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ABSTRACT One of the most amazing functions of the human auditory system is the ability to detect all

kinds of sound events in the environment. With the technologies and hardware advances, polyphonic Sound

Event Detection (SED) can be developed to mimic the ability of the human auditory system. However,

the development of a SED system is no trivial task, and several different factors often hinder accuracy.

Although there are several overview papers available, most of them only provide a theoretical overview of

algorithms used with little discussion. Thus, to the best of the authors’ knowledge, there is no comprehensive

review that covers this particular domain. Therefore, this paper aims to provide an in-depth discussion of

different methodologies proposed by various authors that include the features used, detection algorithms, and

their corresponding accuracy and limitations. Additional information on possible trends is also discussed that

can be useful for future development works.

INDEX TERMS Deep learning, detection algorithms, Gaussian mixture model, non-negative matrix

factorization, polyphonic sound event detection.

I. INTRODUCTION

The auditory system can be considered as one of the most

amazing functional groups in the human body. It allows

humans to detect sound and uses acoustics cues to identify

and locate sounds in the environment [1], which is made

possible through a fundamental skill known as the Auditory

Scene Analysis (ASA). ASA can be described in two stages,

which begin with the decomposition of an acoustic signal

into different sensory components. Followed by combining

components from similar sources into a perceptual structure

that can be interpreted by higher-level processes [2]. Subse-

quent research efforts that attempt to replicate ASA using

computational means were then termed as Computational

Auditory Scene Analysis (CASA). One major research area

in this domain is the SED, which may also be referred to as

Acoustic Event Detection (AED).

The primary objective of a SED system is to detect the

types of events present in an audio clip and return the onset

and offset of the identified event. At first thought, one may

think that information provided by a SED system is trivial

as compared to the information contained in an image or
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video. However, SED system can have several advantages

as compared to a camera. Firstly, sound does not require

illumination and is therefore applicable in the dark. Secondly,

occluded objects do not affect detection accuracy. Thirdly,

some events can only be detected by a SED system such

as a car horn. Finally, sound requires lesser computational

resources as compared to an image or video [3], [4]. Thus,

a SED system has great potential in many other domains

besides speech recognition [5], [6] such as medical tele-

monitoring [7], surveillance [8], [9], equipment monitor-

ing [10], [11] and wildlife monitoring [12], [13].

In general, a SED system can be categorized as a mono-

phonic or a polyphonic SED system. As illustrated in Figure 1

and Figure 2, a monophonic SED system can only detect a

single event from an audio recording, whereas a polyphonic

SED system can detect any number of events within a sin-

gle audio recording [14]–[16]. Naturally, a polyphonic SED

system is more appropriate in a real-life application because

a real-life environment is more likely to contain multiple

sound sources [16]–[19]. But this would also indicate that a

polyphonic SED system is much more challenging because

the different sound event can coincide [15]–[17], [20], [21]

and features extracted from the mixture may not match any

of the features extracted from sounds in isolation [18], [19].
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FIGURE 1. Example of a monophonic SED system.

FIGURE 2. Example of a polyphonic SED system where it returns the
event tag and the onset and offset highlighted in different colors.

Besides, it is not known a priori how many events can be

present in a recording.

A SED system is also associated with other challenges.

Firstly, each event class may be made up of several different

sources; for example, a dog barking sound event can be

produced by dogs of various breeds with varying character-

istics of sound [14]. Secondly, the presence of background

noise can complicate the identification of sound events within

a particular time frame [3] and is further aggravated if

the Signal-to-Noise Ratio (SNR) is low. As such, intensive

research efforts have been invested in the domain of SED,

which attempts to overcome the challenges faced by a SED

system and improve the current state of the art. An annual

competition known as the Detection and Classification of

Acoustic Scenes and Events (DCASE) challenge was also

launched to support the development of CASA methods by

comparing them using a publicly available dataset.

Although there were discussions and reviews on the

DCASE challenge submissions, they were limited to the

challenge’s submission with an emphasis on submis-

sion results [19], [22]–[27]. On the other hand, reviews

by Dang et al. [20] and Xia et al. [28] only covered a

brief theoretical aspect of several deep learning models

while Bui et al. [29] cover Non-negative Matrix Factoriza-

tion (NMF). Rex [30] provided software recommendations

for SED. Although a survey by Chandrakala and Jayalak-

shmi [31] included discussion of several SED systems,

the survey was focused on the audio scene and event clas-

sification. The survey by Purwins et al. [32] was mainly on

the general overview of audio signal processing. Thus, most

of the reviews in the literature provided a general overview of

the algorithm used without explicit analysis and discussion.

As such, to the best of our knowledge, there has not yet been

a comprehensive review of SED.

Hence, this paper aims to fill the research gap by providing

a comprehensive review of polyphonic SED since such a

system is found to be more appropriate in a real-life appli-

cation and deems to be more challenging as compared to a

monophonic SED system. As there is a substantial literature

in this area, the systems reviewed in this paper should cover

the following points

• Polyphonic SED systems that are applied to real-life

audio.

• Systems that can return the onset or offset of a sound

event.

• Systems that achieved remarkable results in the annual

IEEE AASP DCASE challenges or indexed by EI Com-

pendex or Scopus in reputable databases such as IEEE

Xplore.

Although Sound Event Detection and Localization

(SEDL), as well as anomalous SED, appear to fit the criteria

mentioned above, it is essential to point out that these two

areas belong to different domains. SEDL is the combined

task of identifying temporal activities of each sound event and

the estimation of their respective spatial location trajectories

when active [33]–[35].

On the other hand, anomalous SED is the detection of

anomalous sounds that are difficult or even impossible to

collect [36]. Thus, the detection system has to detect unknown

sounds that are not given in the training label [37]. As such,

this task cannot be solved as a traditional classification task.

Therefore, these two areas will not be covered in this paper

under the polyphonic SED system.

By focusing on these points, this paper aims to contribute

to the existing literature by providing

• Review of different polyphonic SED system proposed

by various authors. It includes an in-depth discussion of

their methodology and limitations.

• Several future research directions that may solve exist-

ing problems in a SED system.

A SED system can be broadly classified into non-Neural

Network (NN) based and NN-based methodologies. As seen

in Figure 3, NN-based methods can be further classified

into non-hybrid models, hybrid models, and models utilizing

weakly labeled data. In this paper, a non-hybrid model refers

to a model that has not been modified or stacked with another

model, whereas a hybrid model refers to models that are stack
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FIGURE 3. SED categories.

together to become one model. As models utilizing weakly

label data generally have a big difference with their detection

strategy, they are classified as a different subcategory rather

than in non-hybrid or hybrid models subcategory.

Thus this paper proposed to discuss these groups of

methodologies in the same manner. The discussion of meth-

ods in this section will be done in the following order,

the non-NN based methods followed by the NN based meth-

ods. Therefore, the paper is organized as follows: Section II

provides an in-depth discussion of different non-NN based

methodologies. Section III presents a detailed discussion of

different NN based methods. Section IV presents several

public datasets and commonly used evaluation metrics, and

Section V provides a discussion on possible future research

directions. Finally, the paper ends with a conclusion.

II. NON-NEURAL NETWORK-BASED METHODOLOGIES

In this section, two types of non-NN based methodologies

that were commonly used by different authors are discussed

in detail. After the discussion of each method, a summary is

provided to conclude this section.

A. GMM-HMM

Perhaps one of the earliest states of art for Automatic Speech

Recognition (ASR) is the Hidden Markov Model [38], [39],

which is a statistical model where each state is not directly

observable (i.e., hidden) [40], [41]. With the use of the

Expectation-Maximization (EM) algorithm, each state can be

categorized by Gaussian Mixture Model (GMM) that mod-

els the observation (acoustic vectors) corresponding to the

state [40], [42]. GMMs can have several benefits that make

them a suitable candidate for this role. Firstly, with enough

components, they can model probability distributions to any

required level of accuracy, and they are relatively easy to

fit data using the EM algorithm [42]. With success in ASR,

GMM-HMM becomes a promising and natural choice in

modeling other sound events [43], and one such example was

by Mesaros et al. [44].

The architecture was tested on a large scale audio database

that consists of 61 event classes to investigate the effective-

ness of GMM-HMM in the real world. In the experiment,

Mesaros et al. [44] proposed using Mel-Frequency Cepstral

Coefficients (MFCCs), delta MFCCs, delta-delta MFCCs as

the input features to train a three-state left-to-right HMMwith

16 Gaussians per state for each event class. These models

were then connected into a network HMM having equal

transition probabilities from one event model to another. This

would allow an unrestricted sequence of 61 models where

any model can follow any other with no limits to the number

of events that can be detected in the audio. With the use

of the Viterbi algorithm, an optimal sequence of events can

then be decoded. Thus, it allows the detection of the most

prominent event at each given polyphonic segment together

with its timestamp.

However, this system only achieved an F1-score of 30.1%

but with an 84.1% Error Rate (ER). Despite the inclusion of

event frequency of occurrence as the prior knowledge, the

accuracy of this systemwas not improved. Mesaros et al. [44]

explained that this might be due to the adding of events from

different environments, which averages out the differences in

count between events specific to a particular environment.

Although there was no limit to the number of events that

can be detected in audio, such a system only allows the

detection of the most prominent event in each segment. This

does not reflect real life-scenario where sound events can

coincide. Moreover, the majority of the errors can be caused

by temporally overlapping sound events [45].

To improve detection accuracy and allow polyphonic SED

on the same dataset, Heittola et al. [21] proposed a two

stages detection methodology, as illustrated in Figure 4.

Heittola et al. [21] suggested to first determine the context of

the audio before detecting the events in the audio. Context,

in this case, refers to the audio background or environment.

As explained by Heittola et al. [21], this can reduce the search

space for sound events as context information can provide

rules for selecting a specific set of events.

FIGURE 4. Overview of proposed methodology by Heittola et al. [21].

In the training stage, each context recognition system was

trained using GMM with MFCCs extracted from the dif-

ferent contexts where each GMM consists of 32 gaussian

distributions. Whereas a SED system was trained using an

HMM with MFCCs, delta MFCCs, and delta-delta MFCCs

extracted from sound events belonging to different contexts.

Similar to [44], each event class wasmodeled by an individual

three-state left-to-right HMM with 16 Gaussians per state.
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Frames with overlapping events were not discarded for train-

ing and instead used as training samples for the respectively

sound events. Heittola et al. [21] suggested that the variability

caused by the overlapping sound events classes will average

out, and the model will learn a reliable representation of the

target sound events. The consecutive passes of the Viterbi

algorithm were proposed to allow polyphonic SED, where

each pass must be different from the previously decoded one.

This could prevent the detection of a similar event, and the

number of consecutive passes was fixed at 4.

In the testing stage, test audio was first segmented into

4 seconds segment and was classified by each context recog-

nition model. Context label was then given based on the high-

est total log-likelihood accumulated over the audio. Based on

this context label, the sound present in the audio were then

detected using the HMM models trained.

Together with event priors, such a system can achieve a

single second segment based F1-score of 19.5 and 30-seconds

segment based F1-score of 29.4. However, such a system

was not able to win a monophonic HMM-GMM system by a

considerable margin and instead performed slightly worse in

terms of 30 seconds segment based F1-score. The drawback

of this system is the dependency of the context recognition

accuracy. A wrongly recognized context can lead to wrong

SEDmodel selection and event priors. This complication was

not fully reflected in their experiment as different contexts

contain similar sound events, and some of the common events

were correctly recognized. Also, the number of Viterbi passes

was estimated based on average polyphony of the recorded

materials, but the number of events in test data is usually not

known a priori.

FIGURE 5. Overview of proposed methodology by Heittola et al. [46].

Heittola et al. [46] then extended his work in [21] by

including source separation before the detection of sound

events, which is illustrated in Figure 5. However, in this work,

the ground truth of the context was known with certainty and

given to the SED system, which eliminates the need to train

a context recognition system.

In the training stage, which began with the source sepa-

ration, NMF was utilized to decompose the spectrum into

four different components where the number of components

was based on the average amount of overlapping events in

the evaluation dataset. Since each component may contain

one or more sound sources, Heittola et al. [46] proposed

using Wiener filter on each component to allow the sepa-

ration of the stream, which contains roughly homogenous

spectral content and differs significantly from the others.

As the source separation was unsupervised, there was no

knowledge of which event was separated into which stream.

Thus, Heittola et al. [46] suggested two approaches to select

the stream that contains the target event using EM algorithm.

The first approach was to choose the most prominent stream

based on the highest likelihood, while the second approach

was to perform iterative elimination of stream that was least

possible to contain the target event. However, it was found

that results from both schemes were comparable, but stream

elimination scheme had the benefit of faster convergence

and being straight forward. Separated streams from their

respective event class then have features such as MFCCs,

delta MFCCs and delta-delta MFCCs extracted where they

were used to model a three-state left-to-right HMM with

16 Gaussians per state. In the testing stage, the SED system

was applied separately for each stream, and results from each

stream were combined into a single set of events.

Based on the proposed methodology and using stream

elimination scheme, Heittola et al. [46] reported a single sec-

ond segment based F1-score of 44.9 and average 30 seconds

segment F1-score of 60.8, which was approximately doubled

of their previous work [46]. Although such a proposal can

provide much higher accuracy, it requires the context of

testing audio to be known a priori, which may limit its appli-

cability. Similarly, the number of components to be separated

is based on the average number of overlapping events in

the evaluation dataset and thus cannot be known beforehand.

Also, there may be a risk of selecting the wrong stream for

event training, even though such a mistake was not mentioned

in the text.

AlthoughGMM-HMMhad seen its success in ASR, it does

not seem to be very effective and accurate for SED. This

could be due to the fact that GMM has a serious shortcoming

where they cannot effectively exploit information embedded

in a large window of frames [42]. On the other hand, the use

of MFCCs may not be a suitable input for the model. As

suggested by Cakir et al. [62], there is a loss of information

during the calculation of MFCCs as MFCCs are made up

of the first few coefficients after the application of Discrete

Cosine Transform. Moreover, the sum of MFCCS of sound

sources is not the same as the sum of MFCCs of the mix-

tures of these sources. Another major drawback of using

GMM-HMM is the need to train a large number of models

to represent each event class.

B. NMF

Another popular method for SED is the use of NMF. As dis-

cussed earlier, NMF was used by Heittola et al. [46] as an

unsupervised approach for audio source separation. However,

NMF can also be used as a supervised method for SED.
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NMF is a method popularized by Lee and Seung [47], where

the objective is to decompose a non-negative matrix of size

L × N into two non-negative matrices W and H of size

L × K and K × N , respectively. W can be interpreted as the

dictionary matrix and H can be interpreted as the activation

matrix while K represents the number of components. Thus,

the conventional supervised training of an NMF is to extract

W from isolated events to form a dictionary [29], [48]. This

dictionary would then be applied to the test data to derive H ,

and post-processing of H is then carried out to identify the

activation of events at each time frame. Although such a

method is easy to apply, it has difficulty detecting overlapping

sounds [48]. Smaragdis and Brown [48] suggested that this

problem can be overcome by modeling overlapping sound as

an additional class, but the combination of the event would

make the training intractable.

Thus, several proposals improved on the conventional

NMF method for SED. One of them was the use of coupled

NMF by Mesaros et al. [49]. As seen in Figure 6, the idea

of a coupled NMF is to jointly learn two non-negative dic-

tionary matrices W1 and W2 with a common H using two

non-negative matrices as input instead of one.

FIGURE 6. Proposed coupled NMF by Mesaros et al. [49].

In their experiment, the two-non negative matrices pro-

vided were 1) audio frequency spectrum and 2) a frame-level

one hot encoding matrix to represent the presence of events

based on the annotation of audio. As the size ofW1 is relative

to the size of training data, this may not be computation-

ally feasible. Thus, to increase the computation efficiency,

Mesaros et al. [49] suggested reducing the size of the dic-

tionary through clustering of components and only allowing

the centroid of clusters to form the dictionary.

The signal was first decomposed to detect the presence of a

sound event in test audio, using NMF withW1 to obtainHtest .

Htest was then used to reconstruct the frame-level one hot

encoding matrix usingW2. As the matrix obtained was not in

binary form, it required further processing. The values above

the mean of the matrix were set to 1 to indicate the detection

of a sound event in that specific time frame. On the other

hand, values below the mean were set to 0. To prevent noise

and outliers, detected sound events that did not correspond to

a total of 200ms duration were also set to 0.

Based on this setup, Mesaros et al. [49] achieved average

a single second segment based F1 score of 57.8 on TUT-SED

2009. The most interesting result was that the use of cluster

centroids as new components could achieve a higher F1-score

as compared to using the entire dictionary. Although, using

cluster centroids can reduce the computation cost, but the

drawback is that there is a need to perform clustering for every

addition of new training data. In addition, the optimal clus-

ter number has to be derived through several trials. Finally,

the use of mean as a threshold may not be the best value to

achieve maximal performance.

On the other hand, Bisot et al. [50] proposed a methodol-

ogy to learn a classifier and the NMF in a joint optimization

problem that they referred to as Nonnegative task-driven

dictionary learning (TD-NMF).

In essence, this methodology learns an optimized dictio-

nary through NMF with beta divergence by minimizing the

classification cost of a regularized linear logistic regression.

As explained by Bisot et al. [50], this would allow a more

discriminative dictionary of spectral templates to be learned.

After the dictionary was learned, the test data was projected

onto the learned dictionary. The projection from the test

data was then used as a feature for classification. To allow

multi-label classification, the class probabilities of each test

frame were thresholded by a value which was dependent on

the acoustic scene (0.3 for the home environment and 0.35 for

the residential area). Thus, overlapping events can be detected

as long as the probabilities in a given frame exceed the fixed

threshold.

Based on this methodology, Bisot et al. [50] reported a

single second segment based F1-Score of 49.5 with an ER of

69.5 when test on the TUT-SED 2016 development dataset.

While this methodology was able to achieve the lowest ER as

compared to methods such as GMM, Random Forest (RF),

Gated RNN, RNN, and NMF, it was not able to achieve

the highest F1-score (RNN made a slightly higher F1-score

of 49.8). Although such methodology shows competitive

results, it was only tested on a small dataset with a total

duration of approximately 80 minutes. Moreover, the number

of overlapping events is also minimal. Finally, there is a need

to fine-tune the threshold to achieve maximal performance.

Another interesting proposal was by Ohishi et al. [51],

who suggested the integration of NMF with Bayesian non-

parametric for polyphonic SED. A Bayesian nonparametric

model is a Bayesian model on an infinite-dimensional param-

eter space [52]. Thus, the Bayesian nonparametric approach

allows a model to adapt its complexity according to the data

without the selection of model parameters in advance (i.e.,

the number of components for NMF or the number of events

that should be in an audio clip) [53]. Such a combination

would then allow the assumption of possibly an infinite num-

ber of events in an audio clip.

Ohishi et al. [51] modeled the overlapping sound event

using NMF, where Markov Indian Buffet Process (mIBP)

and Chinese Restaurant Process (CRP) were integrated and

proposed the Bayesian logistic regression to estimate the
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audio event labels from the activation matrix. This technique

was subsequently tested on an English learning podcast, and

the authors [51] reported an accuracy (in terms of Area Under

Curve (AUC)) of 0.79 winning a baseline GMM and three

other variants of proposed methods.

FIGURE 7. Ground Truth (a) and Predicted Labels (b) [51].

However, the performance of this methodology appears to

be inconclusive and biased. Firstly, it was only tested on an

English learning podcast with a duration of 150s. Secondly,

this podcast was prepared in a controlled environment [54].

Thirdly, the GMM may not be effective using only 100s of

training data, and thus, the comparison does not appear to

be fair. Fourthly, as seen from Fig. 7, there was no training

data for Female C, it is unclear how the classification of

Female Cwas achieved. The new event detected should not be

assumed to be Female C, and accuracy for Female C should

be 0. If that was the case, the accuracy of this proposed

model is lower than the baseline GMM. In addition, using

AUC as the accuracy metric is not appropriate, as seen in

the following figure, almost the entire block of the testing

signal was annotated as Female A and Female B, but the AUC

calculated was 0.769 and 0.744 respectively. Lastly, it was

mentioned by the authors [51] that the Poisson likelihood

model used in their study suffers from theoretical issues.

C. SUMMARY OF NON-NEURAL NETWORK-BASED

METHODOLOGIES

The previous subsections showcased the different non-NN

architectures proposed by various authors, and discussion on

their methodologies and limitations were done.

In this section, details on the features used, architectures,

performances, and limitations are summarized in the follow-

ing tables. Table 1 provides the information on features used

and their respective processing method. For non-NN based

methodologies, there is a wide variety of features used with

MFCC forming the majority. However, as mentioned earlier,

the use of MFCC may result in the loss of information.

Table 2 provides the information on the architectures used and

their respective limitations. Among the different methodolo-

gies, some of them utilized the context information to provide

rules for selecting a specific set of events. However, detection

accuracy is highly dependent on the context recognition accu-

racy, which may limit such strategy. Table 3 then showcase

the results of their proposed methodology on different types

of datasets. Although non-NN basedmethodsmay not require

a large amount of strongly labeled data, as seen in Table 3,

they do not perform very well.

III. NEURAL NETWORK-BASED METHODOLOGIES

In this section, NN-based methodologies are discussed

in detail. The section first began with the discussion of

non-hybrid NNmethods followed by hybrid NNmethods and

methods that utilized the weakly labeled data. A summary

section is provided at the end of each subsection to conclude

the findings of each method.

A. NON-HYBRID MODELS

With the advances in machine learning algorithms and com-

puter hardware, Deep Neural Network (DNN) that contains

many layers of linear units, and a large output layer can be

trained efficiently [42]. This allows DNN to jointly learn

much better feature representations and appropriate clas-

sifiers [55] where successes can be seen in sound-related

domains such as ASR [42], [56], [57], sound event or environ-

mental classification [58], [59], source separation [60], [61].

Thus, making DNN a viable and attractive choice for SED.

Moreover, their architecture allows multi-label classification

directly. In contrast, model-based HMMs require additional

effort to train individual models for each class or allowing

multiple passing of the Viterbi algorithm for polyphonic

SED [25].

However, conventional NN-based methodologies only

allow single-label classification. Thus the easiest and the

most commonway to accommodate multi-label classification

is to threshold the event class probabilities given by the NNs.

This would allowmultiple sound events to be detected as long

as the probabilities are above the predefined threshold.

Driven by the pros of NN, Cakir et al. [62] proposed

using an FNNwithmaxout activation function for polyphonic

SED. (Note: Such network may also be referred to as a

Maxout Networks [63]). The idea of a maxout unit is to facil-

itate optimization by dropout and improve the accuracy of

dropout’s fast approximate model averaging technique [63].

Given an input, x, a maxout unit implements the following

function [63],

h (x) = max (xW + b) (1)

whereW and b are learned parameters. This function simply

retrieves the max of input and can be interpreted as making a
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TABLE 1. Features used in non-NN based methodologies.

FIGURE 8. Proposed Methodology by Cakir et al. [62].

piecewise linear approximation to an arbitrary convex func-

tion [63]. As explained by Cakir et al. [62], such function is

not bounded, easy to optimize, and does not suffer from van-

ishing gradients problem. Most importantly, maxout function

shows superior results as compared to sigmoid function in

speech-related task [64], [65].

To allow themodeling of the dynamic properties of sounds,

Cakir et al. [62] proposed the use of context windowing

(window length of 5) where the audio frame of extracted

feature vectors was concatenated with adjacent time frames

to form a single training instance. In addition, the output from

the output layer was smoothed by a median filter to remove

noise. Such a framework is illustrated in Figure 8.

Using two layers FNN, Cakir et al. [62] reported a single

second segment based F1-score of 63.8. Based on the results

using different input features, Cakir et al. [62] also concluded

that using log-mel band energies as a feature was much better

than using MFCC and mel-band energies.

Cakir et al. [66] then extended his work by decomposing

the multi-label classifier into an ensemble of single-label

FIGURE 9. Difference between multi-label and combined single label
DNN [66].

classifiers. Cakir et al. [66] explained that such a classifier

has the benefit of allowing dynamic inclusion of new labels

by training classifiers only for the new sound events instead of

retraining the entire FNN. To enable polyphonic SED, the test

audio must be classified by every single model. The differ-

ence between the two methodologies can be seen in Figure 9.

Based on such a scheme, Cakir et al. [66] reported a single

second segment based F1 score of 61.9% which was slightly

lower than a multi-label DNN accuracy.

Although there is no need to retrain the entire model with

the inclusion of new events, a single label classifier requires

training ofmultiple classifiers that may need to be tuned sepa-

rated to achievemaximal performance. In addition, the testing

time for such architecture maybe a few folds higher than a

multi-label classifier.

Results have shown that both architectures achieved much

higher accuracy than the non-NN based methodologies, but

they are not without any drawbacks. Firstly, using maxout

function doubles the number of parameters for every single

unit, which can lead to a high parameter number [67]. In addi-

tion, maxout network is prone to overfitting [68]. This is

because the max function propagates the gradient only to the

unit that gave the largest activation, so the remaining units do

not get updated [69]. An FNN with maxout function may not
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TABLE 2. Proposed architectures and their respective limitations.
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TABLE 3. Accuracy of non-NN based methodologies.

perform as well as a Convolutional Network Network (CNN)

with maxout function based on the result shown in [70].

Parascandolo et al. [18] then proposed Bidirectional Long

Short TermMemory (BLSTM) for polyphonic SED. Bidirec-

tional LSTM allows the processing of data in both directions

by utilizing two separate hidden layers. They are subse-

quently concatenated and fed to the same output layer [71].

It allows access to long-range context in both input directions,

which can helps in classification and avoid tailored postpro-

cessing or smoothing step, thus making it a suitable choice

for SED [18].

The audio recordings were normalized to a scale of−1 to 1

before the calculation of mel energies to account for audio

recorded in different conditions. As an additional measure

to reduce overfitting, Parascandolo et al. [18] increased the

dataset by 16 times using several data augmentation tech-

niques such as time-stretching, sub-frame time-shifting, and

blocks mixing. Parascandolo et al. [18] also proposed the

addition of Gaussian noise to the network weights as it was

found to ‘simplify’ RNN by reducing the amount of infor-

mation required to transmit the parameters which improve

generalization [72].

In their paper, Parascandolo et al. [18] compared this

architecture with an FNN, vanilla LSTM and a BLSTMwith-

out data augmentation on TUT-SED 2009. The final results

showed that their method with data augmentation was the

best performing architecture with a single frame segment

based F1-score of 64.7 and a single second segment based

F1-score of 65.5. However, it was only marginally better

than a BLSTM without data augmentation, which achieved

a single frame segment F1-score of 64.0 and a single second

F1-score of 64.6. This shows that simple data augmentation

may not be useful, given the considerable increase in compu-

tational cost and negligible impact on model accuracy.

Asmentioned earlier, Parascandolo et al. [18] did not apply

any post-processing, as it was hypothesized that output from

an RNN was already smoothed. However, empirical results

shown by Hayashi et al. [73] proved that post-processing

is still necessary, especially for event-based evaluation.

Although the addition of Gaussian noise can improve gen-

eralization, it was also found that such optimization can

increase the training time and can affect the performance of

an LSTM [74]. In addition, the LSTM has a relatively high

model complexity, and parameter tuning for LSTMs is not

always simple [75], [76]. Finally, the sequential nature of

LSTM prohibits parallelization [77].

Adavanne et al. [78] also proposed the use of LSTM

for SED but with additional input features such as the

pitch and its periodicity as well as the Time Difference of

Arrival (TDOA) in sub-bands. Pitch and periodicity were

estimated using Librosa implementation of pitch tracking

on thresholded parabolically interpolated STFT. On the

other hand, TDOA was calculated using the generalized

cross-correlation with phase-based weighting (GCC-PHAT).

A median filter was then applied to the estimated TDOA to

remove noise.

Similar to [18], block mixing was also applied to

increase the training data as a measure to reduce overfitting.

Besides comparing this architecture with a GMM, Adavanne

et al. [78] also examined the performance difference between

using mono-channel and stereo-channel features. Based on

the ER, Adavanne et al. [78] concluded that LSTM trained

using log mel band energies and TDOA from the stereo chan-

nel was the best classifier with an accuracy of single second

segment based F1-score of 35.4 with ER of 0.91. If the results

were based on the highest F1-score, LSTM trained using

mel energies and pitch would be the best classifier which

achieved a single second segment based F1-score of 35.7 with

a single second Error Rate (ER) of 0.92.

Although the results shown features extracted from the

stereo channel are beneficial, but additional features such

as pitch and TDOA did not seem to provide many benefits.

It is because a LSTM trained using only log mel energies

calculated from the stereo channel can already achieve a

single second segment F1-score of 35.6 with ER of 0.93. As

Adavanne et al. [78] also participated in the DCASE 2016

challenge, the only system that won the baseline system was

trained using only mel energies from both channels and not

with the proposed additional features. Besides the redun-

dancy of extra features, LSTM has a high model complexity,

not easy to tune and prohibit parallelization [75]–[77].

On the other hand, Xia et al. [79] proposed a

regression-based Convolutional Neural Network (CNN) for

SED. As explained by Xia et al. [79], multi-label classifica-

tion using frame-wise labeling may not be accurate due to the

annotation errors caused by humans. Thus, Greff et al. [74]

proposed the soft labeling of events in each recording based

on a confidence measure.
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Xia et al. [79] suggested using a parabolic function to esti-

mate the confidence measure where the peak of the parabola

was positioned at the center frame of the manually labeled

event (i.e., the center frame has the highest confidence).

It would then allow a continuous representation for each

acoustic event and training outputs would be real-valued

variables instead of discrete-valued labels.

Based on such architecture, Xia et al. [79] achieved

a segment F1-score of 61.02 with an ER of 0.63 on

TUT-SED 2017 development dataset and a segment F1-score

of 45.3 with an ER of 0.84 on evaluation dataset. However,

such results can at best ranked fourth in terms of ER in the

DCASE 2017 task 3 challenge. The poor outcome may be

due to two reasons. Firstly, the small number of layers and

filters may not be sufficient to learn the complex structure of

polyphonic music. Secondly, CNN is unable to extract long

temporal context information [14].

Although such a network can mitigate the wrongly anno-

tated events by using a confidence measure, hyperparame-

ter for the parabolic function may require careful tuning to

achieve maximal performance. Secondly, using a parabola as

a confidence function may not be appropriate because events

with continuous output without too much of a fade in fade

out effect such as vacuum cleaner or blender should have the

maximal confidence throughout most of the annotated frame

instead of just the center frame.

Vesperini et al. [80] proposed Capsule Neural Network

(CapsNet) for polyphonic SED. The introduction of CapsNet

is to overcome some limitations of CNN, in particular, the loss

of information due to max-pooling operator [81].

A capsule can be thought of as a group of neurons whose

output represent different properties of the same entities [82].

ACapsNet starts with a convolutional layer for feature extrac-

tion while the rest of the layers are capsule layers starting

with a primary capsule layer and ending with a class cap-

sule layer. A primary capsule layer represents the lowest

level of multi-dimensional entities and contains reshaping

and squashing functions. Outputs are then passed to the class

capsule layer that has one capsule per output class through

a dynamic routing procedure. Event probabilities were then

obtained by computing the Euclidean norm of the output of

each capsule.

Using CapsNet, Vesperini et al. [80] achieved an ER of

0.36 on TUT-SED 2016 and TUT-SED 2017 development

dataset using a binaural spectrogram as the input. On the

other hand, results for TUT-SED 2017 evaluation dataset

show that CapsNet using logmel energies achieved the lowest

ER of 0.58 instead of using a binaural spectrogram as input.

Regardless of the inputs, CapsNet remains the best classifier

(in terms of ER) as compared to CNN, CRNN, and GMM.

However, the results did not include the F1-score. Therefore,

it is unclear how well such a classifier performs in terms of

F1-score.

The drawback for CapsNet is that even for simple

architecture, training CapsNet requires significant compu-

tational resources [83], and training time can be much

FIGURE 10. Flowchart of SED using CapsNet [80].

longer as compared to a CNN [84]. As mentioned by

Vesperini et al. [80], there can be a significant performance

drop if hyperparameters are not tuned correctly. Moreover,

CapsNet can have a larger fluctuation in performance during

training and if the fixed number of training epochs is subopti-

mal, CapsNet can be more prone to significant errors as com-

pared to CNNs. In addition, CapsNet also appears to shows

lesser generalization ability as compared to CNNs [80].

Finally, AdaDelta whichwas used as the gradient optimizer in

their architecture takes a longer time to converge as compared

to Adam due to its iterative operation [85], [86].

B. SUMMARY OF NON-HYBRID MODELS

The previous section showcased the different NN architec-

tures proposed by various authors, and discussion on their

limitations was done. In this section, details on the features

used, architectures, accuracy, and limitations are summarized

in the following tables.

Table 4 provides the information on features used and their

respective processing method. It is evident that mel energies

are the most popular input features and there is not much

difference in the way they are calculated. The MFCC could

cause loss of information and empirical results shown in [62]

highlighted that using mel energies as a feature can increase

the detection accuracy. The key difference in the input lies in
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TABLE 4. Features used by different authors.

TABLE 5. Accuracy of non-hybrid NN methodologies.

the post-processing, where several authors proposed normal-

izing the energy bands.

Table 5 presents the results of their proposed methodology

tested on different datasets. Although results generally have

shown that NN-based methodologies can perform better than

a non-NN based methodologies, there is still a large room for

improvement that can be made.

Table 6 provides information on the architectures used.

The different columns showcase what the key configurations

used for SED are. In the Additional Information column,

it provides additional details that the authors proposed in their

methodology. In the table, three aspects may seem confusing.

Firstly, there is a column named as No of Hidden Layers,

{No of Units / Filters} with value given in the following for-

mat, 2, {800, 800}. It means that there are 2 hidden layers

with 800 units in the first layer and 800 units in the second

layer. Secondly, in the Additional Information column, there

is an entry known as the Early stop criterion. This is the

number of epochs that the authors used to evaluate if there

is any further performance improvement. Thus, for the Early

stop criterion: 20 epochs, this actually means that the author

proposed to stop the training of the model if accuracy did not

increase or did not have a significant increase after 20 epochs.

Thirdly, for Filter size or Pooling size, it refers to the size

of the filter and pooling operator respectively. For example,

if Pooling size: (1, 3) means the pooling operator is using a

pooling size of 1 by 3 and if Pooling size: (1, 4), (1, 3), (1, 2)

means the pooling operator has a pooling size of 1 by 4 in the

first layer and 1 by 3 in the second layer and 1 by 2 in the

third.

Finally, Table 7 summarized the different limitations of

each proposed methodology. It is important to point out that
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TABLE 6. Proposed architecture by different authors.

all the NN-based methodologies require a large amount of

strongly labeled training data to learn the mapping between

features and event class.

Another common limitation is the use of a global threshold

on the output layer (with 0.5 as the most commonly used

value). However, this threshold value may need to be tuned to

103350 VOLUME 8, 2020



T. K. Chan, C. S. Chin: Comprehensive Review of Polyphonic SED

TABLE 7. Limitations of proposed non-hybrid NN methodologies.

achieve maximal performance [16], [17]. As reported in [62],

a high threshold value can result in better accuracy for audio

with a low polyphonic level, while a low threshold value can

result in better accuracy for audio with a high polyphonic

level.

C. HYBRID MODELS

Perhaps the most popular hybrid model is the use of Convolu-

tion Recurrent Neural Network (CRNN). The reason behind

its popularity could be due to the combination of two can

supplement each other. As explained by Cakir et al. [14] CNN

can learn filters that are shifted in both time and frequency.

In addition, CNN is capable of capturing energy modula-

tion patterns across time and frequency when applied to

spectrogram-like inputs [87]. However, CNN lacks long tem-

poral context information [14]. On the other hand, RNN can

overcome this constraint by integrating information from an

earlier time window but it cannot capture the invariance in

the frequency domain [14]. Thus, the combination of two can

overcome the shortcomings while providing the benefits of

both approaches.

As seen in Figure 11, the architecture of a CRNN is

straightforward; simply stack a CNN over an RNN so that

features map extracted by the CNN can be passed directly to
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the RNN. Finally, to accommodate multi-label classification,

simply apply a global threshold on the output layer.

FIGURE 11. Flowchart of a CRNN.

Cakir et al. [14] proposed stacking CNN with a Gated

Recurrent Unit (GRU) for polyphonic SED. The idea of GRU

is similar to an LSTM, where its motivation is to overcome

the vanishing or exploding gradient problems faced by a

conventional RNN.

A gated recurrent unit (GRU) was proposed by

Cho et al. [88] to make each recurrent unit to capture depen-

dencies of different time scales adaptively. It is similar to an

LSTM such that GRU also has gating units that modulate the

flow of information inside the unit. However, they do not have

separate memory cells [89]. It results in a simpler model with

much lesser parameters, and as evaluated by Cakir et al. [14],

performance between the two models are comparable in their

application.

Based on such architecture, Cakir et al. [14] reported a

single frame segment based F1-score of 69.7 with 0.45 sin-

gle frame ER and single second segment based F1-score

of 69.3 with 0.48 single frame Error Rate (ER) on TUT-SED

2009 dataset which outperforms CNN, RNN, GMM, and

FNN. However, such architecture was not the best classifier

when tested on TUT-SED 2016 dataset in terms of F1-score

even though Cakir et al. [14] architecture had the lowest

single frame and single second ER. Cakir et al. [14] reported a

single frame segment based F1-score of 27.5 that is lower than

RNN that has an F1-score of 27.6 and a single second segment

based F1-score of 30.3 which is lower than GMM which

has an F1-score of 32.5. This architecture was also not the

best architecture when tested on CHIME-Home evaluation

dataset. CNN achieved the lowest Equal Error Rate (EER)

of 10.7, while Cakir et al. [14] CRNN achieve an EER

of 11.3.

On the other hand, Jung et al. [90] proposed using

BLSTM to stack with CNN. The architecture and training

scheme remains largely similar as compared to [14]. For

Jung et al. [90] architecture, they had more recurrent layers

and instead of using batch normalization on the recurrent

layers, they applied layer normalization. Since BLSTM pro-

duces two outputs that differ due to the input order, the out-

puts were concatenated together and used as input to the

subsequent layer. As an additional measure to increase the

training accuracy, Jung et al. [90] proposed the application of

transfer learning. It was achieved by training a Convolutional

Bidirectional LSTM (CBLSTM) using a set of synthetic data.

Then transferred the adjusted weights to a new CBRNN

training using a new set of training data.

Based on this architecture, Jung et al. [90] achieved a

single frame segment F1-score of 49.9, which is much higher

as compared to Cakir et al. [14] architecture producing a

single frame segment F1-score of 27.5. With the application

of transfer learning, Jung et al. [90] achieved an even higher

single frame segment F1-score of 55.9. Jung et al. [90] system

also have a lower single frame ER of 0.56 as compared to

Cakir et al. [14] architecture, which had a single frame ER

of 0.98. However, due to the application of transfer learning,

there is a need to generate synthetic data that requires addi-

tional effort. Moreover, as mentioned earlier, LSTM has high

model complexity and is not easy to tune.

Adavanne et al. [91] also proposed a CBLSTM but with

the inclusion of spatial features extracted from the different

channels which were the extension of his work in [78].

Adavanne et al. [91] suggested using log mel energies,

TDOA estimated from GCC-PHAT, GCC-PHAT, dominant

frequency and their amplitudes (dom-freq) as well as Auto-

correlation (ACR) which was used to estimate pitch. Ada-

vanne et al. [91] idea were to stack each feature from

each channel over the other to form a volume. By slicing

the volume along with a particular time frame, all multi-

channel features corresponding to the time frame can be

extracted. Since there was a difference in features dimension,

Adavanne et al. [91] proposed to use separate CNN to learn

local shift-invariant features. Features were then concate-

nated and passed to the BLSTM.

Based on different feature combinations, Adavanne

et al. [91] concluded that using log mel energies with

dom-freq was the best combination for TUT-SED 2009which

achieved a single second segment based F1 score of 71.7 with

a single second ER of 0.43. Whereas, the best fea-

ture combination for TUT-SED 2016, was log mel

energies with TDOA which achieved a single second

segment F1 score of 35.8 with a single second ER

of 0.95.

However, results were not impressive and shown that fea-

tures extracted from the stereo channel were beneficial, but

not with additional features. For TUT-SED 2009, a classifier

trained using only log mel energies can already achieve a

single second F1-score of 71.1 with 0.43 ER which means

that the best classifier only performed marginally better.

Whereas for TUT-SED 2016, LSTM trained using log mel

energies already achieved a single second segment F1-score

of 35.6 with Error Rate (ER) of 0.93 in their earlier work [78].

With such a complex network architecture and additional fea-

tures, accuracy was only improved by 0.2 but at the expense

of ER.

Adavanne et al. [92] further extended his work with the

use of a 3D CNN and only using log mel energies with

GCC-PHAT. As compared to the earlier work [91], the main

difference in [92] is 1) the first layer of CNN use to extract

features from log mel energies and GCC-PHAT is a 3D CNN,

2) the bidirectional LSTM is replaced with a bidirectional

GRU, 3) early stop is based on accuracy improvement over

100 epochs instead of 50.

Adavanne et al. [92] then tested the architecture using

the different combinations of features on a synthetic dataset

and the results reiterated that GCC-PHAT as an additional

feature was not helpful and cannot increase the accuracy
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of a classifier. With this conclusion, Adavanne et al. [92]

then tested architecture on TUT-SED 2017 and achieved a

single second F1-score of 67.5 with a single second ER

of 0.35 which won a similar architecture using 2D CNN

which achieved a single second F1-score of 64.8 with a

single second ER of 0.37.

Xia et al. [93] also extended his work in [79] by intro-

ducing Auxiliary Classifier Generative Adversarial Network

(AC-GAN) to balance the dataset between event class and the

use of CRNN instead of a CNN.

Xia et al. [93] idea was to use AC-GAN produce virtual

sound samples that are close to the real sound samples with

additional conditions such as the sound event class infor-

mation and the sound event localization information. Note

that localization in this context refers to the location of the

activated frames in the audio; it does not refer to the location

of the sound source. Thus, generated samples would be more

convincing than using simple data augmentation methods

proposed in [18] that has limited effectiveness. Generated

samples were then used together with the real samples to train

a CRNN. Based on such a proposal, Xia et al. [93] reported

a single second segment based F1-score of 31.1 with ER

of 0.58 on the TUT-SED 2016 development dataset (Home)

but scoring only a single second segment based F1-score

of 19.6 with ER of 0.84 on the evaluation dataset. As results

were only reported on the part of the dataset, it is unclear

how well it performs on the entire dataset and thus cannot be

compared with other methodologies that tested their methods

over the whole dataset.

The methodology was also tested on TUT-SED 2017

dataset and reported a single second segment based F1-score

of 52.7 with ER of 0.34 on the development dataset. On the

other hand, Xia et al. [93] achieved a single second segment

based F1-score of 48.3 with ER of 0.59 on the evaluation

dataset. As compared to [92] result on the development

dataset, Xia et al. [93] did not perform better than [92] and

performance has an approximate 15% gap. However, based

on the evaluation results, Xia et al. [93] can easily clinch the

top place in the DCASE 2017 task 3 challenge.

As seen from the results, the performance of such method-

ology applied to different datasets has a large fluctuation.

It could be due to the fact that AC-GAN tends to gener-

ate near-identical samples for most classes as the number

of labels increases [94]. In the experiment, for SED-2016,

AC-GAN was used to balance 5 minority classes for SED-

2016 while AC-GAN was used to balance only 3 minority

classes for SED-2017.

Secondly, AC-GAN imposes perfect separability, which is

disadvantageous when the supports of the class distributions

have significant overlap [94]. Since the method is using

a soft label instead of a hard label, the use of parabolic

function may not be appropriate. It is due to the events

with continuous output that do not have much fade in fade

out effect such as vacuum cleaner or blender. As a result,

it should have the maximal confidence throughout most

of the annotated frame instead of just the center frame.

Moreover, the hyperparameter of the parabolic function may

need to be adequately tuned for maximal performance.

Ding and He [95] proposed an adaptive multi-scale detec-

tion method that combined the idea of an hourglass network

with Bidirectional GRU (BGR). It is a CRNN but with much

higher sophistication. The hourglass network comprises of

a series of convolutional and max-pooling layers to process

features down to a very low resolution. At each max pooling

step, the network branches off and applies more convolutions

at the original pre-pooled resolution. After reaching the low-

est resolution, the network begins the top-down sequence of

upsampling and a combination of features across scales [96].

Since this was a hybrid model, the combination of features at

each scale was sent to a bidirectional GRU. The outputs of

the GRUs were then upsampled according to the scales and

multiplied with a set of weights for each scale to balance the

contribution of each branch. The resulting values were then

added up and sent to the output layer. In their study, Ding

and He [95] proposed using a 4 layers hourglass network with

3 layers bidirectional GRU at each scale. Based on such archi-

tecture, Ding and He [95] achieved a single second F1-score

of 48.7%with an ER of 0.7821 on TUT-SED 2016 evaluation

dataset and a single second F1-score of 43.6% with an ER

of 0.7723 on TUT-SED 2017 evaluation dataset.

With these results, Ding and He architecture [95] easily

won the top three contestants’ architecture in each challenge.

However, such architecture requires much higher computa-

tional resources as compared to a CRNN due to the combina-

tion of features at different scales. In addition, such a network

can easily overfit with a small number of samples. Moreover,

as compared to [93], such a complex network cannot win a

conventional CRNN with data augmentation using GAN.

D. SUMMARY OF HYBRID MODELS

In the previous section, different types of CRNN were

reviewed in detail and discussed. Although there are various

ways to construct a CRNN, the main difference lies in the

choice of RNN. Although GRU and LSTM may be on par

in terms of accuracy, GRU has much lesser parameters as

compared to an LSTM. It should also be noted that although

CRNN can further increase the detection accuracy, it still

requires a large amount of strongly labeled training data to

learn the mapping between features and event class. More-

over, stacking CNN with RNN will increase the computa-

tional complexity by several folds and this would result in

much longer training time. In addition, such architecture does

not allow parallel computing due to the sequential nature [97].

Lastly, CRNN also requires the use of a global threshold to

determine the activation of sound events, which can affect the

detection accuracy if this is not tuned properly.

In this section, features used by different authors are pre-

sented in Table 8. Similarly, mel energies remain as the most

popular feature. Whereas, the details of their architecture can

be seen in Table 9. For the Filters and Units in Table 9,

it should be noted that the number represents the number of

filters or units in each layer. Example in 256, 256, 256 in the
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TABLE 8. Features used by different authors.

Filter column refers to 256 filters in the first layer, 256 filters

in the second layer, and 256 filters in the third layer. Whereas,

for Pooling Size in Table 9, the value indicates the pooling

size at each layer.

Thus, a pooling size of (1, 5), (1, 4), (1, 2) represent that

the T-F input only has its frequency dimension reduced by

5 times in the first layer, further reduced by another 4 times

in the second layer and another 2 times in the last layer. Using

a 40 mel bands T-F input as an example, the 40 bands become

1 band in 3 stages: 40 → 8 → 2 → 1.

Finally, limitations and results of all the CRNN architec-

tures are presented in Table 10 and Table 11 respectively.

E. MODELS UTILIZING WEAKLY LABELED DATA

As seen in the earlier subsections, methodologies proposed

requires the use of strongly labeled data for model training.

However, collecting this type of data is often time-consuming

as it often requires repeated listening and adjusting of label

time boundaries on a visual interface [98]. Furthermore,

the sizes of such datasets are often limited to minutes or

a few hours [3], [98], [99]. In certain scenarios such as an

approaching vehicle, the onset and offset time is ambiguous

due to the fade in and fade out effect [100] and is subjective

to the person labeling the event [101]. If audio frames are

erroneously annotated, it will create unnecessary noise for

any classifier [62].

However, there exists a substantial amount of data that

is weakly labeled (i.e., sound events is annotated without

the onset and offset information) and it is possible to learn

a high-quality and dynamic predictor [99] using only such

data. In this section, different methodologies utilizing weakly

labeled data are reviewed and discussed.

Lee et al. [102] proposed an ensemble of CNNs for SED

utilizing only weakly labeled data. Lee et al. [102] idea was

to have two different CNN architectures trained with different

inputs. The first CNN architecture which was referred to as

the Global Input Model, took the entire T-F representation

as the training input. Whereas the second CNN architecture

which was referred to as the Separated Input Model, took

a smaller segment of T-F representation as training input.

These smaller segments are broken up from the original T-F

representation using a non-overlapping sliding window with

a window size of 1 to 5 seconds and were considered to have

the same label as the original T-F representation.

The final prediction was then given by combining the mod-

els’ probabilities. The framework can be seen in Figure 12.

In their approach, Lee et al. [102] proposed an iterative

approach to form the ensemble based on accuracy measures.

Thus, a model will only be included in the ensemble if it can

raise the accuracy of the ensemble. Based on such scheme,

an ensemble was formed from a total of 12 models trained

using the Global Input Model and Separated Input Model.

Using the ensemble, Lee et al. [102] reported an F1-score

of 52.1 with ER of 0.66 on the DCASE task 4 challenge

development dataset and an F1-score of 55.5 with an ER

of 0.66 on the evaluation dataset. Based on such a result,

Lee et al. [102] was able to clinch the first place in the

2017 DCASE Task 4 challenge

The main drawback of such methodology is the compu-

tational resource and time required to train a large amount

of model and perform the iterative selection to form an

ensemble. In their methodology, Lee et al. [102] proposed a

background subtraction method to eliminate the background

noise which is carried out simply by subtracting the median

from each mel band. However, this method can significantly

degrade model performance that used the entire or half the

T-F representation. By treating the smaller segments to have

the same label as the original T-F representation can induce

noise to the training sample because the smaller samples

may not even contain any information regarding the label.
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TABLE 9. Proposed hybrid NN architecture by different authors ∗Note that the first layer is a 3D CNN and the last dimension of the filter size is the
number of channels. ∗∗Note that this is a 4 layer hourglass network.
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TABLE 9. Proposed hybrid NN architecture by different authors ∗Note that the first layer is a 3D CNN and the last dimension of the filter size is the
number of channels. ∗∗Note that this is a 4 layer hourglass network.
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TABLE 10. Limitation of proposed hybrid NN methodologies.

TABLE 11. Accuracy of hybrid NN on different dataset.

The idea of disregarding the label position was also tested

in [101] where results have shown that it can induce noise

to the training examples which can result in a lower segment

based F1-score.

Xu et al. [103] proposed a gated CRNN and a temporal

attention based localization method. The system was a joint

system that produced the audio labels as well as their respec-

tive annotations in the audio. The idea was to make use of a

FNN with dual activation function that was connected to the

CRNN.

The first activation function in the FNN was the softmax

activation function which was used to infer the temporal

locations for each occurring class and attended to the most

salient frames for each class. Thus, this allowed a localization

vector (i.e., onset and offset vector) to be produced.

The second activation function was the sigmoid activation

function which performed classification at each frame. Thus,

providing the classification output. To obtain the final audio

tag prediction, the localization vector was multiplied by the

classification output and averaged across the time axis which

can be thought of as attention pooling. The workflow is

illustrated in Figure 13.

To prevent overfitting due to an imbalanced dataset,

Xu et al. [103] proposed a new training selection scheme

which would include samples from all classes in the batches

using for training. The scheme would follow the similar

distribution ratio of each class but ensure that there is at least

one sample from the minority classes, while the majority

class would only be at most 5 times more than the minority

class [103] [104].
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FIGURE 12. Flowchart of Lee et al. framework [102].

FIGURE 13. Flowchart of Xu et al. framework [103].

Xu et al. [103] also proposed the use of Gated Linear Unit

(GLU) activation function in CNN which can be regarded

as a local attention scheme. GLU is similar to other gating

mechanisms in LSTM or GRU which control the information

flow to the next layer and is defined as [98] [100]

Y = (W ∗ X + b) ⊗ σ (V ∗ X + c) (2)

where X is the input and σ is the sigmoidal function. W and

V are the filters with b and c as the bias. The benefit of

GLU is that it can reduce the gradient vanishing problem for

the deep network by allowing a linear path for the gradient

propagation while keeping nonlinear capabilities through the

sigmoid operation [105].

To further improve the detection accuracy, Xu et al. [103]

proposed fusing results generated during each training epoch

and an ensemble system where one system was trained using

MFCCs while the other was trained using log mel energies.

Outputs from both systems will then be averaged to retrieved

the final posterior. The final posterior was then thresholded

by an array of class-dependent thresholds to determine the

occurrence of the sound event [104].

Based on such setting, Xu et al. [103] achieved a single

second segment based F1-score of 49.7 with ER of 0.72 on

the DCASE 2017 task 4 challenge development dataset and

a single second segment based F1-score of 51.8% with an

ER of 0.73 on the DCASE 2017 task 4 challenge evaluation

dataset.

However, based on the evaluation results, such a system

can at best ranked second in the DCASE 2017 challenge.

This system was also found to perform rather poorly

on event-based evaluations for a similar task in DCASE

2018 [106]. In addition, experiments also found that such

architecture cannot be simplified andwill result in poor detec-

tion accuracy [107] and thus requiring a large computational

cost due to the sophisticated network. The use of GLU in their

methodology can increase the total number of parameters to

be learned due to the use of 2 different filters. Finally, it was

also found that linear softmax pooling function may work

better instead of using attention pooling [108].

Kong et al. [97] then proposed a CNN-Transformer

(CNNT) for SED. The motivation of their work was to reduce

the training time of a CRNN by making use of a transformer

to replace the RNN. The CRNN has to be calculated sequen-

tially. Thus, making it quite challenging to complete the train-

ing process in a short amount of time [97]. The transformer

can take a long time dependency into consideration for a
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system. But with the benefit of allowing parallel computing

that gives a good alternative to RNN[97].

To perform SED, Kong et al. [97] made use of 3 different

sets of thresholds. The first set would allow the audio to be

tagged. The second set was a set of upper bound threshold

which would indicate the frames that contain the respective

sound event. However, this may result in several false neg-

atives. Thus, the third set of the lower bound threshold was

utilized to determine if the neighboring frames contain the

same sound event. As there were many thresholds, manual

tuning of these values can be difficult and inefficient. Thus,

Kong et al. [97] proposed an automatic threshold optimizer.

The idea was to calculate the gradients over the thresholds.

Thus, allow an optimization method such as Adam to be

applied.

Based on such implementation, Kong et al. [97] achieve

a segment based F1-score of 52.4 with ER of 0.75 on the

development dataset. The F1-score of 57.3 with an ER of

0.75 on the evaluation dataset was obtained. However, based

on the results of both DCASE 2017 development and evalu-

ation data, the CNNT hybrid was not able to achieve better

performance than a CRNN with the attention layer. Although

the Transformer can be trained faster than an RNN, its weak-

ness is in the decoding process. Due to the auto-regressive

architecture and self-attention in the decoder, the decoding

process can be slow [109], [110].

Lu [111] then proposed a modified version of

Xu et al. [103] system. Instead of using GLU, Lu [111] pro-

posed to use Context Gating (CG) as the activation function

for CNN which can be given as [112]

Y = σ (W ∗ X + b) ⊗ X (3)

where X is the input and σ is the sigmoidal function. W is

the set of filters with b as the bias. Such implementation also

allows non-linear interactions among activations of the input

representation but has the benefit of improved efficiency as

compared to GLU [112]. This is because there is only a

set of weights to be learned which reduces the number of

parameters.

Lu [111] then adopted the Mean-Teacher semi-supervised

method [113] in their methodology. The idea is to have two

similar models where one is called the Teacher Model (TM)

and the other is called the Student Model (SM) to learn a

similar task at the same time. However, the weights of the

SM are updated through gradient descent. But the weights

of the TM are updated as an exponential moving average

of the SM weights [113]. Such a training scheme is based

on the fact that using average model weights over training

epochs instead of using the final weights directly can produce

a more accurate model [113]. In Lu [111] study, he proposed

the use of two cost functions to update the model’s weights,

1) the classification cost of SM on the labeled data and 2) the

consistency cost between SM and TM on both the labeled and

the unlabeled data. As mentioned by Lu [111], a trained TM

will usually be better than a trained SM.

Similar to [103], Lu [111] used an ensembled system to

produce a more accurate model where Lu [111] proposed

to combine the results from different systems using differ-

ent consistency costs for the Mean Teacher model. Based

on this system, Lu [111] achieved an event-based F1-score

of 34.4% with an ER of 1.16 on the development dataset.

An event-based F1-score of 32.4% on the evaluation dataset

was also achieved. Based on the score on the evaluation

dataset, Lu [111] clinched the 1st place in the 2018 DCASE

Task 4 challenge.

The main drawback of this model is the large number of

models to be trained to form the ensemble. Due to the nature

of the student-teacher model, each model with a different

consistency cost requires two models (i.e., SM and TM) to be

trained synchronously, this can result in a significant increase

in computational cost and resource burdens. Since the model

was based on [103], the attention pooling used by Lu [111]

may not work as well as linear softmax pooling function.

It was also found that such a system performed rather poorly

for sound events of short duration [26]. Finally, consistency

cost requires careful tuning to achieve maximal performance.

Since Lu [111] proposed an ensemble approach, the impact

of consistency cost was alleviated.

Lin et al. [114] also proposed a teacher-student frame for

SED using weakly labeled data. But instead of using similar

models, TM was proposed to have higher model complexity

and was hypothesized that such a model could integrate the

audio contextual information, thus, capable of producing a

better clip level prediction. Whereas, the SM was a simpler

model was hypothesized to be better at frame-level predic-

tion. Lin et al. [114] methodology can be thought of as

the distillation approach [115] or the mutual learning [116]

framework. The proposed teacher and student model can be

seen in Figure 14.

The entire training procedure can be broken down into

two different stages where the transition from stage one to

stage two is controlled by the training epochs defined by

the user. The first stage can be thought of as the student

learning stage while the second stage can be thought of as the

mutual learning stage. In the first stage, model parameters

of both TM and SM are updated based on a combined cost

which consists of three different components. The first two

components were the classification cost of TM and SM on

the labeled data which can be given as

C1 = J (yk ,TMyk) (4)

C2 = J (yk , SMyk) (5)

where J denotes the cost function and yk as the true label of

the k sample of the weakly labeled dataset. TMyk and SMyk
represents the predicted label of the k sample in the weakly

labeled dataset by the TM and SM respectively. The third

component was the classification cost of TM and SM on the

unlabeled data where predictions by TM were considered as

the actual label which can be represented as

C3 = J (TMpi, SMpi) (6)
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FIGURE 14. Flowchart of Lin et al. framework [114].

where pi denotes the predicted label of the i sample of the

unlabeled dataset. TMpi and SMpi represents the predicted

label of i sample in the unlabeled dataset by the TM and SM

respectively. Thus, in the first stage, the learning procedure

effectively forces the SM to learn from the TM.

After a specific training epoch, the training procedure tran-

sit into the second stage where the combined cost was added

with another component, C4 which can be represented as

C4 = γ × J (SMpi,TMpi) (7)

where γ is a hypermeter, which determines howmuch should

the TM learns from the SM. The models’ parameters were

then updated using the combined cost. Thus, such a learning

scheme will allow the two CNN models to be trained simul-

taneously and forcing them to learn from each other which

Lin et al. [114] hypothesized can increase the abilities of the

two models.

Based on such architecture, Lin et al. [114] reported an

event-based F1 score of 39.5 which won Lu [111] system

when tested on the DCASE 2018 evaluation dataset.

Lin et al. [117] then extended their work by remodeling

the feature. As suggested by Lin et al. [117], this will create

a set of disentangled features and would mitigate the effect of

overlapping sound events. Subsequently, Lin et al. [117] sug-

gested using median filters with different window sizes based

on the event class to smooth the output. Finally, an ensemble

of models with different γ was trained to produce the audio

prediction.

Based on these improvements, it won the first place in

the DCASE 2019 task 4 challenge with an event-based

F1-score of 45.4 on the development dataset and an event-

based F1-score of 42.7 on the evaluation dataset.

However, the drawback of [114] and [117] is similar

to [111], two models (i.e. SM and TM) have to be trained

synchronously which can result in a significant increase of

computational cost and resource burdens. The use of ensem-

ble in [117] can further aggravate this problem. There are

also several hyperparameters to be tuned. Firstly, how can

the training epochs be determined effectively to allow proper

transition from stage one to stage two? Secondly, how much

should the TM learn from the SM?

Unfortunately, both of these hyperparameters have to be

tuned manually to achieve maximal performance. In [117],

the different window sizes of the median filters used were

derived based on the average event duration in the synthetic

dataset, which may not be perfect.

Kothinti et al. [106] approach was to develop two separate

models for different purposes, as illustrated in Figure 15.

The first model, which was a combination of Restricted

Boltzmann Machine (RBM), conditional RBM (cRBM) and

Principle Component Analysis (PCA), was in charge of the

event boundary detection. Whereas the second model which

was an ensemble of CRNNs, was in charge of providing the

audio label.

For the first model, a spectrogram was used as input

for the RBM to capture local-spectrotemporal dependencies.

Outputs were subsequently passed to an array of cRBMs to

generate the final high representation of the acoustic signal.

PCA was then applied to reduce the dimensions of this signal

representation. The closest preceding sample at 25% of the

maximal value in the reduced representation was then deter-

mined as the onset of an event. On the other hand, the offset

was determined based on the threshold set on the short-term

energies of the audio signal.

For the second model, log mel energies were used as the

input for the ensemble. Kothinti et al. [106] suggested using

three different CRNNs. The first two systems had the same

architecture but were trained differently. The first system

was trained using only weakly labeled data while the second

was trained using weakly labeled data and augmented data

which was generated by mixing weakly label audios. On the

other hand, the third system was the DCASE task 4 baseline

system trained using only weakly label audio. The key differ-

ence between the three systems besides the type of training

inputs used was the number of filters and kernel size used in

each convolutional layer. Finally, the predictions of the three

systems were combined to give the final prediction through

majority voting.

The ensembled system then achieved an event-based

F1-score of 30.05 with ER of 1.36 when tested on the devel-

opment dataset. It also produced an event-based F1-score of

25.4 with ER of 1.19 when tested on the evaluation dataset.

However, based on the accuracy, it was ranked 3rd (in terms

of teams) in the DCASE 2018 task 4 challenge that suggests

a large room for improvement.

Such a system is also computationally expensive due to

different models and ensemble used. In addition, it was found

that the accuracy of the boundary detection system is lower

103360 VOLUME 8, 2020



T. K. Chan, C. S. Chin: Comprehensive Review of Polyphonic SED

FIGURE 15. Proposed methodology by Kothinti et al. [106].

for audio with overlapping events. But the impact was only

mitigated due to the error tolerance used for evaluation. How-

ever, the cause of this phenomenon is not directly under-

standable. It was mentioned in [118], it may not be a good

choice to use Contrastive Divergence (CD) to train a cRBM

for prediction purposes. However, it is unclear if it will also

affect the representation learning, which in turn affect the

boundary detection accuracy. Theoretical analysis of CD is

also difficult [119] that can prohibit further investigation.

On the other hand, there is also a possibility that the accuracy

of boundary detection is affected by suboptimal thresholds

used for boundary detection. Finally, it was also found that

the audio tagging system was poor at classifying the detected

events that deteriorate the overall performance significantly.

Pellegrini and Cances [107] then proposed using a com-

binative approach where CNN was used for audio tagging

and CRNN was used for SED. For the audio tagging model,

the last convolution block was followed by global average

pooling and global max pooling, then by a dense layer

with 1024 units and finally the output layer. The probabil-

ities from the output layer were then thresholded by a set

of class-dependent thresholds that were optimized by the

Genetic Algorithm. It would allow the final audio tag to be

derived.

For the SED model, the last convolution block was fol-

lowed by a Bidirectional GRU (BGRU), then a dense layer

with 64 units and then the output layer. Another distinct dif-

ference would be the cost function where the SEDmodel took

Cosine Similarity between classes in consideration. It was

proposed as an additional measure to penalize overlapping

events. The output from this model was a set of temporal pre-

dictions for each class where Pellegrini andCances [107] only

kept the temporal predictions of classes detected as positive

by the audio tagging model. These values were subsequently

rescaled to 0 and 1 and smoothed with a sliding average

window. Finally, the final segments were obtained by a global

threshold to detect the onsets and offsets of events.

Based on such implementation,Pellegrini andCances [107]

achieved an event-based F1-score of 34.75 when tested on

the DCASE 2018 development dataset and an event-based

F1-score of 26.2 when tested on the DCASE 2018 evaluation

dataset. However, based on such accuracy, it was ranked 3rd

(in terms of teams) in the DCASE 2018 task 4 challenge.

Besides the need to train two different models, several

hyperparameters were coarsely determined. For example,

the threshold used to detect the final onsets and offsets of

events and the regularization weight to determine the amount

of contribution by Cosine Similarity to the loss function.

A coarsely determined threshold value can have an adverse

effect on model accuracy. The overall accuracy is also depen-

dent on the audio taggingmodel’s accuracy that only achieved

an accuracy of 77%. It was found that if audio labels are cor-

rectly given, the system can have an accuracy improvement

of another 10%. Pellegrini and Cances [107] also utilized

GLU. But it can increase the total number of parameters to

be learned due to the use of two different filters. Although

Cosine Similarity was added to penalize overlapping events,

it was not always helpful. In specific scenarios, it can help

to decorrelate overlapping classes. But in certain situations,

it cannot provide decorrelation and can even cause one of the

classes to be undetectable.

F. SUMMARY OF MODELS UTILIZING

WEAKLY LABELED DATA

In the previous section, different methodologies with their

limitations were discussed in detail. To leverage a large

amount of weakly labeled data, most of the methods adopted

the use of ensemble or training of two different models where

one is in charge of audio taggingwhile the other is in charge of

boundary detection. However, this will means that it requires

much more computational resources and time to train a dif-

ferent number of models. It is also important to point out that

the model using weakly labeled data is not as effective as its

counterpart using strongly labeled data. Thus, this remains
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an open research area to show how data can be utilized effec-

tively. Finally, the use of thresholds to determine the event

activation remains a norm, but the researchers [97], [107]

presented some interesting ideas to tune it to an optimal value

automatically. As shown in the paper [97], the accuracy did

increase based on this optimization.

In this section, the features used by different authors are

presented in Table 12. Similarly, mel energies remain the

most popular as a feature and will most probably stay as the

gold standard for SED.

Table 13 then presents the information of the architecture

proposed. Naming convention, writing style remains the same

as the previous section to ensure consistency. Finally, results

and limitations of all the CRNN architectures are presented

in Table 14 and Table 15 respectively.

IV. PUBLIC DATASET AND EVALUATION METRIC

USED BY DIFFERENT AUTHORS

In the earlier sections, various methodologies were discussed

in detail. In this section, different public datasets and evalua-

tion metrics used by various authors will be described.

A. TUT-SED 2016

TUT-SED 2016 is a dataset that consists of real-life record-

ings that were recorded at high quality and carefully anno-

tated to provide high-quality audio for polyphonic SED. Each

recording was performed in a different location, namely: a

residential area and home environment, to satisfy the require-

ment for high acoustic variability.

Each recording was recorded using binaural Soundman

OKM II Klassik/studio A3 electret in-ear microphones and

Roland Edirol R09 wave recorder at 44.1 kHz sampling rate

and 24-bit resolution [120]. Each recording has an average

duration of 3-5 minutes that adds up to a total of 78 minutes

of audio. In this dataset, there are a total of seven annotated

sound event classes for residential area recordings and a total

of 11 annotated sound event classes for home recordings.

Table 16 then present the distribution for these events from

a different environment.

B. TUT-SED 2017

TUT-SED 2017 is a subset of TUT Acoustic Scenes 2017.

It consists of recordings of acoustic street scenes (city center

and residential area) with various levels of traffic and other

activity and has an average duration of 3-5minutes. Similarly,

each recording was recorded using binaural Soundman OKM

II Klassik/studio A3 electret in-ear microphones and Roland

Edirol R09 wave recorder at 44.1 kHz sampling rate and

24-bit resolution [121].

The street acoustic scene was selected to represent an envi-

ronment of interest for the detection of sound events related to

human activities and hazard situations. The target sound event

classes were chosen to represent common sounds related to

human presence and traffic. The selected sound classes for

this dataset are brakes squeaking, car, children, large vehicles,

TABLE 12. Features used by different authors.
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people speaking, and peoplewalking. The events’ distribution

can be seen in Table 17.

C. DCASE 2017

The DCASE 2017 dataset is a subset of Audio set [122]

which comprises an ontology of 632 audio event cate-

gories and a collection of 1,789,621 labeled 10-sec excerpts

from YouTube videos [122]. To collect such a massive

dataset, Google worked with human annotators who listened,

analyzed, and verified the sounds they heard within the

YouTube 10-second clips. To facilitate the faster accumula-

tion of examples for all classes, Google relied on available

YouTube metadata and content-based search to nominate

candidate video segments that were likely to contain the target

sound [121].

In the DCASE 2017 dataset, there is a total of 17 sound

events divided into two categories, namely, a warning sound

and vehicle sound. The number of instances for each event is

presented in Table 18. However, this dataset is only weakly

labeled.

D. DCASE 2018

The DCASE 2018 dataset is also a subset of Audio set [122]

and consists of 10 classes of sound events. Similarly, this

dataset is also weakly labeled. The total number of recordings

is 1578where the event occurrences are presented in Table 19.

In addition to this dataset, there is also another 14412 in the

domain but unlabeled recordings.

E. EVALUATION METRIC

As seen in the earlier section, the two most common evalua-

tion metrics used by different authors are the event-based and

segment-based F1-score that were described in [123].

Event-based metrics compare system output and corre-

sponding reference events by the event, whereas segment-

based metrics compare system output and reference in short

time segments [123].

Given the error tolerance, the intermediate statistics for

event-based metric are defined as follows [123]:

True Positive (TP): a predicted event with its onset and

offset tally with the actual annotation.

False Positive (FP): a predicted event with its onset and

offset do not tally the actual annotation.

False Negative (FN): a misdetection, the system did not

predict any event even though there is an occurrence of the

event.

The intermediate statistics for the segment-based metric

follow the same definition but instead of considering the

entire event, it considers the accuracy in segments. Based on

these definitions, precision, P, and recall, R, are calculated as

follow

P =
TP

TP+ FP
(8)

R =
TP

TP+ FN
(9)

TABLE 13. Proposed architecture utilizing weakly labeled data.
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TABLE 13. (Continued.) Proposed architecture utilizing weakly labeled data.
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TABLE 13. (Continued.) Proposed architecture utilizing weakly labeled data.
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TABLE 14. Limitations of proposed architecture utilizing weakly labeled data.

F1-score, F , is then calculated as follow

F =
2PR

P+ R
(10)

It should be noted that event-based and segment based

evaluation measures can place significant emphasis on

the onset and offset of the sound events [124]. In addi-

tion, the same system with different decision threshold

(i.e. audio detection threshold, frame activation threshold)

may receive different performance rankings under the same

metric. As such, Bilen et al. [124] proposed the redef-

inition of TPs and FPs which allows the calculation of

Polyphonic Sound Detection-Receiver Operating Character-

istic (PSD-ROC) curve and Polyphonic Sound Detection

Score (PSDS) which serves as a more robust alternative to

evaluate a SED system.

The idea of a PSD-ROC curve is similar to a conventional

ROC curve. The difference in a PSD-ROC curve lies in the

axes where the x-axis represents the effective FP Rate (eFPR)

while the y-axis represents the effective TP Rate (eTPR). The

basic definitions will be given in the following paragraphs.

It is recommended for readers to refer to [124] for more

details.

The eFPR is calculated as follows [124]

eFPR = RFP,c + aCT
1

|C| − 1

∑
ĉ ∈ C
ĉ 6= c

RCT ,c,ĉ (11)

where RFP,c is the FP rate, aCT is the weighting parameter, C

being a set of sound classes, and RCT ,c,ĉ represents the cross

trigger rate.

On the other hand, eTPR is calculated as follow [124]

eTPR = µTP(e) − aST ∗ σTP(e) (12)

where µTP(e) and σTP(e) are the mean and standard deviation

of TP ratios across classes respectively. aST is a weighting

parameter.

Finally, PSDS is defined as the normalized area under the

PSD-ROC curve, r(e), given as [124].

PSDS =
1

emax

∫ emax

0

r(e) de (13)

where emax is the maximum eFPR value of interest for the

SED system under evaluation.
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TABLE 15. Accuracy of proposed architecture utilizing weakly labeled data on different dataset.

TABLE 16. TUT-SED 2016 dataset.

TABLE 17. TUT-SED 2017 dataset.

F. DISCUSSION

In this section, several openly available datasets are pre-

sented. Although TUT-SED 2016 and TUT-SED 2017 are

TABLE 18. DCASE 2017 dataset.

strongly labeled, the sizes of these datasets are consid-

ered small and limited. On the other hand, the sizes of

DCASE 2017 and DCASE 2018 are much larger but are

weakly labeled. Therefore, these few datasets can be used

for different tasks. However, as recommended in [123],

the event-based metric should be used as the primary measure

to evaluate the performance and capabilities of any models

proposed. This is because event-basedmetrics better illustrate

the ability to correctly locate and label longer blocks of audio.
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TABLE 19. DCASE 2018 dataset.

On the other hand, PSD-ROC and PSDS are relatively

new evaluation metrics, thus it may not be sufficient or

comprehensive enough to report these two metrics without

event-based or segment based metrics.

V. POSSIBLE FUTURE RESEARCH DIRECTIONS

As seen in the previous sections, even though CRNN is the

new state of the art for SED, there is still a large room

for improvement. However, Artificial Intelligence (AI) and

Machine Learning (ML) are progressing at a faster rate as

compared to the earlier days, possibly due to the hardware

advancement or the induction of new and useful learning

algorithms. In the following subsections, several concepts

that may be integrated into SED are discussed. The purpose

of this section is to introduce the general idea of the concepts

and their respective limitations and how it may help in the

SED domain.

A. CAPSULE NEURAL NETWORK

As mentioned earlier, the introduction of CapsNet is to over-

come some limitations of CNN, in particular, the loss of

information due to max-pooling operator [81].

As mentioned earlier, inter-capsules are connected through

a process known as dynamic routing. This can be viewed

as a parallel attention mechanism that allows each capsule

at one level to attend to some active capsules at the level

below and to ignore others. Such a process is hypothesized

to allow the model to recognize multiple objects in the image

even if objects overlap [125]. The issue of overlapping can

be seen in SED where multiple events occur at the same

time [80]. Therefore, the use of CapsNet may very well

address the overlapping issues and as demonstrated in [80],

the use of CapsNet can allow the model to achieve the low-

est ER as compared to different architectures on different

datasets. However, research on capsules is still at its infancy

stage [83], [125].

For example, the iterative routing procedure is ineffi-

cient and if the number of capsules in any layer becomes

too large, the routing procedure becomes computationally

intractable [126], [127]. To preserve the spatial information,

the original Capsnet only uses shallow CNN. However, due

to the absence of deep semantic information, it can suffer

from limited robustness on the classification task of complex

datasets [128]. Finally, there are still open questions about

specific aspects of the network implementation mainly due

to the lack of thorough recommendations on how to design

CapsNet [83].

Therefore, the success shown in [80] may not be at its peak

at this moment due to the aforementioned issues. However,

with the rising interest in CapsNet, there are various mod-

ifications proposed in the literature to improve the original

CapsNet.

Zhao et al. [129] proposed an adaptive optimizer to

enhance the reliability of routing as well as capsule com-

pression and partial routing to improve the scalability of

capsule networks. Such modifications were found to yield

competitive results on Natural Language Processing tasks.

On the other hand, Duarte et al. [126] proposed a new vot-

ing procedure for convolutional capsule layers to reduce the

number of computations used in capsule routing thus allevi-

ating the intractable computational resource issue. Whereas

Rawlinson et al. [130], found that unsupervised sparsening of

latent capsule layer activity appears to generalize better than

supervised masking and has the potential to enable deeper

capsules networks.

It is believed that with the various modifications and

improvements proposed in the literature, CapsNet can reach

a new horizon which eventually becomes a new standard for

SED. However, the current state of CapsNet research can be

said to be on the same level of advancement as CNNs were

in 1998 [83]. Therefore, it will probably require a lot more

small insights before it can out-perform a highly developed

technology [125].

B. GENERATIVE ADVERSARIAL NETWORK

GAN was originally proposed by Goodfellow et al. [131].

The idea of GAN is to train two NNs to pit against each

other where one is known as the generative model while

the other is known as the discriminative model. The task

of a generative model is to produce a virtual sample. While

the task of a discriminative model is to learn and determine

whether a sample is from the model distribution or the data

distribution. The training of a GAN usually continues until

virtual samples generated cannot be distinguished from the

genuine data sample [132]. This idea can be used to increase

or rebalance the sample size of the training data and was

proven to be beneficial in [93].

A commonway of application is to applyGANon an image

like time-frequency representation, i.e. spectrograms [133] to

generate new samples. On the other hand, it is also possible

to generate new samples based on raw waveforms [133].

In an experiment [133], it was found that human judges

preferred samples generated using rawwaveforms as opposed

to samples made using time-frequency representations based

on the criteria of sound quality and speaker diversity. Thus,

it may be of interest to investigate the use of raw audio
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waveforms to generate new samples or even the use of both

audio waveforms and time-frequency representations to cre-

ate new samples.

However, one key question remains, how does one mea-

sure the quality of generated audio samples? Image can be

evaluated intuitively but audios are often difficult to evaluate

subjectively [134].

The most straightforward evaluation method is the use

of human judgment. Besides the additional time and effort

to annotate the samples, another downside of using human

annotators is that the metric varies depending on the setup of

the task [135].

Thus, Salimans et al. [135] proposed the use of an

inception score where the idea was to use a pre-trained

inception model to measure both the diversity and

semantic discriminability of generated samples. Although

Salimans et al. [135] found that the use of the inception

score correlates well with human judgment, it has two flaws

where a poor generative model can achieve a high inception

score [133]. Firstly, a generative model that produces a

single example of each class with uniform probability will be

assigned a high score [133]. Secondly, a generativemodel that

overfits the training data will achieve a high score simply by

producing samples on which the classifier was trained [133].

To mitigate the flaws of the inception score, Donahue

et al. [133] proposed to use the average Euclidean distance as

the secondarymeasure. Donahue et al. [133] suggested calcu-

lating the average Euclidean distance of a set of examples to

their nearest neighbors within the set (other than itself) where

a higher value indicates a higher diversity amongst samples.

In addition, Donahue et al. [133] also suggested calculating

the average Euclidean distance of examples to their nearest

neighbor in the real training data. Therefore, if the generative

model simply produces examples from the training set, this

measure will be 0 that allows easier elimination of poor

samples.

Thus, it is recommended that generated samples be eval-

uated through several different measures before integrating

into any model to prevent the inclusion of sub-par samples.

C. BLIND SOURCE SEPARATION

The combination of a SED system with a source separation

algorithmmay also be an interesting area to investigate. Blind

Source Separation (BSS) can be defined as a problem where

both the sources and the mixing methodology are unknown

and only mixture signals are available for the further separa-

tion process [136]. In different scenarios, it may be desirable

to recover all individual sources from the mixed-signal, or at

least to segregate a particular source [136].

Therefore, source separation can also be used as a pre-

processing step where it can either be used to separate the

audio signal into the foreground and background sound. Oth-

erwise, it can also be used to separate the audio mixture into

roughly homogenous spectral before performing SED. This

was demonstrated in [46], where the detection accuracy was

almost doubled.

On the other hand, detection accuracy may also be

enhanced by aggregating the output of a SED system with a

source separation model. In the DCASE 2020 Task 4 chal-

lenge, the baseline mean teacher model [137] was inte-

grated with a source separation algorithm [138]–[140] where

the idea was to average the outputs from a SED system

and a source separation model. Based on such an idea, the

event-based F1-score of the baseline system was increased

by a total of 0.8%.

However, the extent of how sound separation can improve

a SED system is still uncertain at this point. The number

of audio sources presented in an audio mixture is often not

known. Moreover, without the availability of any directional

cues, the extraction of each audio source can be exceptionally

difficult [138].

These problems may be mitigated or overcome by apply-

ing BSS algorithm as a method to provide an approximated

temporal labels for the weakly labeled data. Such an idea was

applied in the previous work of the authors [101] where NMF

was applied to provide approximated temporal labels to the

weakly labeled data rather than using it as a BSS algorithm.

Results have shown that it was able to achieve a much higher

event-based F1-score as compared to the baseline system.

Therefore, the idea of integrating a SED system with a

source separation algorithm may be an interesting area to

investigate that may bring unexpected improvement to a SED

system.

VI. CONCLUSION

In this paper, different Sound Event Detection (SED)method-

ologies proposed in the literature were reviewed and dis-

cussed in detail. Although the state of the art CRNN can raise

the bar to a new level, it should be noted that there is still a

large room for improvement. As seen in the previous sections,

most of the authors reported their model accuracy using

segment-based evaluation. But the proposed methodologies

performed poorly in terms of event-based evaluation even

though they had a notable performance in terms of segment-

based evaluations [106], [127]. Despite several strategies to

reduce the reliance on strongly labeled data, it is obvious

that the model using weakly labeled data is not as effective

as its counterpart using strongly labeled data. Thus, this

remains an open research area as to how weakly labeled data

can be utilized effectively. Finally, this paper also provided

some possible future trends which may be useful for future

developments and may lead the development of SED system

to a new horizon.
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