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ABSTRACT Detection of unintentional islanding, defined as inadvertently separation of distributed 

generators (DGs) from the utility grid, is a major challenging issue for modern distribution networks. 

Islanding detection becomes problematic especially when the local generation matches or closely matches 

the local load. Therefore, there are strict requirements for accurate, fast, and reliable islanding detection of 

renewables and DG-based systems. Various islanding schemes have been proposed in the literature, which 

can be categorized as remote, local, and intelligent-classifier-based schemes. Recently, intelligent schemes 

have gained attention due to their superior properties and advantages relative to traditional approaches. This 

paper overviews the shift in research from traditional schemes to intelligent islanding schemes. It also 

highlights the major obstacles, challenges, advantages and disadvantages, and future research directions of 

intelligent schemes. In this study, the intelligent-classifier-based islanding detection schemes presented over 

the last decade are analyzed objectively and comprehensively from all aspects of islanding detection. This 

research further highlights feature selection schemes and the most common parameters used for islanding 

detection. Finally, based on a detailed and critical analysis, the findings and potential recommendations are 

presented. 

INDEX TERMS Active islanding schemes, Distribution generation, Electrical power system, Intelligent-

classifiers, Islanding detection,  Microgrids, Passive islanding schemes, Remote islanding schemes. 

NOMENCLATURE 

DG  Distributed Generation 

PQ  Power Quality 

EPS  Electrical Power System 

CB  Circuit Breaker 

IDS  Islanding Detection Scheme 

NDZ  Non-Detection Zone 

PLCC  Power Line Carrier Communication 

SCADA  Supervisory Control & Data  

  Acquisition 

SPD  Signals Produced Disconnect 

PMU  Phasor Measurement Unit 

IM  Impedance measurement 

AFD  Active Frequency Drift 

SFS  Sandia Frequency Shift 

SVS  Sandia Voltage Shift 

SMFS  Sliding Mode Voltage Shift 

PCC  Point of Common Coupling 

O/U V&F Over/Under Voltage & Frequency  

THD  Total Harmonic Distortion 

ROCOF/P Rate of Change of Frequency/Power 

ROCOV  Rate of Change of Voltage 

QF  Quality Factor 

AF/VR  Acceptable Frequency/Voltage Range 

DT  Decision Tree 

ANN  Artificial Neural Networks 

SVM  Support Vector Machine 

FL  Fuzzy Logic 

ANFIS  Adaptive Neuro-FL System 

DNN  Deep Neural Networks 

LSTM  Long Short-Term Memory 
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I. INTRODUCTION 

Interconnection of distributed generators (DGs) has gained 

attention due to the electricity market deregulation, capital 

investments, requirement of reliable and better power quality 

(PQ), and environmental concerns. DG integration can 

reduce transmission and distribution losses, generate revenue 

from excess power, low or zero emissions (for renewables 

such as wind and solar), and capability of handling power 

operation during the absence of the main utility [1]. In the 

conventional electrical power system (EPS), the production 

of power is centrally operated, and power is delivered to 

customers through transmission and distribution networks. 

The primary disadvantages of conventional networks are 

their high cost and transmission losses, environmental issues, 

and the unidirectional flow in the network [2], [3]. However, 

DG interconnection also poses challenges such as elongated 

payback times, the intermittent nature of renewables,  and 

glitches in the power system [4]. In addition,  DG integration 

can also result in unbalanced voltage and frequency along 

with power quality problems [5].  

With enhanced penetration of DGs, detection of 

unintentional islanding in the power system becomes a non-

trivial task. Unintentional islanding occurs when the DG gets 

separated from the main utility without any planned 

intention, i.e. due to the tripping of the circuit breaker (CB) 

[6]. The tripping of circuit breaker could occur due to system 

failure, unbalanced power, line outage, generator tripping, 

human error, natural disasters, and other disturbances [7]. 

Failure to detect this issue can result in severe consequences 

for both the system (damage to DG and related equipment) 

and human life (maintenance workers and consumers). The 

islanding problem becomes more severe when the local 

generation matches or closely matches the local load. As per 

the IEEE 1547-2018 standard, islanding should be detected 

within a period of 0.16 to 2 s [8]. Therefore, islanding 

detection should justify these requirements of dependability, 

security, and fast response time. The islanding scenario in 

DG integrated EPS is shown in Fig. 1, once the CB1 is 

opened, the DG is isolated from the rest of the system and 

becomes the only available source for local loads. 
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FIGURE 1.  Islanding scenario in DG-EPS. 

The islanding issue has been under study for several years, 

and different studies have been conducted to overcome this 

major issue of power systems with DGs. Various islanding 

detection schemes (IDSs) have been introduced in the 

literature. Each type has its pros and cons based on the non-

detection zone (NDZ), detection time, and PQ. IDSs can be 

classified into three main categories, as shown in Fig. 2. 
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FIGURE 2.  Types of various islanding detection schemes. 

Remote IDS employs communication infrastructure for the 

detection of islanding. A communication link is deployed 

between the DG and main utility, this communication link 

requires additional instruments  [9]–[11]. These instruments 

are generally high-cost sensors, telecommunication tools, and 

control systems. The remote IDS have comparatively higher 

system and running costs, compared to active and passive 

techniques. Therefore, for small-scale systems, remote IDSs 

are not suitable; however, these IDSs are commonly used for 

high-scale projects. The upside of remote IDS is that they have 

zero NDZ, no degradation of PQ, and can handle complex DG 

integrated EPS [12]. Some examples of remote IDSs are the 

power line carrier communication (PLCC) [13]–[15], 

supervisory control and data acquisition method (SCADA) 

[10], [16], [17], signals produced disconnect (SPD) [18]–[20], 

transfer trip schemes [21]–[23], impedance insertion method 

[21], and phasor measurement unit (PMU) [24]–[29]. 

Local schemes are based on monitoring various electrical 

parameters such as voltage, current, frequency, and power in 

addition to the injection of disturbances in DG-EPS for 

islanding detection.  IDS are further categorized as active, 

passive, and hybrid islanding detection schemes. Active IDSs 

utilize external disturbances by injecting a troubling signal 

into DG output, this external signal injection introduces 

variation in system parameters [30], [31]. By calculating the 

variation in system parameters with thresholds, active 

methods detect islanding. The merits of active IDSs are low 

NDZ and lesser detection time, while they require additional 

setup for disturbance injection and may harm the PQ of DG-

EPS.  Various active IDSs are available in the literature, for 

example impedance measurement (IM) [32]–[34], active 

frequency drift (AFD) [35]–[38], Sandia frequency shift (SFS) 

[39]–[42], Sandia voltage shift (SVS) [43]–[46], and sliding 

mode frequency shift (SMFS) [31], [47]–[50]. 
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Passive islanding is another commonly used IDS for DG-

EPS, where system parameters are monitored at the point of 

common coupling (PCC), which shows variations when the 

utility is isolated from the DG-EPS [51]–[53]. Based on these 

variations, the protective relay operates to detect islanding by 

comparing it with the defined threshold values [54], [55]. 

Passive IDSs are economical and uncomplicated schemes that 

pose no harm for PQ, thus considered as realistic solutions for 

DG-EPS. The downside of these IDSs is their large NDZ and 

need for thresholds [56]–[58]. The passive IDSs used in 

literature are over/under voltage and frequency methods (O/U 

V&F) [59]–[62], the rate of change of frequency/power 

(ROCOF/P) [63]–[67], total harmonic distortion method 

(THD) [18], [68]–[71], and phase jump detection (PJD) 

methods [68], [72]–[75].  

Hybrid IDSs are a combination of active and passive 

schemes. The PQ problem in active IDSs and large NDZ in 

passive IDSs can be resolved using the hybrid IDSs [76]–[78]. 

The downside of hybrid IDSs is complexity and higher 

detection time. Some hybrid schemes are presented in the 

literature which are based on positive feedback and voltage 

unbalance, SFS and ROCOF, voltage unbalance and 

frequency set point, voltage, and real power shift, RACOV 

and ROCOP, and hybrid SFS and Q-f Curve IDSs [70], [79]–
[83].  

Islanding detection based on remote and local schemes has 

its advantages and disadvantages [84]–[87]. Remote schemes 

require a communication interface and are reliable for large 

systems but impractical for small systems because of their 

complexity and higher cost [10], [88], [89]. In contrast, local 

schemes are simple, easily applicable, and are low-cost but 

they have some disadvantages, such as active methods have 

noise and PQ issues while passive islanding schemes have a 

large NDZ and low speed [36], [71], [90]–[92]. With bugs and 

pitfalls in local and remote schemes, intelligent classifier-

based schemes are gaining more attention. The key reasons for 

shifting towards intelligent classifier-based IDS are the 

exemption from threshold settings, no noise and PQ problems, 

low NDZ, high speed, and no communication channel 

intervention, which make intelligent schemes more reliable 

and acceptable. 

A. PREVIOUS STUDIES 

Some researchers have conducted review studies on islanding 

detection strategies while concentrating primarily on 

traditional islanding systems such as remote, local (active and 

passive), and signal-processing-based schemes. A few 

researchers have reviewed intelligence-based islanding 

schemes. In [5], islanding schemes were categorized into four 

different groups: remote, local, signal-processing-based, and 

intelligent classifiers. A total of 85 research publications were 

reviewed and classified in this research. The comparison of 

different islanding schemes was also illustrated in [93]–[96]. 

Another review research for islanding detection of microgrids 

was conducted in [19], where the major focus was only on 

local and remote IDS. In this study, various performance 

indices like (NDZ, detection time, PQ) and other technical 

problems were also reviewed and analyzed.  A study on the 

computational intelligence-based islanding detection of DGs 

was presented in [97]. This review summarises islanding 

strategies focused on conventional and computational 

intelligence-based schemes. It also presented a comparison of 

the performance of intelligence-based and traditional schemes 

[98]–[100].  

The shifting trend in islanding detection from classical 

methods to machine learning-based methods was introduced 

in a comprehensive survey [101]. This study reviewed the 

basics of the islanding issue, types, test standards for islanding 

detection, and the reasons for the trend shifting from 

conventional to machine learning-based IDSs. The reasons 

highlighted in this research are the consequent threshold 

selection, fast detection, NDZ, PQ, and robustness in dealing 

with complex conditions, which make machine learning-based 

methods a rational choice for islanding detection [102].  

A comprehensive analysis of modern islanding schemes for 

a DG network in terms of merits, efficiency, efficacy, and 

feasibility was presented in [103]. It also presented an 

investigation of different schemes by comparing their time of 

detection and the computational burden [20], [51], [104], 

[105]. A detailed review of various islanding schemes with 

their strengths and weaknesses was presented in [106]. In this 

research, the analysis was classified into three major groups: 

classical methods (local and remote), signal-processing 

methods, and intelligence-based methods. Various schemes 

were compared and assessed for future recommendations 

based on different performance metrics such as detection time, 

accuracy, and efficiency [107]–[109]. A review of the local 

and remote islanding detection techniques, with their 

advantages and disadvantages, was reviewed for the DG-

based system in [110]. The technical issues of islanding 

detection proposed by different researchers were reviewed and 

compared in a detailed way in [1]. This study compared all the 

IDSs considering their advantages and disadvantages 

compared to each other and recommended future trends in the 

field of IDSs.    

B. CONTRIBUTION 

The main inspiration for this work is the availability of 

extensive literature and the shift in interest from traditional 

islanding schemes to intelligent classifier-based schemes over 

the last decade. The studies discussed in the previous 

paragraphs have stressed mainly traditional islanding 

schemes, their benefits, and drawbacks. The above review 

papers have not covered specific research focused only on 

intelligent islanding schemes. The research trend and recent 

advancements in state-of-the-art intelligent islanding schemes 

for the power system have shown a great deal of interest. It is 

also important to carry out a critical and thorough analysis of 

intelligent islanding schemes based on this void and the need 

for time. In intelligent islanding schemes, feature selection is 
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a key factor affecting accurate and reliable classification, and 

this vital aspect of islanding schemes has not been studied 

previously. Furthermore, there exists no study on the electrical 

parameters that have the greatest influence on islanding 

detection, as reported in the literature. Therefore, the 

contribution of this study in comparison with existing review 

studies is outlined as follows. 

• A detailed overview of islanding issues, various types of 

IDSs, test systems, and standards for islanding detection 

in DG-EPS is presented.  

• A systematic and comprehensive analysis of islanding 

detection schemes based on various intelligent classifiers 

is performed along with their pros and cons. 

• Different feature-selection schemes used for islanding 

detection and those that may be used in the future are 

outlined.  

• The most important electrical parameters used for 

islanding detection are highlighted, based on different 

methods available in the literature.  

• Comparison of various intelligent-classifier-based 

schemes is carried out based on performance indicators 

such as accuracy, NDZ, and detection time.  

• Finally, potential guidance and recommendations have 

also been provided after the review of the IDSs. 

The rest of this paper is organized as follows. Section II 

presents a brief introduction of the islanding types and their 

effects. In section III, the islanding test standards and test 

system topologies are presented. A complete survey and 

assessment of various state-of-the-art intelligent schemes 

studied from the last decade are presented in section IV. 

Section V presents the feature selection schemes for various 

IDSs. The most useful and dominating features for islanding 

detection are presented in section VI. In section VII 

performance indicators are discussed. Comparison, iscussion 

and future recommendations are presented in section VIII, and 

conclusions of this study are presented in section IX. 

 
II. INTENTIONAL AND UNINTENTIONAL ISLANDING 

The word islanding refers to the separation of an operating 

power system having both loads and generation from the 

central utility grid. In an EPS, the islanding phenomenon is 

categorized into two main types: 1) intentional islanding and 

2) unintentional islanding. Intentional islanding is a planned 

operation used primarily for system maintenances and 

operational issues, whereas unintentional islanding events are 

caused by sudden faults, load switching, and CB tripping 

because of a main utility power outage. 

A. INTENTIONAL ISLANDING 

Intentional islanding is the anticipated and systematic 

separation of the main grid from the power network to avoid a 

major breakdown [111]. The main reason for this separation is 

to overcome the blackouts and cascading problems of a power 

system. Cascading failure can be described as a fault process 

that results in the tripping of another element of the grid 

successively [112]. This separation is also employed for 

system maintenance, voltage enhancement, power-loss 

scenarios, temporary faults, and improving the efficiency of 

the network. Intentional islanding is viable and worthwhile for 

the power system. Several researchers have worked on 

intentional islanding and control over several years to make it 

practically applicable and to shield the power system from the 

harsh outcomes of unintentional islanding [92]. It makes the 

power grid stable in a manageable island area to support the 

rest of the system. Effective and stable operation in islanding 

mode requires a balanced load and generation. 

Numerous algorithms have been established for the 

detection and division of power systems to stable islands. 

Some of these include the wide-area measurement systems 

(WAMS) algorithm for a wide-area blackout [113], security-

based method [114], effects of degraded communication, and 

load variability on-grid splitting [115], improved spectral 

clustering for a multi-objective controlled islanding system 

[116]. The algorithms used in different studies include ant 

search mechanism [117], fast greedy and bloom algorithms 

[118], comprehensive learning particle swarm optimization 

(CLPSO) algorithm [119], two-stage stochastic optimal 

islanding method [120], mixed-integer linear programming 

(MILP) [121], algebraic graph method [122], and ordered 

binary decision diagram (OBDD) method [123]. In addition to 

these methods, several countries have their own intentional 

islanding microgrid systems for realizing safe and reliable 

distribution networks [124]. 

B. UNINTENTIONAL ISLANDING 

Unintentional islanding occurs without any planned intention 

or prior information from the main utility grid or independent 

power producers. There could be several reasons for this 

unknown tripping, but the dominating drivers are the 

occurrence of faults at the main utility grid, system failure on 

the utility side, human error due to negligence, and natural 

disasters [125].  The harsh outcome of this unintentional 

islanding is the separation of the DGs from the main power 

system. In power systems, several islanding standards have 

been prescribed to overcome this critical issue [126]. A 

detailed survey of international standards on islanding is 

presented in the next section. The undesirable consequences 

of unintentional islanding include the inability of DGs to 

handle the abrupt change, synchronization issues after re-

connection, and the uncontrollable behavior of the DGs during 

islanding because of the load and generation mismatch [127]. 

Unintentional islanding poses a threat to the security of power 

systems, which can harm utilities, equipment, and 

maintenance personnel. The record of mega outages and 

power system failures due to unintentional islanding shows 

that a lack of power supply has contributed to major lapses in 

security and significant economic downturns [128], [129]. In 

this article, IDSs are critically analyzed to resolve these 

challenges and highlight the sensitivity of the security against 

anti-islanding. 
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TABLE I 

VARIOUS INTERNATIONAL STANDARDS FOR ISLANDING DETECTION 

III. TEST STANDARDS AND SYSTEMS FOR ISLANDING 
DETECTION 

A. TEST STANDARDS FOR ISLANDING DETECTION  

Due to these islanding issues in the power system, several 

islanding detection standards have been set by different 

researchers and organizations. Several standards are being 

used globally for islanding detection considering specific 

quality factors (QF), detection time, acceptable frequency, and 

voltage ranges. These standards are used to direct the 

installation and construction of the power systems and 

distribution networks during islanding scenarios [130]–[135]. 

Table I. summarises the aforementioned international 

standards based on the thresholds of the QF, acceptable 

frequency range (AFR), acceptable voltage range (AVR), and 

detection time. Several countries have their standards for 

islanding detection, as presented in Table 2. The most widely 

used standards and benchmarks are IEEE 1547-2018, IEEE 

929-2000, UL 1741, and IEC 62116. The variance in the 

thresholds of the QF, AFR, AVR, and detection time among 

the various global standards are because of differences in 

power network and distribution frequency criteria in different 

countries/regions.  

B. TEST SYSTEM FOR ISLANDING DETECTION 

Similar to islanding detection standards, there are several test 

systems for islanding tests. There is no global standardized and 

definite test system; different countries and organizations use 

their test systems for islanding detection. These systems 

include single DG, multiple DGs, same type DGs, different 

DG types, and hybrid-type test systems. Every country has its 

distinct test system for analyzing the consistency and 

practicality of its networks under islanding conditions.  

One of the most commonly used and generic test systems is 

shown in Fig. 3, which is based on IEEE 1547-2018, IEEE 

929-2000, UL 1741, and IEC 62116. This is the recommended 

test system for analyzing islanding conditions by opening the 

CB to isolate the DG from the main utility. A parallel resistor-

inductor-capacitor (RLC) load is connected as the load for the 

test system because the RLC load is considered as the worst-

case scenario for islanding detection. 

DG Transformer

R L C

Utility
CB2 CB1

PCC

 
FIGURE 3.  Generic test system for islanding detection. 

IV. INTELLIGENT-CLASSIFIER-BASED ISLANDING 
SCHEMES  

Local and remote IDSs have their benefits, but they also have 

some critical issues. In local methods, the large NDZ of the 

passive IDS and PQ issues in active IDS make them unsuitable 

for islanding detection. Furthermore, remote IDSs are costly 

and infeasible for small distribution networks. Because of the 

above concerns, researchers and engineers have shifted their 

focus towards intelligent-classifier-based IDSs. In this 

research, we summarize and critically analyze the shift in 

research from traditional IDSs to intelligent-classifier-based 

IDSs. 

Advancements in artificial intelligence have improved life 

using machine-learning theories in every field of life such as 

medicine, material sciences, and engineering fields. 

Nowadays, the applications of state-of-the-art intelligent 

classifiers in electrical engineering, and primarily in EPSs, are 

growing rapidly. In EPSs, islanding detection is the most 

challenging issue that is required to be addressed around the 

world. The most commonly used intelligent-classifier-based 

schemes for islanding detection are decision trees (DTs),  

Standard QF AFR AVR Detection Time 

IEEE 1547-2018 1 59.3 < f < 60.5 Hz 88% < V < 110% t = 0.16 to 2 s 

IEEE 929-2000 2.5 59.3 < f < 60.5 Hz 88% < V < 110% t < 2 s 

UL 1741 2.5 59.3 < f < 60.5 Hz 88% < V < 110% t < 2 s 

IEC 62116 1 (fo – 1.5Hz) < f < (fo + 1.5Hz) 85% < V < 115% t < 2 s 

UK G83 

 

0.5 

 

47.5 < f < 51.5 Hz (stage 1) 

47 < f < 50 Hz (stage 2) 

87% < V < 110% (stage 1) 

80% < V < 119% (stage 2) 

t < 0.5 s 

 

Canadian C22.2 No. 107-01 2.5 59.5 < f < 60.5 Hz 88% < V < 106% t < 2 s 

German VDE 0126-1-1 2 47.5 < f < 50.2 Hz 88% < V < 115% t < 0.2 s 

Austrian OVE E-8001-4-712  59.3 < f < 60 Hz 88% < V < 110% t < 2 s 

French std. 2 49.5 < f < 50.5 Hz 88% < V < 106% Instantly 

ERDF-NOI-RES 13E Japanese JIs 

0 

 

Setting value 

Setting value 

Setting value 

Setting value 

t < 2 s  

0.5 < t < 1 s 

Korean std. 1 59.3 < f < 60.5 Hz 88% < V < 110% t < 0.5 s 
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FIGURE 4.  Working principle of intelligent classifier-based IDS. 

 

artificial neural networks (ANNs), support vector machines 

(SVMs), fuzzy logic (FL), adaptive neuro-fuzzy inference 

systems (ANFISs), convolution neural networks (CNNs), and 

deep neural networks (DNNs). Intelligent classifier-based 

IDSs first derive features from the obtained signal, which are 

then used as an input to the intelligent classifier in the form of 

a feature vector, and the classifier makes decisions based on 

input features as shown in Fig. 4. The use of these methods for 

islanding detection has increased significantly. Fig.5 depicts 

the implementation of each technique for islanding detection 

discussed in this paper. As depicted by Fig. 5, several different 

forms of intelligent strategies have been used to detect 

islanding. 

 

 
 
FIGURE 5.  Intelligent classifier-based IDS reviewed. 
 

A.  DECISION-TREE-BASED IDS 

DT is the most widely used tool as an intelligent classifier. The 

recursive partitioning process is applied to each attribute for 

its value authentication. The DT classifies the given data into 

pre-defined classes; it can be either binary or multiple 

classifications. To begin segmentation, a prediction is used to 

convert the root node into child nodes. The resolution can be 

done from a child node for additional divisions. The 

architecture of the DT is presented in Fig. 6, while Table II 

shows the summary of DT-based IDS presented.  

The feature vectors are produced from the transient current 

and voltage data using discrete wavelet transformation (DWT) 

in [136] for islanding detection. Only the four most important 

characteristics were validated using classification and 

regression trees (CART) out of the twelve features. The 

expanded test system of [136] with voltage-source-converter 

(VSC)-based DC source was provided in [137], and the 

performance of the suggested approach was evaluated and 

compared to that of other passive islanding approaches in 

terms of noise impact, NDZ, and response time. 

DWT and DT were utilized in [138], however, for multiple 

frequency bands with varied characteristics and features, only 

one transient signal (voltage) and low DWT levels, from D1–
D9, were used. To determine the superiority the accuracy of 

the proposed scheme was compared to that of many passive 

IDSs and DT-based methods. In [85], the discrete Fourier 

transform (DFT) is used to extract the voltage and current 

signals, as well as their related characteristics, utilizing a data 

mining technique. The DFT was used to obtain a total of 27 

characteristics that were influenced during islanding, and the 

DT was trained in real-time for islanding and non-islanding 

detection in the proposed method. 

A novel hybrid IDS based on DT and inverter-based 

positive feedback was presented in [139]. An intelligent 

islanding relay based on multivariate analysis and data mining 

techniques is presented in [140]. Then, to manage the 

protection and thresholds of each DG, DT was utilized for the 

tripping logic. Before feeding them into the DT classifier, a 

total of eleven time-dependent characteristics were collected 

and pre-processed to eliminate noise and inconsistencies. The 

suggested approach was validated using the offline test results 

and a hardware-in-loop (HIL) experiment. 

A hybrid IDS technique that combines the DT and Sandia 

frequency shift (SFS) methods for multiple inverters-based 

DGs was proposed in [141]. Two test systems were used to 

verify the resilience of the proposed IDS under varied 

operating circumstances and changing load configurations. A 

hybrid approach for both inverter-based and synchronous DGs 

was proposed in [142]. A real-time simulator was utilized to 

determine the NDZ border, and a DT was used to classify the 

islanding and non-islanding occurrences. The suggested IIR 

provides great reliability and security in addition to a large 

decrease in NDZ.  

The selection of features is one of the most technical and 

critical measures in islanding detection. A novel feature 

selection technique was presented by [143] based on modified 

multi-objective differential evolution (MMODEA) and 

extreme learning machine (ELM). In the off-line mode, a total 

of 16 features were extracted using MMODEA-ELM, and 

subsequently, the optimum features were selected by objective 
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function formulation. In the online mode, these optimal 

features were used to identify islanding and non-islanding 

scenarios using the DT classifier. A new scheme was 

presented in [144] to generate the DT logic for the 

categorization of islanding and non-islanding events based on 

the active and reactive power imbalance, which directly 

corresponds to the NDZ. A sequential feature selection 

method was applied to choose the 12 best features from a total 

of 30 electrical features. The proposed scheme reduces the 

NDZ by over 54% than the standard relay function and was 

verified on the HIL system. 

 

Initial 
Condition 

Check

Non-
Islanding

Next 
Condition

Next 
Condition

Next 
Condition

Next 
Condition

Non-
Islanding

Islanding

Yes

Yes

Yes Yes

YesNo

No

No No

No
M

a
x
 d

e
p

th

Root

D
ec

is
io

n 
N
od

e

Le
af

S
pl

itt
in

g

Islanding

Non-
Islanding

Non-
Islanding

 
FIGURE 6.  Architecture of the decision tree. 
 

TABLE II 

SUMMARY OF DT BASED IDS 

B.  ARTIFICIAL-NEURAL-NETWORK-BASED IDS 

ANNs are one of the main methods employed in machine 

learning. These are brain-inspired devices, as the "neural" part 

of its name implies, that are built to mimic how humans learn. 

Neural networks consist of input and output layers, as well as 

(in most cases) a hidden unit layer, which converts 

information into something that the output layer can use, as 

shown in Fig. 7 while Table III summarizes the ANN-based 

IDS that have been presented. 

In [60], an IDS was introduced for inverter-based DGs 

using signal parameter estimation. The rotational invariance 

technique (ESPRIT) is used for the extraction of features at the 

point of common coupling (PCC) and the naïve Bayes 

classifier is used for the classification. The validity of the 

proposed scheme was confirmed via three-fold cross-

validation. A framework was implemented based on an ANN 

for islanding detection of the distributed synchronous 

generators in [145]. The proposed method can detect the 

islanding situation by calculating the voltage waveform at the 

distributed generator terminals. In addition, a method for 

selecting the data was suggested to enhance the training of the 

ANN. To evaluate the system efficiency as well as non-

detection areas, the concept of the time-performance region 

was implemented.  

The optimization approach and minimum-feature-based 

IDS were presented in [146] with the use of an ANN. 

Evolutionary programming (EP) and particle swarm 

optimization (PSO) were introduced for improving the 

accuracy of ANNs. In this research, the behavior of 16 

different features was analyzed, and only three features were 

selected for the training of the ANN. After a thorough 

assessment of the online and offline testing results, the ANN–
PSO classifier exhibited the highest accuracy as compared 

with the stand-alone ANN and ANN–EP. In [147], an IDS for 

the reduction of the NDZ was presented, wherein the 

classification of the islanding and non-islanding events was 

conducted using DWT for feature extraction and ANN as a 

classifier. A modified ELM technique presented as weighted 

bidirectional ELM (WB-ELM) and Hilbert–Huang transform 

(HHT) was introduced as a novel IDS in [148]. The proposed 

IDS was implemented and assessed (dependability and 

security) on multiple DGs based on test systems and the IEEE 

13-bus system. The HHT was used for the feature extraction 

from the non-stationary voltage signal at the DG end, and the 

extracted features were then fed to the WB-ELM classifier for 

islanding and non-islanding detection.  

Two feature-extraction methods, the multiplier-based 

method (MBM) and Andrews’s plot-based method (APBM) 

were introduced in [27] for feature extraction and dimension 

reduction. The phasor measurement units provide time-

synchronized measurements to the phasor data concentrator 

(PDC). These raw data were then input into the APBM and 

MBM for pre-possessing before sending them to the ANN 

classifier. In islanding, optimal feature selection is the key 

moderator for appropriate and accurate detection, which is not 

emphasized in the literature. In [149], the author introduced 

the wrapper method for the selection of sensitive features and 

coupled the modified multi-objective differential evolution 

algorithm with a kernel-based ELM classifier. Only 3 out of 

45 features were selected and used based on the proposed 

schemes by evaluating their performance indexes with and 

without noise. The proposed scheme performed well and 

accurately with acceptable detection time as compared to the 

existing intelligent-classifier-based and traditional schemes.  

A unique and novel local-data-mining anti-islanding system 

for synchronous generator (LDMAIS-SG) was presented in 

[150], based on a powerful data-mining tool, which is known 

Reference  
Feature 

Extraction  

No. of 

Features 
Test System Accuracy  

[136] DWT 12 CIGRE MV 98% 

[137] DWT 08 CIGRE VSC 99% 

[138] DWT 03 CIGRE 98% 

[85] DFT 27 IEC 100% 

[139] Passive 06 Hybrid 100% 

[140] Passive 11 UL 1741 100% 

[141] Passive 04 IEEE 13-bus 100% 

[142] Passive 12 Hybrid 99.2% 

[143] Passive 16 IEEE 13-bus 100% 

[144] Passive 12 Hybrid 99% 
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as a code repository (DAMICORE). A total of 10 different 

features were selected and pre-processed using low-pass 

Butterworth filters to eliminate the noise. The proposed 

scheme performed well in differentiating between islanding 

and other disturbances. In [151], an adaptive ensemble 

classifier called an ELM, and a phase-space feature extraction 

technique was introduced. The proposed IDS comprises two 

steps: in the first step, a unique feature extraction method 

(phase-space technique) is used to extract features from the 

three-phase voltage. Then, classification is carried out with 

ensemble ELM in the second step. Multiple events were tested 

on two test systems for the performance evaluation of the 

proposed IDS and compared with the random forest (RF) 

scheme. The proposed scheme performed well in all the 

evaluations.  

A universal islanding detection scheme is introduced for 

both inverter- and synchronous DGs in [152], which 

performed well with high accuracy, zero NDZ for both DG 

types, and fast detection times. The proposed method 

comprised three parts: 1) feature extraction (twenty-one 

features were extracted, which can be influenced by 

islanding), 2) feature selection using forward feature selection 

and backward feature selection (four features are selected 

based on their accuracy in the shortest time), and 3) 

classification to differentiate islanding and non-islanding 

occurrences using RF algorithms. A modified DWT, known 

as slantlet transform (SLT) with a superior lead of two 

vanishing moments and a better time localization than DWT, 

has been implemented in [153] for the selection of features. 

The extracted features have been used to detect islanding and 

other disturbances while employing a ridgelet probabilistic 

neural network (RPNN). The combination of SLT and RPNN 

exhibited better performance with a 100% accuracy compared 

with the combination of DWT and RPNN and that of DWT 

and the probabilistic neural network. 

An intelligent islanding detection system based on an 

intrinsic mode function feature-based grey wolf integrated 

artificial neural network is proposed in [6]. The nodal voltage 

is pre-processed to extract vital features by the Hilbert 

transform. Fourier transform (FT) and machine learning 

algorithm, K-nearest neighbor technique (KNN) is proposed 

for islanding detection of microgrids in [154]. In this study, 

nine features from the voltage and current signal were 

extracted using the discrete Fourier transform. An extreme 

machine learning and wavelet transform has been used as a 

classification to discriminate against islanding events from 

non-islanding events [155]. To exploit the various useful 

features of the DG bus, the negative sequence voltage and the 

current signal were used to obtain the 2 basic mathematical 

morphology operators, erosion dilation difference filter and 

opening-closing difference operator. Tunable Q-factor 

wavelet transforms (TQWT) and ANN-based schemes are 

proposed in [156], the feature extraction step is conducted 

using TQWT, and classification of islanding is done by ANN 

based on conjugate gradient algorithm.  
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FIGURE 7.  Architecture of the ANN. 
 

TABLE III 

SUMMARY OF ANN BASED IDS 

C.  SUPPORT-VECTOR-MACHINE-BASED IDS 

An SVM is a discriminative classifier explicitly described by 

a hyperplane separator and first introduced by Vapnik in 1963 

[157]. An SVM is based on the structural risk minimization 

theory which minimizes the upper limit on the expected risk. 

The tuning parameters of an SVM are the kernel, 

regularization, gamma, and margin. Fig. 8 presents the 

architecture of the SVM and the SVM-based IDS that have 

been presented are summarized in Table IV. 

In [84], in order to overcome the confines of conventional 

islanding schemes, a scheme is proposed for islanding 

detection using multiple features and an SVM. Five features 

were used, which were obtained from five network 

parameters, namely, frequency, voltage, rotor angle, ROCOV, 

and ROCOF at PCC. A total of 2760 events were generated 

for offline SVM training, and the trained SVM is then 

employed for islanding detection in real-time. Based on the 

Reference  
Feature 

Extraction  

No. of 

Features 
Test System Accuracy  

[60] ESPRIT 32 IEEE 34-bus 99.8% 

[145] Passive 16 UL 1741 99.88% 

[146] Passive 03 Hybrid 99.6% 

[147] DWT 06 UL 1741 100% 

[148] HHT 09 Hybrid 99.09% 

[27] 
MBM / 

APBM 
12 IEEE 9-bus 96.98% 

[149] Passive 03 IEEE 13-bus 100% 

[150] Passive 09 UL 1741 100% 

[151] Phase space - IEEE 13-bus 99.72% 

[152] Passive 21 IEEE 34-bus 99% 

[153] SLT 06 UL 1741 100% 

[154] DFT 09 IEC 99% 

[155] WT 06 Hybrid 100% 

[156] TQWT 07 UL 1741 98% 
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outcome of the above research, a multi-feature-based IDS was 

presented for the NDZ in the subcritical region of the vector 

surge relay [158]. From five network variables, the process of 

feature extraction was completed, and a total of 2022 incidents 

were produced for the SVM training and testing. Linear 

kernel, polynomial kernel, and Gaussian radial basis function 

kernel were used for the performance evaluation of the 

proposed scheme.  

A new IDM for single-phase inverter-based DG was 

introduced in [90]. In the initial step, autoregressive (AR) 

signal modeling was used at the PCC for the extraction of the 

voltage and current signal features. In the next step, the SVM 

predicts the islanding state from the determined 

characteristics. The IEEE 13-bus system is used to conduct the 

study, and the trained SVM is tested under several islanding 

and non-islanding conditions. This scheme detects the 

islanding correctly within 50 ms after the event starts. The IDS 

for hybrid DGs comprising both photovoltaic and wind 

generation connected to the IEEE 30-bus system was 

presented in [159]. The negative sequence component of the 

voltage signal was pre-processed through three different 

advanced signal-processing schemes, namely, the hyperbolic 

S-transform, time–time transform (TTT), and mathematical 

morphology methods for feature extraction. The extracted 

features were then fed to the SVM for the classification of 

islanding and other PQ disturbances.  

Wavelet transform (WT) is the widely applied signal 

processing technique for islanding feature extraction but has 

some shortcomings with non-linear loads and harmonics. To 

overcome this lag of the WT, in [160], Renyi entropy was 

employed with WT to identify and categorize seven PQ 

disturbances. The features extracted using Renyi and WT were 

then trained in SVM classifiers and tested in real-time 

scenarios. SVM is used as a dual-functional classifier for the 

detection of islanding and grid-connected modes and the 

classification of various faults during normal grid 

operation[161]. This scheme was implemented on a 

MATLAB model based on the parameters of a real-time PV 

power plant. 

 

∑

Islanding

w
1

w
2

w3

w
N

Weights  
(Lagrange 
Multipliers) 

Transfer 
Function

[x1]

[x2]

[x3]

[xM]

K(x, x1)

K(x, x2)

K(x, x3)

K(x, xM)

Hidden Nodes  
(Support 
Vectors) 

Input Vector X 

Bias 
b

Non-
Islanding

Transfer 
Function

 
FIGURE 8.  Architecture of the SVM. 
 

TABLE IV 

SUMMARY OF SVM BASED IDS 

D.  FUZZY-LOGIC-BASED IDS 

Fuzzy logic is a problem-solving approach influenced by 

human decision-making, which benefits from the human 

ability to reason with ambiguous or provisional data and was 

presented by Dr. Lotfi Zadeh in the 1960s [162]. Fuzzy logic 

is a basic mathematical logic that uses partial truth as a 

continuous value between 0 and 1 instead of a discrete value, 

as shown in Fig. 9. The FL-based IDS that have been presented 

are summarized in Table V. 

Islanding detection for DGs using the concept of a fuzzy 

membership function (MF) was demonstrated in [163] with an 

accuracy of 100% islanding detection. In the initial step of the 

proposed method, 11 features affected by islanding were 

extracted. The second step consists of two parts: the extracted 

features were fed to the DT for the initial classification 

boundaries, and the fuzzy MFs were then used for rule-based 

classification. In the case of large noise, the WT fails to detect 

islanding, and thus, a discrete fast S-transform (DFST) with a 

fuzzy expert system (FES) was proposed in [164] to resolve 

this problem. Negative voltage and current sequences were 

used and pre-processed by the DFST for extracting 24 

different features, and only four significant features were then 

fed into the FES for the classification of islanding and non-

islanding events. The validation of the proposed IDS was 

obtained by testing it on two different test systems with 

different islanding and non-islanding events. In addition, the 

performance is compared with previously implemented 

schemes and the proposed method has demonstrated 

superiority in terms of reliability, detection time, and 

sensitivity.  

A novel hybrid scheme based on the SFS and FL was 

presented in [41] for the elimination of the NDZ. Initially, the 

fuzzy load parameter elimination is trained for the selection of 

the load parameters (R, L, and C) for the appropriate load 

quality factor and then the SFS for detection. A novel IDS was 

proposed in [165] using hybrid fuzzy positive feedback (PF) 

to reduce the interference injection. In the proposed scheme, 

the PF was continuously varied, while the PF gain was fixed 

in the traditional methods. The presented scheme shows a 

77.3% decrease in detection time and low injection 

disturbances. The majority of the IDS measures exhibit a 

change in electrical parameters at a single point called the 

PCC, but in [76], a multi-connection point model has been 

implemented for smart grids focused on the probability of 

Reference  
Feature 

Extraction  

No. of 

Features 
Test System Accuracy  

[84] Passive 05 UL 1741 98% 

[158] Passive 05 Hybrid 100% 

[90] AR 62 IEEE 13-bus 98.49% 

[159] ST/TTT 08 IEEE 30-bus >97% 

[160] WT 06 Hybrid 100% 

[161] Passive 07 UL 1741 100% 
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islanding (PoI). The PoI at various points was measured using 

active, passive, and communication-based islanding schemes 

and sent to the central microgrid control (CMGC). The 

parameters were obtained from the voltage and current signals 

using the DWT and then fuzzy neural networks are used for 

islanding detection. 
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FIGURE 9.  Architecture of the FL 

 
TABLE V 

SUMMARY OF FL BASED IDS 

E.  ADAPTIVE-NEURO–FUZZY-INFERENCE-SYSTEM-

BASED IDS 

ANFIS, a mixture of ANN and FL, is a robust computational 

system for a non-linear and complicated system with limited 

training data. It was first introduced in the early 1990s, with 

two parts called premise and consequence and five layers 

(fuzzification, rule, normalization, defuzzification, and 

summation layers) [166]. Fig. 10 presents the complete 

structure of the ANFIS while the ANFIS-based IDS 

demonstrated thus far are summarized in Table VI. 

In [167], ANFIS-based IDS for inverter-based DGs was 

presented. During islanding, the proposed system checks the 

sensitivity of specified parameters at particular DG locations. 

It determines the pattern vector Xi by analyzing the behavior 

of the current and voltage data and then feeds it to the ANFIS 

for islanding detection. In [168], a two-step ANFIS-based IDS 

was presented. The distribution system was first simulated in 

PSCAD at the PCC for the extraction of five chosen indices. 

The retrieved data is then sent into the ANFIS toolbox in 

MATLAB for the categorization of islanding and non-

islanding occurrences in the second phase. The energy 

analysis of wavelet coefficients and the ANFIS algorithm for 

the classification of islanding and non-islanding events were 

used to develop the new IDS presented in [169]. A total of 

eight distinct electrical signals that were impacted by any 

islanding or non-islanding disturbance were monitored; these 

parameters were then put into a wavelet energy calculator to 

extract features, which were then fed into ANFIS for islanding 

and non-islanding detection. The suggested IDS had an NDZ 

of almost zero, no threshold settings, and no PQ issues. 

The ROCOF is the most widely used passive islanding 

detection approach; it was utilized as an input parameter for 

the ANFIS in [170] to identify islanding and non-islanding 

scenarios. Various non-islanding situations, including load 

switching, capacitor switching, and motor starting, were used 

to validate the suggested system, and the given IDS worked 

effectively with almost zero NDZ while overcoming threshold 

setting challenges. In [171] a unique ANFIS algorithm 

approach for low-voltage inverter-interfaced microgrid 

islanding detection. The relevant data for the ANFIS classifier 

was gathered from seven electrical characteristics utilizing 

relay metering sensors at the PCC. The suggested hybrid 

method may be customized to solve several problems. An 

ANN was utilized to provide flexible learning capabilities, 

while FL was used to discover nonlinear connections. The 

proposed IDS did not affect the system PQ and significantly 

reduced NDZ. 
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FIGURE 10.  Architecture of the ANFIS. 
 
 

TABLE VI 

SUMMARY OF ANFIS BASED IDS 

 

Reference  
Feature 

Extraction  

No. of 

Features 
Test System Accuracy  

[163] Passive 11 Hybrid 100% 

[164] DFST 04 Multi 97.22% 

[41] Active - UL 1741 >96% 

[165] Active 05 UL 1741 - 

[76] DWT 04 Multi - 

Reference  
Feature 

Extraction  

No. of 

Features 
Test System Accuracy  

[167] Passive 01 UL 1741 - 

[168] Passive 05 IEEE 13-bus 100% 

[169] DWT 08 UL 1741 - 

[170] Passive 01 UL 1741 - 

[171] Passive 07 UL 1741 78.71% 
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F.  DEEP-NEURAL-NETWORK-BASED IDS 

DNNs are a popular group of machine-learning algorithms 

that are implemented in the depths and widths of smaller 

architectures by stacking layers of neural networks [172]. 

DNN has a special structure as it has a relatively large and 

complex hidden layer in the middle of the input and output 

layers, as shown in Fig. 11. To be called a DNN, this hidden 

segment should contain at least two layers. Owing to their 

nature, DNNs can distinguish patterns better than shallow 

networks [173]. Machine-learning researchers extend the 

horizons of profound thinking by searching for potential 

applications of DNNs in other fields such as EPSs. Lately, the 

DNN has been used in EPSs for islanding detection and has 

shown excellent results in eliminating the islanding problem. 

Table VII summarizes the DNN-based IDS that have been 

presented.  

The concept of deep neural learning was first implemented 

and demonstrated for the classification of islanding and other 

grid disturbances in [174]. A novel feature-extraction 

technique using wavelet decomposition and multi-resolution 

singular spectrum entropy was introduced. Initially, the PCC 

voltage signal during islanding and other grid disturbances 

were decomposed by the wavelet decomposition, and the 

multi-resolution singular spectrum entropy was then 

calculated. The extracted features were then used for the 

training and testing of the DNN. The training process of the 

deep architecture comprised two steps: 1) initialization of 

weights utilizing greedy layer-wise unsupervised learning, and 

2) fine-tuning of the earlier initialized weights using 

supervised data. The proposed approach exhibits a better 

performance in terms of both accuracy (98.3%) and detection 

time (0.18 s) than other methods of classification.  

CNN is also a type of DNN; however, similar to the DNN, 

this technique is not used much in EPSs for the detection and 

classification of islanding. CNN was first implemented in EPS 

applications in 2019, and IDS was proposed based on image 

classification with CNN [175]. The novelty of the proposed 

IDS is that it converts the time series data having distinct 

information about islanding and non-islanding events into 

images. These scalogram images obtained using continuous 

WT with Morse wavelet were then fed into the CNN classifier 

for the classification of islanding and non-islanding events. A 

total of 205 islanding and non-islanding events were generated 

for the validation of the proposed IDS, and 60% of the data 

was used for training purposes, while the remainder of the data 

was used for testing. The scheme demonstrates an accuracy of 

98.78% and a preeminent performance for noisy data. Long 

short-term memory (LSTM) for the first time used for 

islanding detection in [176], the scheme proposed a two-step 

approach for islanding detection. In the first step, useful 

features were extracted from voltage and current signals using 

DFT, and then the extracted six features were fed to LSTM for 

event detection. 
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FIGURE 11.  Architecture of the DNN. 
 

 
TABLE VII 

SUMMARY OF DNN BASED IDS 

 

Intelligent-classifier-based IDSs are discussed critically in 

detail and a comparative investigation of intelligent schemes 

in islanding detection is summarized. Table VIII presents the 

pros and cons of intelligent classifiers discussed and used for 

islanding detection.  While Table IX gives a comparison 

between intelligent IDSs and conventional IDSs based on 

various performance indices. Reliability refers to the accuracy 

of anything being evaluated by a process and DNN has the 

highest reliability. DT has the lowest reliability among 

intelligent classifiers while conventional IDSs (remote 

techniques) have the highest reliability. Complexity provides 

the means to conceptualize the research challenge as a 

complex adaptive process, focusing on the patterns of 

interactions between various system components at different 

points and times. ANN, FL, active, and passive IDS are the 

most desirable methods in terms of complexity. While DNN, 

CNN, ANN, and SVM score comparatively well in terms of 

accuracy. Finally, DNN, CNN, and ANFIS are influential in 

terms of detection speed. Intelligent classifiers have zero 

impact on the PQ of DG-EPS, while active IDSs have the 

highest impact on PQ. Implementation cost is an important 

aspect of the DG-EPS system modeling and construction.  

Intelligent-classifier-based IDSs are economical compared to 

remote and hybrid techniques. 

 

 

 

 

 

 
  

Reference  
Feature 

Extraction  

No. of 

Features 
Test System Accuracy  

[174] WT Multi UL 1741 98.3% 

[175] CWT 03 UL 1741 98.78% 

[176] DFT 06 Hybrid 99.61% 
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TABLE VIII 

PROS AND CONS OF INTELLIGENT CLASSIFIERS [177]-[179]  

Technique Pros Cons 

DT 

• No need for scaling and normalization.  

• Easily handle missing values. 

• Easy for implementation and explanation. 

• Reduce complex problems to an elementary decision 

at the tree level. 

• Susceptible to over-fitting. 

• Sensitive to the change in data. 

• For large data overlapping issue arises.  

ANN 

• Feasible for complex problems. 

• Can handle noisy data.  

• Ability to train multiple algorithms. 

• High processing time. 

• Requires a large number of input features.  

SVM 

• Efficient to handle non-linear and higher-dimensional 

data. 

• Kernel trick is an incredible function of SVM. 

• Robust to outliers. 

• Choosing a kernel is a very chaotic task. 

• Slow for large datasets. 

• Poor performance with overlapped classes. 

FL 

• Fuzzy membership boost accuracy significantly.  

• Rule-based functions have a positive impact on 

performance. 

• High flexibility for decision-making. 

• Very sensitive to noisy data. 

•  FL has limitations for being highly abstract due to 

several maximum and minimum class combinations 

ANFIS 

• It has both qualities of ANN and FL. 

• Robust to non-linear and complex problems. 

• Fast convergence time. 

• High computational complexity.  

 

CNN 

• Automatically detects features without any 

supervision. 

• Best for classification problems.  

• Efficient in computation.  

• It requires large training data. 

• Training time is high. 

 

DNN 

• It models the characterization of data hierarchically 

for data prediction. 

• High computational power. 

• High accuracy. 

• Complex architecture.  

 

TABLE IX 

COMPARISON OF INTELLIGENT CLASSIFIERS BASED IDS AND CONVENTIONAL IDS [1],[97],[103]  

Class Technique Reliability Complexity Accuracy 
Detection 

Speed 

Impact on 

PQ 

Implementation 

Cost 

In
te

ll
ig

en
t 

C
la

ss
if

ie
r 

B
a

se
d

 I
D

S
 

DT Low Intermediate Intermediate Intermediate 

None Low 

ANN Intermediate Low High Intermediate 

SVM Low Intermediate High Slow 

FL Low Low Intermediate Slow 

ANFIS Intermediate Intermediate Intermediate Fast 

CNN Intermediate High High Fast 

DNN High Very High High Fast 

C
o

n
v
en

ti
o

n
a

l 
ID

S
 Remote High Intermediate High Fast None High 

Active Intermediate Low High Fast High Low 

Passive Low  Low  Intermediate Slow None Low 

Hybrid High High Intermediate Slow  Low Intermediate 

 

G.  OTHER ISLANDING SCHEMES  

Signal processing techniques are used in the modified 

passive IDSs to increase detection performance, minimize 

detection time, and reduce NDZ. The researchers improved 

existing islanding detection schemes and developed new 

methods by using techniques like the Fourier transform (FT), 

WT, S-Transform (ST), and TTT. These techniques facilitate 

the analysis and extraction of key features from a measured 

signal, allowing for more efficient power system operations. 

Identification of islanding and non-islanding occurrences is 

feasible with the knowledge of these retrieved features. 
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1)  FT-BASED IDS 

FT is a frequency-domain analysis technique for extracting 

signal characteristics at certain frequencies. Because the FT 

is incapable of incorporating time-domain analysis, a short-

time Fourier transform (STFT) is used to evolve several 

frames of the signal in the moving window. Other popular 

approaches include DFT and fast FT, which convert a 

discrete-time series of finite duration into a discrete-

frequency sequence. FT is used for feature extraction from 

voltage, current, and frequency signals in intelligence-based 

IDS, and many IDS have been suggested, which are 

addressed in section IV [85], [154], and [176].  

2)  WT-BASED IDS 

WT is a useful technique for extracting important 

characteristics from distorted voltage, current, or frequency 

signals. The signals are converted into several temporary 

scales, such as the mother wavelet, which creates small 

waves called wavelets. The wavelet coefficients of the 

observed signal are compared to a pre-defined threshold 

value in WT-based IDSs. The islanding situation will be 

identified if these coefficients reach a value greater than the 

pre-defined threshold value. The drawbacks of such 

techniques are the effects of mother wavelet selection, 

threshold settings, and various sampling frequencies. 

Intelligent IDSs made extensive use of various forms of WT 

for islanding detection, as described in section IV [136], 

[138], [153], [155], and [160]. 

3)  ST-BASED IDS 

The ST idea is a development of the WT concept. It 

transforms a two-dimensional frequency-domain function 

into a time-domain function. The ST technique, like other 

time-domain approaches, is used to extract key 

characteristics from a recorded signal at PCC, allowing the 

islanding state to be detected. ST produces the S-matrix and 

the corresponding time-frequency contours from the 

recorded voltage or current signals at the DG terminals. The 

ST approach takes more computing memory to process a 

signal than other related techniques. Furthermore, such 

techniques have a long processing time. In [159], and [164] 

ST is used for feature extraction for intelligent IDSs 

discussed in section IV. 

4)  TTT-BASED IDS 

By providing a time-time distribution on a specific 

window, the TTT method analyzes and transforms a one-

dimensional time-domain signal into a two-dimensional 

time-domain signal. Low-frequency components are 

concentrated at various locations in the TTT technique, but 

high-frequency components are focused on the localization 

point with the highest energy concentration. TTT's time-

local view usefulness through the scaled window is one of its 

characteristics, making it a good approach for change 

detection in signals and systems.  In [159] employs TTT-

based feature extraction of the negative sequence of the PCC 

voltage signal to detect islanding in 25 milliseconds. TTT is 

used in [180], where the TTT pattern of the three-phase 

disturbances clearly shows distinct signatures. Individual 

events are discovered to have a distinct pattern that can be 

utilized to detect islanding. The graphical result analysis in 

[181] illustrates the TTT capacity of detection and the 

localization of islanding disturbances in a hybrid DG system 

over WT, ST, and HST. The energy content and standard 

deviation of the converted signal are computed to assess 

performance.  

V.  FEATURE SELECTION SCHEMES  

The most intelligent IDSs usually follow three basic steps, 

which consist of feature extraction, feature selection, and 

classification. Generally, more features mean more 

information, but it is practically difficult to implement because 

the extraction of multiple features requires more 

computational power. A significant problem, therefore, 

emerges in choosing the best and minimum features. 

Moreover, the collection of suitable features decreases the 

time needed for classification training and testing of a dataset. 

From the literature, we have found that not all features are 

valuable, and some of them are less sensitive to islanding 

detection and classification. To increase the efficiency and 

speed of rating classification, the use of various feature 

selection schemes omits redundant features. Intelligent-

classifier-based learning schemes that use data for any output 

have been developed for different problems in the last decade. 

To train any intelligent-classifier-based scheme, a large 

amount of data is required in terms of several instances and 

features. This is called feature selection for managing high-

dimensional data by identifying responsive and redundant 

features [182]. 

Machine-learning algorithms allow computers to create a 

method based on the input data. Thus, if relevant data is 

provided, the output of the learning algorithm will be 

improved. The quest for schemes that improve the quality of 

input data thus helps to improve the agent's output 

performance and thus improved data quality can be achieved. 

For example, by removing the noisy instances and by 

discriminating between relevant, irrelevant, and redundant 

data items, an optimal learning algorithm can be developed 

[183], [184].  

The technical reasons for the requirement of feature 

selection schemes are as follows: a) curse of dimensionality 

(overfitting), b) Occam's razor (simplicity of model), and c) 

garbage in, garbage out (poor-quality input will produce poor-

quality output). Various schemes for the selection of features 

have been presented and implemented by researchers, but the 

main approaches for the selection of features are of three types 

as summarized in Fig. 12 and the working principles are 

presented in Fig. 13. 

The Wrapper method was presented in 1997 by two 

researchers in [185]. The Wrapper approaches work with a 
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sub-set of features that test each subset based on the 

performance quality of an algorithm, using a search technique 

to observe the range of potential feature sub-set [186]. In any 

machine-learning algorithm, filter methods independently 

select features from a data set depending on the feature 

characteristics as the characteristics are extracted from the data 

before learning [187]. Embedded methods complete the 

selection process inside the machine's algorithm during the 

model training, which is why they are called embedded 

methods [188]. 

 

FEATURE SELECTION 
METHODS

Regularization

L1 
(Lasso)

L2 
(Ridge)

L1/ L2 
(Elastic 

Net)

EMBEDDED 
METHOD

Correlation

Fisher 
Score

ANOVA

ROC-AUC/
RMSE

FILTER   
METHOD

Backward 
Selection

Exhaustive 
Feature 

Selection

Recursive 
Feature 

Extraction

Forward 
Selection

WRAPPER 
METHOD

 
FIGURE 12.  Methods for feature selection. 
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FIGURE 13.  Architecture of feature selection methods. 

 

The feature selection is the most significant and critical step, 

but several researchers have not emphasized this part in the 

islanding detection. The majority of the proposed IDSs select 

features explicitly based on the analysis of the literature 

without mentioning the selection criteria and selection 

reasons. For their proposed IDS, only a few researchers used 

feature selection schemes. The feature selection wrapper 

method has been used in [149] to select the three best features 

out of 45. In [136], CART was used to choose features. The 

sequential feature-selection process was employed to choose 

12 of the best features out of a total of 30 electrical features in 

[144]. The forward sequential feature selection and the 

backward sequential feature selection were adopted for feature 

selection in [153]. As discussed above, considering the 

importance and need for optimal selection of features, IDSs 

should use any feature selection schemes based on their data 

and the requirements of the proposed scheme. 

VI. MOST DOMINATING FEATURES FOR ISLANDING 
DETECTION 

In islanding and non-islanding situations, the electrical 

features of EPS show various fluctuations as compared to 

those in normal operation. Some of these parameters are more 

sensitive to disturbances from islanding and non-islanding 

whereas, some are less sensitive, while some of them have no 

impact [189], [190]. Based on the sensitivity of these 

parameters under irregular circumstances, researchers have 

selected specific parameters for their proposed IDS. The 

number of parameters for each IDS depends on their method 

and the feature selection technique used. As mentioned in 

section 5, several researchers have not used any feature 

selection methodology and have selected parameters based on 

previous and evolving studies. In [136], 12 features were 

extracted, whereas in [85], 27 features were extracted for 

islanding detection. Similarly, a total of 16 features were 

extracted using MMODEA-ELM and by objective function 

formulation, the most optimum features were selected in[143]. 

In [149], initially, 45 features affected by islanding conditions  

were extracted, while in [71], 10 features were selected; a total 

of 21 features were selected in [152] during the feature-

extraction step, and 11 features were extracted in [80]. A wide 

variety of features for islanding detection have been derived 

ranging from three to 45 features in the above IDSs. Some 

specific and significant features are impaired and very prone 

to islanding and non-islanding disturbances, which were 

utilized by the majority of researchers in their proposed 

schemes. Such features provide a lot of information 

concerning behavioral changes and are very useful for 

machine-learning classifiers to distinguish between these 

disturbances. ROCOF, ROCOV, total harmonic distortion 

(THD), power factor, ROCOP, and ROCOQ are widely used 

owing to their traits that are useful for classifying islanding 

and non-islanding situations. Table X provides a full overview 

of the most dominant features and their uses in the various 

IDSs.
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TABLE X 

DOMINATING FEATURES FOR ISLANDING DETECTION  

Where ✓: used and : not used. 

 

 

TABLE XI 

COMPARISON OF THE VARIOUS INTELLIGENT IDS 

 
VII.  PERFORMANCE INDICATORS FOR IDSs 

The timely and precise operation of the appropriate technique 

is critical to the IDSs' performance. The NDZ, parallel RLC 

load, and quality factor are the three primary performance 

indicators that describe an IDS's operating capabilities. A 

successful operation under these severe conditions confirms 

the use of IDSs. If a technique effectively identifies the 

islanding situation in such circumstances, the approach's 

superiority is highlighted, and international requirements are 

satisfied. 

A.  NDZ 

NDZ is an area that is not easily identified by traditional 

protective relays in islanding detection. The NDZ is thought 

to be a summative assessment for IDSs. An NDZ is typically 

assessed based on a range of active and reactive power 

mismatches in which the voltage and frequency relays are 

unable to identify the islanding condition in a reasonable 

timeframe. The NDZ boundary limits may be established 

using (1) and (2), and the region of critical and non-critical 

operating conditions can be identified [103]. 

( 𝑉𝑉𝑚𝑎𝑥)2 − 1 ≤  ∆𝑃𝑃  ≤  ( 𝑉𝑉𝑚𝑖𝑛)2 − 1          (1)   
𝑄𝑓 ((1 − ( 𝑓𝑓𝑚𝑖𝑛)2) ≤  ∆𝑄𝑃  ≤  𝑄𝑓 ((1 − ( 𝑓𝑓𝑚𝑎𝑥)2)        (2)  
where Vmax, Vmin, fmax, and fmin are the maximum and 

minimum voltage/frequency threshold limits of the relay. ∆P 

and ∆Q represent the power mismatches prior to the main 

grid disconnection while Qf is the load quality factor. 

B.  PARALLEL RLC LOADS 

Most loads in power networks are inductive, but inverter-

based DG units yield maximum kilowatt-hours by operating 

at unity power factor. When combined with a parallel RLC 

load, this is considered the worst-case situation for detecting 

Reference ΔF ROCOF ΔV ROCOV THDv THDc PF ROCOP ROCOQ dF/dP 

[85] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

[139] ✓ ✓ ✓ ✓    ✓ ✓  

[140] ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ 

[141]   ✓ ✓ ✓      

[143]  ✓  ✓    ✓ ✓ ✓ 

[144] ✓ ✓ ✓ ✓   ✓ ✓ ✓ ✓ 

[27] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

[149]  ✓  ✓   ✓    

[152] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

[163] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

[169]  ✓  ✓ ✓ ✓  ✓ ✓  

Reference Technique name Test system Detection time (s) Accuracy (%)  NDZ (%) 

[141] DT Only IB DG 0.22 100 ✓ 

[142] DT Both IB and SB DGs 0.425 97.1 1.91 

[27] ANN 
IEEE-9 bus power 

system 
0.5 97.1 3 

[153] ANN Only IB DG 0.188 100 Almost zero 

[191] SVM Only IB DG 0.040 100 9.52 

[90] SVM Only IB DG 0.50 99.49 - 

[192] FL Both IB and SB DGs 0.229 99.70 - 

[150] FL 
Both IB and SB base 

DGs 
fast 100 - 

[171] ANFIS Two IB DG 0.040 78.71 Almost zero 

[169] ANFIS Only IB DG fast - Zero 

[174] DNN Only IB DG 0.18 98.3 ✓ 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3123382, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

islanding. Similarly, when the connected load and DG power 

are perfectly matched, islanding identification becomes more 

difficult [23]. The relationship between the PCC voltage and 

frequency in a parallel RLC circuit is as follows: 

𝑃𝑙𝑜𝑎𝑑  =  3𝑉𝑃𝐶𝐶2𝑅                                    (3)   
𝑄𝑙𝑜𝑎𝑑  = 3𝑉𝑃𝐶𝐶2  ( 1𝜔𝐿 −  𝜔𝐶  )                    (4)   

 

VPCC is reliant on the active power of the islanded system, 

as shown in (3) and (4). 

C.  QUALITY FACTOR 

The load quality factor is a critical element for determining 

the IDS's dependability and robustness [103]. Because the 

size of the NDZ and detection accuracy is affected by the 

load quality factor, the value of the load quality factor has a 

major impact on the performance analysis of the IDSs. The 

quality factor can be expressed mathematically as (5). 

𝑄𝑓  = 𝑅√𝐶𝐿                                  (5)   
 

where R, L, and C are the effective load resistance, 

inductance, and capacitance, respectively.  

VIII.  COMPARISON, DISCUSSIONS, AND FUTURE 
RECOMMENDATION 

Table XI shows a comparison of several existing intelligent 

classifier-based IDSs based on many indices like the used test 

system, detection time (s), achieved accuracy, and the NDZ. 

Table IX compares intelligent classifiers with traditional IDS 

based on different criteria such as reliability, complexity 

accuracy, detection speed, impact on PQ, and implementation 

cost. In the recent research on islanding detection conducted 

by our team, various intelligent classifiers were compared 

based on accuracy, precision, recall, and F_1 score in [3]. Ada-

boost performs very accurately with the highest accuracy, 

precision, recall, and F_1 score, while DT performance is 

worst among all models. Fig. 14 illustrates a comparison of the 

ensemble learning models (Ada-boost and RF) and canonical 

methods (MLP, DT, and SVM) with the same data and test 

system. 

The change in research trends from traditional to intelligent-

classifier-based IDS over the past decade has been outlined 

and objectively evaluated in this paper. This work was focused 

on intelligent-classifier-based IDSs such as DT, ANN, SVM, 

FL, ANFIS, CNN, and DNN. Different aspects of feature 

selection were also studied in this research, as this is the most 

critical step in islanding detection algorithms. The review also 

outlined the most widely used and influential features for 

islanding detection. 

 
FIGURE 14.    Comparison of intelligent classifiers in terms of various 

performance indices. 

 

This study concludes that machine-learning-based schemes 

show a high degree of robustness in all performance indices 

that are important for any IDS, such as negligible NDZ, high 

PQ, multiple DGs, and fast detection time, and are capable of 

managing complex and large EPSs. Following are the 

recommendations for future studies, which are based on the 

evaluation and review of all the performance indices for 

islanding detection. 

• Intelligent-classifier-based methods are strongly 

recommended based on performance indices that are 

significant for islanding system design. 

• Based on this study, feature selection should be regarded 

as an essential step in any proposed islanding scheme. 

• Several features offering a high accuracy is a fallacy in 

machine learning, as a larger number of features burdens 

the system and reduces the speed and accuracy of the 

algorithm. The selection of features should, therefore, be 

based on precision and prevalence and be as few as 

possible. 

• DNN- and CNN-based approaches are desirable for large 

and complex systems, but conventional schemes offer the 

best efficiency and are still very convenient for 

implementation in small and basic systems. 

• Signal processing techniques schemes such as DWT, 

DFT, TTT, and HHT can be used to reduce noise, 

maximize device performance, and minimize 

dimensionality during the extraction of features. 

• In the future, advanced signal processing technologies 

combined with a machine-learning algorithm might be 

used to develop an accurate island detection method. 

• In future research, hybrid strategies based on intelligent 

classifiers and conventional techniques are suggested. 

• Several recent intelligent classifiers, such as LSTM, 

RNN, Encoder-Decoder, and so on, are not used in power 

system research, although they may be in future studies. 
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IX.  CONCLUSION 

A detailed and in-depth analysis of intelligent-classifier-based 

IDSs has been presented in this review.  Systematic and 

detailed research is carried out based on intelligent/machine 

learning theories for islanding detection. This research 

outlines the feature-selection schemes used in the literature 

and those that could be used in the future for islanding 

detection. In this article, based on a literature review, the most 

important electrical parameters for islanding detection are also 

highlighted. The IDS were categorized into three main classes 

remote, local, and intelligent classifier-based scheme. Classic 

IDS approaches, such as active, passive, and remote 

approaches, have their own merits and demerits, and because 

of their shortcomings, researchers have recently shifted 

towards intelligent-classifiers-based schemes. The intelligent-

classifier-based IDSs have major advantages in terms of 

performance indices, such as NDZ, detection time, precision, 

PQ, noise, and accuracy as compared to conventional 

schemes. It can be concluded that the implementation of 

intelligent classifier-based IDS can play a major role in the 

efficient and viable detection of DG islanding. 

Implementation of these techniques in islanding detection will 

also increase the stability of the power system and power 

supply efficiency. Therefore, artificial intelligence-based 

approaches are also favored and can be used in real-time 

applications to efficiently execute DG islanding operations. 
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