
����������
�������

Citation: Alaghmandfard, A.;

Ghandi, K. A Comprehensive Review

of Graphitic Carbon Nitride

(g-C3N4)–Metal Oxide-Based

Nanocomposites: Potential for

Photocatalysis and Sensing.

Nanomaterials 2022, 12, 294. https://

doi.org/10.3390/nano12020294

Academic Editor:

Detlef W. Bahnemann

Received: 10 December 2021

Accepted: 5 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

A Comprehensive Review of Graphitic Carbon Nitride
(g-C3N4)–Metal Oxide-Based Nanocomposites: Potential for
Photocatalysis and Sensing
Amirhossein Alaghmandfard and Khashayar Ghandi *

Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada; aalaghma@uoguelph.ca
* Correspondence: kghandi@uoguelph.ca

Abstract: g-C3N4 has drawn lots of attention due to its photocatalytic activity, low-cost and facile
synthesis, and interesting layered structure. However, to improve some of the properties of g-C3N4,
such as photochemical stability, electrical band structure, and to decrease charge recombination rate,
and towards effective light-harvesting, g-C3N4–metal oxide-based heterojunctions have been intro-
duced. In this review, we initially discussed the preparation, modification, and physical properties of
the g-C3N4 and then, we discussed the combination of g-C3N4 with various metal oxides such as
TiO2, ZnO, FeO, Fe2O3, Fe3O4, WO3, SnO, SnO2, etc. We summarized some of their characteristic
properties of these heterojunctions, their optical features, photocatalytic performance, and electrical
band edge positions. This review covers recent advances, including applications in water splitting,
CO2 reduction, and photodegradation of organic pollutants, sensors, bacterial disinfection, and su-
percapacitors. We show that metal oxides can improve the efficiency of the bare g-C3N4 to make the
composites suitable for a wide range of applications. Finally, this review provides some perspectives,
limitations, and challenges in investigation of g-C3N4–metal-oxide-based heterojunctions.

Keywords: graphitic carbon nitride; g-C3N4; metal oxide; photocatalysts; sensors; bacterial disinfec-
tion; supercapacitors

1. Introduction

Graphitic carbon nitride (g-C3N4) is a polymeric, visible-light-active photocatalyst
with a bandgap of ~2.7 eV (~460 nm), that was introduced since 2006 [1]. g-C3N4 has
become an important material in chemistry, physics and engineering because of its facile,
low-cost, environmentally-friendly preparation methods with promising stability and good
physicochemical properties for use in a wide range of applications [2]. Compared with
other semiconductors, g-C3N4 can be easily synthesized by various methods with desirable
electrical structures as well as morphologies, and high thermal stability up to 600 ◦C in the
air [3,4].

The most common precursors used to prepare g-C3N4 are melamine, dicyandiamide,
cyanamide, urea, thiourea, and ammonium thiocyanate. Among different types of car-
bon nitrides such as α-C3N4, β-C3N4, cubic C3N4, pseudocubic C3N4, with bandgaps of
around 5.49 eV, 4.85 eV, 4.30 eV, and 4.13 eV, respectively, g-C3N4 is the most stable phase
under ambient conditions [2]. In order to enhance the performance and modulate the
properties of g-C3N4, researchers have proposed different methods such as doping and
making heterojunction with other materials. Examples of these materials are metal oxides,
metal sulfides, noble metals, and carbonaceous nanomaterials [5–12]. Among them, metal
oxides are the most common ones to improve the efficiency of g-C3N4, e.g., increasing the
light absorption and reducing the recombination of electrons and holes by promoting the
separation of charge carriers. This is mainly due to their suitable band structures [13–18].

The g-C3N4 structure has been widely used in many applications, in particular in
energy-related applications. Energy consumption to provide electricity and heat will rise
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to twice its current consumption by 2050, which is mainly due to industrialization, urban-
ization, and population growth [19,20]. The consumption of fossil fuels, such as natural
gas, coal, and oil, should be decreased as their usage results in detrimental environmental
impacts [2,19,20]. Two remedies are solar energy and photocatalysis [21–24]. Both require
suitable semiconductors such as g-C3N4 with superior activities for different catalytic
reactions, such as organic pollutants degradation, H2, and O2 generation by water splitting
and CO2 reduction to hydrocarbon fuels [14,25–29]. The g-C3N4 can also be used for water
disinfection and bacterial control [25,30].

It is evident from Figure 1 that the number of publications, collected from the Scopus
database, has been growing fast from 2012 in the field of g-C3N4 and g-C3N4–metal oxide-
based heterojunctions. Figure 1a shows the number of all publications on g-C3N4 since
2012, showing that this topic is among the hot research areas. It is therefore important to
provide a comprehensive review of the g-C3N4–metal oxide composites. To the best of our
knowledge, no publication reviews a wide range of papers to explain the applications and
structure of these heterojunctions comprehensively.
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Figure 1. Number of annual publications (a) using “g-C3N4*” as a keyword since 2012, (b) using
“g-C3N4*” with metal oxides (“TiO2”, “ZnO”, “WO3”, “Iron Oxide”, “Tin Oxide”, and other metal
oxides) as keywords since 2012. Adapted from Scopus database, dated 1 October 2021.

This review covers the research up to 1 October 2021. We highlighted some general
information about the structure and characterization of the bare g-C3N4. We also discussed
some modifications such as doping to improve the g-C3N4 properties. As well, we have
also summarized the research on modification of the structure and properties, to enhance
the efficiency of g-C3N4 for different applications, via combining g-C3N4 with metal oxides
such as TiO2, ZnO, iron oxide, WO3, and tin oxide. After reviewing g-C3N4–metal oxides,
we focus on the applications of these kinds of heterojunctions. In the last part of this review
article, we suggest some potential investigations for the future in this field that have not
been conducted to this date to our knowledge. We also recommend some studies to better
understand the nature of these heterojunctions. Most graphs in this review are reproduced
by us from the data in original research papers cited, unless stated otherwise in the captions
where the permission has been obtained.

2. Structure and Properties of g-C3N4

Melamine, melam, melem, and melon are recognized as heptazine- and triazine-based
molecular compounds (coplanar tri-s-triazine unit as the elementary structural motif of
g-C3N4 structure) to prepare g-C3N4. As illustrated in Figure 2, triazine (C3N3) and tri-s-
triazine/heptazine (C6N7) rings are the basic tectonic units of g-C3N4.
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balls are carbon, nitrogen, and hydrogen, respectively).

Yan et al. properly studied the phase transition during heating of melamine from
room temperature to 1000 ◦C with a heating rate of 10 ◦C/min [31]. Figure 3a shows
that melamine sublimation and thermal condensation occur at 297 to 390 ◦C, observed
from significant endothermic differential scanning calorimetry (DSC) peak and drastic
thermogravimetric analysis (TGA) weight loss. Other endothermic peaks at 545 and 630 ◦C
are attributed to the materials’ deamination and decomposition, respectively.
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Figure 3b shows the g-C3N4 thermal stability and phase transitions in an open system.
This figure shows that g-C3N4 has high stability below 600 ◦C, which is 30 ◦C lower than
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the melamine decomposition temperature (630 ◦C). Beyond this temperature, g-C3N4 starts
to decompose into small molecules (e.g., CO2 and NH3) [31]. The stability of g-C3N4 is
higher in the semiclosed ammonia atmosphere than in the open system, mainly due to
the inhibition of deamination under ammonia atmosphere. The TGA result illustrated
that there is no residue at 750 ◦C [31]. The annealing temperature is a vital factor in the
preparation and properties of the final g-C3N4 structure. Praus et al. used melamine as
a precursor to synthesize g-C3N4 in an air atmosphere [32]. The TGA results, illustrated
in Figure 3c, demonstrates that by heating the melamine to 400 ◦C melen is formed. The
main reason for the weight loss at this temperature range is the elimination of ammonium.
By further heating up to 600 ◦C, melon is obtained by melem polymerization [33]. In
other words, at higher temperatures, the g-C6N9H2 or g-C3N4.5H is more stable than g-
C3N4. Figure 3d illustrates that the C/N molar ratio is temperature dependent. The main
difference in the C/N value of the synthesized g-C3N4 compared to the theoretical value
of 0.75 for g-C3N4 is due to the incomplete condensation of the amino groups of melon
and the low degree of polymerization. Reaction atmosphere is another factor affecting the
g-C3N4 by providing defects and disordered structures. For instance, in the H2 atmosphere,
by dicyanamide thermal condensation, more nitrogen vacancies were formed [34].

3. g-C3N4 Characterizations

The presence of X-ray diffraction (XRD) peaks at about 13 and 27◦ is an indication
of the formation of g-C3N4, corresponding to the (002) and (100) diffraction patterns,
respectively [35–37]. Paul et al. showed the effects of calcination temperature on the naked
g-C3N4 using XRD data, Fourier transform infrared spectra (FT-IR), bandgap structure,
Brunauer–Emmett–Teller (BET), and photocatalytic recyclability data [36]. Due to the
polycondensation of melamine at lower than 400 ◦C, the crystallinity of the g-C3N4 structure
is detected (Figure 4a). In contrast, Figure 4b demonstrates that no significant differences
are revealed in FTIR spectra at different calcination temperatures. In the FTIR spectra, the
characteristic bands with high intensity at the wavenumber about 1640, 1569, 1412, 1328,
and 1240 cm−1 are related to the stretching modes of C=N and C–N heterocycles. Besides,
the strong peaks at 815 cm−1 are attributed to the s-triazine units. The broad range peak
between 3000 cm−1 and 3500 cm−1, is due to the N-H stretching and the remaining water
molecules in the structure [35–39]. The BET specific surface areas were estimated to be
37.8, 73.7 and 65.6 m2·g−1 for g-C3N4 synthesized at the calcination temperature of 450,
550 and 650 ◦C, respectively. Calcination temperature also affects the g-C3N4 bandgap. The
bandgap when calcinated at 550 ◦C is narrower than when calcinated at 450 and 650 ◦C
(Figure 4c) [36,38,40]. When the temperature increases to 700 ◦C, a higher bandgap is
observed. In other words, the higher the degree of g-C3N4 polymerization, the larger the
π-plane conjugation degree of heptazine rings via N2 atoms, at the higher temperature.

To assess the catalytic activity, ultraviolet-visible (UV-vis) diffuse reflectance spectrums
(DRS) of the materials were determined at different temperatures [36]. As discussed earlier
the results show that the bandgap of g-C3N4 prepared at 550 ◦C is narrower than those
formed at 450 and 650 ◦C, so the structure prepared at the 550 ◦C absorbs more visible
light, which can lead to the more appealing photoactivity. Moreover, the adsorption and
degradation efficiencies for methylene blue dye by g-C3N4 prepared at 500 ◦C is 34.4% and
62.6%, which is higher than those synthesized at 450, 550, 600, and 650 ◦C [36]. Figure 4d
reveals that the prepared g-C3N4 at a calcination temperature of 550 ◦C also showed good
stability even after four cyclic runs. The pH, and catalyst loading are also important factors
in the adsorption and degradation efficiency [36].
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and (d) the photocatalytic recyclability degradation of dyes using prepared g-C3N4 at 550 ◦C [36].

Chen and coworkers illustrated that the PL depends on the condensation temperature
(Figure 5a), showing the strong and stable emission in the range of 450–510 nm, mainly
due to the π*–π, and π*–LP transitions [41]. The increase in the amount of the tri-s-triazine
content at high temperature leads to the higher π states and cause orbital overlap and
reduces the PL intensity. The UV-Vis spectra of the g-C3N4 at different synthesis tempera-
tures are illustrated in Figure 5b. Like the PL emission peak, the strong absorption peaks at
450 nm and 500 nm are due to the π*–π and π*–LP transitions. Another study, conducted
by Dias et al., concluded that during thermal treatment of g-C3N4, the enhanced porosity
is mainly due to the creation of N vacancies and defects/holes within the nanosheets,
resulting in the improvement of optoelectrical properties. Not only the treatment leads to
the appearance of n→ π∗ transitions, but we can also observe red shift in the absorption
spectra. Moreover, it can enhance the photocatalytic activities by improving the carrier
separation, reducing charge recombination, which is mainly due to the presence of trap
states [42]. Furthermore, researchers also investigated the effect of the different dopants on
the absorption properties of g-C3N4 [43]. These results showed the effect of temperature
and dopants on the optical properties of g-C3N4. Yuan et al. showed the photograph of the
melamine and g-C3N4 synthesized at different temperatures, graphically showing the color
variation in the deionized water under UV light (365 nm) (Figure 5c) [44]. By increasing the
synthesis temperature, the emitted color varied from blue–violet to green, and the intensity
went through a maximum at 550 ◦C. The impact of the temperature on the PL spectra was
demonstrated by the 5–10 nm blue-shift at lower temperatures, due to a less delocalized
orbital resulting in a larger bandgap. Figure 5d also reveals strong PL emission spectra
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with a much smaller blue-shift. This research is among the rare studies investigating the
effect of the environment on PL emission spectra. The g-C3N4 time-resolved PL spectra
shows 5 ns electron-hole recombination at 25 ◦C [45].
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deionized water under 365 nm light; (d) the PL spectra of the g-C3N4, g-C3N4 in water and in the DI
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4. g-C3N4 Preparation

Synthetic techniques for graphitic carbon nitride (g-C3N4) were first reviewed by
Thomas et al. in 2008 [26]. g-C3N4 can be synthesized with various techniques such
as chemical vapor deposition (CVD), solvothermal, and plasma sputtering deposition.
Chemical vapor deposition to deposit g-C3N4 thin film on indium-tin-oxide (ITO), was
performed by Ye et al. [27]. In this method, the mixture of thiourea and melamine was put
at the bottom of a crucible with ITO substrate above it and finally transferred to the muffle
furnace. CVD has several advantages and disadvantages. To be more specific, thin films
prepared by CVD are cohesive in all dimensions, which is suitable for elaborately shaped
pieces and helps users to fill the insides, undersides, high aspect ratio holes, etc. CVD does
not require high vacuum and can deposit a wide variety of materials to prepare high purity
composites. In contrast, physical vapor deposition (PVD) such as sputtering requires a high
vacuum atmosphere. The drawback of CVD is that some CVD precursors are costly, and
can be highly toxic, explosive, or corrosive, such as Ni(CO)4, B2H6, and SiCl4, respectively.
The by-product of this method, including CO, or HF, can also be hazardous. The substrates
are limited since they should tolerate high temperatures [46].

The graphitic carbon nitride nanocone arrays were grown onto the Ni-coated Si (100)
substrate, using plasma sputtering deposition [47]. This method requires a vacuum chamber
and a plasma source with a discharge cavity. Thermal condensation is an economical,
energy-efficient approach, which has a higher chance for scaleup for commercialization.
The solvothermal methods have some drawbacks such as more synthetic steps compared
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to the thermal condensation method; however, they can be cost-effective, low energy
consumption methods with more controllable size and morphology [48–50].

Several C−N precursors such as urea, thiourea, melamine, cyanamide, and dicyanamide
are used for g-C3N4 synthesis (Figure 6a). The procedure is depicted in Figure 6b [51–55].
Among them, cyanamide and its derivates such as dicyanamide suffer from low solubility
and high cost [56]. Pham and Shin showed that urea and melamine cause poor interconnec-
tion of g-C3N4 to NiTiO3 since melamine provides a segregated g-C3N4 structure with no
connection to the NiTiO3 phase, and urea makes a condensed g-C3N4 structure by releasing
oxygen-containing gas during the thermal condensation [56]. Dicyandiamide and thiourea
with higher reactivity towards a polymerization reaction create strong Ti−N bonds in the
composite, and allow for charge carrier formation, which is important for degradation of
organic contaminants [57]. The order of photodegradation ability of bisphenol A (BPA) is
g-C3N4-Melamine in N2 atmosphere ≈ g-C3N4-dicyandiamide > g-C3N4-dicyandiamide in
N2 atmosphere > g-C3N4-Melamine > g-C3N4-Urea ≈ g-C3N4-Urea in N2 atmosphere [58].
The differences between the catalytic activities are mainly due to the different preparation
procedures, which can change the type, the density of active sites, the network of sp2
hybridized carbon, nitrogen, and oxygen-containing functional groups [58]. Jung et al.
showed that the precursor could affect the morphology of the g-C3N4-based systems [59].
The good binding of dicyandiamide (DCDA) to ZnO nanoparticles, lead to the formation of
the core-shell morphology DCDA-CNZ composite, resulting in improving the degradation
of methylene blue by charge transfer [59]. In contrast, due to the weak interaction of thio
and urea with ZnO, thio and urea-CNZ have a porous and segregated morphology and
produce gases during the polymerization [59].
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Figure 6. (a) Synthesis precursors and calcination temperature for g-C3N4 preparation; (b) syn-
thesis procedure using cyanamide (dicyanamide), urea, thiourea, and melamine for g-C3N4 syn-
thesis (gray, blue, red, yellow, and white balls are carbon, nitrogen, oxygen, sulfur, and hydrogen
atoms, respectively).



Nanomaterials 2022, 12, 294 8 of 73

As shown in Figure 6b, melamine can form from urea, thiourea, and cyanamide
(dicyanamide), and then converted to tri-s-triazine (and melam) rings at ~335 and ~390 ◦C,
respectively, and subsequently, g-C3N4 discovered from tri-s-triazine polymerization, by
heating to 520 ◦C. Besides, the skeleton becomes prepared over 600 ◦C, and then beyond
700 ◦C, g-C3N4 is entirely decomposed into small molecules (e.g., NH3). Figure 7a,b shows
the urea and thiourea conversion mechanism into melamine. In this reaction, oxygen atoms
in the urea structure help to facilitate g-C3N4 condensation and improve stability [60]. CO2
and NH3 are the by-products of the reaction of the melamine formation from urea, which
can be recycled again to urea. In the formation of the g-C3N4, the presence of a crucible lid
is so important since not only it prevents the gasses from escaping, but it also provides high
pressure in the synthesis atmosphere, which is necessary for the preparation of g-C3N4. In
other words, a covered alumina crucible should be used during thermal analysis to avoid
melamine sublimation.
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Figure 7. Polymerization of (a) urea and (b) thiourea into a g-C3N4 at high temperatures (gray, blue,
red, yellow, and white balls are carbon, nitrogen, oxygen, sulfur, and hydrogen atoms, respectively).

During the heating reaction, the created gas bubbles act as soft templates to produce
24 nm pores in the yellow-colored graphitic carbon nitride [61]. Thiourea is used as another
precursor for the g-C3N4 formation, and sulfur content improves the connectivity and
packing of g-C3N4 sheets [60]. The overall conversion of urea and thiourea to melamine is
endothermic. The first endothermic reaction of changing urea and thiourea to melamine
is at temperatures higher than their melting temperatures, which are ~133 and ~180 ◦C,
respectively, while at the higher temperature, melamine and heptazine were prepared in
low pressure at, e.g., atmospheric pressure. To be more specific, the second reaction requires
preheating to 260–280 ◦C to decompose urea in the presence of ammonia, passed over the
activated alumina, silica gel, silica-alumina gel, or alumina gel. In order to completely form
melamine, the vapors obtained from the first reaction should be maintained at ~400 ◦C [62].
It should also be noted that the g-C3N4 can be prepared by cyanamide and dicyanamide.
Specifically, by polycondensation of cyanamide molecules and dicyandiamide, melamine
was prepared at ~203 and ~234 ◦C, respectively [2].

5. g-C3N4 Modifications
5.1. Doping

The presence of heptazine ring in the g-C3N4 affects electronic structure, toxicity, and
density, and is important for applications, especially as biosensors, for photocatalytic hydro-
gen evolution, and CO2 conversion. The density-functional theory (DFT) showed that the
bandgap of the fully condensed g-C3N4 is lower than melem, and polymeric melon, which
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are 2.1 eV, 3.5 eV, and 2.6 eV, respectively [63–65]. As previously reported, the polymeric
melon has a bandgap close to the defect containing bulk g-C3N4 [64]. There are mainly
two types of experimental results to calculate the semiconductor bandgap. Specifically,
the position of the conductive band (CB) and valance band (VB) can be measured by elec-
trochemical impedance spectra (EIS), and Mott–Schottky (M–S) curve [63]. The result of
both methods showed that the position of the conduction band (CB) and valance band
(VB) of the g-C3N4 is about −1.3 eV and 1.4 eV, respectively [3,66]. The semiconductors’
band edges can be tuned by functionalizing, doping, compositing with other materials.
Liu et al. reviewed element-doped carbonized nitrogen in detail and investigated their
organic pollutants degradation applications [3]. Ai et al. showed that the bandgap value
of the phosphate doped g-C3N4 decreased from 2.57 eV to 2.49 eV, 2.43 eV, and 2.41 eV
by increasing the content of the P element [67]. Other researchers demonstrated that the
higher O, Na, Ag, and Co content doped to the g-C3N4 structure leads to the lower bandgap
value [68–71]. Li et al. investigated the effect of different ratios of Sm to g-C3N4. They
illustrated that by varying the percentile molar ratios of Sm(NO3)3·5H2O with melamine
from zero to 0.01%, 0.025% and 0.05%, the bandgap decreased from 2.63 eV to 2.57 eV,
2.50 eV, and 2.44 eV, respectively, so Sm narrowed the g-C3N4 bandgap [72]. Table 1 is
illustrated the effect of different dopants on the band edge position. We will further discuss
and analyze the properties and applications of different g-C3N4–metal oxides. g-C3N4 is
a metal-free semiconductor, which possesses a narrow bandgap suited for visible light
absorption (45% of solar energy output) [66]. To have an in-depth investigation of the
optical properties of the g-C3N4, we will investigate some characteristics of the synthesized
g-C3N4 such as photoluminescence (PL) and UV-vis spectra. The origin and nature of the
PL emission come from three different transition pathway including π*–π, σ*—the nitride
atom bridge’s lone pair (LP), and the π*–LP transition.

5.2. Metal Oxide-Based g-C3N4 Nanocomposite

Different types of metal oxides, such as TiO2, ZnO, WO3, iron oxide, tin oxide, etc.,
can improve the photocatalytic efficiency of the g-C3N4 by reducing the electrons-holes
recombination and promoting the charge carriers’ separation. Consequently, metal oxide-
based g-C3N4 nanocomposites can be used in different applications with enhanced electric,
magnetic, and photocatalytic properties, such as H2 generation, CO2 reduction, NO ox-
idation, degradation of organic and inorganic dyes and other organic material, removal
of toxic metal species, especially Cr (VI) from water, antibodies decontamination, solar
cells, sensing, etc. [100–104]. In this part of the review, some metal oxide-based g-C3N4
heterojunction structures are compared with the g-C3N4.

There are five types of charge carrier separation for g-C3N4–metal oxide photocatalysts:

(1) Type I heterojunction,
(2) Type II heterojunction,
(3) Z-scheme heterojunction,
(4) p-n heterojunction,
(5) Schottky junction.

Most g-C3N4–metal oxide photocatalysts show type II and Z-scheme mechanisms for
charge carrier separation. In this section, we will discuss these two heterojunction types.

In type II heterojunctions, two semiconductors are bound to form a stable heterojunc-
tion, and the position of the VB of semiconductor A is higher than that of semiconductor B.
In this case, because of the difference in voltages, the photoinduced hole migrated from the
VB of semiconductor B to that of semiconductor A (Figure 8a). On the other side, electrons
are transferred from CB of semiconductor A to that of semiconductor B. The enhanced
electrons and holes separation will reduce the rate of the recombination and promote the
electrons’ lifetime. The construction of type II systems is highly desired for photocatalysis
for different applications [7].
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Table 1. The electrical properties and application of doped g-C3N4.

Doping Element Ec Eg Ev Application Further Explanation Ref

Phosphorus

−1.11 eV 2.55 eV 1.44 eV Catalytic aromatic alcohols The presence of P enhances the aldehyde selectivity. [73]

−0.33 eV 2.58 eV 2.25 eV Photocatalytic hydrogen evolution The g-C3N4 tube doped with P improves light absorption. The quantum efficiency of the P-doped
g-C3N4 tube is 4.7 and 22.4 times higher than that of the g-C3N4 tube and bulk g-C3N4. [74]

−1.34 eV 2.79 eV 1.44 eV Photocatalytic CO2 conversion The P-modified g-C3N4 demonstrates the highest photocatalytic efficiency. [75]

−1.17 eV 2.69 eV 1.52 eV Photocatalytic hydrogen evolution The P-doped structure has a high efficiency in accordance with the recombination, migration, and
separation of electron-hole pairs. [76]

Sulfur

−1.04 eV 2.92 eV 1.88 eV Photocatalytic nitrogen fixation Sulfur enhances the adsorption and activation of N2 molecules of g-C3N4 porous nanosheets and
uses for photocatalytic nitrogen fixation. [77]

−1.23 eV 2.80 eV 1.57 eV Photocatalytic hydrogen evolution The H2 generation rate of N-doped MoS2 and S-doped g-C3N4 is about 23 and 38 times higher than
that of pure SCN and NMS with 28.8 µmol/g/h and 17.4 µmol/g/h, respectively. [78]

−1.3 eV 2.67 eV 1.34 eV Photocatalytic hydrogen evolution The BiPO4/S-C3N4 improves photocatalytic activity by facilitating carrier transportation. [79]

−1.3 eV 2.69 eV 1.39 eV Photocatalytic
bisphenol degradation Ag–S-C3N4 enhanced the photocatalytic activity since Ag has a great electron storage ability. [80]

−1.32 eV 2.66 eV 1.34 eV Photocatalytic hydrogen evolution Sulfur promotes the photocatalytic ability of hydrogen evolution about four times higher than the
bulk g-C3N4. [81]

Oxygen

−0.88 eV 2.61 eV 1.73 eV Photocatalytic CO2 reduction The porous O-doped graphitic carbon nitride reveals enhanced photocatalytic activity. [82]
−0.76 eV 2.57 eV 1.84 eV Photocatalytic hydrogen evolution This result of the band edge value is related to the 1.1% oxygen content mass percentage. [83]−0.37 eV 2.53 eV 2.15 eV This result of the band edge value is related to the 2.3% oxygen content mass percentage.

−1.08 eV 2.93 eV 1.85 eV Photocatalytic hydrogen evolution
and 2,4-dinitrophenol

The oxygen dopant with Pt exhibits excellent photocatalytic hydrogen evolution in overall water
splitting with 29.6 µmol/(g·h), and O-g-C3N4 NR reached up to approximately 100% removal

efficiency of 2,4-dinitrophenol within 75 min.
[84]

1.51 eV 2.70 eV −1.19 eV

photocatalytic water splitting

This band edge value is related to CN-x = 0 (x refers to the quantity of citric acid (gr)).

[85]
1.50 eV 2.62 eV −1.16 eV This band edge value is related to CN-0.2.
1.46 eV 2.52 eV −1.06 eV This band edge value is related to CN-0.4.
1.46 eV 2.49 eV −1.03 eV This band edge value is related to CN-0.6.

Carbon −1.13 eV 2.54 eV 1.41 eV Thermal oxidation etching process C-doped g-C3N4 improves the catalytic activity by extending the visible light absorption. [86]

Boron −0.8 eV 2.8 eV 2 eV Photocatalytic Oxygen evolution,
Cr(VI) reduction This structure is used for Cr(VI) reduction and O2 generation simultaneously. [87]

Nitrogen −0.5 eV 2.4 eV 1.9 eV Photocatalytic
tetracycline degradation

This band edge value is related to the nitrogen-doped g-C3N4 used for Photocatalytic
tetracycline degradation. [88]

−0.6 eV 2.5 eV 1.9eV This band edge value is related to the nitrogen-doped g-C3N4 nanosheets.

−0.33 eV 1.82 eV 1.49 eV Photocatalytic phenol degradation N-doped g-C3N4 possesses a narrow bandgap since the N atom introduced an inter-bandgap,
resulting in the redshift in the absorption UV-vis peak. [89]
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Table 1. Cont.

Doping Element Ec Eg Ev Application Further Explanation Ref

Metal

Na −1.16 eV 2.77 eV 1.36 eV 17α-ethynylestradiol
mineralization The photostable Na doped g-C3N4 content causes the photoabsorption enhancement. [70]

K −1.08 eV 2.72 eV 1.64 eV Photocatalytic CO2 reduction K content causes defects leading to improving catalytic activity by reducing the
electron-hole recombination. [90]

Ti −1.02 eV 2.5 eV 1.48 eV Photocatalytic enhancement Ti-doped g-C3N4 caused narrower bandgap and reduced carrier recombination resulting in
higher absorption. [91]

Mn −0.59 eV 2.56 eV 1.97 eV Photocatalytic methylene
blue degradation

The Mn-doped g-C3N4 nanoribbon reveals a great potential photocatalytic agent for water splitting
coupling with MB degradation. [92]

Ag - 2.60 eV - Photocatalytic oxidation of
methylene blue

The higher Ag content leads to the lower bandgap of the structure, and a lower recombination rate is
observed in the Ag-doped g-C3N4. [93]

Fe −1.10 eV 2.50 eV 1.40 eV Environmental pollution control Fe3+ with nitrogen in heptazine forms a σ-π bond and can accelerate the electron-hole separation. [94]

Co −0.36 eV 2.62 eV 2.26 eV Photo-electrochemical
water oxidation

Co-doped g-C3N4 reduces the electron-hole recombination rate and demonstrates promising
photocurrent and electrical conductivity. [95]

Co-doped

P, O −0.80 eV 2.30 eV 1.50 eV Photocatalytic fluoroquinolone
antibiotics degradation

The degradation rate of enrofloxacin was 6.2 times higher for phosphorus and oxygen co-doped
graphitic carbon nitride (POCN) than g-C3N4. [96]

P, S - 2.6 eV - Photocatalytic hydrogen evolution The high photocatalytic activity can be observed because of the synergic impact of P and S co-doping. [97]
B, F - 2.72 eV - Photocatalytic hydrogen evolution B, F co-doped g-C3N4 improves the charge generation and the separation efficiency. [98]

Na, O - 2.72 eV - Photocatalytic hydrogen evolution Na, O co-doped g-C3N4 reveals that photocatalytic H2 production activity was seven-fold improved
by enhancing absorption of UV-vis spectra. [99]
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The other heterojunction type is the direct Z-scheme photocatalytic system, which was
initially suggested by Bard et al. in 1995 [105]. As shown in Figure 8b, in this heterojunction
type, the generated electrons on the CB of semiconductor B transfer to the VB of semicon-
ductor A and combines with the photogenerated holes. This type of photocatalysts can
be helpful for both reducing the recombination by an increase of the electrons and holes
separation and improving the redox ability [7]. Even if the electrons, and holes combine
and generate hν in these heterojunctions, other photogenerated carriers can replace them.

Different patterns of the migration of electrons and holes are due to the driving
force of the electric field, formed by the band edge positions of different semiconductors.
Depending on the electrical field direction, charge carriers start moving to reduce the energy
of the system. Thus, different systems are defined based on the migration of electrons and
holes in the heterojunction. The difference in each type is mainly due to the movement of
electrons and holes. All types can be used in different photocatalytic activities.

5.2.1. TiO2-g-C3N4

Among the investigated semiconductor photocatalysts, TiO2 has a suitable conduction
band position, excellent stability, cost-effective preparation approach and is one of the most
promising catalytic materials [106]. Fujishima and Honda were pioneers who researched
using TiO2 photocatalytic behavior in 1972 [107]. To improve TiO2

′s photocatalytic effi-
ciency, researchers would like to reduce the bandgap of the system by doping with other
elements and compositing with other compounds to absorb visible light energy [108]. To
deal with TiO2′s limitations, researchers have been using doping elements and compositing
with organic material, such as conjugated polymers and g-C3N4, since they have a narrow
bandgap [108]. Boron is an effective dopant, which can improve the photocatalytic applica-
tions of TiO2 coupled with carbon nitride, as shown by Christoforidis and coworkers [109].
In another study conducted by this research group, TiO2 and carbon nitride nanosheets
were synthesized by hydrothermal in-situ approach, improving the catalytic application.
The mentioned materials have high porosity to ensure a high concentration of reactants in
the vicinity of catalytic sites, used for CO2 reduction [110].

Various synthetic methods such as co-calcination, hydrothermal treatment, solvother-
mal, and microwave-assisted to prepare the g-C3N4-TiO2 heterojunction [111–113]. The
preparation of g-C3N4-TiO2 heterojunction widely includes the hydrothermal and calcina-
tion method [114]. Figure 9 illustrates the schematic of the TiO2/g-C3N4 preparation route.
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The conductive band of g-C3N4 (ECB = −1.4 eV) is higher than those of anatase TiO2
(ECB = −0.5 eV), so the proper bandgap alignment helps to reduce the electron-hole re-
combination by increasing their separation and boost the space charge accumulation at
the interface. Recombination is defined as a process of electrons and holes annihilation.
The most common type of recombination is known as radiative recombination, which
occurs when electrons and holes in a conductive and valance band, respectively, recombine
and emit a photon. As discussed in the following sections, the presence of electrons and
holes will assist us in different stages of photocatalytic activities. So, suppressing the
charge recombination is crucial in the photocatalytic applications of semiconductors and
heterojunctions. At the end of section three, we talked about how g-C3N4-based hetero-
junction separates the position of the electrons and holes. The charge carrier separation
makes electron-holes recombination less favorable, so we can use these heterojunctions for
photocatalytic activities.

Figure 10a illustrates the conduction, valance, and bandgap position of the g-C3N4
and TiO2 and reveals that the g-C3N4-TiO2 structure improves the photo-induced electrons
flow from the g-C3N4 conductive band to that of TiO2, which promotes the photoelectrical
ability of the final composite. Thus, the photogenerated electrons tend to accumulate in
the TiO2 conductive band since the conductive band of TiO2 is more positive than that of
g-C3N4, (Figure 10a). In contrast, the holes transfer in an inverse way, which can provide
type II heterojunction [112,115]. Due to the high recombination barrier, the heterojunction
provides a high interfacial area for facilitating carrier transformation and separation to
suppress the electron-hole recombination to improve the photocatalytic activity.

Kočí et al. successfully deposited TiO2 on the g-C3N4 surface by hydrothermal ap-
proach followed by calcination processing [116]. In this research, the mixture of TiO2
and g-C3N4, prepared by thermal hydrolysis and polycondensation from melamine, re-
spectively, should be mixed in distilled water for 16 h in an air atmosphere dried at 60
◦C. Finally, the dried sample should be maintained at 450 ◦C in a covered crucible with
a heating ramp of 15 ◦C/min in the air in a muffle furnace. The highest photocatalytic
performance was obtained under UVA (λ = 365 nm) irradiation compared to other types of
ultraviolet (UV) rays (UVB, and UVC), which is attributed to the high separated charge
carrier. The low rate of recombination leads to the great photocurrent stability. In another
work on g-C3N4-TiO2 heterojunction structure, Alcudia-Ramos et al. demonstrated that
the prepared heterojunction has a higher photocatalytic efficiency than the individual
g-C3N4 and TiO2 [112]. The researcher also showed that solvothermal synthesis enhances
tri-s-triazine’s carbonization [117]. Miranda et al. used an impregnation method to pre-
pare g-C3N4-TiO2 [118]. The presence of the g-C3N4 in the heterojunction endows the
high specific area to the structure. The researchers also used the photochemical reduction
method to prepared g-C3N4-TiO2 based nanocomposite. They also demonstrated that in
the TiO2/g-C3N4/G composite, TiO2 was a semiconductor to capture visible light and also
prevents g-C3N4/G stacking [119].

Several parameters affect the g-C3N4-TiO2 heterojunction structure. Various research
works have been investigated the effect of the g-C3N4′s ratio. Wang et al. prepared this
microstructure with 10%, 30%, 50%, 70% of g-C3N4, which are labeled with (x = 10, 30,
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50, and 70) [110]. All the XRD results from different publications have shown the same
diffraction pattern. As a case in point, the XRD pattern of g-C3N4-TiO2 is illustrated in
Figure 10b. In the TiO2 diffraction pattern, the peaks at 25.5, 37.7, 48.2 and 54.1 ◦C are
related to the (101), (004), (200) and (105) planes, respectively. Furthermore, there is no
g-C3N4 characteristic peak at 13.1 ◦C in the g-C3N4-TiO2 hybrid sample, which may be
attributed to the low crystallinity of g-C3N4 compared to the TiO2 in the microstructure.
However, the peak at 27.5 is obviously observed in all samples. The more g-C3N4 ratio
in the structure leads to the higher XRD intensity at 27.5 ◦C and the lower peak intensity
at 25.5 ◦C [120]. TiO2 possesses a high crystallinity so the characteristic peak at 25.5 ◦C
is higher than 27.5 ◦C. There are no obvious changes in other characteristic peaks in the
composite XRD patterns. The FT-IR spectra of the g-C3N4-TiO2 structures are demonstrated
in Figure 10c [120]. In all FT-IR analyses, stretching vibration of the Ti–O and Ti–O–Ti is
observed at about 475 cm−1. Additionally, peaks at 3419 cm−1 are attributed to the absorbed
moisture and hydroxyl group in the structure. The peak at 2360 cm−1 that appeared in
all samples is mainly due to the adsorbed CO2. All the characteristic peaks at TiO2 and
g-C3N4 are observed in the composite samples. The pore size distribution of the g-C3N4,
TiO2, g-C3N4-TiO2 is illustrated in Figure 10d [120]. The pore size at ~3.5 nm, 10 nm, and
3.8 nm, 32 nm is due to the presence of TiO2, and g-C3N4, respectively. Additionally, the
BET specific area of the g-C3N4-TiO2 hybrid structure was increased at the higher g-C3N4
content. Finally, the higher the bandgap of TiO2, the lesser the absorption wavelength
at higher than 400 nm (Figure 10e). The g-C3N4 revealed the absorption band extending
to about 430 nm, which is mainly due to the low bandgap [120]. The blue shift in the
absorption spectra was also demonstrated at a higher g-C3N4 ratio in the structure. It
was shown bandgaps calculation of the g-C3N4, TiO2, g-C3N4-TiO2. The results revealed
that the bandgap of CNT50 samples is 2.92 eV, which is like the bulk g-C3N4 with the
bandgap of 2.9 eV and narrower than the bandgap of TiO2 (3.20 eV). Due to the narrow
bandgap and heterojunction formation, the hybrid composite not only suggested the higher
generation of the electron and hole but also improved photocatalytic activity [120,121]. Li
et al. synthesized g-C3N4@TiO2 hollow sphere nanostructure with high crystallinity [122].
In this work, researchers used the different ratios of TiO2 hollow sphere and melamine (1:2,
1:4, and 1:8) in the solution, which are called HS-CNTO1, HS-CNTO2, and HS-CNTO3,
respectively. They demonstrated that the recombination rate of the photogenerated electron-
holes decreased by introducing the TiO2 in the g-C3N4 structure. In all samples, the sharp
PL emission peak at 455 nm can be observed. The intensity of the PL peak reduced as the
g-C3N4 content ratio decreased [122]. In addition, as can be seen in Figure 10f, the electron
resistance decreased when g-C3N4-TiO2 heterojunction was used. Additionally, stability
is another vitally important factor in determining the photocatalytic activities, and it is
shown that the g-C3N4-TiO2 heterojunction demonstrates excellent stability after three to
five cycles under different circumstances [117,120,122,123].

Many factors may affect the g-C3N4-TiO2 heterojunction productivity and improve the
photocatalytic activity by enhancing the charge carrier separation and prevent recombina-
tion [124–126]. Rathi and coworkers showed that the CuNi@g-C3N4-TiO2 nanocatalyst had
a 3-fold and 5-fold higher photocatalytic activity than bare g-C3N4 and TiO2 nanorod for
Rhodamine B degradation. Besides, the photocurrent density of the TiO2 nanorod, bare g-
C3N4, Cu@g-C3N4, Ni@g-C3N4, and TiO2/CuNi@g-C3N4 is 0.108 mA/cm2, 0.377 mA/cm2,
0.530 mA/cm2, 0.6012 mA/cm2, and 0.890 mA/cm2, respectively. It should also be
mentioned that the charge separation was promoted since the presence of Cu and Ni
species [126]. In another work, researchers also prepared Ti3+-TiO2/O-g-C3N4 heterojunc-
tions via a hydrothermal approach [125]. In this synthesis approach, 1 g g-C3N4 should
disperse with titanium oxohydrides sol precursor at room temperature for 20 min, ultrason-
ically. The collected sample should transfer into the Teflon-lined autoclave at 160 ◦C for 27 h
and then be washed and dried at 60 ◦C for 3 h. This method was used to prevent the g-C3N4
aggregation and fabricate exfoliated g-C3N4 nanosheets. The synthesized heterojunction
significantly decreased the regenerated electron-hole pairs’ recombination. Additionally,
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the conductivity is greatly enhanced and widens the light absorption range by adding
the Ti3+, and O. P is another element used to improve the heterojunction connection and
promote photocatalytic activity by facilitating the carriers’ transfer and separation [127,128].
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Figure 10. (a) Proposed mechanism for charge transfer of type II of the g-C3N4-TiO2 heterojunction
interface under visible light irradiation; (b) XRD patterns; (c) FT-IR spectra of the g-C3N4-TiO2

heterojunction; (d) the pore size distribution curves; (e) UV-vis spectra of the prepared TiO2, g-C3N4,
and TiO2- g-C3N4 composites, Copyright © 2022 Elsevier [120]; (f) PL emission spectrum of TiO2,
g-C3N4 -TiO2, and g-C3N4 products, Copyright 2019 © American Chemical Society [122].

Various novel metal nanoparticles are leading to the improvement of photoexcited
semiconductors because the surface plasmonic effect is beneficial to reduce the photogen-
erated electron-hole recombination, improve the efficiency of visible light absorption and
photocatalytic activity. Silver, and gold nanoparticles, for instance, have high stability
and good conductivity. Au nanoparticles can increase the electron concentration onto
their surface and enhance and extended adsorption for catalytic activity by its surface π

bond [129–131]. Ag nanoparticles (AgNPs) are also used to modify the g-C3N4-TiO2 het-
erojunction [132–135]. The presence of AgNPs not only promotes the visible light response
due to the surface plasmon resonance (SPR) effect, but also, they can result in capturing
the electrons, to separate them, and transfer them more easily. These electrons react with
the absorbed O2 on the AgNPs modified TiO2@g-C3N4 to form O−2. With reference to the
high specific area, electrical conductivity, and mobility, different graphene-based materials
such as reduced graphene oxide [119,136]. Other materials can also be used to modified
g-C3N4-TiO2 heterojunction to increase the specific area and separate the photo-induced
electron-hole pairs to enhance photocatalytic efficiency [137–139].

The structure and morphological evaluation of the prepared g-C3N4–metal oxide-
based heterojunctions have been investigated in different research works [140–143]. Jo et al.
revealed structural properties of g-C3N3-TiO2 heterojunctions, which are consistent with
other similar composites [144]. Figure 11a showed the transmission electron microscope
(TEM) micrograph and the selected area electron diffraction (SAED) pattern of 5%-g-
C3N4/TiO2 nanoparticles. Researchers observed that g-C3N4 nanolayer uniformly is
covered with TiO2 nanoparticles, which suggested an intimate interface between them.
Besides, the inset Figure 11a showed that the circular rings corresponded to the (101), (004),
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(200), and (105) planes of the polycrystalline TiO2 nanoparticles anatase phase. A TEM
image showed that the TiO2 nanoparticles are deposited onto the layered structure on
g-C3N4. Moreover, the high-resolution transmission electron microscope (HR-TEM) images
of the 5%-g-C3N4/TiO2 nanotube indicates the interplanar distance of 0.350 nm, attributed
to the (101) plane of anatase phase of TiO2 (Figure 11b,c). In addition, elemental mapping
analysis of the 10%-CN/TNP (Figure 11d) suggested that TiO2 is uniformly present onto the
g-C3N4 surface. Figure 11d also revealed the presence of Ti, O, C, and N, which suggested
the co-existence of both layered g-C3N4 and TiO2 nanotube [144].
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5.2.2. ZnO-g-C3N4

ZnO nanostructures such as nanosheets, nanoplates, and nanorods are semiconductors
that have been used for preparing of g-C3N4-based heterojunctions. Like the TiO2, the ZnO
bandgap is about ~3.2 eV with ECB and EVB of about 2.7 eV and −0.5 eV, respectively [145].
We showed that the ZnO nanostructure’s size, shape, and order could be tuned by an
interplay of magnetic and gravity forces [146]. We also demonstrated the enhanced micro-
bial detection capability when the synthesis was conducted under these external forces
by changing the materials’ electrical resistance based on surface interactions. Because of
low-cost of the preparation, having a large surface area, high aspect ratio, proper bandgap
energy, minimal toxicity, and good stability, ZnO nanostructures have captured consider-
able researchers’ attention [147,148]. However, ZnO suffers from minimal light absorption
(5% of the ultraviolet spectrum of the sun energy). Additionally, a high electron-hole
recombination rate is another undesirable factor of ZnO for photocatalytic applications.

To deal with these problems the heterojunction of ZnO with g-C3N4 might be an option
for different photocatalytic applications because, coupling g-C3N4 with ZnO nanostruc-
tures can improve charge migration, separation and prevent electron-hole recombination.
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Researchers have reported various methods for preparing the g-C3N4-ZnO structure, such
as hydrothermal, solvothermal, atomic layer deposition, etc. [149–153]. Jung et al. synthe-
sized g-C3N4-ZnO with various thermal treatment and condensation temperatures (T = 350,
400, 450, 500 ◦C). The BET specific area and ZnO crystallite size of the prepared Z-scheme
g-C3N4-ZnO structure is decreased by increasing the thermal treatment temperature [154].
Other researchers who designed g-C3N4-ZnO via thermal treatment announced that the
optimal amount of the g-C3N4 content in the composite is 5.0 wt.% [155]. Melamine and
ZnCl2 should be vigorously stirred for 20 min in a 250 mL beaker, then, Na2CO3 is added
dropwise into the suspension and stirred magnetically for 30 min, and finally, dried at
60 ◦C for 30 min. The product was placed into a crucible with a cover to prevent from
the volatilization of melamine and heated at 500 ◦C for 2 h at a rate of 10 ◦C/min. The
g-C3N4/ZnO photocatalysts were obtained after deamination treatment at 520 ◦C for
2 h. The effect of different g-C3N4 precursors such as dicyandiamide (DCDA), urea, and
thiourea on the g-C3N4 and ZnO interaction and structural morphology was investigated
in another work [156]. The excellent interaction of the DCDA-ZnO results in the perfect
Z-scheme charge transfer core-shell structure with the ZnO core and shell of the g-C3N4,
and the low electron density of the PL emission resulting in promoting the efficiency of
the Methylene Blue (MB) photocatalytic degradation. If the interaction between the pre-
cursors, such as urea and thiol, and ZnO is weak, the porous, segregated morphology is
obtained. Hydrothermal method to prepare g-C3N4-ZnO heterojunction [149] not only is
a low-cost preparation but also Zhang et al. revealed that it could detect nine pesticide
residues in four different samples simultaneously. The solvothermal synthesis method
of the preparation of the g-C3N4-ZnO modified the TiO2 nanotube arrays by using the
ethylene glycol solution is reported by Mohammadi et al. [150]. Zhang and coworkers
synthesized the g-C3N4-ZnO heterojunction composite in the metal ion-containing ionic
liquid’s presence by the solvothermal method [156]. g-C3N4 was added to the ZnCl4 in an
ethanol solution, sonicated, and mixed with NaOH. Then, the mixture should be placed
in a 25 mL Teflon-sealed autoclave and maintained at 160 ◦C for 24 h. After washing
with distilled water and absolute ethanol, the dried g-C3N4-ZnO powder was provided.
The strong interaction between g-C3N4 and ZnO result in the higher migration of the
generated electrons and slower recombination rate was prepared. They revealed that the
power conversion of the structure composed by the solvothermal approach compared
to the pure TiO2 nanotube arrays increases from 1.04% to 2.45%. Besides, the uniform
type II heterojunction between g-C3N4 and ZnO can also be synthesized by atomic layer
deposition (ALD) [151]. The mentioned heterojunction composite, synthesized by the ALD
method, possessed a stable dispersion of g-C3N4 powder in the reactor, which prevented
the charge carrier recombination. Mechanochemistry (mechanical milling) is also employed
to prepare g-C3N4-ZnO composite [157]. This method provided significant photocatalytic
stability and enhanced the composite’s photocatalytic activity, which was 3-fold higher
than the bulk g-C3N4 because of the strong interaction with ZnO. Figure 12 illustrates the
schematic of the ZnO/g-C3N4 preparation method.

Introducing the ZnO to the g-C3N4 is proved that this structure can enhance photocat-
alytic performance such as charge transfer and separation and decrease the photogenerated
carriers’ recombination (Figure 13a) [159–163]. In recent years, several types of research
have been worked on the characterization of these heterojunctions. For example, Wang et al.
demonstrated the eight XRD characteristic peaks for the pure Zn in the g-C3N4-ZnO sample,
shown in Figure 13b [164]. The reduction in the g-C3N4 content results in a decrease in the
intensity of its two prominent characteristic peaks. Besides, they also revealed the FTIR
analysis of the synthesized composites. The g-C3N4-ZnO composites’ FTIR peaks show the
main peaks of the bulk g-C3N4, which are shifted to the lower wavenumber, and this is
because of the low strength of the characteristic bonds. The FTIR peaks of the g-C3N4-ZnO
heterojunction are also similar to those of the main peaks of the g-C3N4 wavenumber. The
indication announces a chemical bond in the heterojunction between g-C3N4 and ZnO so
that this structure will improve the charge transfer and photocatalytic efficiency. Moreover,



Nanomaterials 2022, 12, 294 18 of 73

the UV-vis DRS spectra of the g-C3N4, ZnO, and g-C3N4-ZnO heterojunction with the
different g-C3N4 ratio is illustrated in Figure 13c [164]. The absorption edge of the g-C3N4
is about 460 nm, attributed to the bandgap of 2.69 eV. Besides, the absorption wavelength of
the pure ZnO appeared at 396 nm showing the bandgap of 3.13 eV. Finally, the g-C3N4-ZnO
revealed the redshift for the higher g-C3N4 content, which is extended to the visible-light
region. The intense visible light absorption is another significant indication of the strong
chemical interaction and more electron-hole generation leading to the photocatalytic ac-
tivity’s improvement [164]. The high photocatalytic activity of the mentioned structure is
mainly used to degrade of dyes such as malachite green (MG). After the reaction of the
photocatalyst with MG, the photocatalytic rate in 0, 5, 10, 15, 20, 25, 30, 35 and 45 min
was measured (Figure 13d) [165]. A similar analysis was conducted on other dye types,
such as Rhodamine-B (Rh–B), Congo red (Con-R), and Red ink (RI) solution. The results
show the degradation efficiency after 45 min in the presence of the g-C3N4 was deter-
mined ~97.24%, 82.37%, 70.05% and 46.99% for MG, Rh-B, Con-R, and RI’s degradation,
respectively [165]. Figure 13e demonstrated the photoinduced charge transfer capability
of g-C3N4-ZnO nanorod arrays. The photocurrent density of the prepared materials was
generated and increased under visible light irradiation. However, the photocurrent density
decreased as the illumination was stopped. It was also revealed that the g-C3N4-ZnO
produced the most photocurrent density compared to the bare ZnO and g-C3N4, showing
excellent charge transfer and separation. The charge transfer resistance is depicted in
Figure 13f, shown impedance spectroscopy (EIS) Nyquist plots [160]. The arc radius in EIS
spectra corresponds to the resistance of the interface layer at the photocatalyst surface. As
observed in Figure 13f, the smaller arc radius is shown for g-C3N4-ZnO than that of g-C3N4
and ZnO. To be more specific, the smaller arc radius leads to the lower charge transfer resis-
tance, resulting in the improved photogenerated transformation at the interface. PL spectra
announce the photocurrent recombination, separation, and migration rate [160]. The ZnO
PL emission wavelengths under the excitation wavelength of 350 nm were low-intensity
emissions at 445 nm and 600 nm with low intensity. Besides, the emission spectra of the
g-C3N4 and g-C3N4-ZnO heterojunction under the same excitation wavelength are 452 nm
and 506 nm, respectively. Moreover, the higher PL intensity of the composite than that of
g-C3N4 and ZnO reveals a more recombination rate of photogenerated charge carriers via
the Z-scheme pathway. One of the most critical factors in photocatalytic efficiency is the
catalyst’s lifetime. Recyclability of g-C3N4-ZnO is obviously illustrated by the negligible
loss of the photocatalytic activity after the five cycles resulting in good stability of the
g-C3N4-ZnO photocatalyst [166–168].
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Copyright © 2022 Elsevier [159]; (f) Nyquist plots of the ZnO, g-C3N4, and g-C3N4/ZnO catalysts.
Reproduced from Reference [160].

The doping of the heterojunction is a method to change and tune the properties of the
bare g-C3N4-ZnO heterojunction. The metal elements are one of the excellent candidates
used as dopants in the g-C3N4-ZnO structure. Ahmad et al. illustrated the effect of different
metal dopants on photocatalytic efficiencies [169]. Ag-doped g-C3N4-ZnO showed the
highest specific area compared to the pure ZnO, g-C3N4, and Al, Mg, Ni, Cu-doped hetero-
junctions. The redshift is observed for UV-vis absorption for the metal-doped g-C3N4-ZnO
composite compared to the pure ZnO, revealing the more visible light absorption, and
inducing a higher charge carrier generation rate [169]. The bandgap of the ZnO, g-C3N4, Al,
Mg, Ni, Cu, and Ag-doped g-C3N4-ZnO, which is determined by the Tauc’s plots, is 3.23 eV,
2.66 eV, 3.15 eV, 3.08 eV, 3.06 eV, 3.0 eV and 3.05 eV, respectively. The PL spectra of these
doped composites demonstrated the three emissions at 391 nm, 456–466 nm, and 550 nm,
which are attributed to the free exciton transition or recombination process, bandgap recom-
bination of photoinduced charge carriers, and oxygen vacancies [169]. The photocurrent of
the metal-doped structure is higher than that of the pure ZnO and g-C3N4. The Cu-doped
composite showed the lower electron transition resistance among all composites. It was
concluded that the synergistic impact of Cu-doped g-C3N4-ZnO, promotes electron mo-
bility and separation efficiency [169]. Photocatalytic activity of the Mg-doped composite
is higher than that of ZnO, g-C3N4, and g-C3N4-ZnO structure. Mg is one of the ideal
candidates for charge separation in the composite structure [170]. Other kinds of metal-
based materials such as K, Cr, Co, and Fe have shown excellent light absorption, increased
photo-induced electron-hole generation and separation, and migration for improved pho-
tocatalytic activities [171–174]. ZnO/K@g-C3N4 had higher stability after five cycles (84%)
for tetracycline removal. Doping the Cr into the g-C3N4-ZnO structure promoted photocat-
alytic performance [172]. 60% g-C3N4 /Cr-ZnO photocatalyst had 93% degradation rate in
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1.5 h, which is 3.5, 2.5, and 2-fold higher than that of 5% Cr-ZnO, bulk g-C3N4, and 60%
g-C3N4-ZnO, respectively. Nitrogen is another widely important element used as a dopant
for the g-C3N4-based heterojunctions [147,175–177]. g-C3N4 with 7 wt % of N-ZnO showed
the highest photocatalytic RhB degradation with 5 and 4 times higher than those of N-ZnO,
and g-C3N4, respectively [175]. g-C3N4-ZnO with N doping exhibited a 77% higher H2
evolution rate than that of pure carbon nitride and showed a great charge carrier trans-
fer [147,176]. The N-doped heterojunction revealed the high photocatalytic activities for
methylene blue degradation since it shows the narrower bandgap [178]. Other researchers
showed the impact of carbon doping in the ZnO-g-C3N4 composites [177,179–181]. The
Z-scheme heterojunction system containing C-doped g-C3N4 grafted on the C, N co-doped
ZnO was used to improve the optical properties for enhancing the BPA organic pollutants
photodegradation and hydrogen evolution reaction [177]. Oxygen and sulfur are also used
to improve the efficiency of the composites [181,182].

Different g-C3N4-ZnO heterojunction-based ternary composites have been constructed
by various researchers worldwide [183–187]. The surface plasmon resonance (SPR) effect of
Ag and Au nanoparticles (NPs), resulting in the improved photocatalytic activities improve
by increasing the electron-hole generation and separation, so many researchers tend to use
Ag NPs in the heterojunction structures [188–192]. Ag NPs facilitate the migration and im-
prove the photoinduced electron-hole pairs separation by creating close interfaces between
g-C3N4 and ZnO. Besides, Ag NPs reduce the energy barrier for CO2 to increase the inter-
mediate radicals on the surface of the nanocomposites [191,193]. It is also revealed that the
reaction constant rate for Ag (5 mol%)/ZnO/ g-C3N4 is 2.4 times higher than ZnO/ g-C3N4.
Ag (5 mol%)/ZnO/ g-C3N4 composite extends its surface, leading to promoting the photo-
generated electron-holes pairs and increasing the lifetime and stability of the charge car-
rier [194,195]. To show the improved photocatalytic performance with high stability, differ-
ent Ag-based compounds between g-C3N4 and ZnO have been investigated [188,196–199].
In another research, the hydrothermally synthesized Ag-ZnO/S-g-C3N4, comprising ZnO
NPs doped with 7% Ag with 25% Sulfurized-g-C3N4, exhibited outstanding MB pho-
todegradation (97% in 40 min) with excellent recyclability [200]. Carbon-based materials
are also used beside the g-C3N4-ZnO structure [199,201,202]. Graphene oxide (GO) is
carbon-based material commonly used in the g-C3N4-ZnO heterojunction [199,203,204].
GO is a two-dimensional platform, providing a promising electron conductivity, high
specific surface area, and Young’s modulus, which are useful for improving photocatalytic
activities. The RhB dye degradation is about 99% for ZnO-g-C3N4-GO nanocomposites in
14 min [199]. The trinary nanocomposites provide high stability, which can be used for a
wide range of environmental applications [203]. Other forms of carbon-based nanomate-
rials such as carbon dots (C Dots) are also used to improve the heterojunction structures’
efficiency [201,205]. The C Dots provide the facile photoinduced electrons transfer from
the ZnO’s CB to the g-C3N4′s VB. The Z-scheme heterojunction structure can be used in
biomedical applications for bacteria-killing and acceleration of wound healing system [201].

5.2.3. Iron Oxide-g-C3N4

FexOy such as FeO, Fe3O4, and Fe2O3, not only can improve the photocatalytic per-
formance of the g-C3N4structure due to some unique characteristics but they can also be
vastly used for contaminant removal in various media [206–209]. Compared to the combi-
nation of g-C3N4 with TiO2 or ZnO, fewer papers have been focused on the g-C3N4-FeOx
heterojunctions. Xu et al. announced that the CB and VB of Fe2O3 are 0.3 eV and 2.4 eV,
respectively [210]. FeOx failed to show any appreciable photocatalytic activity since the
improper, more positive CB edge position (Figure 14a). It is confirmed that g-C3N4/α-
Fe2O3 nanocomposites obey a Z-scheme mechanism for photogenerated charge separation.
Working on the g-C3N4-FeOx composite was ignited by the pioneering study authored by
Ye et al. [211]. They demonstrated that the efficiency of the Fe2O3/g-C3N4 photocatalysts
was increased up to 1.8 times than the bulk C3N4 for the RhB degradation under visible
light irradiation.
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One of the most common synthetic methods to make iron oxides, especially superpara-
magnetic iron oxides (SPIONs), which show the highest saturation magnetization among
all iron oxides while having a low magnetic coercivity, is co-precipitation method [212]. The
effect of different parameters such as solution temperature, alkalinity, and stirring rate were
investigated by Hosseini’s group on the suspension properties for MRI applications [213].
Iron oxides have many applications in different area such as biomedical applications, envi-
ronmental application, etc. [214,215]. Wang et al. prepared g-C3N4-Fe2O3 nanocomposite
via chemical co-precipitation approach [209]. They also evaluate the adsorption and des-
orption of seven polycyclic aromatic hydrocarbons (PAHs). Low limits of detection (LOD),
excellent linearity, and recovery of the g-C3N4/Fe3O4 nanocomposites revealing their ideal
candidacy for environmental applications, especially PAHs removal from water samples. In
another research, the Fe2O3-g-C3N4 heterojunction was synthesized by thermal treatment
in a hypoxia environment [216]. The presence of Fe2O3 in the structure will reduce the
recombination rate and promote N2 adsorption. Some other researchers used in-situ ther-
mal condensation to prepared g-C3N4 with iron oxides, which can be used in ciprofloxacin
(CIP) degradation [217]. CIP is an antibiotic for bacteria sterilization by inhibiting the
bacterial DNA. Besides, it is demonstrated that the remnant CIP in the soil can be absorbed
by plants and transfer to the human body by consumption. The long-term CIP intake
leads to some serious health issues [218]. The hydrothermal method is another method for
preparing this composite [219]. In this method, researchers used the solution containing
colloidal of the mixture of both Fe2O3 and g-C3N4. Fe2O3 could not cause the methanol
yield since the low conduction band of the Fe2O3. To be more specific, Fe2O3 (5, 10, 15,
20 wt %) was added to 500 mg of g-C3N4 (in 25 mL of water), prepared by direct solid-state
reaction of dicyandiamide and thiourea, to form a homogeneous mixture. The solution was
transferred into the Teflon-lined stainless-steel autoclave at 150 ◦C for 4 h, and then washed
and dried at 60 ◦C overnight. As a result, Duan and Mei revealed that the g-C3N4-Fe2O3
heterojunction significantly improved methanol yield from the CO2 photoreduction.

As mentioned above, Fe2O3 has a narrow bandgap of about 2.1 eV, making the iron
oxides an excellent candidate for broad visible light absorption. Some factors, such as the
high recombination rate of electron-holes, the short diffusion length of holes, and lack of
sufficient conductivity, improve the need to constructing a FeOx-based composite, which
will increase the applications of this composite. One of the most well-known FeOx-based
composites is the g-C3N4-Fe2O3, which can adequately promote photocatalytic activities.
Geng et al. illustrated the XRD and FTIR pattern of the g-C3N4-Fe2O3 composites, which
are similar to the results of other publications [220]. Any significant peak shift is observed
in the XRD pattern of the composites, which are indicated in Figure 14b. Additionally,
the intensity of the peaks related to the (104) and (110) of α-Fe2O3 are strengthened by
increasing the α-Fe2O3 content in the structure [220]. They also investigated that the FTIR
characteristic peaks of the g-C3N4-Fe2O3 composites are not significantly change compared
to the bare g-C3N4 and Fe2O3 (Figure 14c). As mentioned previously, the broad peak
around 3500 cm−1 is due to the presence of moisture in the samples. The characteristic
peaks at the bare Fe2O3 and g-C3N4 comprising 3000–3400 cm−1 and unresolved peaks
from 1237 to 1640 cm−1 indicating N–H, C–N, and C=N in the g-C3N4, respectively [220].
Besides, the sharp peak at 811 cm−1 is related to the stretching vibration of the triazine
units. At the same time, the peaks at 543 cm−1 and 469 cm−1 directly correspond to
the Fe-O stretching vibrations. The optical studies are also depicted in Figure 14d,e,
which not only showed absorption and emission of this composite but also revealed the
effect composition on these characteristics features. All samples showed a promising UV
absorption above 450 nm compared to the g-C3N4, helping the photocatalytic characteristics
improvements (Figure 14d) [221]. The PL emission spectra showing in Figure 14e will
aid us in a clearer understanding of the photophysical behavior of the prepared materials.
The results showed a broad peak at the range of 440–463 nm, while the PL intensity of
the FexOy showed a high decrease. The decrease in the PL intensity may be due to the
reduction in the luminous recombination probability, resulting in enhancing the charge
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separation and photocatalytic reactions. Cheng et al. also demonstrated the insignificant
deactivation in about 16 h during 4 cycles showing high stability of this composition. In
order to improve the photocatalytic activities, Wang and his coworkers used Al–O bridged
g-C3N4-α-Fe2O3 z-scheme nanocomposites [222]. In this work, the photocurrent density
with 450 nm excitation wavelength increased when researchers used the Al–O bridged
15 g-C3N4-α-Fe2O3, containing 15 mass percentage of g-C3N4 and 6 mole percent of Al to
Fe. This analysis indicated in Figure 14f showed that Al–O bridged g-C3N4 facilitated the
photo-generated charge transfer and separation [222].
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(c) FT-IR spectra of g-C3N4, α-Fe2O3, and α-Fe2O3/ g-C3N4 composites, Copyright © 2022 Else-
vier [220]; (d) UV-Vis diffuse reflection absorption spectra; (e) PL spectra of CN and xFe-CN samples
with an excitation wavelength of 380 nm, Copyright © 2022 Elsevier [221]; (f) single-wavelength
photocurrent response of F, 15CN-F and 15CN-6Al-F, Copyright © 2022 Elsevier [222].

Metastable materials that transform from one to another state over a long period
of time have superior properties. Bibyite phase of iron(III) oxide (β-Fe2O3) act as its α-
phase (hematite) iron(III) oxide. However, it shows a more desirable bandgap (1.8 eV) for
photocatalysis. Christoforidis et al. prepared metastable β-phase Fe2O3 nanoparticles on
the g-C3N4 surface by a solid-state, in-situ growth method, without the need of specialized
equipment, surfactants, stabilization, or precipitating agents [223]. In this research, the
β-Fe2O3 improve the photocatalytic activities by increasing the ability of light absorption
in the visible region, and enhanced carriers’ separation. The hybrid β-Fe2O3/g-C3N4
nanomaterials are an excellent candidate for photodegradation since they showed higher
photocatalytic activity and a promising stability [223].

There are several g-C3N4-FeOx-based composites with promising photocatalytic ac-
tivities. The g-C3N4 coated with the FexOy covered by metals will enhance the photo-
catalytic properties by ameliorating the photo-induced charge generation and separation.
The promising LSPR effect of the Au and active sites of Pt convinced researchers to use
Fe2O3/Pt/Au nanocomposite immobilized on the g-C3N4 surface as an excellent composite
for hydrogen evolution [224]. As discussed in our previous papers, Au nanoparticles with
strong LSPR can participate in catalytic reactions (for an example see [225]). Au NPs with a
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strong LSPR effect enlarge the photo-electron conversion efficiency of the photocatalyst.
The researcher also investigates the CO2 photoreduction of g-C3N4 quantum dots-Au
NPs co-modified CeO2/Fe3O4 micro-flowers (MFs). They showed that Au NPs promote
photocatalytic activities by generating the electrons and holes and enhance carriers’ sep-
aration in CeO2 MFs and CN QDs in the photocatalyst [226]. Copper is another metal
used in the g-C3N4-FeOx-based composite. Liu et al. fabricated g-C3N4/Fe2O3-Cu for
electrochemical detection of glucose [227]. g-C3N4/Fe2O3-Cu composites improved the
electrochemical performance for glucose detection with a LOD of 0.3 mM. They also con-
firmed that g-C3N4-FexOy composite can be used as an electrode in sensors to measure
other compounds. The effect of a multi-walled carbon nanotube was investigated by Zhang
et al. [228]. They demonstrated that due to the large specific area, hydrogen bonds, π-π,
and electrostatic interactions of the MWNTs@g-C3N4@Fe2O3, these 3D structures were
novel magnetic solid-phase extraction sorbents for PAH with the LOD of 0.001–0.5 mgr·L−1.
Besides, the 3D structure has a good repeatedly and recovery for 16 PAHs in the water
samples. Graphene, as other carbon-based materials also used to improve the efficiency of
Fe3O4/g-C3N4 composites. Wng et al. showed that the Fe3O4/graphene/S doped g-C3N4
dose of 1.0 g/L comprising 20% Fe3O4 mass fraction could completely remove Ranitidine
(≤2 mg/L) in 60 min, an initial pH of 7.0 [229].

The other ternary composite used for the water splitting is g-C3N4/CeO2/Fe3O4 [230].
The composites showed enhanced oxygen and hydrogen evolution reaction with high
current density (40 mA·cm−2) at the potential of 327 mV, which was greater than the bare
Fe3O4 and bulk g-C3N4. The ternary composites showed excellent stability and negligible
activity loss up to 14 h. the Z-scheme g-C3N4/Fe3O4 can be coupled with the CdS and
was used for different antibiotics degradation [231]. The results showed the improved
degradation rate to 45 times of CdS, 26 times of pure g-C3N4, and 9.5 times of CdS/g-
C3N4 for the tetracycline removal. The presence of the Fe3O4 improves the photocatalytic
performance and stability by an increase in the inducing and separation of the electron-hole
pairs and generating more .O2

− for organic pollutant degradation [231].
Other FexOy compounds are also used to improve the UV-visible light absorption for

different applications. NaFe2O4 is one of the most well-known FeOx structures, using in the
g-C3N4-based composites [232–234]. The Fe3O4@NiFe2O4-g-C3N4 improves photocatalytic
activity up to 90% of CIP degradation by reducing the electron-hole recombination [232].
In all superparamagnetic samples, the high Ms assists in improvig of the recyclability and
stability of the photocatalyst. The more magnetite content in the sample leads to a higher
probability in the particle agglomeration, resulting in the decrease in the active sites of
the and the reduction in the photocatalytic efficiencies. The fabricated g-C3N4/NiFe2O4
can also be used to degrade MB and RhB by activating H2O2 to produce the oxidizing
reagent [233,234]. The magnetic properties of the NiFe2O4 (Ms= 45 emu/g) were induced to
the whole composite (Ms= 40 emu/g) to promote repeatability and improve the photodegra-
dation rate [233]. The other most popular compound captured researchers’ attentions are
ZnFe2O4 and LaFeO3 [235–237].

5.2.4. WO3-g-C3N4

Figure 15a demonstrated the band edge position of the WO3 compared to the g-C3N4.
This Figure illustrated that the bandgap of the WO3 is 2.6 eV with VB and CB of 2.9 eV
and 0.3 eV, respectively, which are more positive than that of g-C3N4 and the O2/O2

−

potential [238–240]. Thus, it is approximately impossible to produce .O2 by using the
traditional type-II mechanism. Many researchers showed that the charge migration almost
occurred by the Z-scheme mechanism in the binary g-C3N4-WO3 composite [241–243].
Various methods have been fabricated this binary composite. The hydrothermal approach
is one of the main routes to prepare the g-C3N4-WO3 composite [244,245]. Zhang et al.
prepared WO3/g-C3N4 by dissolving the WCl6 and ascorbic acid in ethanol and g-C3N4
followed by 5 min sonication and stirred for 20 min [244]. The uniform suspension was
heat-treated at 220 ◦C for 12 h, and then washed several times using ethanol. The other
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way for the preparation of the heterojunction is the microwave irradiation technique with
the direct calcining of the WO3 and g-C3N4 combination at 400 ◦C for 2 h [246]. In this
method, to prepare WO3 by simple household microwave irradiation, tungstic acid in
NaOH solution was mixed and stirred for 30 min to form a tungstic hydroxyl group [246].
Afterward, the pH of the prepared mixture was reduced to 1 by adding HCl solution,
and the gel should be put into the Teflon-lined household microwave oven (2.45 GHz) for
10 min to prepared WO3. Finally, the mixture should be placed in an alumina crucible
with a cover in a muffle furnace and heated at 400 ◦C for 4 h. A wet chemical process,
sonochemical, in situ self-assembly, etc., are other ways to synthesize the g-C3N4- WO3
heterojunction [247–249].

g-C3N4-WO3 composites were characterized by various techniques. In most research
papers, XRD and FTIR are the prime characteristic methods to evaluate the formation of
g-C3N4-WO3. Researchers announced that the WO3/CN wt % = 10% provides the best
characteristics compare to the balk g-C3N4 and WO3 [250]. Figure 15b shows the XRD
patterns of the bulk g-C3N4, WO3, and g-C3N4-WO3, perfectly showing the impact of
WO3 content on this characterization. There are nine distinct peaks for the as-prepared
WO3 [247,251]. Additionally, the binary composites revealed the combination peaks of
the WO3 and g-C3N4. The higher WO3 content leads to the lower peak’s intensity of the
g-C3N4, corresponding to the expansion of the interlayers and g-C3N4 coverage with a
WO3. The low intensity of the peaks at 23.5◦ and 36.6◦, which is detectible in the sample
with a high WO3 to g-C3N4 ratio, is related to the hexagonal-phase WO3 and illustrated
the formation of the composite successfully. They also characterized the g-C3N4-WO3
composite with the FTIR spectra analysis [251]. Like other materials’ FTIR spectra, the
wide peak at the range of 3000–3500 cm−1 in all samples is attributed to the N-H and O-H
stretching vibration, and the adsorbed water molecules’ bending vibration stands at about
1630 cm−1 for samples (Figure 15c). The broad peak at the 750–1000 cm−1 corresponds
to the O-W-O stretching vibrations of WO3 [252,253]. As a result, although the g-C3N4
characteristic FTIR peaks can be observed in the composite FTIR spectra, WO3 peaks are
not significantly detected in the hybrid composite, which can be ascribed to the vacancies
between the g-C3N4 clusters or band overlapping. Optical studies were carried out by
Chai et al. on the g-C3N4 with WO3 structure [254]. The UV-vis DRS of the WO3, g-
C3N4, and WO3-g-C3N4 composites with the WO3 contents is depicted in Figure 15d.
The obvious absorption edges at ~470 nm and 455 nm are detected for WO3, g-C3N4,
respectively, corresponding to the 2.64 eV and 2.73 eV. The g-C3N4-WO3 composites present
the combination absorption features of g-C3N4 and WO3 [254]. Figure 15e displays the
PL emission peak of the bulk g-C3N4 and 18.6 wt % WO3/g-C3N4 hybrid composite [254].
The result demonstrates that the intensity of the composites’ PL peak at ~440 nm is lower
than that of the pure g-C3N4 [255–257]. The PL spectra revealed that WO3 apparently
suppresses the photoinduced electron-hole recombination in the WO3/g-C3N4 composites
and confirms the Z-scheme interface contact [258]. They are also revealed that the OH–

generating during the photocatalytic reaction leads to the higher PL intensity increases
the irradiation time. Besides, the transient PL decay trace of the bare g-C3N4, WO3, and g-
C3N4-WO3 composite hollow microsphere are ~ 4.46 ns, 1.62 ns, 2.23 ns, respectively [259].
The zeta potential values of the WO3, g-C3N4 and their binary composites announce the
negatively charged surface of the samples [260]. The presence of WO3 in the composite
changes the zeta potential from −5.7 mV to −33.1 mV, while it decreases the BET specific
area from 100.97 m2·g−1 to 47.88 m2·g−1, which are high enough for promising adsorption
ability and photocatalytic activities. g-C3N4-WO3 reveals high stability and repeatability
after 4 cycles with a slight efficiency decrease for the degradation of RhB [261–263].

There are also some dopants and compounds used to improve the photocatalytic
efficiency of the binary composites. In the z-scheme C or Pt-g-C3N4 with hydrogen treated
WO3, the electrons from g-C3N4 and holes from WO3 facilitate the photogenerated charge
carries generation, which will enhance the photocatalytic activities [254,264]. In other
words, the C or Pt dopants help the composite to improve the light absorption and charge
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separation. This structure also enhances stability and repeatability. O-doped g-C3N4-WO3
has 4.7 times higher H2 performance than the bare composite [265]. The carbon vacancies
and g-C3N4 oxidization resulted in the formation of the porous composites and a decrease
in the composite’s surface area. The effective Si-O bridge between g-C3N4 and WO3
significantly promotes charge transfer and separation [266].Nanomaterials 2022, 12, x FOR PEER REVIEW 27 of 81 
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In addition to the doped binary composites, adding other compounds to form the
ternary structure is a practical way to boost the composite characteristics. Mediators and
co-catalyst such as metals (such as Ag, Au, Cu, Pt, and Sn) are currently used to improve
the Z-scheme composites by facilitating the transporting and carrier capturing during
the photocatalyst process [267–272]. Li et al. demonstrated the charge carrier migration
between various WO3-Metal (Cu, Ag, Au)-g-C3N4. They showed that Cu plays the ideal
candidate for photocurrent enhancement and improves the photocatalytic performance in
the Z-scheme g-C3N4-WO3 heterojunction among different metals used in the research. In
other words, the Cu-g-C3N4 and WO3-Cu are favorable for electron migration since they
have the matched Fermi level of energy [267]. In other research, the developed WO3/Ag/g-
C3N4 ternary composite was used for the RhB and tetracycline (TC) degradation. The
results demonstrated that the improved photocatalytic activity of WO3/Ag/g-C3N4 is
obtained due to the large contact region between g-C3N4 nanosheets and WO3 nanoplates.
Besides, the presence of the Ag NPs in the composite with SPR effect accelerates the
charges to transfer, improves the photocatalytic activity, and enhances the stability and
repeatability [268,269].

Researchers also worked on the Ag/g-C3N4/WO3 to degrade oxytetracycline hy-
drochloride under visible light [273]. The 0.4 g/L of Ag/g-C3N4/WO3 composite demon-
strated the highest photocatalytic activity, which could degrade 97.74% of oxytetracycline
(10 mg/L) in 60 min. In another research, Qin et al. showed that the presence of Pt in the
WO3-g-C3N4 composites possesses excellent photocatalytic H2 evolution with 1299.4 µmol
under visible light, which is higher than that of WO3/g-C3N4/Pt and pure CN with
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1119.4 µmol, and 113.2 µmol, respectively [274]. As mentioned above, g-C3N4/Au/WO3 as
Z-scheme heterojunction displayed excellent photocurrent that can be used in photoelectro-
chemical immunosensing of Aflatoxin B1 in food, which can be dangerous for humans [275].
The methane formation over the WO3-Bt-g-C3N4 composite was 5.98, 6.74, and 25.19 times
higher than that of WO3-g-C3N4, Bt-g-C3N4, and g-C3N4 samples, respectively [272].

Some promising properties of tungsten-based materials such as electrical, optical, mag-
netic, and photocatalytic activities, low-cost preparation persuade researchers to use these
materials such as NiWO4, BaWO4, CuWO4, and BiWO6 [270,276–278]. The band structures
of these compounds with g-C3N4 and WO3 make the CB and VB positions match each other,
leading to the prolonged charge carriers’ lifetime in the form of a double Z-scheme system.
The photoelectrochemical (PEC) of a double Z-scheme g-C3N4-WO3-Bi2WO6 system re-
veals the enhanced photocurrent density, reduced electron-hole recombination, resulting in
the promotion of photocatalytic efficiency [276]. Other materials have been anchored in the
g-C3N4-WO3 to form an excellent composite for different applications [279,280]. Bi-based
materials are among the prime and important materials used to construct the composites
for photocatalytic activities [281–283]. MoS2 and MoO3 are other compounds to be utilized
as materials for this ternary composite [284,285]. g-C3N4/WO3 with TiO2 can also be useful
for the methylene blue dye degradation, which its efficiency is about 3.1 folds higher than
that of the binary counterparts of TiO2/WO3 (0.00691 min−1) in 120 min. The kinetic
constant for different composition of this composite are in order of TWG-15% (which 15%
is the g-C3N4 wt %) > TWG-10% > TWG-5% > TWG-20% > TW [286].

5.2.5. Tin Oxide-g-C3N4

Other metal oxides widely used in g-C3N4 binary heterojunction are tin oxides. SnO
(stannous oxide) and SnO2 (stannic oxide) are two forms of tin oxide. Figure 16a shows the
band edges’ position in the tin oxide and compares it to the CB and VB of the g-C3N4. He
et al. showed that the SnO2 has a large bandgap of about 3.6 eV, and its CB level is lower
than that of g-C3N4 [287]. It is also demonstrated that these tin oxide-g-C3N4 composites
mostly form the Z-scheme heterojunction [288,289]. Tin oxide can be designed with various
shapes by wet and dry methods. The heterojunction is synthesized by different synthetic
methods, including hydrothermal and thermal treatment [78,290–292]. Sadrnezhad and
coworkers prepared g-C3N4-SnO2 with the pyrolysis of urea under microwave irradia-
tion [293]. In this work, tin, ammonium, and urea were put into the beaker and placed
in a microwave oven operating at 2.45 GHz and 900 W for 30 min. Finally, the product
was washed and dried in the oven. In another work, the mesoporous SnO2 decorated with
g-C3N4 was prepared via pulsed electrophoresis and facile water-crystallization [293]. With
pulsing electrophoresis optimized parameter, the 0D g-C3N4 can be homogeneously and
completely distributed inside the 1D SnO2. Sol-gel is also used to fabricate an efficient
g-C3N4-SnO2 photocatalyst [294].

Several techniques have been used to confirm the formation of this composite. The
XRD pattern and FTIR spectra of g-C3N4, SnO2, and SnO2-g-C3N4, are depicted in Fig-
ure 16b,c [295]. SnO2 does not change during the preparation of the final structure, which
can be seen from the insignificant differences between the pure SnO2 and the SnO2-g-C3N4
XRD pattern in Figure 16b. The characteristic peaks in SnO2 revealed the (110), (101),
(200), and (211) planes of a tetragonal rutile-like structure. Other small peaks, which are
not mentioned in Figure 16b, are related to the (220), (310), (301), (202), and (321). As
shown in Figure 16b, the (002) crystal plane peak of g-C3N4 overlapped with the (110)
crystal plane peak of SnO2. Additionally, the Sn–O–Sn anti-symmetric stretching vibration
between 400 cm−1 and 700 cm−1 was demonstrated in Reference [295] (Figure 16c). The
red-shift peak at 597 cm−1 was a good indication of the formation of SnO2-g-C3N4 het-
erojunction [296,297]. The presence of SnO2 in the structure suppresses the electron-hole
recombination rate. Peng et al. demonstrated the negligible differences and slight blue
shift of g-C3N4-muscovite sheet/SnO2 structure, compared to the absorption edges of
g-C3N4 (Figure 16d) [298]. Introducing the muscovite sheets does not affect the composites’
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absorption, and g-C3N4-muscovite sheet/SnO2 absorption spectra reveal the potential pho-
tocatalytic applications under visible light. They also showed that the g-C3N4-muscovite
sheet/SnO2 Cement has an excellent photocatalytic activity for RhB stains and isopropyl
alcohol photodegradation. Due to the low electron-hole recombination probability of
the SnO2-g-C3N4, the intensive PL intensity was observed in Figure 16e [298,299]. The
faster interfacial charge-transfer and lower resistance, results in the Nyquist plot diameter
decrease compared to SnO2 and g-C3N4, shown in Figure 16f [300]. This is therefore a
promising photocatalyst. The properties and morphology of this composite change when
the relative content of g-C3N4 varies in the heterojunction [301,302]. Chen et al. showed
that the g-C3N4 mass ratio of 72% provides the highest photocatalytic performance, which
is 17 times higher than bulk g-C3N4 [303]. SnO2-g-C3N4 heterojunction reveals notable
stability and recyclability [18]. In addition to robust photocatalytic activities, this composite
has a noticeable photoelectrochemical performance under visible light. Doping different
elements, such as Sb, S, B, and P, is one of the main approaches to improve the performance
of the SnO2-g-C3N4, which can modify the band edges [304–306].
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Figure 16. (a) Proposed structure of g-C3N4-SnO2 heterojunction interface; (b) XRD patterns and
(c) FT-IR spectra of SnO2, graphene-like C3N4, SnO2/g-C3N4 composites (reproduce from Refer-
ence [295]); (d) UV-vis absorption spectra of g-C3N4-based samples (muscovite sheet(x)/SnO2/g-
C3N4 (MSx/CN), which x refers to the mass of MS powder), Copyright © 2022 Elsevier [298]; (e) PL
spectra of g-C3N4 and SnO2 quantum dots-g-C3N4 nanocomposite, Copyright © 2022 Elsevier [299];
(f) EIS Nyquist plots of the bare SnO2, g-C3N4, and SnO2-g-C3N4 structure, Copyright © 2022
Elsevier [300].

Doping is a method to improve the efficiency of SnOx-g-C3N4 heterojunctions, which
are used in different applications. SnO2/g-C3N4 sensor doped with Ni shows LOD about
1.38 ppb and has high stability, promising selectivity, rapid response and recovery time,
and great resistivity against humidity [307]. Besides, researchers used made Ce doped
SnO2/g-C3N4 to make capacitors with a specific capacity of <274 F/g. A supercapacitor
with energy and power densities of 39.3 W h kg−1 and 7425 W kg−1, respectively, was
made by using Ce-SnO2/g-C3N4/Activated Carbon. The supercapacitor device exhibited
retention of 84.2% after completing 5000 cycles [308].

Additionally, several researchers used the SnO2-g-C3N4 based ternary composites
to increase the applications of these kinds of composites [309,310]. The plasmonic Au-
SnO2-g-C3N4 photocatalyst was fabricated for H2 evolution and degradation of the organic
pollutant, which is commonly used due to the outstanding photocatalytic activities and
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significant stability (remain unchanged after 5 h in 5 cycles) [309,311]. In this ternary
heterojunction, the presence of the plasmonic Au and g-C3N4 offer enhanced photogener-
ated electrons to the structure. SiO2 is another compound used besides the SnO2-g-C3N4
system for pollution treatment applications [312]. As mentioned above, TiO2 has promising
properties that aid us in promoting the properties of this composite [313,314]. This ternary
composite also demonstrated the perfect antibacterial activity for the degradation of E. coli
bacteria, probably due to the interface between g-C3N4-SnO2 and TiO2 and lower charge
recombination rate [314]. SnO2/chitosan/g-C3N4 nanocomposite has been used as an
Electrochemiluminescence aptasensor to improve lincomycin detection [315]. Ali et al. also
showed the cost-effective prepared g-C3N4/rGO/SnO2 nanocomposite for RhB degrada-
tion. The optimal amount of this nanocomposite reveals an increased RhB degradation
efficiency [316].

As a result, the SnO2-g-C3N4 structure can be used in a wide range of applications.
The exploitation of new clean energy instead of fossil fuels is of great interest to many
since the fossil energy is exhausted. As a case in point, water splitting is a perfect example
of this clean energy generation, which is widely applied by the g-C3N4-SnO2 [317,318].
Besides, in order to reduce environmental pollution, the demand for electric transports has
been increased. Thus, it is essential to use the rechargeable batteries such as lithium-ion
batteries (LIBs) and improve lithium storage capacity. Specifically, g-C3N4 enables SnO2
anode to enhance the Li storage in these batteries [319,320]. This heterojunction is also used
to detect different compounds. Cao et al. showed that SnO2/g-C3N4 composite promoted
the sensitivity and selectivity in ethanol gas-sensing applications [321]. The degradation of
the inorganic pollutant is another application of this heterojunction [322,323]. The emission
of nitrogen dioxide (NO2) and nitric oxide (NO) causing some environmental issues is
one of the biggest challenges among several researchers, solved by Zou and coworkers
by using SnO2-g-C3N4 photocatalysts using visible-light irradiation under 30 min [287].
SnO2-g-C3N4 is also used to decomposed Ammonium Perchlorate (AP), a toxic inorganic
material [324].

5.2.6. Other Metal Oxides

Other kinds of metal oxides such as V2O5, NiO, MoO3, Cu2O, Co3O4, CeO2, Bi2O3,
Al2O3, etc., are also used to improve the performance of the bulk g-C3N4 [325–345]. The
g-C3N4-based heterojunctions can be modified by combining with several metals or doping
with various agents [346–348]. Cu is a conventional metal using for the improvement
of photocatalytic performance. Zhou et al. used Cu/Al2O3/g-C3N4 for Rhodamine B
degradation by H2O2 [349]. The Cu immobilized Al2O3/g-C3N4 also showed promising
stability for the treatment of water pollution. Besides, copper is used as a charge separa-
tion center for hydrogen evolution, MO, and phenol solution degradation under visible
light [350,351]. In addition to Cu, the noble metal Ag and Au is another metal catalyst
used besides the g-C3N4-based composite [347,352–356]. The Ag and Au can prevent rapid
recombination probability, improve the transfer of a generated electron, and enhance the
visible light absorption by the surface plasmon resonance, and can be used for a wide
range of applications, especially decontamination of organic pollutants. Bi, Pd, Pt, Ni, and
Cd are other metal photocatalysts used for improved photocatalytic activities [357–363].
Some semiconductors are also used besides the metal oxide-g-C3N4 based composites.
Carbon-based nanomaterials provide excellent stability, cost-effective synthesis, enhanced
photogenerated electron reservoirs used in bioimaging and sensing, photocatalysis, elec-
trocatalysis [214,336,364–367]. Xie et al. fabricated the carbon quantum dots modified
with MoO3-g-C3N4 and demonstrated that this structure showed outstanding visible-light
absorption used to degrade tetracycline (TC) from the environment [364]. Besides, among
all carbon-based nanomaterials, reduced graphene oxide (rGO) has captured intensive
attention [368,369]. Gong and coworkers illustrated that the charges transfer between g-
C3N4 and Bi2Fe4O9 (BFO) was improved by using rGO. The presence of the rGO causes the
separation of electrons and holes in the CB of g-C3N4 and the VB of BFO, respectively [354].
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In addition to the mentioned metals and semiconductors, metal-organic frameworks
(MOFs) are a novel class of porous and crystalline materials with a large surface area-
to-volume ratio, high porosity, and tunable pore size that might improve the biosensor
sensitivity. Since these structures are made from metal ions, clusters, and organic ligands,
these materials can promote the separation and transfer of photoinduced electrons, making
them a promising candidate for photocatalytic activities, such as organic pollutants degra-
dation, water splitting, and CO2 reduction [370]. Cui et al. utilized the Fe-based MOFs,
MIL-53(Fe), with Bi2O3 and g-C3N4 for the degradation of amino black 10B since this
structure can enhance the visible light absorption range [371]. Like other heterojunctions,
doping is another element to improve the performance of these composites and widen their
applications [372–376].

Some g-C3N4-based ternary composites comprising the metal oxide compounds can
promote photocatalytic activities [103,377–380]. Bismuth complex oxides are among the
most efficient catalysts with layered structures beside the g-C3N4-based composites. Among
various Bi-based compounds, Bi2O3 based catalysts have drawn significant attention in the
different areas [381,382]. It illustrated that CuO2/Bi2O3/g-C3N4 nanocomposite reveals
improved photocatalytic activities for decomposing of 2,4-dichlorophenol under visible
light [381]. In another research work, Vattikuti et al. prepared Bi2O3/V2O5 photocatalysts
anchored on the g-C3N4 nanostructure, which can be used for the phenol red (PR) pollutant
degradation [383]. They also demonstrated that the efficiency of hybrid composites for the
PR removal under the simulation solar light irradiation was higher than that of fabricated
materials. Bi2O3/g-C3N4 heterojunctions were also conjugated with the BiPO4 [15]. g-
C3N4/Bi2O3/BiPO4 hybrid exhibited the perfect photoelectric performance, which is
mainly due to the high separation and photogeneration charges and can increment the
oxidation/reduction rate. Bi2O2CO3 is another Bi contained material that shows promising
photocatalytic activities [384,385]. Kumar and coworkers suggested novel magnetic g-
C3N4/Bi2O2CO3/CoFe2O4 heterojunction with high visible light absorption for reduction
of 4-nitrophenol into 4-aminophenol [386]. TiO2-g-C3N4 based ternary composites are
widely used for photodegradation. Min et al. fabricated the Cu2O-TiO2/g-C3N4 hybrid
composite for the organic dyes’ discolorations. Besides, this nanocomposite can also
illustrate good performance for discolorations of RhB, MB, and MO within 3, 10, and
15 min, respectively [387]. TiO2-g-C3N4 composites are also anchored with CeO2 and metal
to form g-C3N4-Men+1/CeO2-TiO2 for photooxidation of toluene [388].

6. Application of Metal Oxide-Based g-C3N4 Nanocomposites
6.1. Photocatalysts
6.1.1. H2 Generation via Water Splitting

These days, the demand for safe, efficient, and renewable energy resources instead
of limited fossil fuel sources has increased among more and more people [14,184,389–391].
This replacement is an efficient remedy for global warming and greenhouse gases emission.
The hydrogen energy content is in the range of 120 to 142 MJ kg−1, which is higher than
that of hydrocarbon fuels. Thus, it is estimated that hydrogen will be responsible for 90%
of energy production by 2080. As a result, H2 generation is a novel and environmentally-
friendly research topic among many researchers [8,13,392–395]. One of the most recent
hydrogen production techniques is the photocatalytic water splitting method via metal
oxide-g-C3N4 heterojunctions by using prolific light sources [365,390,396–400]. For water
splitting, the band position of the photocatalysts should be modified to provide the CB
position more negative than the H2O reduction potential (0 eV vs. Normal Hydrogen
Electrode (NHE)) for H2 generation and more positive than the H2O oxidation potential
(1.23 eV vs. NHE) for O2 generation. To be more specific, the generated electrons are
used for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER)
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via Equations (1) and (2), respectively, and the final water-splitting reaction is shown in
Equation (3) [111].

Hydrogen evolution reaction (HER): 2H+ + 2e− → H2, E◦ = 0.00 eV vs. NHE (1)

Oxygen evolution reaction (OER): H2O→ 1/2O2 + 2H+ + 2e−, E◦= −1.23 eV vs NHE (2)

Overall water splitting: H2O→ H2 + 1/2O2, ∆G◦ = −1.23 kJ mol-1 (3)

where NHE is the normal hydrogen electrode.
Generally, there are three steps for each photocatalytic reaction; initially, the semi-

conductor absorbs light with energy equal to or higher than the bandgap to generate
the electrons and holes in the valance and conductive band, respectively. Then, the pho-
toinduced electrons and holes are moved to the surface of the semiconductor to start the
reaction. Finally, the charge carriers participate in the reduction and oxidation reactions on
the surface of the photocatalysts.

Considering the band edges position of some of the metal oxide-g-C3N4 composites,
which were noted previously, some heterojunctions are more anodic than that of H2O reduc-
tion potential to show excellent performance under visible light irradiation [111,401]. As a
case in point, TiO2-g-C3N4 heterojunctions are widely used as an excellent photocatalytic
for H2 evolution. Yan et al. demonstrated that the efficiency of the visible-light-induced H2
evolution of the binary composite comprising anatase TiO2 and g-C3N4 was enhanced, and
this is due to the desirable photoinduced carriers’ separation [402]. In order to raise the
heterojunction efficiency, other kinds of materials with various effective characteristics are
also used. These materials (metals) or cocatalysts such as Ag, Au, Pt, etc., can host active
sites for H+ reduction [403,404]. The loading Au and Ag would be significantly beneficial
for this application because of their plasmonic characteristic. Marchal et al. illustrated
that the optimized components ratios and contact quality in Au/(TiO2–g-C3N4) lead to
the enhanced visible light absorption with the proper band positions for photogenerated
charge carriers [403]. Besides, the presence of Au and Ag will promote the water splitting
for H2 production by the improved charge separation rate. The H2 generation rate under
sunlight irradiation as a function of the relative ratio of methanol as a sacrificial agent
and TiO2/g-C3N4 is depicted in Figure 17a. It was mentioned that no H2 generation was
observed for the Au-free g-C3N4 and TiO2. Furthermore, the best photocatalytic H2 pro-
duction was observed for the 0.5 wt % Au/(TiO2–g-C3N4) (95/5) structure, using 1 vol% of
CH3OH as a sacrificial agent (Figure 17a). Carbon quantum dots (CQDs) can also improve
photocatalytic performance to effectively decompose H2O2 to H2O and O2. CQDs possess
up-conversion fluorescence spectra, which could convert visible light to ultraviolet or
near-ultraviolet light, resulting in excellent photocatalysis. Consequently, it is proven that
the combination of C3N4, TiO2, CQDs is a great candidate for water splitting [405]. Other
metal oxide-g-C3N4 based composites such as WO3-g-C3N4 and ZnO-g-C3N4 are used for
H2 generation. Mahala et al. demonstrated that the prepared ZnO nanosheets decorated
with g-C3N4 quantum dots composites on the fluorine-doped tin oxide (FTO) coated glass
slide could be utilized as a photoanode for water splitting via PEC (Figure 17b) [406]. In
another work, the effect of boron addition and carbon nitride content did increase the H2
evolution up to 85% compared to the bare TiO2, which is mainly due to charge carriers’
generation and separation [109]. It was also shown that the photoconversion efficiency of
the low charge-transfer resistance of ZnO decorated with g-C3N4 is 2.3 times higher than
that of pure ZnO [406]. As discussed previously, this composite had a high specific surface
area, promising electronic conductivity, and excellent charge transfer interfaces and would
be excellent candidates for the water splitting and H2 evolution [407]. Other materials
with suitable properties can also be used to improve the H2 generation of g-C3N4–metal
oxide-based composites [141,283].

In a plasmonic photocatalyst, a metal nanostructure with a size less than the wave-
lengths of the light, is embedded onto dielectric or semiconductor materials [408]. In such
systems, the light can lead to a local electromagnetic field by generating localized surface
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plasmon resonance (LSPR) and hot carriers. The hot carriers move to conductive and
valance bands and this phenomenon is called the LSPR sensitization [409,410]. The hot
carriers can be useful for direct oxidation or reduction of chemical species. Some of the
metals that showed plasmonic effects are gold (Au), silver (Ag), copper (Co), and platinum.
Zhao et al. state that the LSPR of Au can enhance the light absorption and increase the
number of photogenerated carriers in the Au/g-C3N4/CeO2 plasmonic heterojunction.
The heterojunction was employed for Cr6+ reduction and oxytetracycline hydrochloride
(OTH) catalytic degradation [411].Nanomaterials 2022, 12, x FOR PEER REVIEW 34 of 81 
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Metal oxide-g-C3N4 based ternary composites capture lots of attention among re-
searchers [412]. For example, g-C3N4 (CN)/TiO2 (TO)/PbTiO3 (PTO) films were pre-
pared by the sol-gel followed by the CVD method and were investigated for PEC water
splitting [413]. Wang et al. showed the decreased resistance of the interface (RCT) of
CN0.10/TO0.4/PTO compared to the pristine PTO and CN0.10/PTO, which facilitated
the charge transfer and reduced electron-hole recombination [413]. The incident photo-
to-current conversion efficiency (IPCE) was calculated to measure the PEC performance.
The pristine PTO has a lower IPCE than CN0.10/PTO, which is mainly due to the higher
charge recombination rate. After the TO buffer layer’s insertion, the IPCE value was
drastically increased to 14.2% at 380 nm [413]. The inserted compact TiO2 buffer layer
provided the type II and Z-scheme interfaces between PTO, TO, and CN and promoted
the PEC performance with an improved current density of −68.5 µA cm−2 at 0 V versus
Ag/Ag-Cl electrode. The high performance is mainly due to the high photogenerated
ability of g-C3N4/TiO2 heterojunction. BiVO4 is another cost-effective compound with a
proper bandgap (2.4 eV) to enhance the PEC water splitting [184]. Like PbTiO3, BiVO4 can
also improve the photocurrent density of the g-C3N4@ZnO/BiVO4 heterojunction to the
0.65 mA cm−2 at 1.23 V versus Ag/Ag-Cl electrode.

Table 2 provides some other research activities on the water-splitting application of
the g-C3N4–metal oxide-based composites.

6.1.2. CO2 Reduction

CO2 emission is one of the leading environmental problems causing by fossil fuel
consumption and results in a temperature rise of the earth’s surface. Photocatalytic CO2
reduction is a green method to deal with this problem for two reasons [111]. Not only
CO2 reduction reduces the CO2 emission, but it also solves the future energy demands
by producing energy fuels such as CH4, CH3OH, etc. Photocatalytic CO2 conversion is
largely achieved by different metal oxide-g-C3N4 based systems, as they have desirable
band edges positions. Equations (4)–(7) are chemical reactions for CO2 conversion to other
solar fuels.

CO2 (g) + 2 H+ + 2 e− → CO +H2O E◦ = −0.53 eV vs. NHE at pH 7 (4)
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CO2 (g) + 2 H+ + 2 e− → HCOOH E◦ = −0.61 eV vs. NHE at pH 7 (5)

CO2 (g) + 6 H+ + 6 e− → CH3OH + H2O E◦ = −0.38 eV vs. NHE at pH 7 (6)

CO2 (g) + 4 H+ + 4 e− → HCHO + H2O E◦ = −0.48 eV vs. NHE at pH 7 (7)

ZnO and TiO2 are widely used as the g-C3N4-based composites for CO2 conver-
sion [429,430]. Wang et al. designed a photocatalyst comprising TiO2 and g-C3N4 using ball
milling and calcination. The heterostructure between TiO2 and C3N4 leads to a low charge
recombination rate, and high separation, resulting in the high CH4 and CO evolution
yields of 72.2 and 56.2 µmol g−1 are obtained [431]. In another research, Nb-TiO2/g-C3N4
Z-scheme heterojunctions were investigated and showed that the 50Nb-TiO2/50g-C3N4
composition was the best photocatalysts with high carrier separation ability for the reduc-
tion of CO2 [432]. The existence of electrons and holes in the CB of the g-C3N4 and VB of
Nb-TiO2, respectively, makes the Nb-TiO2/g-C3N4 system a potential candidate for reduc-
ing of CO2 into CH4 and CO and HCOOH. Guo and coworkers were thermally deposited
g-C3N4 onto the porous ZnO nanosheets by two-step calcination and demonstrated that the
ZnO porous nanosheets @ g-C3N4-0.4 showed the highest CO2 conversion efficiency [433].
Not only this composite suppressed the photoinduced electron recombination and facil-
itated the carrier transfer, but also the CO2 chemosorption increased in this composite
since the increasing defect vacancies formed on the porous ZnO nanosheets. Shen et al.
demonstrated 3-ZnO/g-C3N4 (3 is the mass ratio of ZnO) has a high photocatalytic activity
for CO2 reduction to CO and CH4 [434]. This experiment showed an insignificant decrease
in photocatalytic activities, which indicates ZnO-g-C3N4 had high photocatalytic stability.
A similar analysis has been performed on the hydrocarbon generation rate with hollow
g-C3N4, hollow CeO2, which is shown in Figure 18a [435]. The fast kinetics of CO reduction
results in a higher CO evolution rate compared to the CH4 and CH3OH. The highest yield
obtains for g-C3N4@ 49.7 wt % CeO2. Increasing amounts of CeO2 in the g-C3N4@CeO2
composites will decrease the PL intensity at about 460 nm, meaning that the lower electrons
and holes recombination and enhanced charge separation (Figure 18b) [435].

Other researchers also work on the CO2 reduction of g-C3N4–metal oxide-based
photocatalysts, which is listed in Table 3.

6.1.3. Photodegradation of Organic Pollutants

The development of an increased number of dye-related industries such as textile, food,
and furniture manufacturing leads to severe environmental problems [445,446]. In addition
to the negative aesthetic impact on water sources, the chemical oxygen demand (COD) in
wastewater will be increased in the presence of organic dyes. Various methods, such as
coagulation, adsorption, and membrane separation, have been used to eliminate organic
dye from effluents, which only reclaim organic dyes from the wastewater liquid phase to
the solid phase, creating secondary pollutants in the environment. These techniques are
also a significant threat to living organisms. As a result, a metal oxide semiconductor has
been widely used for the degradation of organic dyes. Photocatalysis in which most of the
metal oxide can eliminate organic dyes by degradation and transfection them into particles,
using solar energy for activation of the reaction. The related equations for dye degradation
of the metal oxide-g-C3N4 are shown in Equations (8)–(11) [447]:

(g-C3N4+Metal Oxide) + hυ→ eCB
− + hVB

+ (8)

O2
− + 2eCB

− + 2H+ → OH• + OH− (9)

hVB
+ + H2O→ H+ + OH• (10)

Organic pollutant + OH• → CO2 + H2O (11)
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Table 2. A list of selected works on g-C3N4–metal oxide-based photocatalytic water splitting.

Photocatalyst Type of Heterojunction Source of Light Highest Photocatalytic Rate Ref

TiO2-g-C3N4 Type II Asahi Spectra Hal-320 (300 mW cm−2) with a 420 nm cut off
filter (λ > 420 nm) 3.6 µmol·h−1 [115]

TiO2-g-C3N4 Type II Xenon lamp with a 320 nm cut off filter (λ > 320 nm) 76.25 µmol·h−1 [414]

C-doped TiO2-g-C3N4 Type II 300 W Xe lamp (PLS-SXE300)
with a 420 nm cutoff filter (λ > 420 nm) 35.6 µmol·g−1·h−1 [128]

TiO2-g-C3N4 decorated by Co-Pi Type II 300 W Xe lamp coupled with a monochromator -

TiO2 nanodots/g-C3N4 S-scheme 300 W Xe lamp (LANPU)
with a 300 nm cutoff filter (λ > 300 nm)

The H2 and O2 evolution rate is 1318.3
and 638.7 µmol g−1, respectively,

(roughly as same as the stoichiometric
ratio of evolved H2 to O2)

[415]

ZnO-g-C3N4 Type II PLS-SXE-300C lamp with an UV light intensity of 34 mW/cm2 and
visible-light intensity of 158 mW/cm2 - [416]

N-doped ZnO-g-C3N4 Z-scheme PLS-SXE-300C UV lamp with a 420 nm cut off filter (λ > 420 nm) 152.7 µmol·h−1 [417]
g-C3N4-WO3 - 300-W Xe lamp (PLS-SXE300) with a 420 nm cutoff filter (λ > 420 nm) 963 µmol·g−1·h−1 [141]

O-g-C3N4/WO3 Z-scheme 300 W Xenon lamp with a 420 nm cutoff filter (λ > 420 nm) 15,142 µmol·g−1 [265]
S-Cu2O/g-C3N4 Z-scheme 300 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) 24.83 µmol·h−1 [418]

BiO2/g-C3N4
Type II

Z-scheme 500 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) 8,542 µmol·g−1 [419]

g-C3N4/ BiYO3 Type II - 37.6 µmol·g−1·h−1 [420]
g-C3N4/LaxCo3-xO4 - 300 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) 63.12 µmol·h−1 [421]

Fe2O3/g-C3N4 Z-scheme 350 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) 398.0 µmol·g−1·h−1 [210]

Mn3O4/g-C3N4 p-n heterostructure 300 W Xenon lamp with a 420 nm cutoff filter (λ > 420 nm)
(PLS-SXE300D/300DUV, Beijing Perfectlight)

The H2 and O2 evolution rate is 3300
and 654 µmol g−1·h−1, respectively. [422]

g-C3N4/Nitrogen-Doped Carbon
Dots/WO3

- 300 W Xenon lamp with a 420 nm cutoff filter (λ > 420
nm) (CEL-HXF 300) 3.27 mmol g–1 h–1 [423]

Mn3O4/g-C3N4 - 300 W Xenon lamp source (PLS-SXE300D/300DUV) 2700 mmol·g−1·h−1 [422]
NiO/g-C3N4 Type II Xe lamp with a 420 nm cutoff filter (λ > 420 nm) 1.41 mmol·h−1 [424]

In2O3/g-C3N4 Type II 300 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) 0.99 mmol·h−1 [425]
MoO3-x-g-C3N4 Z-scheme 300 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) 22.8 mmol·h−1 [426]

ZnO/Au/g-C3N4 Z-scheme 150 W Xenon arc lamp with a 420 nm cutoff filter (λ > 420 nm) 3.69 µmol h−1 cm−2 [397]
d-Ti3C2/TiO2/g-C3N4 - 300 W Xe lamp with a 420 nm cutoff filter (λ > 420 nm) 1.62 mmol·h−1g−1 [396]

TiO2/g-C3N4 Type II 450 W high-pressure mercury lamp 22.4 mol·h−1 [402]
TiO2-WO3-g-C3N4 - - 286.6 mmol·h−1 [427]

TiO2/Ti3C2/g-C3N4 - 300 W Xe lamp 2592 mmol·g−1 [428]
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Researchers have suggested several metal oxide semiconductors that can be used in
the g-C3N4-based heterojunctions. There are increasing numbers of studies showing the
degradation capability of TiO2, ZnO, WO3, Bi2O3, CeO2, etc. [100,101,113,116,448–451].
Zada et al. investigated the photodegrading of 2,4-dichlorophenol (2,4-DCP) and bisphenol
A (BPA) over Au-(TiO2/g-C3N4) nanocomposites. As mentioned above, the excellent
photocatalytic of the nanocomposites containing Au is mainly due to the SPR of decorated
Au [131]. The structure revealed 46% and 37% for 2,4-DCP and BPA degradation, which is
5.11 and 3.1 times larger than the bulk g-C3N4 in water under visible-light irradiation, re-
spectively [131]. In another research, the synthesized ZnO@g-C3N4 exhibited an enhanced
photocatalytic activity to degrade tetracycline (TC) under visible-light irradiation, which
is 2.77 and 1.51 fold more than the photocatalytic ability of pure g-C3N4 and ZnO [452].
The improved degradation was due to the enhanced transference of charge carriers and
reduced charge recombination in the presence of the generated reactive oxygen species
(ROS). The pharmaceuticals contaminants have hazardous impacts on human health and
environmental biodiversity. Zhu and coworkers fabricated WO3-g-C3N4 composites for the
photocatalytic degradation of one of the most well-known antibiotics, sulfamethoxazole
(SMX), under visible light irradiation [453]. It is also revealed that the presence of RGO
besides WO3-g-C3N4 heterojunctions promoted the degradation rate of ciprofloxacin (CIP)
nearly twice as compared to the WO3-g-C3N4 structure [454]. In addition, H2O2 can raise
the photocatalytic activities by the hydroxyl radicals’ productions from the degradation of
a natural organic matter up to 71% for 5 h [455]. Shafawi et al. prepared Bi2O3 particles
decorated on porous g-C3N4 sheets by impregnation method [456]. 1 g/L of the compos-
ite containing g-C3N4 with 9 wt % Bi2O3 at 10 ppm reactive black 5 (RB 5) at pH = 5.7
demonstrated 84% degradation efficiency under UV-vis light for 120 min. The synergistic
effects between g-C3N4 and CeO2 provides higher catalytic activities compared to the bare
ones [457–459]. The catalytic effects of the g-C3N4/CeO2 composite, bare g-C3N4, and
CeO2 on the thermal decomposition of ammonium perchlorate (AP) were analyzed by
using TGA and DTA characterization [460]. Two weight-loss regions from 25 ◦C to 500 ◦C,
which were similar to the weight loss steps of AP in the absence of catalyst, were observed
in Figure 19a,b. The weight loss decomposition temperatures of AP in the presence of
the pure g-C3N4, CeO2, and g-C3N4/CeO2 were 53.6 ◦C, 47.6 ◦C and 74.6 ◦C, respectively
(Figure 19a). It is also noticeable from Figure 19b that the AP thermal decomposition
rate of g-C3N4/CeO2 nanocomposites was higher than that of CeO2 and g-C3N4. This
heterojunction also shows a highly efficient for 2,4-dichlorophenol degradation [460].
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Table 3. A list of CO2 reduction applications of the g-C3N4–metal oxide-based photocatalytic.

Photocatalyst Type of Heterojunction Source of Light Highest Photocatalytic Rate Ref

NiO-g-C3N4 Type II 300 W Xenon-arc lamp 4.17 µmol·g−1·h−1 [436]

g-C3N4 foam-Cu2O Z-scheme 350–780 nm lamp 8.182 µmol·g−1·h−1

(CO revolution)
[437]

NiMoO4-g-C3N4 Z-scheme - 7238 µmol·g−1·h−1 [438]

CeO2-g-C3N4 Type II 300 W of Xenon-arc lamp 0.590 µmol·h−1

(CO evolution)
[439]

ZnO/Au/g-C3N4 Z-scheme 300 W UV-Vis lamp 689.7 µmol/m2

(CO evolution)
[440]

ZnO/g-C3N4 Z-scheme 300 W xenon light source with a 420 nm
cutoff filter (λ > 420 nm) ~72.24 µmol·g−1 [435]

TiO2/g-C3N4 Type II 8 W UV lamp The highest CH4 and CO yields of 72.2 and 56.2 µmol g−1 [431]

Nb doped TiO2/g-C3N4 Z-scheme 1000 W Xe lamp
The CH4, CO, O2, HCOOH generation rate in the presence

of 50Nb-TiO2/50 g-C3N4 is 562, 420, 1702,
698 µmol h−1 g−1, respectively.

[432]

ZnO/g-C3N4 Z-scheme 350 W Xe lamp The CH3OH production rate was 1.32 µmol h−1 g−1 [429]

ZnO/g-C3N4 Type II 300 W xenon lamp with a 420 nm cutoff filter
(λ > 420 nm)

H2, CH4, and CO production rates of 22.7
µmol·g-Cat

−1·h−1, 30.5 µmol·g-Cat
−1·h−1, and

16.8 µmol·g-Cat
−1·h−1

[433]

ZnO/g-C3N4 Type II 350 W Xe arc lamp 45.6 mol·g-Cat
−1·h−1 [441]

TiO2/g-C3N4 Type II 450 W Xe lamp 22.5 µmol·g−1 and 70 µmol·g−1 for CO and CH4
yield, respectively

[442]

g-C3N4/ 3D ordered microporous
(3DOM)-WO3

Z-scheme visible light (λ ≥ 420 nm) 48.7 µmol g−1 h−1 [443]

NiTO3/g-C3N4 Z-scheme 300 W xenon lamp with a 420 nm cutoff filter
(λ > 420 nm)

The highest yield of CH3OH production is
13.74 µmol·g−1·h−1 [444]
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Methylene Blue (MB), Methylene Orange (MO), and Rhodamine B (RhB) are the most
commonly stable dyes in water at room temperature [461–468]. MB and RhB are toxic
dyes that their high concentration can be so harmful to human and marine animal health.
In accordance with the high resistivity of the MB and RhB in different environmental
conditions, wastewater treatment is an urgent issue. Therefore, it is crucial to provide an
effective and low-cost system to eliminate MB and RhB from sewage. As mentioned above,
2D/1D g-C3N4/ZnO nanocomposites reveal high stability, which retains the initial activity
after repeated cycles [469]. The enhanced photocatalytic activity of g-C3N4-ZnO is likely
due to the synergistic effects of photon acquisition and direct contact between organic
dyes and photocatalyst [470]. To be more specific, the RhB dye degradation efficiency
of this composite is 99% and 95% after one and three cycles under sunlight irradiation,
respectively [471]. It is reported that the highest degradation efficiency for MB is obtained
for the 30 wt % few-layer g-C3N4-ZnO nanocomposites is the best composition [472]. The
higher amount of g-C3N4 can increase the electrons and holes recombination, leading to
the decrease of photocatalytic activity. It is also noticeable that RhB degradation efficiency
for this composite is about 2.1 times higher than that of pristine ZnO [473]. Apart from
g-C3N4-ZnO heterojunction, g-C3N4-TiO2 heterojunction has high capability in the RhB
degradation [474–477]. In these composites, •O2

− played a major role while h+ played a
minor role [478–480]. Li et al. prepared Ti3+ self-doped TiO2 nanoparticles/g-C3N4 hetero-
junctions and demonstrated that the Ti3+ and O defects improve the conductivity and light
absorption range to the visible wavelength region. Besides, the photocatalytic activities for
environmental purification of organic compounds (MB) of the Ti3+ self-doped TiO2/g-C3N4
nanostructures were improved under visible light irradiation remarkably [481]. It is proven
that the photocatalytic activity of 2 wt % g-C3N4-TiO2 improved by 70% compared to the
bare TiO2 [118]. The RhB degradation kinetic constant of g-C3N4-TiO2 heterojunction is
9 times and 25 times higher than g-C3N4 and TiO2, respectively [482]. The AgPO4/g-C3N4
was used for the degradation of organic pollutants. Z-scheme carbon nitride with AgPO4
and Ag nanoparticles was used for the degradation of RhB. The presence of Ag can improve
visible light absorption. The prepared hybrid structure can improve the electrons holes
separation and efficiency [483]. Other metal oxides can also be used in the g-C3N4 based
heterojunction for organic dye degradation [398,484–487]. Bi2O3/g-C3N4 heterojunctions
are the most commonly used composites for organic dye degradation [488,489]. Fan et al.
mentioned that the •OH radicals played the crucial roles during photocatalytic degradation
of MB in 0.5- Bi2O3/g-C3N4 (0.5 is the mass of Bi2O3 in the synthetic process) Z-scheme
heterojunction, while •O2

−, h+, e− radicals have less contribution to this activity [490].
Compared to the pure Bi2O3 and bare g-C3N4, the Bi2O3/g-C3N4 heterojunctions showed
better catalytic activity with 100% MB degradation ability in 90 min [490]. The 2% Bi2O3/g-
C3N4 composites showed a degradation rate constant of 0.040 min−1, which is 2.5 and
1.9 fold higher than that found for bulk and nitrogen vacant 2D g-C3N4 nanosheet, respec-
tively [491]. This composition showed excellent photocatalytic activity with a methylene
green degradation efficiency of 98.7% under visible light irradiation [448]. At 30 ◦C, 5%
CeO2/g-C3N4 (5% is the molar ratios of the CeO2/g-C3N4 samples) photocatalyst showed
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the best efficiency for MB degrading under visible light irradiation with the constant rate of
1.2686 min−1, which is 7.8-fold higher than pure g-C3N4 [492]. Some ternary composites are
also used for RhB and MB dye degradation [493]. SnO2−ZnO quantum dots anchored on g-
C3N4 nanosheets were demonstrated as a promising candidate for RhB degradation, which
is 99% in 60 min under visible-light irradiation [494]. This hybrid also showed a promising
potential for hydrogen production with the photocatalytic rate of 13.61 µmol g−1, which is
1.06 and 2.27 times higher than that of the binary ZnO/g-C3N4 hybrid and pristine g-C3N4.
In similar work, ZnS quantum dots (ZNS)/SnO2/g-C3N4 ternary nanocomposites were
synthesized via solid-state calcination [495]. The high bandgap of SnO2 and ZnS QDs leads
to the reduction of the recombination rate and increases the separation of the generated
carriers in the g-C3N4 [495]. The lower conduction band edge position of the SnO2, which is
lower than others compel electrons to accumulate in this state. The position of the electrons
and holes helped in improving the photocatalytic performance and enhancing stability. As
a result, the transferred electrons can act as a suitable reductant and react with adsorbed
O2 to produce superoxide radicals (O2

−). On the other side, the holes in the valence band
of g-C3N4 can directly oxidize the pollutants to degraded products since these holes have
strong oxidizing power [495]. g-C3N4–metal oxide heterojunction is used to degrade differ-
ent elements such as Hg, Cr (VI) [136,496,497], and different toxic and harmful materials
such as atrazine (ATZ), chloramphenicol, ciprofloxacin (CIP), and etc. [197,454,498–502].
There are several research activities on the photodegradation applications of g-C3N4–metal
oxide-based heterojunctions which are listed in Table 4.

6.2. Sensors

Some benefits, such as high sensitivity to analytes, rapid response to external stimula-
tions, excellent fluorescence quenching abilities, light and electricity conversion properties,
biocompatibility, and high stability make g-C3N4 nanosheet a promising candidate as
a modified electrode for sensors to detect different analytes such as glucose, hydrogen
peroxide, dopamine, etc. [6,549–554]. Metal oxide semiconductors/g-C3N4 composites are
widely used as gas sensors [555]. As a result, the g-C3N4 loaded with metal oxides has
also revealed new types of sensors to detect different kinds of materials [556]. General
schematic description in Figure 20, shows different types of g-C3N4–metal oxide sensors.

Like other applications, g-C3N4–TiO2 based structures are one of the most used com-
posites for sensing applications. Li et al. demonstrated that the photoelectrochemical
TiO2/g-C3N4/CdS platform could be employed for the ultrasensitive determination of T4
polynucleotide kinase (T4 PNK) because this composite showed significant stability and
reproducibility with high selectivity [557]. The photocurrent response is demonstrated in
Figure 21A. To be more specific, “trace a” shows a low photocurrent at a bare electrode.
The rapidly increased photocurrent is detected in “trace b” (from 10 to 30 s) due to de-
crease in the rate of electron-hole recombination and the high-efficiency absorption. In
the TiO2/g-C3N4 modified-FTO in “trace c”, the photocurrent increases to 30.7 µA since
the bandgap of the g-C3N4 reduces the charge carrier recombination and facilitates the
electron transmission [557]. The photocurrent increases in “trace d” (TiO2/g-C3N4/CdS
nanocomposite-modified electrode). The photocurrent increased to 80.0 µA after attaching
DNA3, which can capture ssDNA2 to the electrode and then blocking 6-mercaptohexanol
(MCH) (“trace e”). For comparison, the photocurrent of CdSe QDs with or without the
bio-functionalization of DNA2 on the electrode matrix is 180 and 78 µA, respectively [557].
In addition, “trace f” shows that DNA2-CdSe QDs hybridized onto the surface, the pho-
tocurrent density increases to 180.0 µA since the presence of CdSe QDs improve the light
absorption efficiency. To compare, CdSe QDs also functionalized the electrode matrix
without DNA2, and the result showed that the photocurrent density is about 78.0 µA which
is similar to the “trace e” and highly lower than “trace f”. As a result, the constructed
platform shows a promising candidate for ultrasensitive detection of T4 PNK activity [557].
TiO2 with g-C3N4 is also used for sensitive detection of protein kinase A (PKA), which is
an enzyme that covalently decorates proteins with phosphate groups [558].
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Table 4. the photodegradation application of g-C3N4–metal oxide-based heterojunctions.

Photocatalyst Type of Heterojunction Source of Light Application Highest Photocatalytic Rate Stability Ref

TiO2-g-C3N4 Z-scheme 300 W Xenon arc lamp with a
420 nm cutoff filter (λ > 420 nm)

Degradation of Rhodamine B
and tetracycline hydrochloride

The RhB removal rates for 5 layer TiO2, 3,
5, 7 layers g-C3N4 (0.5)/TiO2 were 5.1%,

17.9%, 31.2%, and 22.6%, respectively
- [503]

P/O co-doped
g-C3N4/anatase TiO2

Z-scheme
350 W Xenon-arc lamp as a light
source with a 420 nm cutoff filter

(λ > 420 nm)
Degradation of enrofloxacin ~98.5% 1 h [504]

TiO2@ g-C3N4 Z-scheme 100-W xenon lamp with a 420 nm
cutoff filter (λ > 420 nm) Degradation of RhB 95.68% [505]

MoS2-g-C3N4@TiO2 - 350 W Xenon lamp Degrdation of Methylene Blue 97.55 1 h [506]
g-C3N4 and

polyaniline-co-modified
TiO2

- xenon lamp containing an
optical filter

Degradation of
tetrabromobisphenol A 92.42% 16 h [507]

N-TiO2/O-doped N
vacancy g-C3N4

Type II
Z-scheme

Lamp with a 420 nm cutoff filter
(λ > 420 nm)

Degradation of tetracycline
hydrochloride and Cr(VI)

TC-HCl and Cr(VI) removal efficiency is
79.9% and 89.5%, respectively - [508]

TiO2@g-C3N4 Type II 300 W xenon lamp Degradation of
tetracycline antibiotic

TiO2@g-C3N4 photocatalyst shows the
The highest tetracycline degradation rate

is 2.2 mg/min, which is 2 times higher
than that of TiO2 and 2.3 times higher

than that of bulk g-C3N4.

- [509]

TiO2/g-C3N4/
persulfate (PS) Type II 300 W xenon lamp with a 420 nm

cutoff filter (λ > 420 nm)

Degradation of micropollutant
(phenol, bisphenol A
and carbamazepine

99.3%. [510]

TiO2 nanowire/g-C3N4
nanosheet/graphene (G)

heterostructures
- 300 W xenon lamp Degradation of nitrobenzene 97% 4 h [119]

Ti3+ and O doped
TiO2/g-C3N4

Type II 30 W cold visible
light-emitting diode Degradation of Rhodamine B

The photodegradation reaction rate
constant based on this heterojunction is

0.0356 min−1, which is 3.87 and
4.56 times higher than those of pristine

Ti3+-TiO2 and g-C3N4, respectively.

- [125]

TiO2/g-C3N4 Type II - Degrdation of
ciprofloxacin (CIP) 68.1% 3 h [511]

ZnO-g-C3N4 Z scheme 500 W Xe lamp, with a 420 nm
cutoff filter (λ > 420 nm)

Degradation of Methylene
Blue (MB) 75% 3 h [512]

ZnO-g-C3N4 Z scheme 300 W xenon lamp Degradation of cephalexin
oxidation 98.9% 1 h [513]
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Table 4. Cont.

Photocatalyst Type of Heterojunction Source of Light Application Highest Photocatalytic Rate Stability Ref
djembe-like ZnO-

g-C3N4
- 150 W Xenon light sources Degradation of MB and RhB MB and RhB degradation efficiency are

~95% and ~97%, respectively. 50 min [514]

WO3-g-C3N4
300 W Xenon lamp with a 420 nm

cutoff filter (λ > 420 nm) Degradation of tetracycline 90.54% 1 h [515]

WO3-g-C3N4 Z-scheme 450 W xenon lamps Degradation of AO7 100% 75 min [516]

WO3-g-C3N4 Z-scheme 35-W Xe lamp with a radiation
intensity of 1380 µW·cm2 Degradation of orange G 98% 1 h [517]

Ag-WO3/g-C3N4 Z-scheme
500 W Xe lamp (Beijing Bofei
Technology. Co. Ltd., Beijing,

China)

degradation of
oxytetracycline hydrochloride 97.74 1 h [273]

WO3@g-
C3N4@MWCNT Z-scheme 5 mW cm−2 Xe lamp (SANEI

electronics-JAPAN)
Degradation of tetracycline 79.54% 2 h [518]

g-C3N4/WO3 Z-scheme - Degradation of nitenpyram

The photocatalyst rate constant is
0.036 min−1 which is about 1.7 and

25 times higher than that of pure g-C3N4
and WO3, respectively.

- [519]

Bi2O3- g-C3N4 Z-scheme 350 W xenon lamp with a 420 nm
cutoff filter (λ > 420 nm) Degradation of Rhodamine B 98% 80 min [520]

Bi2O3- g-C3N4 Z-scheme 250 W Xenon lamp with a 420 nm
cutoff filter (λ > 420 nm) Degradation of tetracycline 80.2% 50 min [521]

g-C3N4-CeO2 Type II 300W Xe arc lamp Degradation of antibiotic
doxycycline hydrochloride 84% 1 h [522]

Shuttle-like
g-C3N4-CeO2

- 300 W Xe arc lamp Degradation of norfloxacin 88.6% 1 h [523]

Kaolin/CeO2/g-C3N4 - 500 W Xenon lamp with a 420 nm
cutoff filter (λ > 420 nm) Removal of ciprofloxacin 90% 150 min [524]

Fe3O4/CeO2/g-C3N4 - 300 W Xe lamp with a 420 nm
cutoff filter (λ > 420 nm)

Degradation of
tetracycline hydrochloride 96.63% 3 h [525]

Au/g-C3N4
nanosheets/CeO2

Z-scheme 500 W Xe lamp with a 400 nm
cutoff filter (λ > 400 nm)

Reduction of
hexavalent chromium

Oxidation of oxytetracycline
hydrochloride

88.2%
95.1% 150 min [411]

Co3O4-g-C3N4 - 250 W Xe lamp with a 420 nm
cutoff filter (λ > 420 nm)

Degradation of
Methyl Orange 100% 3 h [526]
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Table 4. Cont.

Photocatalyst Type of Heterojunction Source of Light Application Highest Photocatalytic Rate Stability Ref

NiO-g-C3N4 Type II 500 W Xe-lamp with a 420 nm
cutoff filter (λ > 420 nm)

Degradation of
Methylene Blue

6.3 wt. % NiO loading shows a 2.3 times
higher MB degradation rate than that of

the pristine g-C3N4.
80 min [527]

V2O5-g-C3N4 Z-scheme 500 W Xenon lamp with a 420 nm
cutoff filter (λ > 420 nm)

Degradation of Congo Red
and Cr (VI) reduction -. 90 min [528]

MoO3-g-C3N4 Z-scheme

150 W-Xe lamp having 1.5 AM
filter which allows wavelength

larger than 400 nm for the visible
light-based catalytic reaction

Degradation of Rhodamine B 93% 3 h [529]

MoO3-g-C3N4 Z-scheme 500W Xenon lamp Degradation of Rhodamine B 100% 10–15 min [530]
MoO3-g-C3N4 Z-scheme visible light (λ > 420 nm) Degradtion of tetracycline 85.9% 100 min [531]

BiMoO6-g-C3N4 Z-scheme 300 W Xe lamp Degradation of ciprofloxacin ~100 30 min [532]

g-C3N4/SnO2 S-scheme
A 300 W Osram, 230 V with a

420 nm cut-off filter as used as the
visible light source.

Degradation of NO 44.17% 30 min [533]

g-C3N4-NiO Z-scheme 30 W LED-light source Degradation of Methyl
Orange (MO) 96.8% 2 h [461]

ZnO/g-C3N4 Type II 150 W Xe lamp Degradation of MB and RhB The MB and RhB degradation was ~95%
and ~97%, respectively. 50 min [514]

g-C3N4/CuOx - 350W Xe lamp Degradation of Methyl
Orange (MO) ~62.5%. 70 min [534]

WO3/g-C3N4 Z-scheme 300 W Xe arc lamp Degradation of
sulfamethoxazole 91.7% 4 h [453]

g-C3N4
Nanosheets/ZnO - 500 W Xe lamp Photocatalytic reduction of

aqueous chromium(VI) 70% 4 h [535]

ZnO/g-C3N4 - 500 W xenon lamp Photodegradation of Direct
Blue 199 (DB) 99% 100 min [536]

ZnO/g-C3N4 - A 150 W xenon lamp Degradation of tetracycline
hydrochloride 97% 30 min [452]

MoS2/Al2O3/g-C3N4 -
150 W tungsten halogen lamp

with a 420 nm cutoff filter
(λ > 420 nm)

Degradation of crystal
violet (CV) 97.3%. 90 min [537]

g-C3N4/ZnO Z-scheme
300 W Xenon lamp cutoff filter

with a 420 nm cutoff
filter (λ > 420 nm

Degradation of 4-chlorophenol ~ 95% 1 h [538]
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Table 4. Cont.

Photocatalyst Type of Heterojunction Source of Light Application Highest Photocatalytic Rate Stability Ref

Gd2O3 NPs@g-C3N4 -

300 W Xe lamp with a 420 nm
cutoff filter (λ > 420 nm)

(PLS-SXE300, Beijing Perfectlight
Technology Co., Ltd.,

Beijing, China)

Degradation of Methyl
Orange (MO)

Methyl Blue (MB)
Rhodamine B

72.4%
95.5%
100%

2 h [539]

MoO3/g-
C3N4/peroxydisulfate

(PDS)
Z-scheme 350 W Xenon lamp with a 420 nm

cutoff filter (λ > 420 nm)
degradation of

ofloxacin (OFLX) 94.4% 2 h [540]

ZnO/g-C3N4 Z-scheme 300 W Xe lamp Degradation of cephalexin 98.9% 1 h [513]

Ce2O/Bi2O3/g-C3N4 Z-scheme 75 W halogen lamp Degradation of Malachite
green and Rose Bengal - 1 h [541]

CuO/ZnO/g-C3N4 Z-scheme 400 W hallow lamp Degradation of Methylene
Blue and ammonia-nitrogen

The MB and ammonia-nitrogen
degradation efficiency are

~98% in 45 min and 91% in 6 h.

45 min, and
6 h [542]

Fe3O4/ZnO/g-C3N4 Type II 23 W white LED Degradation of pantoprazole 97.09%. 90 min [543]

Fe3O4/TiO2/g-C3N4 - 500 W Xenon Lamp with a 420 nm
cutoff filter (λ > 420 nm

Degradation of Rhodamine B
(RhB) and Methylene

Orange (MO)

The photocatalyst shows the RhB, and
MO degradation efficiency is ~96.4% in

80 min and 90% in120 min.

8 min and
120 min [544]

g-C3N4/ZnO/TiO2 -

1000 W xenon lamp irradiation
system equipped with a 410 nm

cutoff filter under room
temperature.

Degradation of
p-toluenesulfonicacid (p-TSA) 100% 60 min [545]

ZnO/Ag2O/g-C3N4 -
high pressure xenon short arc

lamp with the light intensity of
100 mW cm−2

Degradation of ciprofloxacin 97.4% 48 min [196]

WO3/TiO2@g-C3N4 - 500 W metal halide lamp
Removal of acetylsalicylate

(aspirin) and
methyl-theobromine (caffeine)

98% 90 min [546]

TiO2@g-C3N4/Co3O4 - 300 W xenon lamp
Degradation of tetracycline

(TC) and Methylene
Orange (MO)

The TC (10 mg/L) and MO (25 mg/L)
degradation efficiency are 91.6% and

97.8%, respectively.
1 h [547]

g-C3N4/Bi2O3/TiO2 - Xe-lamp light source with a
420 nm cutoff filter (λ > 420 nm

Degradation of Methylene
Blue (MB) The MB removal efficiency is 77.5%. 3 h [548]

SnO2/ZnO@g-C3N4 - 300 W xenon lamp Degradation of Rhodamine B
dye and H2 production 99% 1 h [494]

g-
C3N4/NiO/ZnO/Fe3O4

- - removal of esomeprazole 95.05 ± 1.72% 70 min [513]
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Figure 21. (A) Photocurrent responses of (a) FTO, (b) FTO/TiO2, (c) FTO/TiO2/g-C3N4, (d) FTO/TiO2/
g-C3N4/CdS, (e) FTO/TiO2/g-C3N4/CdS/capture-DNA3/MCH, (f), FTO/TiO2/g-C3N4/CdS/capture-
DNA3/MCH/DNA2-CdSe, (g) FTO/TiO2/g-C3N4/CdS/capture-DNA3/MCH/CdSe, Copyright ©
2022 American Chemical Society [557]; (B) Nyquist plots of ZnO, g-C3N4/ZnO composites and g-C3N4

nanosheets electrodes, Copyright © 2022 American Chemical Society [559].

ZnO-g-C3N4 is another heterojunction used as an agent as UV-assisted gas sensors. It is
shown that the ethanol (C2H5OH) sensing capability of ZnO-g-C3N4 is much higher when
compared to the bare ZnO and g-C3N4. The ZnO with 8% g-C3N4 showed the best sensing
performance than the others, which attributes to effective electrons and holes separation
between g-C3N4 and ZnO and the UV-light catalytic effect in the room temperature [559].
The structure showed an excellent response of ethanol at room temperature, which was
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higher than the pure ZnO at the same condition. The arc radius of ZnO and g-C3N4/ZnO
is shown in Figure 21B. The results show that adding g-C3N4 nanosheets to ZnO improves
the charge transfer and reduces the electrical resistivity [559].

Sensing of NO2 and CH4 by ZnO-g-C3N4 heterojunction have also been investi-
gated [560,561]. Hydrogen sulfide (H2S) is a corrosive and toxic gas, which can be gener-
ated from oil refining, mines, or petroleum fields, fuel cells, or food processing industries
and may cause severe problems. As a result, eliminating H2S has always been a serious
research topic. Zeng et al. used α-Fe2O3/g-C3N4 for H2S detection and showed that 5.97%
α-Fe2O3 with g-C3N4 provides the best cataluminescence response [562]. The prepared
α-Fe2O3/g-C3N4 composite can be used as an H2S gas sensor in environmental monitoring,
oil refining, food processing, and so forth. Researchers have shown that g-C3N4-SnO2
composites can also be used as sensors for different kinds of compounds. Specifically,
Zhang et al. proved that the presence of g-C3N4 beside SnO2 enhances the gas sensitivity
and selectivity of SnO2 to acetic acid vapor with the reduced temperature from 230 ◦C to
185 ◦C [563]. The limit of acetic acid vapor detection is 0.1 ppm; however, the long-term
stability of the prepared composite is low and should be improved. In-SnO2 loaded cu-
bic mesoporous g-C3N4 will be a new method and structure to design efficient humidity
sensors for monitoring indoor climatic conditions [564]. Table 5 lists the applications of
g-C3N4–metal oxide heterojunction used as sensor material.

6.3. Bacterial Disinfection

According to different sizes, shapes, and structures of bacteria, viruses, microbes,
and microalgae, the g-C3N4 has the ability to eliminate them under ultraviolet or visible
light irradiation changes. Fabricating the g-C3N4 with different metal oxides is important
for effective composites for water antimicrobial disinfection and microbial control. Bio-
hazards are widely present in wastewater and contaminated water containing a variety
of viruses, bacteria, fungi, etc., causing health issues in humans [30]. The pioneering
work by Matsunaga et al. showed that TiO2 could help in inactivating bacteria such as
Escherichia coli, Lactobacillus acidophilus, and Saccharomyces cerevisiae under UV light [580].
TiO2 suffers from low absorption of solar energy and this is due to the wide bandgap of
TiO2, which is widely discussed in the previous parts. One method to increase TiO2 perfor-
mance is to combine it with different semiconductors. Li et al. prepared g-C3N4-TiO2 using
a facile hydrothermal-calcination approach with high photocatalytic bacterial inactivation
ability [114]. They demonstrated that this composite could facilitate water disinfection,
especially in hospital wastewaters with highly concentrated pathogenic microorganisms,
using visible light. In another work, researchers investigated the excellent efficiency of this
composite on the removal of the microcystis aeruginosa and Microcystin-LR [581].

In order to improve the photocatalytic activity, researchers are more likely to dope
metal elements such as Ag and Cr in the g-C3N4–metal oxide structure, which can per-
form as an electron sink to separate the carriers. Doping these elements not only can
modify the band edge positions of these structures but also, due to antimicrobial and
bacterial properties of these materials, they are widely used in the g-C3N4–metal oxide-
based photocatalysts [102,189]. g-C3N4/Cr-ZnO nanocomposites with superior antibac-
terial activity against Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis,
Staphylococcus aureus, and Streptococcus salivarius) were investigated [172]. In this research,
the 60%g-C3N4/5%Cr-ZnO nanocomposite performs the highest antibacterial activity.
Fe-SnO2/g-C3N4 revealed a promising sterilization performance for Escherichia coli and
Staphylococcus aureus under sunlight, near-ultraviolet light, and daylight lamp [582]. The
sterilization performance of this structure is mostly deserved under a daylight lamp. The
magnetic silver-iron oxide nanoparticles decorated graphitic carbon nitride nanosheets
showed antibacterial performance against E. coli bacteria [583].
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Table 5. The list of applications of g-C3N4–metal oxide heterojunction used for detection.

Photocatalyst Application Explanation Ref

MoO3-g-C3N4 Detection of Furazolidone
The high electroactive surface area (0.3788 cm2), as well as enhanced heterogeneous electron transfer rate

(K◦eff = 4.91 × 10−2 cm·s−1 can detect Furazolidone with low limit of detection (LOD) (1.4 nM) with a
working range of 0.01–228 µM.

[528]

Co3O4-g-C3N4 Detection of environmental phenolic hormones This composite showed a wide detection range and a low limit of detection LOD (10−9 mol L−1) [565]

g-C3N4-Fe3O4
Determination of Tramadol in Human

Biological Fluids LOD of this composite is ~0.1 µM [566]

V2O5-g-C3N4 Detection of folic acid The sensitivity, the LOD, and noise-to-signal ratio of the sensor is 19.02 µA mM−1 cm−2, and 0.00174 µM,
and 3 (S/N = 3), respectively

[567]

g-C3N4-NiO Detection of quercetin The dynamic range and LOD of g-C3N4-NiO for sensing quercetin is 10 nM to 250 and
0.002 µM, respectively [568]

Cu2O-g-C3N4 Humidity sensor The response time and recovery time were 180–200 s and 5–10 s, respectively. [569]
NiO-Co3O4-g-C3N4 Detection of tetrabromobisphenol-A This structure showed a LOD of ~0.1 mmol L−1 [570]

ZnO @ g-C3N4 Detection of CCRF-CEM cells The LOD of this compsite is ~20 cell/mL [571]
ZnO flower-rod/g-C3N4-gold

nanoparticle Detection of carcinoembryonic antigen (CEA) The PEC aptasensor for CEA determination is from 0.01 to 2.5 ng·mL−1 with detection of 1.9 pg·mL−1. [572]

g-C3N4/ZnO Ethanol sensing Compared to the ZnO, the g-C3N4/ZnO-8% composites revealed an excellent response ~60 orders of
magnitude at room temperature. [559]

ZnO/g-C3N4 NO2 sensing The response, recovery time, and LOD of ZnO/g-C3N4-10 wt % are 142, 190 s, and 38 ppb, respectively. [561]

SnO2/g-C3N4 Ethanol gas Sensing The composite with 7 wt % g-C3N4 content exhibited a promising gas sensing property to ethanol, which
has better response and selectivity than that of the pure SnO2 based sensor. [321]

g-C3N4/ZnO CH4 Sensing The higher active sites can be obtained in this structure due to the larger specific surface area leading to the
great response toward 1000 ppm CH4. [560]

g-C3N4-Mn3O4 H2S sensor The LOD (S/N = 3, LOD) is 0.13 µg mL−1 [573]

α-Fe2O3/g-C3N4 H2S sensor The linear detection range and detection limit of the H2S gas sensor were 0.88–7.01 µg mL−1(r = 0.998) and
0.5 µg mL−1(S/N = 3), respectively.

[562]

O vacancy WO2.9/g-C3N4 4-nitrophenol Sensing Compared to other research works, this heterojunction showed the linear range of 0.4–100 µmol/L and a
lower detection limit of 0.133 µmol/L. [574]

b-Bi2O3/g-C3N4 Detection of chlorpyrifos The linear detection range and detection limit of this sensor were 0.1–80 ng mL−1 a03 µg mL−1, respectively. [575]
Fe3O4/Bi2O3/g-C3N4 Determination of Cd2+ and Pb2+ The minimum quantity for Cd2+ and Pb2+ that can be detected is 3 × 10−9 and 1 × 10−9 mol/L, respectively. [576]

WO3/g-C3N4 Detection of phosmet The limit of detection (LOD) and limit of quantification (LOQ) of this device was calculated 3.6 nM and
11.2 nM, respectively. [577]

WO3/g-C3N4/MnO2 Detection of oxytetracycline cathodic This sensor exhibited a wide detection range from 1 pM to 150 nM and a low detection limit of 0.1 pM. [578]
CuO-g-C3N4 Aflatoxin B1 sensing The limit of detection of 6.8 pg mL−1 for AFB1. [579]
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Zhao and coworkers illustrated that g-C3N4/ZnO/cellulose (CNZCel) shows the
high thermal stability of the composite and photo-excited carriers separation efficiency
and decreases the recombination rate [202]. Besides, the nanocomposite revealed ex-
cellent antibacterial activity against Escherichia coli (E. coli) and Gram-positive bacteria
Staphylococcus aureus (S. aureus). The presence of ZnO in the structure can efficiently en-
hance the antibacterial activities against E. coli and S. aureus. Compared to the other materi-
als, these ternary composites demonstrated better antibacterial performance (Figure 22a,b).
The effect of the g-C3N4 content on the antibacterial property against E. coli and S. aureus in
this composite is also investigated, which is shown in Figure 22c,d [202]. The mechanism of
antibacterial activity generates electron-hole pairs under illumination, which can provide
enormous reactive oxygen species (ROS), such as •O2

−, •OH2 and H2O2, needed for the
inhibition of E. coli and S. aureus growth.
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Figure 22. (a) Plots of bacterial counts of g-C3N4/ZnO/cellulose-0.45 (0.45 corresponds to the mass
of g-C3N4 addition), ZnO/cellulose, ZnO, g-C3N4, and blank sample against S. aureus and (b) E. coli;
(c) bacterial counts of g-C3N4/ZnO/cellulose composites against S. aureus and (d) E. coli. Reproduced
from Reference [202].

Table 6 mentioned some additional studies on the disinfection ability of g-C3N4–metal
oxide-based nanomaterials.
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Table 6. Number of researches on the disinfection ability of the g-C3N4 metal oxide-based nanomaterials.

Photocatalyst Source of Light Application Highest Photocatalytic Rate Ref

g-C3N4/TiO2/Ag Xe lamp with a 420 nm cutoff filter
(λ > 420 nm) Bactericidal efficiency against E. coli the optimal bacterial inhibition of g-C3N4/TiO2/Ag

was 84% [102]

g-C3N4/Cu2O 300 W xenon lamp with 400 nm
cutoff filter (λ > 400 nm)

Inactivation efficiencies of E. coli as
well as Fusarium graminearum

g-C3N4 with 45%Cu2O composition revealed the
inactivation efficiencies of ~7 log E. coli [584]

TiO2/g-C3N4/SnO2
300 W xenon lamp with 420 nm

cutoff filter (λ > 420 nm) Bactericidal efficiency against E. coli

TiO2/g-C3N4/SnO2 structure showed a good E. coli
disinfection efficiency under visible and UV

irradiation, with ~−6.7 log E. coli and −8.2 log E. coli,
respectively.

[314]

α-Fe2O3/CeO2 decorated g-C3N4
500 W Xe light with the cut-off filter

of ~420 nm (λ > 420 nm)

Antibacterial activities against
S. aureus (G+) and E. coli (G−)

bacteria

α-Fe2O3/CeO2 decorated g-C3N4 exhibited perfect
antibacterial to E. coli and S.aureus activity with the

maximum zone of inhibition (ZOI) of 11 ± 0.5, 12 ± 0.
[585]

g-C3N4-m-Bi2O4
500 W halogen lamp with UV-cut off

filter (λ > 420 nm)
Bactericidal efficiency E. coli and

S.aureus bacteria
The ZOI value for E.coli and S. aureus bacterial strains

was ~11±0.5 mm and 12–13 ± 0.5. [586]

Ag/ZnO/g-C3N4 300 W xenon arc lamp Bactericidal efficiency against E. coli The E. coli disinfection efficiency of Ag/ZnO/g-C3N4
structure is ~7.4 log E. coli. [190]

Ag/AgO-g-C3N4 100 W tungsten lamp Bactericidal efficiency against E. coli
The 1, 2, 3, and 4 mg of catalyst showed low

quantitative E. coli growth inhibition, which was ~17%
and 65%, 97%, 99%, respectively.

[587]

Cu2O-g-C3N4
36 W fluorescent lamp with the

cut-off filter of ~400 nm (λ > 400 nm)

Bactericidal efficiency against
B. subtilis, E. coli, S. aureus and

P. aeruginosa

The maximum ZOI for Cu2O-g-C3N4 to B. subtilis
E.coli, S. aureus and P. aeruginosa is 22 ± 1.67, 15 ± 1.08,

11 ± 1.22, 6 ± 0.09, respectively.
[587]

g-C3N4 / TiO2 Kaolinite Xenon lamp with a 400 nm
cut-off filter

Disinfection ability towards
S. aureus

The disinfection efficiency of g-C3N4/TiO2/kaolinite
is ~4.3 log cfu/mL in 5 h. [588]

TiO2/g-C3N4
500 W xenon arc lamp with a

400 nm cut-off filter Anti-fouling ability of E. coli
TiO2/g-C3N4 showed an excellent E. coli removal with

a permeate flux of 2 times higher than that of
filtration alone.

[589]

TiO2/g-C3N4 - Bactericidal efficiency against E. coli The bacterial survival rate for the TiO2
nanotube/g-C3N4 nanofilms is ~16%. [590]

g-C3N4/Ag-TiO2 Xenon lamp

Bactericidal efficiency against both
Gram-negative 18 Escherichia-coli

and Gram-positive
Staphylococcus-aureus

The presence of Ag in g-C3N4/Ag-TiO2 structure
could enhance water disinfection under visible light. [591]

g-C3N4/MoS2-Bi2O3 300 W xenon arc lamp Bactericidal efficiency against E. coli g-C3N4/Bi2O4 with the ratio of 1:0.5, could entirely
inactivate 6-log10 cfu/mL E. coli. [586]
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6.4. Other Applications

Due to the specific properties of g-C3N4-based heterojunctions, these composites can
be used in many other applications [150,247,585,592]. With reference to the high energy
demand for electronic devices and vehicles, rechargeable lithium-ion batteries (LIBs) have
captured enormous attention among many researchers [319,320,593–595]. Anode materials,
which are a significant part of the LIBs, should have improved specific capacity, high stabil-
ity. SnO2 is a new type of lithiophilic material with high specific capacity (1494 mAh g−1),
low potential for Li+ insertion, increased number of sources, and etc. [320,593,596–602];
however, it suffers from significant volume expansion (∼300%) during the charge-discharge
cycling, leading to fast capacity fading. SnO2 nanosheets with 20–25 nm thickness dispersed
in the g-C3N4 showing the potential lithium storage for LIBs. SnO2@C3N4 nanocompos-
ites can also be prepared by a scalable solid-state reaction [319]. Tran et al. used the
hydrothermal method to grow SnO2 onto the graphite oxide/g-C3N4 [320]. This composite
showed an excellent reversible capacity and cycling performance for lithium storage, which
may attribute to the existence of g-C3N4 or graphite oxide-g-C3N4. SnO2@g-C3N4 based
nanocomposites provide a suitable substitute for next-generation high-power and low-cost
LIBs [319]. Zn2GeO4 nanoparticles demonstrate high capacity and act as spacers to prevent
the g-C3N4 sheets from stacking, leading to the expanded interlayer and exposed vacancies
for higher Li-ion storage. Besides, g-C3N4 layers, in turn, reduce the expansion of the
particles and provide more stable solid electrolyte interphase, results in highly reversible
lithium storage capacity, which is 1370 mA h g−1 at 200 mA g−1 after 140 cycles with a
significant rate capability of 950 mA h g−1 at 2000 mA g−1 [595]. The SnO2 nanosheets with
g-C3N4 can enhance lithium storage capabilities and cycling performance [593]. Other g-
C3N4–metal oxide nanocomposites can also be used in the supercapacitor that can be used
with batteries to mitigate the power delivery problems associated with batteries [596–598].
The bare g-C3N4, g-C3N4/CuO, g-C3N4/Co3O4 electrode-based device exhibited a specific
capacitance of 72 F g−1

, 95 F g−1, and 201 F g−1, respectively [599]. Besides, the energy
density of g-C3N4/CuO and g-C3N4/Co3O4 at the constant power density of 1 kW·kg−1

are 13.2 W·h·kg−1, and 27.9 W·h·kg−1, respectively. Moreover, the excellent theoretical
capacities of V2O5 for the next generation supercapacitors makes the porous g-C3N4@V2O5
good candidate with a high specific capacity of about 457 Fg−1 at 0.5 Ag−1 with high
cycling performance (~84% after 500 cycles) [600].

Photocatalytic nitrogen fixation, which is a clean and sustainable method for the pro-
duction of NH3, is another application of g-C3N4-based materials. However, insignificant
surface-active sites, poor stability, and high recombination rate of carriers have restricted
the efficiency of g-C3N4 for nitrogen fixation activities. The carrier separation should be
enhanced by doping with other elements or compositing with various metal oxides. Finally,
nitrogen gas should completely adsorb on the photocatalyst for the reduction steps [603]. It
is shown that the cyano group (–C
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NC) in cyano group modified g-C3N4 enhance the
photocatalytic applications for N2 fixation up to 128 times [604].

As we discussed earlier, iodine and sulfur are atoms that can improve the carriers’ ac-
tivities in the bulk g-C3N4 [605]. To be more specific, ultrathin sulfur-doped g-C3N4 porous
nanosheets revealed a superior photocatalytic nitrogen fixation rate with 5.99 mM·h−1·g−1

for 4 h under simulated sunlight irradiation [606]. Zhang et al. demonstrated that B
atoms change the band structures and WO3 enhances the photocatalytic activities. The
quantum efficiency (QE) of the prepared composites is 0.71% for nitrogen fixation at
400 nm with a yield of 450.94 µmol g−1 h−1 under visible light [606]. In another work, Liu
and coworkers mentioned that the phosphorus-doped 1 T-MoS2 as co-catalyst decorated
nitrogen-doped g-C3N4 nanosheets speed up the N2 reduction rate to 689.76 µmol L−1

g−1·h−1 in deionized water under simulated sunlight irradiation, which is 2.59, 1.65, 1.47,
and 1.30 times higher than that of pure g-C3N4, 1 T-MoS2@g-C3N4, 1 T-MoS2@N doped
g-C3N4, and P doped 1 T-MoS2@g-C3N4, respectively. It is noteworthy to note that MoS2
mainly includes semiconductive 2H phase and metal octahedral 1 T phase with promising
conductivity and suitable photocatalysis since this phase provides a large number of active
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sites on the base and edge [607]. Researchers also used metal oxides with g-C3N4-based
composites to improve nitrogen fixation productivity. TiO2/SrTiO3/g-C3N4 ternary hetero-
junction nanofibers demonstrated N2 fixation value under-stimulated sunlight irradiation
is 2192 µmol g−1 h−1 L−1, which is 1.9 and 3.3 times better than those of TiO2/g-C3N4
nanofibers and SrTiO3/g-C3N4 nanofibers, respectively [605,608]. Oxidized g-C3N4 can
also enhance the chemo selective and unselective oxidative processes, utilized in organic
reactions to provide synthons required in several value-added preparations [609].

It is interesting to mention that g-C3N4–metal oxide-based heterojunction can be
widely used to detect of different biological materials, gasses, heavy metals, organic and
inorganic materials [547,610]. g-C3N4–metal oxide-based composites can also be widely
used for other applications, especially supercapacitors and desulfurization [107,611–613].

7. Conclusions, Limitations and Challenges

To fix inadequate light-harvesting of the bare g-C3N4, many researchers used doping
elements to improve the efficiency, while combining g-C3N4 with other materials, such as
metal oxides are another approach to deal with this issue. The investigation of g-C3N4–
metal oxide-based heterojunctions with engineered bandgaps, and modified surface to
enhance the abortion spectrum towards the visible-light region, reduction of the charge
carrier recombination, and increasing the surface adsorption and reaction are among the
main scopes of investigations of g-C3N4 based materials. Among all types of heterojunc-
tions mentioned in the review paper, almost all g-C3N4–metal oxide-based nanocomposites
have a Type II or a Z-scheme system, which have been proven to be outstanding for
different applications. The applications highlighted included water splitting, CO2 reduc-
tion, photodegradation of organic pollutants, nitrogen fixation, catalysis, sensing, bacterial
disinfection, energy storage, etc.

Several types of carbon-based nanomaterials such as carbon-based quantum dots
(CDs) (carbon quantum dots (CQDs) and graphene quantum dots (GQDs)), which are
discussed in our previous work, can be used as sensors [214]. One kind of carbon-based
nanomaterials is g-C3N4, which is widely used to detect different cells in human biological
fluids, gasses, humidity, heavy metals, etc. Nevertheless, these applications also can be
enormously challenging and give plenty of room for research and development, and
there are great demands for fast and accurate diagnostic methods for both clinical and
commercial applications. As a result, it is suggested to develop systems for clinical use to
detect different diseases outside the body, especially the newly emerging one, COVID- 19,
mainly due to its high chemical stability and excellent efficiency in absorbing the light and
promising photocatalytic performance. In addition, the detection of different heavy metals
and ions is one of the most crucial factors for contaminant removal and water treatment.
Since g-C3N4–metal oxide photocatalysts have exhibited the superior potential to detect
different materials, it seems critical to extending investigations on the efficiency of these
heterojunctions for detection of Cu2+, Hg2+, Cr (VI), and Ag+.

The need for using solar energy has increased among many researchers, as energy
resources are going to be depleted. Researchers require suitable semiconductors for dif-
ferent catalytic reactions, such as H2 and O2 generation by water splitting, CO2 reduction
to hydrocarbon fuels, etc. In order to have a future practical application in this area, we
have to resolve some issues about the conversion of solar energy to fuel. The cocatalysis
and quantum efficiency are among the most important properties for H2O splitting and
CO2 reduction, which for the g-C3N4–metal oxide composites, researchers do not have
enough knowledge. The enhanced photocatalytic activity of the mentioned nanocompos-
ites in this review under visible light encourages researchers to use these heterojunctions in
antibacterial and antiviral applications. Inactivation originates from direct hole oxidation
and •O2

−, •OH, and H2O2, which are produced in a reductive way, and dependent on the
type of microorganisms. Because several research works have been conducted on water
disinfection and microbial control in the laboratories, it is necessary to have more practical
exploration on full-scale water treatment.
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Photocatalytic Decomposition of Nitrous Oxide. Mater. Chem. Phys. 2017, 193, 438–446. [CrossRef]

33. Giannakopoulou, T.; Papailias, I.; Todorova, N.; Boukos, N.; Liu, Y.; Yu, J.; Trapalis, C. Tailoring the Energy Band Gap and Edges’
Potentials of g-C3N4/TiO2 Composite Photocatalysts for NOx Removal. Chem. Eng. J. 2017, 310, 571–580. [CrossRef]

34. Tay, Q.; Kanhere, P.; Ng, C.F.; Chen, S.; Chakraborty, S.; Huan, A.C.H.; Sum, T.C.; Ahuja, R.; Chen, Z. Defect Engineered g-C3N4
for Efficient Visible Light Photocatalytic Hydrogen Production. Chem. Mater. 2015, 27, 4930–4933. [CrossRef]

35. Mo, Z.; She, X.; Li, Y.; Liu, L.; Huang, L.; Chen, Z.; Zhang, Q.; Xu, H.; Li, H. Synthesis of g-C3N4 at Different Temperatures
for Superior Visible/UV Photocatalytic Performance and Photoelectrochemical Sensing of MB Solution. RSC Adv. 2015, 5,
101552–101562. [CrossRef]

36. Paul, D.R.; Sharma, R.; Nehra, S.P.; Sharma, A. Effect of Calcination Temperature, PH and Catalyst Loading on Photodegradation
Efficiency of Urea Derived Graphitic Carbon Nitride towards Methylene Blue Dye Solution. RSC Adv. 2019, 9, 15381–15391.
[CrossRef]

37. Fan, X.; Xing, Z.; Shu, Z.; Zhang, L.; Wang, L.; Shi, J. Improved Photocatalytic Activity of g-C3N4 Derived from Cyanamide–Urea
Solution. RSC Adv. 2015, 5, 8323–8328. [CrossRef]

38. Liu, H.; Yu, D.; Sun, T.; Du, H.; Jiang, W.; Muhammad, Y.; Huang, L. Fabrication of Surface Alkalinized g-C3N4 and TiO2
Composite for the Synergistic Adsorption-Photocatalytic Degradation of Methylene Blue. Appl. Surf. Sci. 2019, 473, 855–863.
[CrossRef]

39. Li, F.; Zhao, R.; Yang, B.; Wang, W.; Liu, Y.; Gao, J.; Gong, Y. Facial Synthesis of Dandelion-like g-C3N4/Ag with High Performance
of Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 30185–30195. [CrossRef]

40. Hu, C.; Hung, W.-Z.; Wang, M.-S.; Lu, P.-J. Phosphorus and Sulfur Codoped g-C3N4 as an Efficient Metal-Free Photocatalyst.
Carbon 2018, 127, 374–383. [CrossRef]

41. Chen, Y.; Wang, B.; Lin, S.; Zhang, Y.; Wang, X. Activation of N→ Π* Transitions in Two-Dimensional Conjugated Polymers for
Visible Light Photocatalysis. J. Phys. Chem. C 2014, 118, 29981–29989. [CrossRef]

42. Dias, E.M.; Christoforidis, K.C.; Francas, L.; Petit, C. Tuning Thermally Treated Graphitic Carbon Nitride for H2 Evolution
and CO2 Photoreduction: The Effects of Material Properties and Mid-Gap States. ACS Appl. Energy Mater. 2018, 1, 6524–6534.
[CrossRef]

43. Ding, Z.; Chen, X.; Antonietti, M.; Wang, X. Synthesis of Transition Metal-modified Carbon Nitride Polymers for Selective
Hydrocarbon Oxidation. ChemSusChem 2011, 4, 274–281. [CrossRef]

44. Yuan, Y.; Zhang, L.; Xing, J.; Utama, M.I.B.; Lu, X.; Du, K.; Li, Y.; Hu, X.; Wang, S.; Genç, A. High-Yield Synthesis and Optical
Properties of g-C3N4. Nanoscale 2015, 7, 12343–12350. [CrossRef] [PubMed]

45. Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. Polymer Semiconductors for Artificial
Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light. J. Am. Chem. Soc. 2009, 131,
1680–1681. [CrossRef] [PubMed]

46. Creighton, J.R.; Ho, P. Introduction to Chemical Vapor Deposition (CVD). Chem. Vap. Depos. 2001, 2, 1–22.

http://doi.org/10.1016/j.cej.2017.04.056
http://doi.org/10.1016/j.chemosphere.2021.132273
http://doi.org/10.1016/j.apcatb.2021.120904
http://doi.org/10.1016/j.cattod.2018.09.013
http://doi.org/10.1039/b800274f
http://doi.org/10.1021/acsami.5b11326
http://www.ncbi.nlm.nih.gov/pubmed/26864284
http://doi.org/10.1016/j.chemosphere.2021.131765
http://www.ncbi.nlm.nih.gov/pubmed/34371351
http://doi.org/10.1016/j.chemosphere.2018.09.137
http://www.ncbi.nlm.nih.gov/pubmed/30273880
http://doi.org/10.1021/la900923z
http://doi.org/10.1016/j.matchemphys.2017.03.008
http://doi.org/10.1016/j.cej.2015.12.102
http://doi.org/10.1021/acs.chemmater.5b02344
http://doi.org/10.1039/C5RA19586A
http://doi.org/10.1039/C9RA02201E
http://doi.org/10.1039/C4RA16362A
http://doi.org/10.1016/j.apsusc.2018.12.162
http://doi.org/10.1016/j.ijhydene.2019.09.217
http://doi.org/10.1016/j.carbon.2017.11.019
http://doi.org/10.1021/jp510187c
http://doi.org/10.1021/acsaem.8b01441
http://doi.org/10.1002/cssc.201000149
http://doi.org/10.1039/C5NR02905H
http://www.ncbi.nlm.nih.gov/pubmed/26152840
http://doi.org/10.1021/ja809307s
http://www.ncbi.nlm.nih.gov/pubmed/19191697


Nanomaterials 2022, 12, 294 51 of 73

47. Xu, Z.; Guan, L.; Li, H.; Sun, J.; Ying, Z.; Wu, J.; Xu, N. Structure Transition Mechanism of Single-Crystalline Silicon, g-C3N4, and
Diamond Nanocone Arrays Synthesized by Plasma Sputtering Reaction Deposition. J. Phys. Chem. C 2015, 119, 29062–29070.
[CrossRef]

48. Zhang, J.; Wang, Y.; Jin, J.; Zhang, J.; Lin, Z.; Huang, F.; Yu, J. Efficient Visible-Light Photocatalytic Hydrogen Evolution and
Enhanced Photostability of Core/Shell CdS/g-C3N4 Nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324. [CrossRef]

49. Sano, T.; Tsutsui, S.; Koike, K.; Hirakawa, T.; Teramoto, Y.; Negishi, N.; Takeuchi, K. Activation of Graphitic Carbon Nitride
(g-C3N4) by Alkaline Hydrothermal Treatment for Photocatalytic NO Oxidation in Gas Phase. J. Mater. Chem. A 2013, 1, 6489–6496.
[CrossRef]

50. Cui, Y.; Ding, Z.; Fu, X.; Wang, X. Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures
for Photoredox Catalysis. Angew. Chemie 2012, 124, 11984–11988. [CrossRef]

51. Muniandy, L.; Adam, F.; Mohamed, A.R.; Iqbal, A.; Rahman, N.R.A. Cu2+ Coordinated Graphitic Carbon Nitride (Cu-g-C3N4)
Nanosheets from Melamine for the Liquid Phase Hydroxylation of Benzene and VOCs. Appl. Surf. Sci. 2017, 398, 43–55.
[CrossRef]

52. Hu, C.; Chu, Y.-C.; Lin, Y.-R.; Yang, H.-C.; Wang, K.-H. Photocatalytic Dye and Cr (VI) Degradation Using a Metal-Free Polymeric
g-C3N4 Synthesized from Solvent-Treated Urea. Polymers. 2019, 11, 182. [CrossRef]

53. Liang, L.; Cong, Y.; Wang, F.; Yao, L.; Shi, L. Hydrothermal Pre-Treatment Induced Cyanamide to Prepare Porous g-C3N4 with
Boosted Photocatalytic Performance. Diam. Relat. Mater. 2019, 98, 107499. [CrossRef]

54. Cao, J.; Fan, H.; Wang, C.; Ma, J.; Dong, G.; Zhang, M. Facile Synthesis of Carbon Self-Doped g-C3N4 for Enhanced Photocatalytic
Hydrogen Evolution. Ceram. Int. 2020, 46, 7888–7895. [CrossRef]

55. Hong, Y.; Liu, E.; Shi, J.; Lin, X.; Sheng, L.; Zhang, M.; Wang, L.; Chen, J. A Direct One-Step Synthesis of Ultrathin g-C3N4
Nanosheets from Thiourea for Boosting Solar Photocatalytic H2 Evolution. Int. J. Hydrogen Energy 2019, 44, 7194–7204. [CrossRef]

56. Wehrstedt, K.-D.; Wildner, W.; Güthner, T.; Holzrichter, K.; Mertschenk, B.; Ulrich, A. Safe Transport of Cyanamide. J. Hazard.
Mater. 2009, 170, 829–835. [CrossRef] [PubMed]

57. Pham, T.-T.; Shin, E.W. Influence of g-C3N4 Precursors in g-C3N4/NiTiO3 Composites on Photocatalytic Behavior and the
Interconnection between g-C3N4 and NiTiO3. Langmuir 2018, 34, 13144–13154. [CrossRef]

58. Guan, C.; Jiang, J.; Pang, S.; Chen, X.; Webster, R.D.; Lim, T.-T. Facile Synthesis of Pure g-C3N4 Materials for Peroxymonosulfate
Activation to Degrade Bisphenol A: Effects of Precursors and Annealing Ambience on Catalytic Oxidation. Chem. Eng. J. 2020,
387, 123726. [CrossRef]

59. Jung, H.; Pham, T.-T.; Shin, E.W. Effect of g-C3N4 Precursors on the Morphological Structures of g-C3N4/ZnO Composite
Photocatalysts. J. Alloys Compd. 2019, 788, 1084–1092. [CrossRef]

60. Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of Thiourea into Carbon Nitride Semiconductors as Visible Light
Photocatalysts. J. Mater. Chem. 2012, 22, 8083–8091. [CrossRef]

61. Xue, J.; Ma, S.; Zhou, Y.; Wang, Q. Au-Loaded Porous Graphitic C3N4/Graphene Layered Composite as a Ternary Plasmonic
Photocatalyst and Its Visible-Light Photocatalytic Performance. Rsc Adv. 2015, 5, 88249–88257. [CrossRef]

62. Edgar, I.C.; Johnstone, S.M.; Milton, M. Urea to Melamine Process. U.S. Patent 3,095,416, 25 June 1963.
63. Wen, J.; Xie, J.; Chen, X.; Li, X. A Review on g-C3N4 -Based Photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [CrossRef]
64. Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic Carbon Nitride (g-C3N4)–Based Metal-Free

Photocatalysts for Water Splitting: A Review. Carbon 2019, 149, 693–721. [CrossRef]
65. Teixeira, I.F.; Barbosa, E.C.M.; Tsang, S.C.E.; Camargo, P.H.C. Carbon Nitrides and Metal Nanoparticles: From Controlled

Synthesis to Design Principles for Improved Photocatalysis. Chem. Soc. Rev. 2018, 47, 7783–7817. [CrossRef] [PubMed]
66. Kumar, S.; Karthikeyan, S.; Lee, A.F. g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts 2018, 8, 74.

[CrossRef]
67. Ai, Z.; Shao, Y.; Chang, B.; Zhang, L.; Shen, J.; Wu, Y.; Huang, B.; Hao, X. Rational Modulation of Pn Homojunction in P-Doped

g-C3N4 Decorated with Ti3C2 for Photocatalytic Overall Water Splitting. Appl. Catal. B Environ. 2019, 259, 118077. [CrossRef]
68. Pan, Y.; Li, D.; Jiang, H. Sodium-Doped C3N4/MOF Heterojunction Composites with Tunable Band Structures for Photocatalysis:

Interplay between Light Harvesting and Electron Transfer. Chem. Eur. J. 2018, 24, 18403–18407. [CrossRef] [PubMed]
69. Putri, L.K.; Ng, B.-J.; Er, C.-C.; Ong, W.-J.; Chang, W.S.; Mohamed, A.R.; Chai, S.-P. Insights on the Impact of Doping Levels in

Oxygen-Doped GC3N4 and Its Effects on Photocatalytic Activity. Appl. Surf. Sci. 2020, 504, 144427. [CrossRef]
70. Sudrajat, H. A One-Pot, Solid-State Route for Realizing Highly Visible Light Active Na-Doped GC3N4 Photocatalysts. J. Solid

State Chem. 2018, 257, 26–33. [CrossRef]
71. Wang, L.; Guo, X.; Chen, Y.; Ai, S.; Ding, H. Cobalt-Doped g-C3N4 as a Heterogeneous Catalyst for Photo-Assisted Activation of

Peroxymonosulfate for the Degradation of Organic Contaminants. Appl. Surf. Sci. 2019, 467, 954–962. [CrossRef]
72. Li, G.; Wang, R.; Wang, B.; Zhang, J. Sm-Doped Mesoporous g-C3N4 as Efficient Catalyst for Degradation of Tylosin: Influencing

Factors and Toxicity Assessment. Appl. Surf. Sci. 2020, 517, 146212. [CrossRef]
73. Bellardita, M.; García-López, E.I.; Marcì, G.; Krivtsov, I.; García, J.R.; Palmisano, L. Selective Photocatalytic Oxidation of Aromatic

Alcohols in Water by Using P-Doped g-C3N4. Appl. Catal. B Environ. 2018, 220, 222–233. [CrossRef]
74. Wu, M.; Zhang, J.; He, B.; Wang, H.; Wang, R.; Gong, Y. In-Situ Construction of Coral-like Porous P-Doped g-C3N4 Tubes with

Hybrid 1D/2D Architecture and High Efficient Photocatalytic Hydrogen Evolution. Appl. Catal. B Environ. 2019, 241, 159–166.
[CrossRef]

http://doi.org/10.1021/acs.jpcc.5b10952
http://doi.org/10.1021/am403327g
http://doi.org/10.1039/c3ta10472a
http://doi.org/10.1002/ange.201206534
http://doi.org/10.1016/j.apsusc.2016.11.103
http://doi.org/10.3390/polym11010182
http://doi.org/10.1016/j.diamond.2019.107499
http://doi.org/10.1016/j.ceramint.2019.12.008
http://doi.org/10.1016/j.ijhydene.2019.01.274
http://doi.org/10.1016/j.jhazmat.2009.05.043
http://www.ncbi.nlm.nih.gov/pubmed/19505756
http://doi.org/10.1021/acs.langmuir.8b02596
http://doi.org/10.1016/j.cej.2019.123726
http://doi.org/10.1016/j.jallcom.2019.03.006
http://doi.org/10.1039/c2jm00097k
http://doi.org/10.1039/C5RA17719G
http://doi.org/10.1016/j.apsusc.2016.07.030
http://doi.org/10.1016/j.carbon.2019.04.104
http://doi.org/10.1039/C8CS00479J
http://www.ncbi.nlm.nih.gov/pubmed/30234202
http://doi.org/10.3390/catal8020074
http://doi.org/10.1016/j.apcatb.2019.118077
http://doi.org/10.1002/chem.201803555
http://www.ncbi.nlm.nih.gov/pubmed/30156036
http://doi.org/10.1016/j.apsusc.2019.144427
http://doi.org/10.1016/j.jssc.2017.09.024
http://doi.org/10.1016/j.apsusc.2018.10.262
http://doi.org/10.1016/j.apsusc.2020.146212
http://doi.org/10.1016/j.apcatb.2017.08.033
http://doi.org/10.1016/j.apcatb.2018.09.037


Nanomaterials 2022, 12, 294 52 of 73

75. Ranjbakhsh, E.; Izadyar, M.; Nakhaeipour, A.; Habibi-Yangjeh, A. P-doped g-C3N4 as an Efficient Photocatalyst for CO2
Conversion into Value-added Materials: A Joint Experimental and Theoretical Study. Int. J. Quantum Chem. 2020, 120, e26388.
[CrossRef]

76. Chen, P.; Chen, L.; Ge, S.; Zhang, W.; Wu, M.; Xing, P.; Rotamond, T.B.; Lin, H.; Wu, Y.; He, Y. Microwave Heating Preparation of
Phosphorus Doped g-C3N4 and Its Enhanced Performance for Photocatalytic H2 Evolution in the Help of Ag3PO4 Nanoparticles.
Int. J. Hydrogen Energy 2020, 45, 14354–14367. [CrossRef]

77. Cao, S.; Fan, B.; Feng, Y.; Chen, H.; Jiang, F.; Wang, X. Sulfur-Doped g-C3N4 Nanosheets with Carbon Vacancies: General Synthesis
and Improved Activity for Simulated Solar-Light Photocatalytic Nitrogen Fixation. Chem. Eng. J. 2018, 353, 147–156. [CrossRef]

78. Chen, Y.; Li, W.; Jiang, D.; Men, K.; Li, Z.; Li, L.; Sun, S.; Li, J.; Huang, Z.-H.; Wang, L.-N. Facile Synthesis of Bimodal Macroporous
g-C3N4 /SnO2 Nanohybrids with Enhanced Photocatalytic Activity. Sci. Bull. 2019, 64, 44–53. [CrossRef]

79. Long, D.; Chen, Z.; Rao, X.; Zhang, Y. Sulfur-Doped g-C3N4 and BiPO4 Nanorod Hybrid Architectures for Enhanced Photocatalytic
Hydrogen Evolution under Visible Light Irradiation. ACS Appl. Energy Mater. 2020, 3, 5024–5030.

80. Oh, W.-D.; Lok, L.-W.; Veksha, A.; Giannis, A.; Lim, T.-T. Enhanced Photocatalytic Degradation of Bisphenol A with Ag-Decorated
S-Doped g-C3N4 under Solar Irradiation: Performance and Mechanistic Studies. Chem. Eng. J. 2018, 333, 739–749. [CrossRef]

81. Sun, C.; Zhang, H.; Liu, H.; Zheng, X.; Zou, W.; Dong, L.; Qi, L. Enhanced Activity of Visible-Light Photocatalytic H2 Evolution of
Sulfur-Doped g-C3N4 Photocatalyst via Nanoparticle Metal Ni as Cocatalyst. Appl. Catal. B Environ. 2018, 235, 66–74. [CrossRef]

82. Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical Porous O-doped g-C3N4 with Enhanced Photocatalytic CO2
Reduction Activity. Small 2017, 13, 1603938. [CrossRef] [PubMed]

83. Wang, H.; Guan, Y.; Hu, S.; Pei, Y.; Ma, W.; Fan, Z. Hydrothermal Synthesis of Band Gap-Tunable Oxygen-Doped g-C3N4 with
Outstanding “Two-Channel” Photocatalytic H2O2 Production Ability Assisted by Dissolution–Precipitation Process. Nano 2019,
14, 1950023. [CrossRef]

84. Zeng, Y.; Liu, X.; Liu, C.; Wang, L.; Xia, Y.; Zhang, S.; Luo, S.; Pei, Y. Scalable One-Step Production of Porous Oxygen-Doped
g-C3N4 Nanorods with Effective Electron Separation for Excellent Visible-Light Photocatalytic Activity. Appl. Catal. B Environ.
2018, 224, 1–9. [CrossRef]

85. Zhang, Y.; Chen, Z.; Li, J.; Lu, Z.; Wang, X. Self-Assembled Synthesis of Oxygen-Doped g-C3N4 Nanotubes in Enhancement of
Visible-Light Photocatalytic Hydrogen. J. Energy Chem. 2021, 54, 36–44. [CrossRef]

86. Panneri, S.; Ganguly, P.; Mohan, M.; Nair, B.N.; Mohamed, A.A.P.; Warrier, K.G.; Hareesh, U.S. Photoregenerable, Bifunctional
Granules of Carbon-Doped g-C3N4 as Adsorptive Photocatalyst for the Efficient Removal of Tetracycline Antibiotic. ACS Sustain.
Chem. Eng. 2017, 5, 1610–1618. [CrossRef]

87. Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Serendipitous Assembly of Mixed Phase BiVO4 on B-Doped g-C3N4: An Appropriate
p–n Heterojunction for Photocatalytic O2 Evolution and Cr (VI) Reduction. Inorg. Chem. 2019, 58, 12480–12491. [CrossRef]

88. Jiang, L.; Yuan, X.; Zeng, G.; Liang, J.; Wu, Z.; Yu, H.; Mo, D.; Wang, H.; Xiao, Z.; Zhou, C. Nitrogen Self-Doped g-C3N4
Nanosheets with Tunable Band Structures for Enhanced Photocatalytic Tetracycline Degradation. J. Colloid Interface Sci. 2019, 536,
17–29. [CrossRef] [PubMed]

89. Zhu, D.; Zhou, Q. Nitrogen Doped g-C3N4 with the Extremely Narrow Band Gap for Excellent Photocatalytic Activities under
Visible Light. Appl. Catal. B Environ. 2021, 281, 119474. [CrossRef]

90. Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. Potassium-Doped g-C3N4 Achieving Efficient
Visible-Light-Driven CO2 Reduction. ACS Sustain. Chem. Eng. 2020, 8, 8214–8222. [CrossRef]

91. Zhang, R.; Niu, S.; Zhang, X.; Jiang, Z.; Zheng, J.; Guo, C. Combination of Experimental and Theoretical Investigation on Ti-Doped
g-C3N4 with Improved Photo-Catalytic Activity. Appl. Surf. Sci. 2019, 489, 427–434. [CrossRef]

92. Wang, J.-C.; Cui, C.-X.; Kong, Q.-Q.; Ren, C.-Y.; Li, Z.; Qu, L.; Zhang, Y.; Jiang, K. Mn-Doped g-C3N4 Nanoribbon for Efficient
Visible-Light Photocatalytic Water Splitting Coupling with Methylene Blue Degradation. ACS Sustain. Chem. Eng. 2018, 6,
8754–8761. [CrossRef]

93. Faisal, M.; Ismail, A.A.; Harraz, F.A.; Al-Sayari, S.A.; El-Toni, A.M.; Al-Assiri, M.S. Synthesis of Highly Dispersed Silver Doped
g-C3N4 Nanocomposites with Enhanced Visible-Light Photocatalytic Activity. Mater. Des. 2016, 98, 223–230. [CrossRef]

94. Hu, J.; Zhang, P.; An, W.; Liu, L.; Liang, Y.; Cui, W. In-Situ Fe-Doped g-C3N4 Heterogeneous Catalyst via Photocatalysis-Fenton
Reaction with Enriched Photocatalytic Performance for Removal of Complex Wastewater. Appl. Catal. B Environ. 2019, 245,
130–142. [CrossRef]

95. Babu, B.; Shim, J.; Yoo, K. Efficient Solar-Light-Driven Photoelectrochemical Water Oxidation of One-Step in-Situ Synthesized
Co-Doped g-C3N4 Nanolayers. Ceram. Int. 2020, 46, 16422–16430. [CrossRef]

96. Huang, J.; Li, D.; Li, R.; Zhang, Q.; Chen, T.; Liu, H.; Liu, Y.; Lv, W.; Liu, G. An Efficient Metal-Free Phosphorus and Oxygen
Co-Doped g-C3N4 Photocatalyst with Enhanced Visible Light Photocatalytic Activity for the Degradation of Fluoroquinolone
Antibiotics. Chem. Eng. J. 2019, 374, 242–253. [CrossRef]

97. Zhou, P.; Meng, X.; Li, L.; Sun, T. P, S Co-Doped g-C3N4 Isotype Heterojunction Composites for High-Efficiency Photocatalytic H2
Evolution. J. Alloys Compd. 2020, 827, 154259. [CrossRef]

98. Cui, Y.; Wang, H.; Yang, C.; Li, M.; Zhao, Y.; Chen, F. Post-Activation of in Situ BF Codoped g-C3N4 for Enhanced Photocatalytic
H2 Evolution. Appl. Surf. Sci. 2018, 441, 621–630. [CrossRef]

99. Fang, W.; Liu, J.; Yu, L.; Jiang, Z.; Shangguan, W. Novel (Na, O) Co-Doped g-C3N4 with Simultaneously Enhanced Absorption
and Narrowed Bandgap for Highly Efficient Hydrogen Evolution. Appl. Catal. B Environ. 2017, 209, 631–636. [CrossRef]

http://doi.org/10.1002/qua.26388
http://doi.org/10.1016/j.ijhydene.2020.03.169
http://doi.org/10.1016/j.cej.2018.07.116
http://doi.org/10.1016/j.scib.2018.12.015
http://doi.org/10.1016/j.cej.2017.09.182
http://doi.org/10.1016/j.apcatb.2018.04.050
http://doi.org/10.1002/smll.201603938
http://www.ncbi.nlm.nih.gov/pubmed/28160415
http://doi.org/10.1142/S1793292019500231
http://doi.org/10.1016/j.apcatb.2017.10.042
http://doi.org/10.1016/j.jechem.2020.05.043
http://doi.org/10.1021/acssuschemeng.6b02383
http://doi.org/10.1021/acs.inorgchem.9b02309
http://doi.org/10.1016/j.jcis.2018.10.033
http://www.ncbi.nlm.nih.gov/pubmed/30342408
http://doi.org/10.1016/j.apcatb.2020.119474
http://doi.org/10.1021/acssuschemeng.0c01151
http://doi.org/10.1016/j.apsusc.2019.05.362
http://doi.org/10.1021/acssuschemeng.8b01093
http://doi.org/10.1016/j.matdes.2016.03.019
http://doi.org/10.1016/j.apcatb.2018.12.029
http://doi.org/10.1016/j.ceramint.2020.03.203
http://doi.org/10.1016/j.cej.2019.05.175
http://doi.org/10.1016/j.jallcom.2020.154259
http://doi.org/10.1016/j.apsusc.2018.02.073
http://doi.org/10.1016/j.apcatb.2017.03.041


Nanomaterials 2022, 12, 294 53 of 73

100. Chen, C.; Xie, M.; Kong, L.; Lu, W.; Feng, Z.; Zhan, J. Mn3O4 Nanodots Loaded g-C3N4 Nanosheets for Catalytic Membrane
Degradation of Organic Contaminants. J. Hazard. Mater. 2020, 390, 122146. [CrossRef] [PubMed]

101. Surikanti, G.R.; Bajaj, P.; Sunkara, M.V. g-C3N4-Mediated Synthesis of Cu2O To Obtain Porous Composites with Improved Visible
Light Photocatalytic Degradation of Organic Dyes. ACS Omega 2019, 4, 17301–17316. [CrossRef]

102. Yan, D.; Wu, X.; Pei, J.; Wu, C.; Wang, X.; Zhao, H. Construction of g-C3N4/TiO2/Ag Composites with Enhanced Visible-Light
Photocatalytic Activity and Antibacterial Properties. Ceram. Ceram. Int. 2020, 46, 696–702. [CrossRef]

103. Rabani, I.; Zafar, R.; Subalakshmi, K.; Kim, H.-S.; Bathula, C.; Seo, Y.-S. A Facile Mechanochemical Preparation of Co3O4@
g-C3N4 for Application in Supercapacitors and Degradation of Pollutants in Water. J. Hazard. Mater. 2021, 407, 124360. [CrossRef]
[PubMed]

104. Mohammadi, R.; Alamgholiloo, H.; Gholipour, B.; Rostamnia, S.; Khaksar, S.; Farajzadeh, M.; Shokouhimehr, M. Visible-Light-
Driven Photocatalytic Activity of ZnO/g-C3N4 Heterojunction for the Green Synthesis of Biologically Interest Small Molecules of
Thiazolidinones. J. Photochem. Photobiol. A Chem. 2020, 402, 112786. [CrossRef]

105. Bard, A.J.; Fox, M.A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Acc. Chem. Res. 1995, 28,
141–145. [CrossRef]

106. Thompson, T.L.; Yates, J.T. Surface Science Studies of the Photoactivation of TiO2 New Photochemical Processes. Chem. Rev. 2006,
106, 4428–4453. [CrossRef] [PubMed]

107. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [CrossRef]
108. Tan, Y.; Chen, Y.; Mahimwalla, Z.; Johnson, M.B.; Sharma, T.; Brüning, R.; Ghandi, K. Novel Synthesis of Rutile Titanium

Dioxide–Polypyrrole Nano Composites and Their Application in Hydrogen Generation. Synth. Met. 2014, 189, 77–85. [CrossRef]
109. Christoforidis, K.C.; Montini, T.; Fittipaldi, M.; Jaén, J.J.D.; Fornasiero, P. Photocatalytic Hydrogen Production by Boron Modified

TiO2/Carbon Nitride Heterojunctions. ChemCatChem 2019, 11, 6408–6416. [CrossRef]
110. Crake, A.; Christoforidis, K.C.; Godin, R.; Moss, B.; Kafizas, A.; Zafeiratos, S.; Durrant, J.R.; Petit, C. Titanium Dioxide/Carbon

Nitride Nanosheet Nanocomposites for Gas Phase CO2 Photoreduction under UV-Visible Irradiation. Appl. Catal. B Environ.
2019, 242, 369–378. [CrossRef]

111. Acharya, R.; Parida, K. A Review on TiO2/g-C3N4 Visible-Light-Responsive Photocatalysts for Sustainable Energy Generation
and Environmental Remediation. J. Environ. Chem. Eng. 2020, 8, 103896. [CrossRef]

112. Alcudia-Ramos, M.A.; Fuentez-Torres, M.O.; Ortiz-Chi, F.; Espinosa-González, C.G.; Hernández-Como, N.; García-Zaleta, D.S.;
Kesarla, M.K.; Torres-Torres, J.G.; Collins-Martínez, V.; Godavarthi, S. Fabrication of g-C3N4/TiO2 Heterojunction Composite for
Enhanced Photocatalytic Hydrogen Production. Ceram. Int. 2020, 46, 38–45. [CrossRef]

113. Li, G.; Nie, X.; Gao, Y.; An, T. Can Environmental Pharmaceuticals Be Photocatalytically Degraded and Completely Mineralized
in Water Using g-C3N4/TiO2 under Visible Light Irradiation?—Implications of Persistent Toxic Intermediates. Appl. Catal. B
Environ. 2016, 180, 726–732. [CrossRef]

114. Li, G.; Nie, X.; Chen, J.; Jiang, Q.; An, T.; Wong, P.K.; Zhang, H.; Zhao, H.; Yamashita, H. Enhanced Visible-Light-Driven
Photocatalytic Inactivation of Escherichia Coli Using g-C3N4 /TiO2 Hybrid Photocatalyst Synthesized Using a Hydrothermal-
Calcination Approach. Water Res. 2015, 86, 17–24. [CrossRef] [PubMed]

115. Elbanna, O.; Fujitsuka, M.; Majima, T. g-C3N4/TiO2 Mesocrystals Composite for H2 Evolution under Visible-Light Irradiation
and Its Charge Carrier Dynamics. ACS Appl. Mater. Interfaces 2017, 9, 34844–34854. [CrossRef] [PubMed]

116. Kočí, K.; Reli, M.; Troppová, I.; Šihor, M.; Kupková, J.; Kustrowski, P.; Praus, P. Photocatalytic Decomposition of N2O over
TiO2/g-C3N4 Photocatalysts Heterojunction. Appl. Surf. Sci. 2017, 396, 1685–1695. [CrossRef]

117. Jiang, G.; Yang, X.; Wu, Y.; Li, Z.; Han, Y.; Shen, X. A Study of Spherical TiO2/g-C3N4 Photocatalyst: Morphology, Chemical
Composition and Photocatalytic Performance in Visible Light. Mol. Catal. 2017, 432, 232–241. [CrossRef]

118. Miranda, C.; Mansilla, H.; Yáñez, J.; Obregón, S.; Colón, G. Improved Photocatalytic Activity of g-C3N4/TiO2 Composites
Prepared by a Simple Impregnation Method. J. Photochem. Photobiol. A Chem. 2013, 253, 16–21. [CrossRef]

119. Zhang, L.; He, X.; Xu, X.; Liu, C.; Duan, Y.; Hou, L.; Zhou, Q.; Ma, C.; Yang, X.; Liu, R. Highly Active TiO2/g-C3N4/G
Photocatalyst with Extended Spectral Response towards Selective Reduction of Nitrobenzene. Appl. Catal. B Environ. 2017, 203,
1–8. [CrossRef]

120. Wang, J.; Wang, G.; Wang, X.; Wu, Y.; Su, Y.; Tang, H. 3D/2D Direct Z-Scheme Heterojunctions of Hierarchical TiO2
Microflowers/g-C3N4 Nanosheets with Enhanced Charge Carrier Separation for Photocatalytic H2 Evolution. Carbon 2019, 149,
618–626. [CrossRef]

121. Boonprakob, N.; Wetchakun, N.; Phanichphant, S.; Waxler, D.; Sherrell, P.; Nattestad, A.; Chen, J.; Inceesungvorn, B. Enhanced
Visible-Light Photocatalytic Activity of g-C3N4/TiO2 Films. J. Colloid Interface Sci. 2014, 417, 402–409. [CrossRef]

122. Li, C.; Lou, Z.; Yang, Y.; Wang, Y.; Lu, Y.; Ye, Z.; Zhu, L. Hollowsphere Nanoheterojunction of g-C3N4@ TiO2 with High Visible
Light Photocatalytic Property. Langmuir 2019, 35, 779–786. [CrossRef]

123. Wei, H.; McMaster, W.A.; Tan, J.Z.Y.; Cao, L.; Chen, D.; Caruso, R.A. Mesoporous TiO2/g-C3N4 Microspheres with Enhanced
Visible-Light Photocatalytic Activity. J. Phys. Chem. C 2017, 121, 22114–22122. [CrossRef]

124. Zou, Y.; Yang, B.; Liu, Y.; Ren, Y.; Ma, J.; Zhou, X.; Cheng, X.; Deng, Y. Controllable Interface-Induced Co-Assembly toward Highly
Ordered Mesoporous Pt@ TiO2/g-C3N4 Heterojunctions with Enhanced Photocatalytic Performance. Adv. Funct. Mater. 2018, 28,
1806214. [CrossRef]

http://doi.org/10.1016/j.jhazmat.2020.122146
http://www.ncbi.nlm.nih.gov/pubmed/32007861
http://doi.org/10.1021/acsomega.9b02031
http://doi.org/10.1016/j.ceramint.2019.09.022
http://doi.org/10.1016/j.jhazmat.2020.124360
http://www.ncbi.nlm.nih.gov/pubmed/33153786
http://doi.org/10.1016/j.jphotochem.2020.112786
http://doi.org/10.1021/ar00051a007
http://doi.org/10.1021/cr050172k
http://www.ncbi.nlm.nih.gov/pubmed/17031993
http://doi.org/10.1038/238037a0
http://doi.org/10.1016/j.synthmet.2013.12.025
http://doi.org/10.1002/cctc.201901703
http://doi.org/10.1016/j.apcatb.2018.10.023
http://doi.org/10.1016/j.jece.2020.103896
http://doi.org/10.1016/j.ceramint.2019.08.228
http://doi.org/10.1016/j.apcatb.2015.07.014
http://doi.org/10.1016/j.watres.2015.05.053
http://www.ncbi.nlm.nih.gov/pubmed/26084941
http://doi.org/10.1021/acsami.7b08548
http://www.ncbi.nlm.nih.gov/pubmed/28914526
http://doi.org/10.1016/j.apsusc.2016.11.242
http://doi.org/10.1016/j.mcat.2016.12.026
http://doi.org/10.1016/j.jphotochem.2012.12.014
http://doi.org/10.1016/j.apcatb.2016.10.003
http://doi.org/10.1016/j.carbon.2019.04.088
http://doi.org/10.1016/j.jcis.2013.11.072
http://doi.org/10.1021/acs.langmuir.8b03867
http://doi.org/10.1021/acs.jpcc.7b06493
http://doi.org/10.1002/adfm.201806214


Nanomaterials 2022, 12, 294 54 of 73

125. Li, K.; Huang, Z.; Zeng, X.; Huang, B.; Gao, S.; Lu, J. Synergetic Effect of Ti3+ and Oxygen Doping on Enhancing Photoelec-
trochemical and Photocatalytic Properties of TiO2/ g-C3N4 Heterojunctions. ACS Appl. Mater. Interfaces 2017, 9, 11577–11586.
[CrossRef] [PubMed]

126. Rathi, A.K.; Kmentová, H.; Naldoni, A.; Goswami, A.; Gawande, M.B.; Varma, R.S.; Kment, S.; Zbořil, R. Significant Enhancement
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