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Abstract: Nanotechnology has infiltrated all sectors due to its unique and evident impacts, which give 

the scientific community numerous breakthroughs in the medical, agricultural, and other domains. 

Nanomaterials (NMs) have risen to prominence in technological breakthroughs due to their adjustable 

physical, chemical, and biological characteristics and superior performance over bulk equivalents. NMs 

are divided into many categories based on size, composition, capping agents, form, and origin. The 

capacity to forecast NMs' unique features raises the value of each categorization. As the manufacturing 

of NMs and industrial uses grow, so does their demand. The purpose of this review is to compare 

synthetic and naturally occurring nanoparticles and nanostructured materials to determine their 

nanoscale characteristics and to identify particular knowledge gaps related to the environmental 

application of nanoparticles and nanostructured materials. The paper review includes an overview of 

NMs' history and classifications and the many nanoparticles and nanostructured materials sources, both 

natural and manufactured. Furthermore, the many applications for nanoparticles and nanostructured 

materials.  
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1. Introduction 

Nanotechnology is the process of manipulating the shape and size of structures, 

electronics, and systems at the nanometer scale, i.e., 1 nm to 100 nm (10-9m) [1,2]. The unit of 

nanometer takes its prefix nano from the Greek word "nano" which means "very little" [3]. 

Their small size gives them more significant surface areas than the corresponding bulk forms, 

higher reactivity, and a tuneable nature of several properties [4-6]. These special properties 

have stimulated the growth of nanoscience and the application of NPs in a wide range of fields 

like biomedicine, cosmetics, electronics, analysis food, environmental and remediation, or 

paints [7-11]. Nanoscale science and engineering allow us to gain a new level of understanding 

and control matter at the atomic and molecular dimensions [12]. Nanoscale particles have 

gotten a lot of attention because of their remarkable electrical, optical, and magnetic properties 

[13]. These NPs have the dimensions that make them suitable candidates for nanoengineering 

[14,15]. The desire for novel technology applications in data storage, biomedical sciences, and 

drug delivery has fueled nanoparticle research [16-19]. Core/shell (CS) NPs, polymer-coated 

NPs, Ag-NPs, Cu-NPs, Au-NPs, Ni-NPs, Pt-NPs, CuO-NPs, ZnO-NPs, Pd-NPs, Si-NPs, FeO-

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC131.041
https://www.scopus.com/authid/detail.uri?authorId=57218260314&amp;eid=2-s2.0-85099504923
https://www.scopus.com/authid/detail.uri?authorId=57202162965
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2898-6708
https://orcid.org/0000-0002-6658-8279
https://orcid.org/0000-0002-9083-576X
https://orcid.org/0000-0002-4448-0064


https://doi.org/10.33263/BRIAC131.041  

 https://biointerfaceresearch.com/ 2 of 30 

 

NPs, ZrO2-NPs, and TiO2-NPs are among the metal, metal oxide, and dioxide NPs recently 

enumerated in various published publications. Each of these NPs has its own set of 

characteristics and uses [20-23]. 

2. Capping Agents and Their Types 

Capping agents (polymers, organic-ligands, surfactants) are essential in producing 

metal nanoparticles with precise size and form [24,25]. Their impact on the performance of 

nanomaterials-based catalysts, on the other hand, is complex and contentious. Indeed, capping 

agent can operate as both a "poison," reducing active site accessibility, and a "promoter," 

resulting in higher yields and unexpected selectivity control [26]. These events can be 

attributed to the formation of metal-ligand interphase, whose specific features are responsible 

for the catalytic action. As a result, knowing the structure of this interphase is crucial for 

optimizing the design of customized nanocatalysts [24]. Typical capping agents used in 

nanoparticles synthesis involve heteroatom functionalized long-chain hydrocarbons. 

Depending on the nature of the donor atom, they may be categorized as; the broadly classified 

green capping agents are: 

2.1. Biomolecules. 

The use of biomolecules to make homogeneous NPs has lately sparked interest due to 

their non-toxic nature and lack of arduous synthetic techniques [27]  .To produce NPs with a 

unique structure, amino acids serve as effective reducing and capping agents. Maruyama and 

colleagues used amino acids as capping agents to make Au-NPs with a 4–7 nm size range .  

They chose L-histidine from a list of 20 amino acids since it was discovered to reduce tetraauric 

acid (AuCl4) to Au-NPs.The size of NPs was discovered to be affected by the concentration of 

L-histidine; the higher the concentration, the smaller NPs [28]. 

2.2. Polysaccharides. 

Dextran is a complex branched polysaccharide composed of many glucose molecules 

with chains of varying lengths [29]. It is hydrophilic, biocompatible, non-toxic, and used to 

coat many metal NPs [30]. Chitosan is a polysaccharide made up of glucosamine and N-

acetylglucosamine units in a linear structure. Non-parenteral drug delivery using chitosan-

based NPs can be used to treat cancer, lung diseases, gastrointestinal disorders, medication 

delivery to the brain, and eye infections [31]. Gelatin was used to coat gold NPs of various 

shapes and sizes [32]. 

2.3. Understanding the role of capping agents. 

The growing kinetics of nuclei during the synthesis process dictate the final form of 

NPs [33]. As a result, NP growth can occur in either a thermodynamically or kinetically 

controlled manner. In general, isotropic nanocrystal growth results in spheres under 

thermodynamic control, whereas anisotropic nanocrystal growth results in NPs of diverse 

forms under kinetic control. NPs are generated in conditions far from thermodynamic 

equilibrium, in other words. NPs were synthesized in practice by significantly slowing down 

the rate of precursor decomposition or reduction [34]. When crystal development occurs 

outside of thermodynamic equilibrium, a slight change in reaction circumstances greatly 

amplifies variations in surface free energy at various facets, resulting in anisotropic growth at 
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various facets [35]. In such instances, the adsorption of capping molecules on specific facets 

might alter the difference in surface free energy, potentially hindering or enhancing 

development at these aspects. The interaction of biomolecules, particularly peptides, with metal 

surfaces has been expected to result in nanostructure stabilization, enhancing their usefulness 

as sensors, biomedical devices, and electronics[36]. Phage-display libraries have been created 

to generate peptides that can bind to the surface of semiconductor materials in a specific way 

based on crystallographic orientation and composition[37]. The phage display method 

identifies the physical relationship between peptide substrate interactions   . Peptides could allow 

for the precise placement and assembly of molecules, expanding the scope of the 'bottom-up' 

approach to NPs synthesis [37]. 

3. Types of Nanoparticles 

Depending on their morphology, size, and chemical characteristics, NPs are classified 

into several groups. Some of the most well-known classes of NPs are listed below, based on 

physical and chemical features [38]. 

3.1. Carbon-based NPs. 

Carbon nanotubes (CNTs) and fullerenes are two main groups of carbon-based NPs. 

3.1.1. Fullerenes.  

Fullerenes (C60) are spherical carbon molecules made up of carbon atoms that are 

bound together by sp2 hybridization. The spherical structure is made up of around 28 to 1500 

carbon atoms, with diameters ranging from 8.2 nm for single layers to 4 - 36 nm for multi-

layered fullerenes [39]. Nanomaterials composed of globular hollow cages, such as allotropic 

forms of carbon, are found in fullerenes. Because of their electrical conductivity, high strength, 

structure, electron affinity, and adaptability have attracted commercial interest [40]. 

3.1.2. Graphene. 

Graphene is a carbon allotrope. Graphene is a two-dimensional planar hexagonal 

network of honeycomb lattices composed of carbon atoms. The thickness of a graphene sheet 

is usually approximately 1 nm [41]. 

3.1.3. Carbon nanotubes (CNT). 

Carbon nanotubes (CNT) are produced from a graphene nano foil with a honeycomb 

structure of atoms sore into hollow coils to form nanotubes with sizes as tiny as 0.7 nm for 

single-layered CNT and 100 nm for multi-layered CNT, and lengths tend to range from a few 

micrometers to several millimeters. The ends can be hollow, or half fullerene molecules can 

close them[42]. These have a similar structure to a graphite sheet rolling on itself [43]. Because 

the rolled sheets can have one, two, or multiple walls, they are referred to as single-walled 

(SWNTs), double-walled (DWNTs), or multi-walled carbon nanotubes (MWNTs). Deposition 

of carbon precursors, particularly the atomic, is common to synthesize them . Carbons are 

vaporized from graphite and deposited on metal particles using a laser or an electric arc. 

Recently, they have been produced using the chemical vapor deposition (CVD) method [44]. 
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3.1.4. Carbon nanofiber. 

Carbon nanofiber is produced in the same way as graphene nano foil and CNT. The 

difference is that it wound into a cone shape as a substitute for regular cylindrical tubes [45]. 

3.1.5. Carbon black. 

An amorphous carbon material usually has a spherical shape with diameters ranging 

from 20 to 70 nm. They aggregate because the particles interact rapidly, and nearly 500 nm 

agglomerates are formed [46]. 

3.2. Metal NPs. 

Metal-based nanoparticles are synthesized from metals to nanometric sizes using 

destructive or constructive processes. Almost all metals have nanoparticles that can be 

synthesized [47,48] . Aluminum, cadmium, cobalt, copper, gold, iron, lead, silver, and zinc are 

commonly used for nanoparticle synthesis [47,49,50]. Nanoparticles have distinct properties 

such as sizes ranging from 10 to 100nm, surface characteristics such as pore size, high surface 

to volume ratio, surface charge with density, crystalline structures, spherical shapes, color, 

reactivity, and sensitivity [51,52]. The metals precursors are used for the synthesis of metal 

NPs. Because of confined surface plasmon resonance (SPR), these NPs have unique 

optoelectrical characteristics [53,54]. Noble metal and alkali NPs, such as Cu, Au, and Ag, 

exhibit a noticeable absorption band in the solar electromagnetic spectrum. In today's cutting-

edge materials, the synthesis of size and shape-controlled metal NPs is critical [38,55,56]. 

3.3. Metal oxide nanoparticles synthesis. 

Metals like Cu and Ag, for example, can be exceedingly poisonous to bacteria in very 

low quantities [57]. Due to their biocidal impact, metals have been widely employed as 

antimicrobial agents in various applications in industry, healthcare, and agriculture in general. 

Unlike other antibacterial agents, metals are stable under current manufacturing conditions, 

allowing them to be used as additives [58,59]   . These metal-based additives can now be found 

in various forms, including particles, ions absorbed/exchanged in various carriers, salts, hybrid 

structures, and so on [60-62]. Many metal oxide nanoparticles, such as ZnO, NiO, MnO2, TiO2, 

Fe2O3, and Co3O4, have been explored for the electrochemical detection of biomolecules [63]. 

Furthermore, mixed metal oxides have attracted enough attention in this area. CuO-NPs have 

unique characteristics that have made them useful in various applications, including super-

strong materials, sensors, antibacterial, and catalysts [64]. Due to the high surface area to 

volume ratio can also contact and interact with other nanoparticles [65]. CuO-NPs have 

recently been found to have better antibacterial action than Ag-NPs against E coli and B subtilis 

[66]. CuO-NPs are commonly utilized in paints and textiles as antibacterial agents since they 

are polymer-coated [67]. Due to their photolytic capabilities, TiO2 and ZnO are commonly 

used. Other interesting metal-oxide NPs are based on CeO2, CrO2, MoO3, Bi2O3, and LiCoO2. 

CeO2 is increasingly being used in diesel fuels as a combustion catalyst to enhance emission 

quality [68]. Iron oxide NPs (IO-NPs) must be highly crystalline, monodisperse, and water-

soluble, providing high magnetization values, reproducible quality, and good biocompatibility 

under biological conditions [69,70]. Nanoparticles of superparamagnetic iron-oxide (SPIO) 

with a mean crystal size of 50–100 nm and ultra-small superparamagnetic iron-oxide (USPIO) 

nanoparticles with a size below 50 nm are the two types of superparamagnetic IONP-based 
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materials now used in medical applications [71]   . These two groups of IO-NPs have received 

much attention in the medical community, especially as the next (possible) generation of MRI 

contrast agents. They are also being considered as possible medication and gene delivery 

vectors [72,73]. The use of an external magnetic field can change the biodistribution of these 

nanoparticles. In vivo applications for SPIO-NPs with the proper surface chemistry includes 

MRI contrast enhancement, tissue healing, immunoassay, biological fluid detoxification, 

hyperthermia, drug delivery, and cell separation. Nanoparticles with high magnetization 

values, a size smaller than 100 nm, and a narrow particle diameter distribution are required for 

all of these biomedical applications [74-76]. SPIONs typically have two structural 

configurations: (i) a core of magnetic particles (usually magnetite, Fe3O4, or maghemite, γ-

Fe2O3) coated with a biocompatible polymer or (ii) SPIO-NPs are deposited inside the pores of 

a porous biocompatible polymer [77]. CuO-NPs are frequently utilized for their antimicrobial 

and biocidal properties [78]. Strong magnetic dipole-dipole attractions between particles cause 

magnetic nanoparticles to sediment to lower their enormous surface energy (>100dyn/cm). As 

a result, stabilizers such as surfactants have been used to modify these particles in order to 

prevent aggregation[79]. Highly stable aqueous dispersions of IO-NPs have been obtained 

using polymers as the stabilizer [80]. For practical biomedical applications of SPIO-NPs, the 

surface of NPs must be modified with nontoxic and biocomposable materials. Multidentate 

ligands (polymers having several groups capable of attaching to particle surfaces) might 

improve the colloidal stability of inorganic NPs, such as SIO-NPs, as well as their optical, 

magnetic, and electrical characteristics [81]. In the visible region of the electromagnetic 

spectrum, most synthetic and bio-based polymers are transparent, meaning they don't interfere 

with biological processes. Compared to gadolinium-based contrast agents, SPIO-NPs have a 

slower renal clearance and higher relaxation values, making them more appealing for imaging 

[82]. Feridex, Endorem, Combidex, and Sinerem are SPIO-NPs with core sizes of 3–6 nm, and 

dextran coatings (with 20–150 nm hydrodynamic sizes) have been approved for MRI in the 

patient.   Similarly, drug-loaded SPIO-NPs may be directed to the right target location using an 

external magnetic field while the particle's bio dispersion is tracked. They are actually 

theragnostic as a result of this method (therapeutic and diagnostic) [83]. 

3.4. Ceramics NPs. 

Ceramic NPs are nonmetallic inorganic solids that are made by heating and cooling. 

They come in various shapes and sizes, including amorphous, polycrystalline, dense, porous, 

and hollow. As a result of their usage in applications such as catalysis, photo-degradation of 

dyes, photo-catalysis, and imaging applications, these NPs are attracting much attention from 

researchers [84,85]. 

3.5. Semiconductor NPs. 

Semiconductor materials have properties halfway between metals and nonmetals, 

giving them a wide range of uses in the literature [86]. Due to the huge bandgaps of 

semiconductor NPs, bandgap tuning resulted in significant changes in their properties. As a 

result, they're crucial in photocatalysis, photo optics, and electronic devices. Due to their 

optimal bandgap and band edge positions, several semiconductor NPs are particularly efficient 

in water splitting applications  [87,88]. 
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3.6. Polymeric NPs. 

These are usually organic-based NPs, and they're referred to as polymer nanoparticles 

(PNPs) in the literature [89,90]. Typically, they are nano-spherical or nano capsular in form. 

The former are matrix particles with a solid overall mass, whereas the other molecules are 

adsorbed at the outside edge of the spherical surface. In the latter case, the solid mass is 

completely encapsulated within the particle [91]. PNPs are simple to functionalize, and as a 

result, they have a wide range of uses in the literature[45]. Lipid nanotechnology is a 

specialized topic concerned with the design and manufacturing of lipid nanoparticles for a 

number of applications, such as medication delivery and RNA release in cancer [92,93]. 

4. Synthesis of Nanomaterials 

There are three different methods for synthesizing nanomaterials: physical, chemical, 

and biological Figure 1.  

 
Figure 1. Schematic illustration of the production of nanoparticles via several processes. 

4.1. Physical.  

Physical route or mechanism includes different methods, e.g., gas-phase deposition, 

electron beam lithography, pulsed laser ablation, laser-induced pyrolysis, powder ball milling, 

and aerosol [47,94]. Nanomaterials are generated utilizing a strong laser beam that impacts the 

target material in laser ablation synthesis [95]. The original material or precursor vaporizes 

during the laser ablation operation due to the high intensity of the laser irradiation, leading to 

nanoparticle production. This process can manufacture a wide spectrum of nanomaterials, 

including carbon nanomaterials, metal nanoparticles, ceramics, and oxide composites [96,97]. 

Using a focussed beam of light or electrons, lithography is a valuable technology for creating 

nanoarchitectures. Masked and maskless lithography are the two most common forms of 

lithography. Using a specified mask or template, masked nanolithography transfers 

nanopatterns over a vast surface area. Photolithography, soft lithography, nanoimprint 
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lithography are examples of masked lithography techniques [98,99]. Mechanical milling is a 

price approach for creating nanoscale products from larger particles. Mechanical milling is an 

efficient method for blending distinct phases and is useful in creating nanocomposites [100]. 

Carbon nanoparticles that have been ball-milled are a unique form of nanomaterial that can be 

used for environmental cleanup, energy storage, and energy conversion [101]. One of the most 

basic processes for creating nanostructured materials is electrospinning. It is commonly used 

to make nanofibers out of many materials, most commonly polymers. Hollow polymer and 

core-shell, organic, inorganic, and hybrid materials have been developed using this technology 

[102]. Sputtering deposition causes the physical ejection of tiny atom clusters by bombarding 

the target surface with powerful gaseous ions [103]. Sputtering is appealing because the 

composition of sputtered nanomaterials is similar to that of the target material, with fewer 

contaminants, and it is less expensive than electron-beam lithography [104]. 

4.2. Chemical. 

The chemical route includes different methods, e.g., coprecipitation, microemulsion, 

hydrothermal, electrochemical deposition, sonochemical, and thermal decomposition [47].  

Numerous chemical methods are used to synthesize magnetic nanoparticles for medical 

imaging applications:e.gmicroemulsions, sol-gel syntheses, sonochemical reactions, 

hydrothermal reactions, hydrolysis and thermolysis of precursors, flow injection syntheses, and 

electrospray syntheses [105-107]. In the production of carbon-based nanomaterials, chemical 

vapor deposition technologies are crucial. If a precursor has acceptable volatility, high 

chemical purity, good evaporation stability, cheap cost, non-hazardous, and long shelf life, it 

is deemed ideal for chemical vapor deposition. Furthermore, its breakdown should not leave 

any contaminants behind [108]. Ni and Co catalysts produce multilayer graphene in the 

chemical vapor deposition method, whereas a Cu catalyst produces monolayer graphene. 

Chemical vapor deposition is a well-known process for manufacturing two-dimensional 

nanomaterials, and it is an effective approach for producing high-quality nanomaterials in 

general [109]. The sol-gel method is a wet chemical approach that is widely utilized in 

nanomaterial development. This technique is used to create a variety of high-quality metal-

oxide-based nanomaterials. The sol-gel technique is cost-effective and has a number of 

additional advantages, including the fact that the material generated is homogenous, the 

processing temperature is low, and the procedure provides a simple approach to make 

composites and complicated nanostructures [110]. The reverse micelle approach produces NPs 

that are very tiny and monodispersed in nature highlights the use of the reverse micelle 

approach to make magnetic lipase-immobilized NPs [111]. The pore diameters of nanoporous 

materials can be adjusted by changing the surfactant carbon chain length or adding 

supplementary pore-expanding agents. The soft template approach may be used to make 

various nanostructured materials, including mesoporous polymeric, carbonaceous 

nanospheres, porous aluminas, single-crystal nanorods, and mesoporous N-doped graphene 

[112]. The microwave-assisted hydrothermal approach, which combines the benefits of both 

hydrothermal and microwave processes, has lately attracted much interest in engineering 

nanomaterials [113]. Hydrothermal and solvothermal methods for creating different nano-

geometries of materials, such as nanorods, nanowires, nanosheets, and nanospheres, are 

interesting and practical [114]. 
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4.3. Biological.  

The biological route includes different methods, e.g., fungi mediated, algae, bacteria 

mediated, yeast mediated, etc. [115-117]. Nanoparticles made by a biogenic enzymatic process 

are significantly superior to those made by chemical methods in various aspects [118]   . Even 

though the latter methods can produce large quantities of NPs with a defined size and shape in 

a short amount of time, they are complicated, outdated, expensive, and inefficient, and they 

generate hazardous toxic wastes that are harmful not only to the environment but also to human 

health [119,120]. 

4.4. Biosynthesis of NPs using microorganisms. 

4.4.1. Synthesis of nanoparticles using Fungi. 

Fungi are the largest group among microbes, where are used in multiple applications in 

different sciences such as bioremediation, enzyme production, nanotechnology, etc. [121-124]. 

Fungi have sparked a lot of interest in manufacturing metallic nanoparticles since they have 

several benefits over bacteria in nanoparticle synthesis [125,126] . The simplicity of scaling up 

and downstream processing, the economic feasibility, and the existence of mycelia, which 

provides a larger surface area, are all significant benefits [127,128]. A biomineralization 

mechanism is used in fungal-based NP production, which involves internal and extracellular 

enzymes and biomolecules reducing various metal ions. Silver has been the metal of choice for 

the manufacture and research of NPs. In addition, Au, Se, Ti, Cu, and Zn have been identified 

as the next most important metal ions employed by fungus in the production of NPs. More 

research on NP biosynthesis has been done on Fusarium, Aspergillus, Trichoderma, 

Verticillium, Rhizopus, and Penicillium species [126]. The size and form of NPs generated by 

fungus can be relatively limited or quite diversified, such as Au-NPs produced by Aspergillus 

sp. and Ag-NPs produced by Fusarium strain [125,129]. Magnetite NPs have been found to be 

formed by the pathogenic fungus F. oxysporum and fungus Verticillium sp. Magnetite (Fe3O4) 

is a common iron oxide with magnetic characteristics [130]. Fungi-produced nanoparticles 

have been employed in various applications, including medicine, anticancer drugs, 

antimicrobials, antibiotics, antivirals, diagnostics, antifungals, engineering, biosensors, 

agriculture, bioimaging, and industry. Agricultural and medicinal applications have been 

identified as the most common uses of NPs [131]. When compared to bacteria, fungi produce 

a huge number of nanoparticles. Fungi secrete more proteins, resulting in increased 

nanoparticle output [132]. 

4.4.2. Synthesis of nanoparticles using yeast. 

Extracellular synthesis of nanoparticles by yeast cell mass might be beneficial in large-

scale production and simple downstream processing. This group isolated silver tolerant yeast 

strain MKY3 by inoculating with aqueous silver nitrate [133]. The formation of Ag-NPs takes 

place in forced ecological conditions [134]. Different processes used by yeast strains of 

different genera for nanoparticle formation result in significant differences in size, particle 

position, mono dispersity, and characteristics [135,136] . These molecules determine the 

mechanism for the formation of nanoparticles and stabilize the complexes in most of the yeast 

species studied. Resistance is defined as the ability of a yeast cell to convert absorbed metal 

ions into complex polymer compounds that are not toxic to the cell [137]. In the mass 
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production of metal nanoparticles, yeast production is easy to manage in laboratory settings. 

The rapid growth of yeast strains and the use of basic nutrients have various advantages. 

Candida glabrata and Saccharomyces pombe yeast strains have been described to produce 

intracellular synthetized silver, cadmium sulfide, titanium, selenium, and gold nanoparticles 

for this purpose [138].  

4.4.3. Synthesis of nanoparticles using bacteria. 

Research has concentrated primarily on prokaryotes to synthesize metallic 

nanoparticles [139]. Due to their ubiquity in the environment and their capacity to adapt to 

harsh situations, bacteria are suitable for study. They are also quick-growing, affordable to 

cultivate, and easy to manage. Growth parameters such as temperature, oxygenation, and 

incubation time can be easily regulated. Bacteria are known to synthesize inorganic materials 

either intracellularly or extracellularly . For example, Ag-NPs are synthesized using 

microorganisms by the bioreduction process [140]. Metal ions are reduced to nanoscale ranges 

by extra-reductase enzymes produced by microorganisms [141]. According to a protein assay 

of microorganisms, the NADH-dependent reductase enzyme is involved in the bioreduction of 

silver ions to silver nanoparticles   . The electrons for the reductase enzyme come from NADH 

which is then oxidized to NAD+  . The enzyme is also oxidized by the reduction of Ag+ to Ag-

NPs at the same time [142,143]. Pseudomonas stutzeri was used to produce Ag-NPs outside 

the cells [144]. In addition, several bacterial strains (Gram-negative and Gram-positive), 

namely A. calcoaceticus, B. amyloliquefaciens, B. flexus, B. megaterium, and S. aureus have 

been used for both extra and intracellular biosynthesis of Ag-NPs. These Ag-NPs are spherical, 

disk, cuboidal, hexagonal, and triangular. They have been fabricated using culture supernatant, 

aqueous cell-free extract, or cells [2]. Rhodopseudomonas capsulata was shown to produce 

Au-NPs of various sizes, with the form of the Au-NPs being regulated by pH [145]. Bacteria 

are thought to be a possible biofactory for producing NPs such as selenium, silver, palladium, 

gold, platinum, titanium, magnetite, titanium dioxide, cadmium sulfide, and other metal NPs 

[146-148]. 

4.4.4. Synthesis of nanoparticles using actinomycetes. 

These actinomycetes have a good ability to make antibiotics as secondary metabolites 

[149]. Actinomycetes have been found to have a significant role in creating metal nanoparticles 

[150,151]. Biogenic synthesis of metal nanoparticles has been demonstrated using bacteria, 

fungus, algae, actinomycetes, plants, and other organisms. Actinomycetes are one of the less 

well-known microorganisms employed in producing metal nanoparticles [152]. However, 

reports suggest that actinomycetes are effective candidates for the intracellular and 

extracellular synthesis of metal nanoparticles [153]. Actinomycetes produce nanoparticles with 

good polydispersity and stability and high biocidal activity against a variety of diseases [154]. 

Thermoactinomycete sp., Rhodococcus sp., Streptomyces viridogens, Nocardia farcinica, 

Streptomyces hygroscopicus, and Thermomonospora sp. have all effectively manufactured Au-

NPs. Streptomyces spp., on the other hand, were used to successfully produce Cu-NPs, Ag-

NPs, Mn-NPs, and Zn-NPs [2,155]. 
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4.4.5. Synthesis of nanoparticles using the plant. 

Plant parts such as leaves, stems, roots, shoots, flowers, barks, seeds, and their 

metabolites have been used to synthesize nanoparticles successfully [156-158]. Plants with 

minimal costs and a high eco-friendliness are highly sophisticated and advantageous to human 

uses. Using plant extracts such as Pinus resinosa, Cinnamom zeylanicum, Ocimun 

sanctum, Anogeissus latifolia, Curcuma longa, Musa paradisica, Pulicaria glutinosa, Glycine 

max, Doipyros kaki, Cinnamomum camphora, and Gardenia jasminoides, green production of 

Pd-NPs and Pt-NPs has been described [159]. Silver from silver nitrate, zinc oxide from zinc 

nitrate and zinc acetate, gold from gold chloride, cadmium sulfide, and zinc sulfide from 

cadmium sulfate and zinc sulfate, and other nanoparticles were manufactured with the 

assistance of various types of plants and their various components [157]. Recently reported 

green production of Ag-NPs from Pongamiapinnata seed extract [160] . An absorption 

maximum of 439 nm confirmed the production of nanoparticles   . The zeta potential of the well-

dispersed nanoparticles with an average size of 16.4 nm was 23.7 mV, which indicates 

dispersion and stability [160]. The interaction of Au-NPs with human serum albumin was 

examined, and helices were shown to be unaffected [161].  

5. Controlling the Size and Stabilizing Synthesized Nanoparticles (Optimization) 

5.1. Coating or stabilizing of NPs with polymers. 

Individual colloidal nanoparticles encapsulated in porous inorganic shells have recently 

gained a lot of interest [162].  

Table 1. A summary of common coating processes and materials used to protect iron oxide cores against 

corrosion [171]. 

Coating 

material 

Synthesizing 

procedure 

Experimental 

conditions 

Application/ 

purpose 

Core-shell 

form of 

FeO 

NPs 

Advantages 

Silver and 

Gold 

In the presence of 

iron oxide NPs, Au 
or Ag precursors 

are reduced 

Differentiate 

according to the 
solubility, surface 

chemistry, and size 

of iron oxide NP 

cores. 

Protect iron oxide 

NPs from low pH 
corrosion 

Fe3O4/Au 

and/or 
Fe3O4/Au/A

g 

Additional optical qualities 

should be included . 
Gold–silver chemistry can help 

with organic conjugation. 

SiO2 TEOS is alkaline 

hydrolyzed in the 
presence of core 

NPs 

Changing reaction 

conditions to either 
porous or dense 

Colloid surface 

modification 

Fe3O4/SiO2 For bioconjugations, it's 

compatible with a wide range 
of chemicals and compounds . 

Small compounds, such as dyes 

and drugs, as well as quantum 

dots, can all be used . 
Antibody–antigen recognition 

covalently binds to numerous 

ligands and biomolecules in 

target organs  .Even without 
surfactants, it's stable and easy 

to disperse in an aqueous or 

organic solution. 

TaOx By thermal 

decomposition of 

iron oleate 
precursor and fast 

hydrolysis of TaOx 

In a mixture of 

Igepal CO-520, 

NaOH, and other 
organic solvents 

applied in Clinical 

studies.CT is used to 

image newly formed 
blood vessels in 

tumours, whereas 

MRI is used to 
detect the tumor 

microenvironment. 

 

Fe3O4/TaOx CT contrast agent with a low 

price tag.CT and MRI 

bifunctional agent 
Possibility of accurate cancer 

diagnosis 
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Coating 

material 

Synthesizing 

procedure 

Experimental 

conditions 

Application/ 

purpose 

Core-shell 

form of 

FeO 

NPs 

Advantages 

Polymer 

(both 

natural and 

synthetic) 

By use of 

polymerization in 
the presence of 

precursors and iron 

oxide NPs 

Similar to the 

hydrolysis 
synthesis of 

silica-coated Fe3O4 

NPs 

To enhance 

dispersibility in an 
aqueous medium 

Fe3O4 and 

CdSe/ZnS 
NPs 

incorporated 

into the 

PLGA 
matrix 

 

It has a protecting and 

increasing biocompatible 
functionalization of 

organic surface   

Small 

molecules 

surfactants were 

produced by 

thermal 

decomposition of 
Fe(CO)5. 4-MC 

could be directly 

conjugated with a 

peptide, 
c(RGDyK), using 

the Mannich 

process. 

Oxidation under air To avoid a large 

hydrodynamic size 

c(RGDyK)– 

MC–Fe3O4 

Stable. 

Target tumor cells with high 

levels of integrin avb3 . 

For tumor cell detection, the 
MRI contrast was increased . 

Fe3O4 NPs coated with RGD 

were shown to be stable in an 

aqueous solution for months. 

Carbon Hydrocarbon 

precursors are 

carbonized. 
Using a CVD 

technique at 800°C 

with nitrogen gas 

as a shield 

annealing at a high 

temperature that 

needs to be 
decreased to 

enhance the 

process 

Gives cytotoxicity 

results 

Carbon-

coated 

FeCo and/or 
Fe3O4 

Both single NPs and tiny NP 

clusters can be absorbed by 

cells. both of which have an 
impact 

in the measurement of 

cytotoxicity 

Bottom-up techniques at the single-nanoparticle level, while conceptually elegant, have 

obstacles in large-scale manufacture and use. Solid catalysts are made up of metal nanoparticles 

distributed on a porous medium. Technical catalysts frequently have irregular spatial 

distributions and ultra-short interparticle distances [163]. Yang et al. used zwitterionic 

polymers to make Au-NPs. Unfortunately, during the coating process, their particles clumped 

together. These aggregates were stable in human serum after being coated [164]. Qi et al. were 

able to produce stable NPs with a BSA/chitosan/doxorubicin core under physiological 

circumstances by adding an extra chitosan coating [165]. Hauser et al. [166] used three ways 

to encapsulate iron oxide nanoparticles with dextran: (1) Two-step approach for making 

dextran-coated iron oxide nanoparticles. (2) A semi-two-step process for making dextran-

coated iron oxide nanoparticles. (3) Simultaneous semi-two-step production of dextran-coated 

IO-NPs.  There are two ways to attach polymers to the IO-NP surface: grafting ‘onto' and 

grafting ‘from.'Grafting ‘from' involves attaching an initiator to the IO-NPs' surface and 

growing the polymer from there, whereas grafting ‘onto' involves grafting a functional, pre-

formed polymer onto IO-NPs in situ. Furthermore, grafting ‘from' can make keeping the hybrid 

nanoparticles' integrity in organic solvents [167]. Utilizing live radical polymerization in 

conjunction with a carefully developed protocol, it is possible to modify IO-NPs using the 

grafting "from" method [168,169]. Sommertune et al. [170] prepared multi-core magnetic 

hybrid particles based on the ESE method. Other reports show that controlling the size and 

shape of other nanoparticles by polymer and using them for different applications is possible 

Table 1. Table 2 showed different polymers for magnetic NP stabilization [171]. 

Table 2. Different polymers for magnetic NPs to stabilization. 

Polymers Benefits 

PEG PEG improves biocompatibility by immobilizing PEG on the surface noncovalently, 

increasing NP internalization efficiency and decreasing blood circulation time. 

Dextran colloidal solution stabilization and blood circulation time increasing  
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Polymers Benefits 

PVP blood circulation time enhancing and colloidal solution Stabilization     

Fatty acids stability of colloidal and terminal functional carboxyl groups  

PVA particles monodispersing and particles coagulation prevention     

Polyacrylic acid particles biocompatibility improvement, bioadhesion, and stability increasing  

Polypeptides targeting to the cell that is worthy for cytology  

Phosphorylcholine stabilization of colloidal solution and activating coagulation  

Poly(d, l-lactide) high biocompatibility and lowering cytotoxicity  

PolyNIPAAM Delivery of  drug and improving cell separation 

Chitosan Biocompatible, utilized in medicine and food, employed in water treatment, polymers, 

textiles, biotechnology, hydrophilic, and used in agriculture, this natural cationic linear 

polymer is widely used as a nonviral gene delivery mechanism.  

Gelatin Biocompatible, gelling agent, hydrophilic emulsifier, and used as a natural polymer  

6. Characterization of Nanoparticles  

6.1. UV–visible spectrometry. 

The determination of NP synthesis of various nanoparticles from different methods was 

analyzed by UV-visible spectroscopy .The production of nanoparticles is clearly indicated by a 

steady increase in the characteristic peak with increasing reaction time and concentration of 

biological extracts with salt ions. The UV-vis absorption spectrum of nanosized particles 

reveals peaks characteristic of the surface plasmon resonance [126].  

6.2. Transmission Electron Microscopy (TEM). 

The morphology of the nanoparticles was recorded by using a TEM. TEM is based on 

the electron transmittance principle so that it can provide information of the bulk material from 

very low to higher magnification. TEM also provides essential information about two or more 

layer materials, such as the quadrupolar hollow shell structure of NPs observed through TEM 

[128]. 

6.3. Particle size and zeta potential.  

The zeta potential analyzer was used to detect surface charge. The zeta potential (ZP) 

is a useful parameter for assessing the behavior of suspended particles in aqueous media, 

whether for predicting colloidal stability or investigating particle deposition in water cooling 

process equipment; colloidal stability is influenced by the surface charge and biodistribution 

of NPs. The nature and behavior of surface groups in solution at a specific pH in the presence 

of an electrolyte can be qualitatively defined. It can be measured quantitatively as an electrical 

potential in the interfacial double layer on the surface of suspended NPs   . Because of the 

electrostatic interaction, a high zeta potential value indicates that NPs are dispersion stable. It 

is an important technique used to determine the size distributions of nanoparticles and use DLS  

to determine the size distributions of nanoparticles [126]. 

6.4. Fourier transformation infrared spectroscopy (FTIR). 

FTIR is a commonly used method for detecting functional groups in pure substances 

and mixtures and comparing compounds. The vibrational motion of atoms and molecules is 

linked to infrared analysis [172]. 
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6.5. X-ray diffraction (XRD).  

X-ray fluorescence is a non-destructive analytical method used to fine the elemental 

composition of materials. X-ray diffraction patterns have long been used to identify important 

aspects in a compound, such as the types and nature of the crystalline phases present. The 

position (angle) and intensities of the X-ray beam diffraction induced by the sample in XRD 

can provide information about the sample [49]. 

6.6. Scanning Electron Microscopy ( SEM). 

Magnetic nanoparticles' size and shape are examined using SEM. SEM can produce 

images of three-dimensional objects because, in its regular mode of operation, it records 

secondary electrons emitted from the sample by the electron beam impinging on it, rather than 

the electrons flowing through it [63]. 

7. Applications of Synthesis NPs 

7.1. Water treatment. 

Nanotechnology has opened up limitless possibilities for purifying water, even in its 

ionic condition [173]. The numerous nanostructured materials have been created with 

properties including high aspect ratio, reactivity, controllable pore volume, and electrostatic, 

hydrophilic, and hydrophobic interactions that are useful in adsorption catalysis, sensing, and 

optoelectronics [174,175]. Nanoscale metals and their oxides (silver, titanium, gold, and iron) 

have been widely used in environmental mitigation [176]. Biological contaminants such as 

bacteria, viruses, and fungi are effectively disinfected by Ag-NPs [177].  

7.1.1. Carbon nanotube.  

Generally, carbon is one of the most multilateral elements present in the periodic table 

due to its strength and ability to bond with other elements. Carbon nanotube (CNTs) discovered 

in 1991 by Iijima has been extensively adapted by many researchers to study show capability 

into water treatment [178]. Rizzuto, et al. [179] use carbon nanotube membranes for water 

purification. CNT membranes were utilized to direct water desalination or remove salts from 

water molecules without changing their flow rate [180]. 

7.1.2. Metal oxides. 

Metal oxides such as iron oxide, titanium dioxide, and alumina are effective, low-cost 

adsorbents for heavy metals and radionuclides [181,182]. The sorption is mainly controlled by 

the complexation between dissolved metals and the oxygen in metal oxides [183,184]. The 

great sorption capability, operational simplicity, and resourcefulness of nanosized iron oxides 

have sparked increased interest in their usage for wastewater treatment [185]. Non-magnetic 

goethite (-FeOOH) and hematite (-Fe2O3), magnetic magnetite (Fe3O4) and maghemite (-

Fe2O3), and hydrous ferric oxides are the phases of iron oxides.  In their complex matrixes, 

goethite and hematite include a variety of geochemically and ecologically significant 

oxyanions and cations [186]. They have been touted as effective and low-cost absorbents for 

the removal of a variety of pollutants [187,188]. ZnO was primarily used as an adsorbent to 

remove H2S.  Nanosized ZnO has recently been discovered to be capable of eliminating a 
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variety of pollutants with great performance and selectivity [189]. Rambabu et al. created 

nanosized porous ZnO plates with low pore diameters and a high specific surface area. It 

exhibited significant and selective adsorption to cationic pollutants, such as various hazardous 

metals [190]   . A significant number of polar sites on the walls of pores within the nanoplates 

resulted in such strong, structurally increased adsorption [191]. The adsorbed hydrated Cu(II) 

could partially hydrolyze, forming Cu-O-Cu on the pore walls, thereby multiplying its 

adsorption capacity, exhibiting Freundlich-type adsorptive activity [192]. At 303 K, the highest 

capacity of nanosized ZnO for Cd(II) and Hg(II) ions was 387 and 714 mg/g, respectively 

[193]. The initial adsorption rate was thought to be controlled by film diffusion, followed by 

pore diffusion  . As previously stated, the surface hydroxyl groups of nanosized ZnO have been 

shown to play a significant role in the adsorption of certain heavy metals [194].  

7.1.3. Polymers.   

Polymers are exceptional nanomaterial supports because they often have customizable 

porosity structures, great mechanical qualities, and chemically attached functional groups 

[195]. Polymer-based nanocomposites (PNCs) are being investigated as potential water and 

wastewater treatment materials. The inherent advantages of both nanoparticles and the 

polymeric matrix are frequently combined in PNCs [196]. The use of nanoparticles in the 

manufacturing process of polymeric membranes has received much attention during the last 

years, particularly as a new step in flux enhancement and fouling reduction [197,198]. Hybrid 

membranes comprising inorganic fillers in a polymer matrix are well-known [199]. Common 

fillers are oxides such as SiO2 and zeolites [200, 201]. 

7.2. Medical application. 

7.2.1. Drug delivery. 

As drug delivery systems, Nanoparticles are capable of uplifting the several crucial 

properties of free drugs, such as solubility, in vivo stability, pharmacokinetics, biodistribution, 

and enhancing their efficiency [202,203]. Because of their beneficial properties, nanoparticles 

might be exploited as prospective medication delivery devices in this area. In vitro delivery of 

a hydrophobic fluorophore was achieved using mixed monolayer protected metal clusters as 

an example of cellular delivery [204,205]. For medication delivery, a variety of nanostructures 

have been developed. Lipid or polymer particles, liposomes, micelles, Ag-NPs, quantum dots, 

Au-NPs, silica NPs, and drug nanocrystals are examples of nanostructures or nanocarriers for 

drug delivery [206]. Peptides, DNA molecules, chemotherapeutic, radioactive, and 

hyperthermic pharmaceuticals have been delivered using SPIO-NPs assisted drug delivery 

systems  [207]. IO-NPs have been used as nanocarriers for medication and gene delivery in a 

number of studies [208,209] . 

Furthermore, by introducing platinum into the IO-NPs cores, the iron-oxide core can 

be designed to unleash harmful organic molecules [210]. The polymer covering can now be 

used as a scaffold (reservoir) for the drug or gene cargo, in addition to stabilizing IO-NPs in a 

biological medium   . The loading and release of bioactive compounds from the polymer coating 

consequently become a key determinant of IO-NPs' nano-carrier efficiency [211] . Covalent 

coupling, charge complexation, hydrogen bonding, and hydrophobic/hydrophilic interactions 

are some ways therapeutics can be attached to polymer strands [212].  The nanoparticles' 

magnetic characteristics were used to boost cell absorption [213]. Nanoparticles in drug 
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delivery have benefited the medical field thanks to nanotechnology [172]. Nanoparticles can 

be used to deliver the medicine to targeted cells by placing the drug in the required area and 

the required dosage. The total drug consumption and side effects are significantly reduced 

[214]. This method is less expensive and has fewer side effects [2]. Nanotechnology can help 

with tissue engineering, which involves replicating and repairing damaged tissue. Tissue 

engineering can be used to replace traditional treatments like artificial implants and organ 

transplant s[215]. The formation of carbon nanotube scaffolds in bones is one such example 

[216]. 

7.2.2. Antimicrobial. 

Pathogenic bacteria's resistance to antimicrobial drugs has arisen in recent years, posing 

a huge challenge to the healthcare business[217,218]. Nanotechnology and biological sciences 

advancements have made it feasible to develop smart surfaces that reduce infection. Once 

applied to biomedical devices and medical personnel protective equipment, the 

nanotechnology-based solutions outlined here may be useful in developing materials that limit 

or prevent the development of airborne virus droplets [219]. Metal ions and metal-based 

materials, such as Au-NPs, Se-NPs, Ag-NPs, MgO-NPs, CuO-NPs, TiO2-NPs, and ZnO-NPs, 

have been demonstrated in several studies to be effective antimicrobial coatings [219-226]. 

Metal-oxide nanoparticles' potential antibacterial processes have yet to be fully identified. Ion 

concentrations, oxidative stress, ROS, and membrane damage have all been discovered to be 

plausible modes of action against bacteria [227-230].  

7.3. Waste management. 

Many things are essential for the life and growth of living organisms, but none are more 

crucial than water. Around 1.2 billion people lack access to clean drinking water, 2.6 billion 

people struggle to meet basic sanitation needs, and millions of people, particularly children, 

have died as a result of illnesses spread by unsafe and dirty water [231]. Polymeric-NPs, metal 

oxide-NPs, metal-NPs, zeolite, carbon nano, self-assembled monolayer on mesoporous-

substrates, biopolymers, and others have all been described as nanomaterials that might be 

employed in wastewater treatment. Adsorption and biosorption, nanofiltration, photocatalysis, 

disinfection, pathological control, sensing and monitoring, and other nanotechnology-based 

wastewater remediation pathways are used [232]. Yang et al. used algal-bacterial aerobic 

biological sludge to evaluate chromium Cr(VI) biosorption from synthetic wastewater. They 

discovered that Cr(VI) biosorption was strongly influenced by pH, with the greatest Cr(VI) 

biosorption efficiency of algal-bacterial aerobic-granular sludge being 51.0 mg g-1 at pH 2, 

Cr(VI) [233]. Researchers are now interested in metal-based nanoparticles as adsorbents [234]. 

Heavy metals, dyes, and ions are commonly removed from wastewater using nanometals and 

related oxides, such as MgO, Fe3O4, MnO2, TiO2, ZnO, and CdO [232]. 

7.4. Agriculture. 

Agriculture and food production are being drastically altered by nanotechnology 

[235,236]. Nanotechnology has the potential to alter current farming techniques [237] 

significantly.The majority of agrochemicals applied to crops are lost and do not reach the target 

location due to several factors such as leaching, photolysis, drifting, hydrolysis, and microbial 

degradation [238]. Nanoparticles and nanocapsules offer a low-cost, site-specific technique to 
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distribute pesticides and fertilizers while minimizing collateral damage [239]. Nanotechnology 

is gaining popularity in agriculture because of its capacity to precisely manage and release 

insecticides, herbicides, and fertilizers [240-243]. Goswami et al. found that various 

manufactured NPs, such as TiO2-NPs, Al2O3-NPs, SiO2-NPs, and ZnO-NPs, can suppress 

infections caused by Sitophilus oryzae and baculovirus B. mori virus in silkworms [244]. 

Nanosensors for pesticide residue detection have high sensitivity, low detection limits, great 

selectivity, quick reactions, and small dimensions. They can also determine the soil's quantity 

of moisture and nutrients [245]. 

8. Conclusions  

Nanoparticles having different characteristics are a prominent type of nanomaterials 

that have aided in the advancement of nanotechnology. Scientists interested in such approaches 

have recently developed their nanocomposites due to recent improvements in the 

characteristics of novel nanomaterials and their applications. This article defined 

nanotechnology and described the processes for making nanomaterials out of metals, metal 

oxides, graphene oxides, and polymers. Green approaches, such as plant extracts and 

microorganism biomolecules, are intriguing strategies that lead to nanoparticle synthesis with 

reduced or no toxicity compared to other methods. This review opens up new possibilities for 

producing and utilizing various nanomaterials. 
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