implications for road network planning, the

impact of weather conditions, and other issues.

5 Research prospects

Building on information technology trends such as the

Internet of Things (IoT), Big Data, cloud computing, real-

time user interaction, etc., the Energy Internet represents

the evolution of an integrated energy system with diverse
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structure, clean energy sources, electrified consumption

and intelligent operation. Although the Energy Internet is

promising and some of its operation and planning problems

have already been investigated, there are still many crucial

technical obstacles to be resolved, such as developing

energy storage devices of large capacity and low loss, or an

energy transmission system of high efficiency and low cost,

or energy conversion and transformation components with

the intelligence and flexibility of information system

components [100–106].

In view of different technical issues and trends relating

to the EI, the main directions of future research should be

as follows.

1) Optimal coupling of multi-energy systems. The coor-

dinated coupling between subsystems of the EI allows

the synergy of different energy flows to economically

and securely deliver heating, cooling, gas, traffic, and

electric energy. Therefore, high-efficiency energy

transformation devices and the interaction pathways

they enable between different energy systems should

be studied in depth, especially low-cost P2G tech-

nologies and impacts. Coordinated operation and

planning models for multi-system coupling should be

approached through quantitative analysis of energy

balance, environmental impacts, and other societal

benefits and costs. In this context, using realistic

energy network topologies, the role of different

subsystems and their uncertainties in corresponding

interaction models among multiple systems should be

evaluated; e.g. renewable DGs, traffic flow, weather

conditions, energy markets and demand response.

2) Advanced information and communication systems for

secure operation of the Energy Internet. For real-time

optimization of integrated energy systems and for

coordinating large numbers of distributed devices, a

large computing capacity is needed to deal with huge

amounts of diverse energy data. Thus, it is important

to develop advanced information and communication

technology (ICT) for application to integrated energy

systems, e.g. Big Data, IoT, cloud computing, cloud

storage, and block chaining for the Energy Internet.

Since energy flow and information flow are tightly

coupled, Energy Internet cyber systems should be

further investigated to overcome technical obstacles in

data association, information collection and secure

dispatch, and real-time control in multiple energy

markets.

3) Unified network codes and coordinated national man-

agement and promotion policies for a global cyber-

energy system. In an open and competitive market, it

is crucial to establish and develop a secure and highly

efficient global Energy Internet. Therefore,

international cooperation is required to unify network

codes, planning standards, energy transformation

devices and information system interfaces. The same

cooperative process should also coordinate different

national firewalls, energy laws, management systems,

and development policies. Although the ideal of global

energy interconnection has been established [107],

more work is needed to strengthen international

collaboration towards the Energy Internet. Because

existing studies about the Energy Internet are at the

stage of theoretical research, corresponding engineer-

ing standards for a global Energy Internet are neces-

sary for further progress.

4) Demonstration projects of new functionality for the

large-scale EI. Some practical demonstration projects

have been already built to validate the feasibility of the

Energy Internet, especially relating to the integration

of DGs and EVs. For example, the Shenzhuang

Industrial Zone distributed energy station in Shanghai

[108] has been built as a micro-EI to provide heating,

cooling and electricity for the industrial zone. The

Tianjin Eco-City and Smart Grid Demonstration

Project was established by State Grid Corp. of China

in 2014 [109], in which the interconnection and

sharing of energy and information has been achieved

across DGs, CCHP, energy storage, EVs, demand

response, an information network, and a data platform.

These projects demonstrate the feasibility of develop-

ing the Energy Internet and provide a practical

foundation of experience. However, they are micro-

EIs based on distributed energy. In the future, using

information technologies such as Big Data and cloud

computing, some demonstration projects are needed to

promote the development of the large-scale Energy

Internet.

6 Conclusion

The supply structure is one of the most vital elements

that influence the energy systems and environment.

Through the continuous development of the Energy Inter-

net, a convergence of distributed energy sources, diverse

forms of energy including gas, heating, cooling, and elec-

tricity, and supported by the data internet, will lead to a

sustainable multi-energy system. Based on the analysis of

an Energy Internet framework, this paper focuses on three

examples of coupled energy systems, and analyzes state-of-

the-art operation and planning methods applicable to each.

Four main directions of further research prospect address

the key challenges of optimal coupling, cyber systems,

unified standards, and large-scale demonstrations. Though
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research into the Energy Internet has only just begun, it is

one of the most important topics in energy nowadays and

worthwhile for the research community to pursue.
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