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Abstract: Polyphenolic acids are the widely occurring natural products in almost each herbal plant,
among which rosmarinic acid (RA, C18H16O8) is well-known, and is present in over 160 species
belonging to many families, especially the Lamiaceae. Aside from this herbal ingredient, dozens
of its natural derivatives have also been isolated and characterized from many natural plants. In
recent years, with the increasing focus on the natural products as alternative treatments, a large
number of pharmacological studies have been carried out to demonstrate the various biological
activities of RA such as anti-inflammation, anti-oxidation, anti-diabetes, anti-virus, anti-tumor, neuro-
protection, hepatoprotection, etc. In addition, investigations concerning its biosynthesis, extraction,
analysis, clinical applications, and pharmacokinetics have also been performed. Although many
achievements have been made in various research aspects, there still exist some problems or issues
to be answered, especially its toxicity and bioavailability. Thus, we hope that in the case of natural
products, the present review can not only provide a comprehensive understanding on RA covering
its miscellaneous research fields, but also highlight some of the present issues and future perspectives
worth investigating later, in order to help us utilize this polyphenolic acid more efficiently, widely,
and safely.

Keywords: rosmarinic acid; natural product; pharmacokinetics; pharmacology; phytochemistry

1. Introduction

In recent years, with in-depth studies of the plants, natural products have increasingly
attracted the attention of researchers in many fields. Rosmarinic acid (RA, C18H16O8,
Figure 1) is an interesting and well-known representative. Regarding its chemical structure,
this naturally-occurring phenol acid is considered as an ester, the esterification product
of a caffeic acid and a 3,4-dihydroxyphenyl lactic acid. To our knowledge, it was from
Rosmarinus officinalis L. that RA was first isolated and identified by two Italian scientists,
Scarpati and Oriente, and was named according to the name of this herbal plant [1].
From then on, RA has been successively found in more than 160 plants belonging to
Lamiaceae, Boraginaceae, Apiaceae, etc. It has also been investigated for its miscellaneous
pharmacological activities including anti-oxidative activity, anti-inflammatory activity,
anti-viral activity, anti-diabetic activity, anti-tumor activity, and neuroprotective activity
in many in vitro and in vivo studies. Due to its higher content and similar bioactivity to
phytomedicines, RA is employed as the quality indicative component for them including
Perilla frutescens (L.) Britt fruits and stems, Prunella vulgaris L. spikes, and Sarcandra glabra
(Thunb.) Nakai whole plants in the Chinese Pharmacopoeia, Melissa officinalis L. leaves
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and Eclipta prostrata (L.) L. aerial parts in the European Pharmacopoeia, and Rosmarinus
officinalis L. leaves in the United States Pharmacopoeia.
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1 Adenium obesum Apocynaceae Stem Barks [11] 
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4 Anchusa italica Retz. Boraginaceae - [14] 
5 Anchusa strigosa Banks et Sol Boraginaceae Roots [15] 
6 Anthoceros punctatus Anthocerotaceae - [16] 
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As a variety of studies have been performed and some achievements have been
made recently, some reviews of RA have been published [2–9]. However, these articles
have mainly focused on pharmacological studies such as its neuroprotective, anti-diabetic,
anticancer, and anti-inflammatory potential, which seemed to be a little simplex. Thus,
there is still a lack of a comprehensive review to provide a full-scale understanding of this
polyphenol acid. In the present study, we used some mainstream bibliographic databases
and search engines such as the Web of Science, PubMed, Chinese National Knowledge
Infrastructure (CNKI), and Google Scholar to collect a large number of the research literature
and to sum up the interesting progress. Except for “rosmarinic acid” as the keyword, some
other characteristic words were also employed including ”isolated” for phytochemistry,
“positive drug” and “model” for pharmacology, and “pharmacokinetic” and “LC-MS” for
pharmacokinetics. Aside from a summary, we also explored some oof the interesting and
attractive research issues, which are proposed here and are believed to be the potential
hotspots in the future.

2. Sources and Biosynthesis in the Plants

To our knowledge, RA has been found and isolated as a monomeric component
from a total of 162 plants, which are listed in Table 1. It is obvious that Lamiaceae is the
largest family, containing 104 plants among them. As far as the genus containing RA
is concerned, Salvia is the largest, with 20 plants including S. absconditiflora Greuter &
Burdet, S. deserta Schang, S. grandifolia, S. miltiorrhiza Bunge, S. plebeia and S. przewalskii
Maxim, etc. With respect to chemotaxonomy, the existence of RA could provide some
taxonomic basis at the level of the subfamily. According to the database of the European
and Mediterranean Plant Protection Organization, among the 104 plants of Lamiaceae,
93 species come from Nepetoideae and 10 species come from Lamioideae [10]. It is obvious
that RA is a characteristic natural product distinguishing Nepetoideae and other subfamilies
in Lamiaceae. However, to carry out a taxonomic study in Lamiaceae more accurately,
it is impossible to depend solely on RA. Characteristic terpenoids should play the same
important roles.

Table 1. Plants containing RA.

No. Plant Family Part Reference

1 Adenium obesum Apocynaceae Stem Barks [11]
2 Alkanna sfikasiana Tan, Vold and Strid Boraginaceae Roots [12]
3 Anchusa azurea Miller var. azurea Boraginaceae Roots [13]
4 Anchusa italica Retz. Boraginaceae - [14]
5 Anchusa strigosa Banks et Sol Boraginaceae Roots [15]
6 Anthoceros punctatus Anthocerotaceae - [16]
7 Apeiba tibourbou Aubl. Tiliaceae Leaves [17]
8 Arctopus monacanthus Apiaceae Roots [18]
9 Arnebia purpurea S. Erik & H. Sumbul Boraginaceae Roots [19]
10 Baccharis chilco Kunth Asteraceae Aerial parts [20]
11 Barbarea integrifolia Brassicaceae Aerial parts [21]
12 Bellis sylvestris Asteraceae Leaves [22]
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Table 1. Cont.

No. Plant Family Part Reference

13 Blechnum brasiliense Blechnaceae Leaves [23]
14 Canna edulis Ker Cannceae Rhizomes [24]
15 Celastrus hindsii Benth Celastraceae Leaves [25]
16 Centella asiatica Apiaceae Aerial parts [26]
17 Chloranthus fortune (A. Gray) Solms-Laub Chloranthaceae Whole plants [27]
18 Chloranthus multistachys Pei Chloranthaceae - [28]

19 Clerodendranthus spicatus (Thunb.) C.Y. Wu Lamiaceae
Whole plants [29]
Aerial parts [30]

20 Clinopodium chinense var. parviflorum Lamiaceae Aerial parts [31]
21 Clinopodium tomentosum (Kunth) Govaerts Lamiaceae Aerial parts [32]
22 Clinopodium urticifolium Lamiaceae Whole plants [33]
23 Coleus aromaticus Benth. Lamiaceae Leaves [34]
24 Coleus forskohlii (Willd) Briq. Lamiaceae Whole plants [35]
25 Coleus parvifolius Benth. Lamiaceae Aerial parts [36]
26 Colocasia esculenta (L.) Schott Araceae Leaves [37]
27 Cordia alliodora Boraginaceae Root barks [38]
28 Cordia bicolor Boraginaceae Leaves [39]
29 Cordia boissieri A. DC. Boraginaceae Leaves [40]
30 Cordia dentata Boraginaceae Leaves [39]
31 Cordia latifolia Roxb. Boraginaceae Fruits [41]
32 Cordia megalantha Boraginaceae Leaves [39]
33 Cordia morelosana Standley Boraginaceae Aerial parts [42]
34 Cordia sinensis Boraginaceae Whole plants [43]
35 Cordia verbenacea Boraginaceae Leaves [44]
36 Cynoglossum columnae Ten. Boraginaceae Roots [45]
37 Dracocephalum fruticulosum Steph. Ex Willd. Lamiaceae Aerial parts [46]
38 Dracocephalum heterophyllum Lamiaceae Whole plants [47]
39 Dracocephalum nutans L. Lamiaceae Aerial parts [46]
40 Dracocephalum palmatum Stephan Lamiaceae Aerial parts [48]
41 Dracocephalum tanguticum Maxim. Lamiaceae Whole plants [49]
42 Ehretia asperula Boraginaceae Leaves [50]
43 Ehretia obtusifolia Boraginaceae Whole plants [51]
44 Ehretia philippinensis Boraginaceae Barks [52]
45 Ehretia thyrsiflora Boraginaceae Leaves [53]
46 Elsholtiza bodinieri Vaniot Lamiaceae Whole plants [54]
47 Elsholtzia rugulosa Hemsl. Lamiaceae Aerial parts [55]
48 Elsholtzia splendens Nakai Lamiaceae Flowers and leaves [56]

49 Farfugium japonicum (L.) Kitam. Var.
giganteum (Siebold et Zucc.) Kitam. Asteraceae Flowers [57]

50 Foeniculum vulgare Mill. Apiaceae Aerial parts [58]
51 Forsythia koreana Nakai Oleaceae Fruits [59]
52 Gastrocotyle hispida Boraginaceae Aerial parts [60]
53 Glechoma longituba Lamiaceae Whole plants [61]
54 Hamelia patens Jacq. Rubiaceae Aerial parts [62]
55 Hedera helix L. Araliaceae - [63]
56 Helicteres angustifolia Linn. Sterculiaceae Roots [64]
57 Helicteres hirsuta Lour Sterculiaceae Stems [65]
58 Helicteres isora L. Sterculiaceae Fruits [66]
59 Hypenia salzmannii (Benth.) Harley Lamiaceae Leaves [67]
60 Hyptis atrorubens Poit. Lamiaceae Leaves and stems [68]
61 Hyptis capitata Jacq. Lamiaceae Aerial parts [69]
62 Hyptis pectinata (L.) Poit Lamiaceae Leaves [70]
63 Hyptis suaveolens (L.) Poit Lamiaceae Aerial parts [71]
64 Hyptis verticillata Jacq. Lamiaceae Aerial parts [72]
65 Hyssopus cuspidatus Lamiaceae Whole plants [73]
66 Ipomoea turpethum (L.) R.Br. Convolvulaceae Whole plants [74]

67 Isodon eriocalyx (Dunn) Hara var. laxiflora C.
Y. Wu et H. W. Li Lamiaceae Leaves [75]

68 Isodon flexicaulis C. Y. Wu et H. W. Li Lamiaceae Aerial parts [76]

69 Isodon lophanthoides var. graciliflorus Lamiaceae
Aerial parts [77]

Leaves [78]
70 Isodon oresbius (W. W. Smith) Kudo Lamiaceae Aerial parts [79]
71 Isodon rubescens (Hemsl.) Hara Lamiaceae - [80]
72 Isodon rugosus (Wall. Ex Benth.) Codd Lamiaceae Aerial parts [81]
73 Isodon sculponeata (Vaniot) Hara. Lamiaceae Leaves [82]
74 Keiskea japonica Miq. Lamiaceae Aerial parts [83]
75 Lallemantia iberica (Bieb.) Fisch & C.A. Mey Lamiaceae Aerial parts [84]
76 Lavandula angustifolia Mill. Lamiaceae Aerial parts [85]
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Table 1. Cont.

No. Plant Family Part Reference

77 Lepechinia graveolens (Reg.) Epling. Lamiaceae - [86]
78 Lepechinia meyenii (Walp.) Epling Lamiaceae - [87]
79 Lepechinia speciosa (St. Hill) Epling Lamiaceae - [88]
80 Lycopus europaeus L. Lamiaceae Whole plants [89]
81 Lycopus lucidus Turcz. Lamiaceae Aerial parts [90]
82 Marrubium vulgare L. Lamiaceae Leaves [91]
83 Meehania urticifolia (Miq.) Makino Lamiaceae Whole plants [92]

84 Melissa officinalis L. Lamiaceae
Aerial parts [93]

Leaves [94]
85 Mentha dumetorum Lamiaceae Aerial parts [95]
86 Mentha haplocalyx Briq. Lamiaceae Aerial parts [96]

87 Mentha longifolia (L.) Hudson subsp.
longifolia Lamiaceae Aerial parts [97]

88 Mentha piperita L. Lamiaceae
Leaves [98]

Aerial parts [99]
89 Mentha spicata L. Lamiaceae Whole plants [100]
90 Mesona chinensis Benth. Lamiaceae Whole plants [101]
91 Micromeria myrtifolia Boiss. & Hohen Lamiaceae Aerial parts [102]
92 Microsorum fortunei (T. Moore) Ching Polypodiaceae Leaves and stems [103]
93 Momordica balsamina Cucurbitaceae Aerial parts [104]
94 Nepeta asterotricha Rech. F. Lamiaceae Aerial parts [105]
95 Nepeta cadmea Boiss. Lamiaceae Aerial parts [106]
96 Nepeta curviflora Boiss. Lamiaceae Aerial parts [107]
97 Ocimum campechianum Mill. Lamiaceae Leaves [108]
98 Ocimum sanctum Linn. Lamiaceae Leaves and stems [109]
99 Origanum dictamnus L. Lamiaceae Aerial parts [110]

100 Origanum glandulosum Desf Lamiaceae Aerial parts [111]
101 Origanum majorana L. Lamiaceae Aerial parts [112]
102 Origanum minutiflorum Lamiaceae Aerial parts [113]
103 Origanum rotundifolium Boiss. Lamiaceae Aerial parts [114]
104 Origanum vulgare L. ssp. Hirtum Lamiaceae Aerial parts [115]
105 Paris veriticillata Bieb. Liliaceae Roots [116]

106 Perilla frutescens (L.) Britton var. acuta Kudo Lamiaceae
Leaves [117]
Seeds [118]

107 Perilla frutescens var. acuta Lamiaceae Fruits [119]
108 Perovskia atriplicifolia Benth. Lamiaceae Roots [120]
109 Plectranthus forsteri ‘Marginatus’ Lamiaceae Aerial parts [121]
110 Plectranthus hadiensis var. tomentosus Lamiaceae Aerial parts [122]
111 Plectranthus madagascariensis (Pers.) Benth Lamiaceae Aerial parts [123]
112 Plectranthus scutellarioides (L.) R. Br. Lamiaceae Aerial parts [124]
113 Polygomun aviculane Polygonaceae Aerial parts [125]
114 Prunella vulgaris L. Lamiaceae Spikes [126]

115 Prunella vulgaris var. lilacina Lamiaceae
Spikes [127]

Aerial parts [128]
116 Quercus serrata Murray Fagaceae Leaves [129]

117 Rosmarinus officinalis L. Lamiaceae
Sprigs [130]
Leaves [131]

118 Salvia absconditiflora Greuter & Burdet Lamiaceae Aerial parts [132]
119 Salvia castanea Diels f. tomentosa Stib. Lamiaceae Rhizomes [133]
120 Salvia cavaleriei Levi. Lamiaceae Whole plants [134]

121 Salvia cerino-pruinosa Rech. F. var.
cerino-pruinosa Lamiaceae Aerial parts [135]

122 Salvia chinensis Benth. Lamiaceae
Aerial parts [136]

Whole plants [137]

123 Salvia deserta Schang Lamiaceae
Roots [138]

Flowers [139]
124 Salvia flava Forrest Lamiaceae Whole plants [140]
125 Salvia grandifolia W. W. Smith Lamiaceae Roots [141]
126 Salvia kiaometiensis Lévl. Lamiaceae Roots [142]
127 Salvia limbata C.A. Meyer Lamiaceae Aerial parts [143]

128 Salvia miltiorrhiza Bunge Lamiaceae
Leaves [144]
Roots [145]

129 Salvia officinalis Lamiaceae - [146]
130 Salvia palaestina Bentham Lamiaceae Aerial parts [147]

131 Salvia plebeia R. Br. Lamiaceae
Leaves [148]

Whole plants [149]
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Table 1. Cont.

No. Plant Family Part Reference

132 Salvia przewalskii Maxim Lamiaceae
Roots and
rhizomes [150]

Roots [151]
133 Salvia sonchifolia C.Y. Wu Lamiaceae Roots [152]
134 Salvia splendens Sellow ex Roem & Schult Lamiaceae Leaves [153]
135 Salvia trichoclada Bentham Lamiaceae Whole plants [154]
136 Salvia viridis L. cvar. Blue Jeans Lamiaceae Aerial parts [155]
137 Salvia yunaansis Lamiaceae Roots [156]
138 Sanicula europaea L. Apiaceae Aerial parts [157]
139 Sanicula lamelligera Hance Apiaceae Whole plants [158]
140 Sarcandra glabra (Thunb.) Nakai. Chloranthaceae Whole plants [159]
141 Satureja biflora Lamiaceae Aerial parts [160]
142 Schizonepeta tenuifolia Briquet Lamiaceae Aerial parts [161]
143 Sideritis albiflora Lamiaceae Aerial parts [162]
144 Sideritis leptoclada Lamiaceae Aerial parts [162]
145 Solanum betaceum Cav. Solanaceae Fruits [163]
146 Solenostemon monostachys Briq Lamiaceae Aerial parts [164]
147 Symphytum officinale L. Boraginaceae Roots [165]
148 Thunbergia laurifolia Lindl Acanthaceae Leaves [166]
149 Thymus alternans Klokov Lamiaceae Aerial parts [167]
150 Thymus atlanticus (Ball) Roussine Lamiaceae Leaves [168]

151 Thymus praecox subsp grossheimii (Ronniger)
Jalas Lamiaceae Aerial parts [169]

152 Thymus praecox subsp grossheimii (Ronniger)
Jalas var. grossheimii Lamiaceae Aerial parts [170]

153 Thymus quinquecostatus var. japonica Lamiaceae Aerial parts [171]
154 Thymus serpyllum Lamiaceae Whole plants [172]
155 Thymus sibthorpii Bentham Lamiaceae Aerial parts [173]
156 Thymus sipyleus subsp. Sipyleus var. sipyleus Lamiaceae Aerial parts [174]
157 Thymus vulgaris L. Lamiaceae Leaves [175]
158 Tournefortia sarmentosa Lam. Boraginaceae Stems [176]
159 Veronica sibirica L.Pennell Scrophulariaceae Rhizomes [177]
160 Ziziphora clinopodioides Lam. Lamiaceae Aerial parts [178]
161 Zostera marina Potamogetonaceae Leaves [179]
162 Zostera noltii Potamogetonaceae Leaves [180]

-: not mentioned.

Many of these 154 plants have been used as the sources of traditional Chinese medici-
nal materials for a long time such as Perilla frutescens (L.) Britt, Prunella vulgaris L., Salvia
miltiorrhiza Bunge, Sarcandra glabra (Thunb.) Nakai, Schizonepeta tenuifolia Briquet, etc.
Some others also serve as folk medicinal plants in many countries and regions such as
Cordia bicolor, Cordia dentate, Cordia megalantha, Hyptis atrorubens Poit., and Hyptis verticil-
lata Jacq. in Central America and the Caribbean; Micromeria myrtifolia Boiss. & Hohen,
Salvia palaestina Bentham and Sanicula europaea L. in Turkey; Baccharis chilco, Hyptis capitata
Jacq., and Lepechinia meyenii (Walp.) Epling in South America; Ipomoea turpethum (L.) R.Br.,
Thunbergia laurifolia Lindl, and Thymus serpyllum in South Asia, etc.

It has been shown that in the plants, two amino acids are separately involved in the RA
biosynthesis pathways (Figure 2). In the first pathway, L-phenylalanine is orderly transformed
to cinnamic acid, 4-coumaric acid, and 4-coumaroyl-CoA by phenylalanine ammonia-lyase,
cinnamate 4-hydroxylase, and 4-hydroxycinnamate-CoA ligase, respectively. In the second
pathway, L-tyrosine, the precursor, is first transformed to 4-hydroxyphenylpyruvic acid by
tyrosine aminotransferase, and then to 4-hydroxyphenyllactic acid by the hydroxyphenylpyru-
vate reductase. The products of the two biosynthesis ways, both 4-coumaroyl-CoA and
4-hydroxyphenyllactic acid, could be finally converted into RA by the rosmarinic acid syn-
thase and cytochrome P450 monooxygenase associated with the cytochrome P450 reduc-
tase [181–184]. Therefore, it can be easily concluded that rosmarinic acid synthase is a key
control point for both of the above two synthesis pathways. As a member of the BAHD
acyltransferase family, it was acidic stable and its molecular mass was tested between 36 kD
and 59 kD. It was also characterized with the random curl and α-helix, containing neither
signal peptides nor leading peptides in the secondary structure [185,186].
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Except for the medicinal parts of the herbal plants as natural RA isolation sources,
some non-medicinal parts also serve, where Salvia miltiorrhiza aerial parts are a good
example. When the roots and rhizomes are harvested, a mass of aerial parts will be
thrown and wasted. It was reported that the RA content could reach above 20 mg/g in the
aerial parts [187] and Shi et al. successfully isolated it from Salvia miltiorrhiza leaves [144].
Foeniculum Vulgare Mill. is an aromatic plant and is often extracted by distillation for
its volatile oil. However, the resultant residue is considered as a waste, in which many
antioxidant components exist. Parejo et al. reported the isolation of RA with seven other
phytochemicals in 2004 [58]. Regarding the beach waste, Zostera noltii and Zostera marina
have also been used as the sources of RA isolation [179,180]. In recent years, due to
the increasing price of herbal plants, it is of great interest to look for new sources for
the isolation of natural products such as RA. Non-medicinal parts and other biowaste,
considered as useless and burdensome in the past, have now attracted more and more
research. Therefore, the isolation of RA from these new sources would achieve the aims of
saving resources, protecting the environment, realizing the efficient use and recycling of
resources, and promoting the development of the industrial economy.

3. Extraction from Plants

As a naturally-occurring polyphenolic acid, RA has often been obtained from plants
by different extraction methods including vibration [188], maceration with continuous
stirring [189], heat reflux [189], and Soxhlet solvent extraction [190]. In these traditional
extraction methods, the solvent is often a key factor responsible for the RA yield. In
a study that extracted RA from Dracocephalum moldavica L. aerial parts, n-butanol was
investigated as the best solvent when the Soxhlet solvent extraction method was used.
Compared to the extraction efficiency of n-butanol (114.54 ± 24.70 mg/g), those of other
solvents were 78.43%, 8.96%, 20.84%, and 8.26% for methanol (89.83 ± 1.38 mg/g), ethyl
acetate (10.26± 1.29 mg/g), acetonitrile (23.87± 0.50 mg/g), and water (9.46± 0.07 mg/g),
respectively [190].

During the past decades, due to their simpler operation, lower time consumption,
and simultaneous preparation of more samples, some novel extraction methods have been
utilized for RA extraction such as ultrasound-assisted extraction [191], microwave-assisted
extraction [192], enzyme-assisted extraction [193], and pressurized-liquid extraction [194].
In a comparison study of the extraction methods used for the leaves of six plants, to
obtain the highest extraction efficiency of RA, the optimal extraction parameters of dif-
ferent methods were as follows: 120 min at 25 ◦C for maceration with stirring extraction
(MACs), 15 min at boiling point for heat reflux extraction (HRE), and 5 min at 50 ◦C
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and 80 ◦C for microwave-assisted extraction (MAE). A mixed solvent (CH3CH2OH–H2O–
HCl, 70:29:1, v/v/v) was also proven to be the best for each method. In light of the RA
yield, MACs was the most appropriate for Melissa officinalis L. (30.0 ± 0.2 mg/g), Mentha
piperita (16.2 ± 0.6 mg/g), Rosmarinus officinalis L. (9.2 ± 0.2 mg/g), and Salvia officinalis L.
(19.6 ± 0.3 mg/g) while HRE was the best for Thymus vulgaris L. (15.3 ± 1.2 mg/g) and
Origanum vulgare L. (40.1 ± 1.0 mg/g) [195]. In addition, characterized with lower melting
points, lower cost, lower vapor pressure, and reproducibility, ionic liquid has become an
efficient and environmentally-friendly extraction solvent alternative to the conventional
ones. In an ultrasound-assisted extraction study of RA from Rosmarinus officinalis leaves,
1-octyl-3-methylimidazolium bromide ([C8mim]Br) was selected as the solvent due to its
high extraction efficiency. After the optimization of the extraction factors with response
surface methodology, the optimal conditions included 2 h for the soaking time, 30 min for
the ultrasound time, 220 W for the ultrasound power, and 1:20 for the solid–liquid ratio,
under which the extraction efficiency of RA could reach to 98.91% [196]. In another study
of microwave-assisted extraction for RA from Rosmarinus officinalis leaves, [C8mim]Br was
also used as the solvent with 700 W for the irradiation power, 15 min for the irradiation
time, and 1:12 for the solid–liquid ratio. This method exhibited a considerable RA yield
(3.97 mg/g) [197].

4. Natural Derivatives in Plants

From a variety of natural plants, a large number of RA derivatives have been found
and isolated, which often simultaneously exist in the same plant with RA in most cases.
Supplementary Figure S1 demonstrates their chemical structures.

Among these derivatives, the alkyl rosmarinates are the simplest ones in terms of their
chemical structures. Due to the C8′-carboxyl group, RA can combine with some alcohol
compounds to obtain some esters in the plants such as rosmarinic acid methyl ester, ethyl
ester, n-propyl ester, and n-butyl ester. These alkyl rosmarinates have demonstrated anti-
oxidative, anti-inflammatory, anti-allergic, anti-bacterial, anti-cardiovascular disease, and
other activities [198–203]. In addition, 3-O-methyl rosmarinic acid, 3-O-caffeoyl rosmarinic
acid, 3′-O-methyl rosmarinic acid, 4′-O-methyl rosmarinic acid (shimobashiric acid B), and
3, 3′-O-diethyl rosmarinic acid are the natural products of RA substituted by a methyl, ethyl,
and even caffeoyl groups on the C3-, C3′-, and C4′-hydroxyl groups. As a polyphenolic acid,
RA also has some bioactive glycoside derivatives including rosmarinic acid-3-O-glucoside
(salviaflaside), rosmarinic acid-3′-O-glucoside, rosmarinic acid-4-O-glucoside, rosmarinic
acid-4′-O-glucoside, and rosmarinic acid-4,4′-O-diglucoside. For example, rosmarinic acid-
4-O-glucoside has been studied with a pleiotropic effect against viral pneumonia: (1) To
reduce the levels of inflammatory cytokine and oxidative stress in the serum and lungs of
A/FM/1/47 H1N1 virus infected mice; and (2) to lower the tissue fluid into the alveoli and
inhibit virus proliferation, improve ventilation, and reduce mortality [204].

Aside from these OH-substituted derivatives, there are a series of depside derivatives
known as salvianolic acids. Salvianolic acid B is the most famous and representative
one, which is listed as one of the chemical markers for the quality evaluation of Salvia
miltiorrhiza Bge. roots and rhizomes in both the Chinese Pharmacopoeia and United States
Pharmacopoeia. This phytochemical has revealed multiple bioactivities including (1) a
protective effect on the brain from ischemia/reperfusion-induced injury by inhibiting
reactive oxygen species (ROS)-mediated inflammation [205]; (2) a protective effect on the
liver from acute and chronic injury by the inhibition of Smad2C/L phosphorylation [206];
(3) an anti-inflammatory effect on atherosclerosis through the mitogen-activated protein
kinase/nuclear factor-κB (MAPKs/NF-κB) signaling pathways in vivo and in vitro [207];
(4) an anti-tumor effect against human breast cancer adenocarcinoma cells [208]; and
(5) anti-diabetic effects [209].

All of these mentioned components are considered as the derivatives of biosynthesis
from RA. Compared to conventional chemical extraction, inducers can be used to induce
plant cells to synthesize valuable secondary metabolites, which is more economical and
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feasible and less likely to cause pollution. Therefore, it is urgent to explore the possible
derivatization patterns and to elucidate the regulatory mechanism of secondary metabolism
in these plants.

5. Analytical Technique

Characterized with the higher separation efficiency, less time and sample consumption,
and a wider application range, high performance liquid chromatography (HPLC) or ultra
performance liquid chromatography (UPLC) has gradually become the mainstream analyt-
ical technique in the research field of herbal plants, a complicated matrix with a variety of
natural products. Due to its great conjugation system, RA has a strong absorbance in the
ultraviolet region. Therefore, for the majority of research papers on the quantitative analysis
of RA, an ultraviolet detector or diode-array detector was the mostly used [194,210–212].
Moreover, HPLC coupled with evaporative light scattering detector (ELSD) has also been
applied for the quantitation of RA in Rosmarinus officinalis L. leaves [213]. However, in
the biological samples, there are many endogenous interfering substances present and
the content of the analyte is much lower. As a result, in the pharmacokinetic studies of
RA concerning plasma, serum, or different tissues, a mass spectrometry detector with
multiple-reaction monitoring mode has often been utilized [214–217].

Capillary electrophoresis (CE) is another widely-used and effective separation tech-
nique for the analysis of natural products. Many subtypes are inclusive in CE. However,
capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC)
are the main two used for RA quantitation. In the CZE experiments, a sodium borate solu-
tion was used as the run buffer to determine the RA in Salvia officinalis tea samples [218], in
14 Salvia species [219], in Origanum Vulgare L. [220], and in Melissa officinalis products [221].
In the MEKC studies, to obtain a satisfactory separation of RA from the other components,
some additives were supplemented to the buffer such as β-cyclodextrin [222,223] and
sodium dodecylsulfate [224].

However, it is well-known that some physicochemical pretreatments are necessary
when the aforementioned LC or CE method is employed. In recent years, nondestructive
determination methods have caused wide concern, of which some techniques related to
infrared are the ones most representative. There have been some successful examples of
the quantitative analysis of RA in Rosmarinus officinalis L. leaves [225], Thymus vulgaris
L. or Thymus zygis L. leaves and flowers [226], and several Lamiaceae plants [227]. In
these studies, the conventional HPLC method has also been used to compare the results
along with partial least squares regression analysis, a chemometric model for calibration
and validation.

6. Pharmacology

RA, a natural product from many plants, has been studied to possess a wide range of
similar pharmacological activities with its origins such as anti-inflammation, anti-oxidation,
anti-diabetes, anti-tumor, anti-virus, neuroprotection, hepatoprotection, and others in many
in vivo and in vitro studies.

6.1. Anti-Inflammation

Inflammatory diseases are the pathological processes of defense responses evoked by
some stimulation such as infection and trauma and are characterized by the imbalance in
inflammatory mediators and cells. Inflammation also has a significant impact on human
health and is involved in many other diseases. In recent decades, phytochemicals have
attracted more and more attention regarding treatment.

In osteoarthritis, the degradation of cartilage extracellular matrix (ECM) might be
induced by the depletion of collagen 2 and aggrecan, two of its main components. In
addition, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)
and ADAMTS-5 are involved in this degradation. In an in vitro study of IL-1β-induced
chondrocytes, the gene expression of collagen 2 and aggrecan were inhibited and ECM
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degradation occurred. RA incubation of 100 µM was observed to abolish this inhibition
and demonstrate the inhibitory effect on IL-6 production, the gene and protein expression
of ADAMTS-4 and ADAMTS-5, and even on the ECM degradation. The outcome led to
the conclusion that RA may be a promising drug for osteoarthritis treatment [228]. In
another in vivo study of the mice arthritis model induced by collagen, intraperitoneal
injection of RA (50 mg/kg) markedly improved the arthritis index and reduced the affected
paw number. Compared to those in the control group, severe leukocyte infiltration, the
architecture of synovial tissues, and bone integrity loss were also more normal in the RA
treatment group, manifesting a lower histopathologic index [229].

It is common knowledge that T cells are involved in atopic dermatitis (AD) pathogen-
esis. In the acute stage, AD skin lesions are infiltrated by CD4+ T cells, which could secrete
IL-4, IL-5, and IL-13. In the chronic stage, Th1 cells secrete interferon-γ (IFN-γ). Some
researchers have reported that RA (5 µM) could significantly inhibit the production of IL-4
and IFN-γ through activated CD4+ T cells. In addition, the same researchers also found
after 2,4-dinitrofluorobenzene challenge, the symptoms of AD-like skin lesions were found
on the NC/Nga mice such as pruritus, eruptions, and ear swelling. In this pathological
state, the serum IgE level was tested as abnormally high and the characteristic dermal
infiltration of inflammatory cells including CD4+ T, CD8+ T, and mast cells into ear skin
lesions was observed to be markedly increased. Intraperitoneal administration of RA
(50 mg/kg) also exhibited remarkable ameliorating and inhibiting effects on the above
pathological phenomenon [230].

Inflammatory bowel disease is a chronic and recurrent intestinal inflammation in
which ulcerative colitis is a typical one. In mice with colitis induced by dextran sulfate
sodium, the oral administration of RA (60 mg/kg) significantly reduced the severity of
colitis as shown by the disease activity index scores, colonic damage, and colon length. Fur-
thermore, RA treatment also led to the decrease in some of the proinflammatory cytokines
including IL-6, IL-1β, and IL-22, and the protein levels of cyclooxygenase-2 (COX-2) and
inducible nitric oxide synthase (iNOS) in the colons. These protective effects were proven
to be related to the inhibition of NF-κB and signal transducer and activator of transcription
3 (STAT3) activation [231]. In another study, RA was believed to protect from ulcerative
colitis by regulating macrophage polarization depending on heme oxygenase-1 [232].

Aside from the above-mentioned studies, RA has been studied in vitro or in vivo to
exert protective or ameliorative properties on lipopolysaccharide (LPS)-induced masti-
tis [233], sodium taurocholate-stimulated acute pancreatitis [234], LPS-induced acute lung
injury [235], LPS-induced neuroinflammation [236], plaque-induced gingivitis [237], con-
canavalin A-induced hepatic injury [238], ovalbumin-stimulated allergic rhinitis [239], etc.

6.2. Anti-Oxidation

Combined challenge of ovalbumin and hydrogen peroxide would lead to a super-
imposed asthma with oxidative lung damage symptoms in mice. In the BALF and lung
tissues of the model group, inflammatory cells including eosinophils, neutrophils, and
lymphocytes and cytokines IL-4, IL-5, IL-13, and IFN-γ were all found to be elevated;
ROS, nicotinamide adenine dinucleotide phosphate oxidase-2 (NOX-2), and NOX-4 levels
were remarkably upregulated; and the total superoxide dismutase (SOD), total glutathione
peroxidase (GSH-Px), catalase (CAT), and Cu/Zn SOD activities were observably downreg-
ulated compared to those in the blank group. RA treatment (10, 20, 40 mg/kg) exhibited
alleviative and protective effects on the above symptoms and the highest dose was even
more effective than dexamethasone [240]. In terms of antioxidant property in Caenorhabditis
elegans, RA (60, 120, 180 µM) could significantly enhance the catalase activity, GSH-Px
activity, and reduce glutathione (GSH) content and the glutathione/oxidized glutathione
ratio as well as diminish the malondialdehyde (MDA) content in a dose-dependent manner,
which resulted in promoting the lifespan and motoricity and reducing the fat store with-
out threatening fertility. Furthermore, after RA treatment, the survival rate under acute
oxidative and thermal stress was increased while intestinal lipofuscin accumulation was
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suppressed. This strong antioxidant activity was deemed to be related to regulating the
insulin/insulin-like growth factor signaling (IIS) and MAPK pathways and activating the
downstream antioxidant enzyme gene expression in Caenorhabditis elegans [241]. Chromium
is known to cause severe toxicity in the liver and kidney tissue. In a potassium dichromate
challenged rat model, RA (25 mg/kg) oral gavage of 60 days was observed to show s
protective effect and reduce the oxidative damage in the two tissues. Oxidative stress
evaluation demonstrated a remarkable increase in the GSH level and a notable decrease
in the MDA level in the RA treatment group compared to those in the model group. Im-
munohistochemical studies and Rt-PCR analysis have confirmed that the result might be
obtained via the Nrf2 pathway [242]. By activating the same nuclear factor erythroid-2
related factor 2 (Nrf2) pathway and increasing the downstream antioxidant enzyme activity,
the oral administration of RA at 2 mg/kg could protect mouse intestines against high-fat
diet-stimulated oxidative stress by preventing intestinal epithelial cell apoptosis [243].

6.3. Anti-Diabetes

Some in vitro studies have exhibited the anti-diabetic activity of RA. The polyphe-
nolic acid was shown to have an inhibitory effect on α-glucosidase with an IC50 value of
33.0 µM, much lower than that of acarbose (131.2 µM), a marketed α-glucosidase inhibitory
drug [123]. RA was also demonstrated to have a regulatory effect on glucose homeostasis. It
was found that RA (5.0 µM) could activate adenosine 5′-monophosphate-activated protein
kinase (AMPK) phosphorylation and increase the glucose uptake in L6 rat muscle cells,
comparable to the maximum insulin (0.1 µM) and metformin (2.0 mM) [244].

In a dose-dependent manner, RA treatment (120–200 mg/kg, 7 days) showed a re-
markable hypoglycemic effect in streptozotocin-induced type-1-like diabetic rats and sig-
nificantly improved the glucose uptake and insulin sensitivity in high-fat diet-induced
type-2-like diabetic rats. This beneficial effect against diabetes was believed to be related to
both the decrease in phosphoenolpyruvate carboxykinase expression in the liver and the in-
crease in glucose transporter-4 expression in the skeletal muscle [245]. In another study, the
RA treatment (100 mg/kg, 30 days) of diabetic rats was found to have the effect of restoring
the blood glucose level and regulating the levels of adiponectin and leptin. In addition,
the diabetic pathology in hepatic parenchymal structures was also attenuated by the intro-
duction of RA through histological and ultrastructural observations [246]. Na+/glucose
cotransporter-1 (SGLT1) is considered as an important glucose transporter from intestinal
lumen to blood. RA administration (14 days) could reverse the streptozotocin-induced
SGLT1 protein increase and stabilize the fasting blood glucose level in diabetic rats [247].

6.4. Anti-Tumor

Breast cancer stem-like cells play an important role in the initiation, maintenance, and
metastasis of breast cancer. RA coincubation (270 µM, 810 µM) could decrease their viability,
inhibit their migration, and induce their apoptosis. RT-PCR analysis and immunoblot
analysis showed that the two concentrations of RA treatment notably lowered the levels of
mRNA and the protein of phosphorylation of smoothened and Glioma-associated oncogene
homolog 1. Furthermore, RA treatment also led to the downregulation of B-cell lymphoma-
2 (Bcl-2) expression and the upregulation of Bax expression. Therefore, the anti-tumor
effect of RA might be related to the Bcl-2 and hedgehog signaling pathways [248]. Cao et al.
employed intragastric administration of RA (150, 300 mg/kg) for 10 days to treat H22
tumor-bearing mice. It was unveiled that RA could effectively inhibit the tumor growth by
regulating the secretion of inflammation and angiogenesis cytokines (IL-1β, IL-6, tumor
necrosis factor-α (TNF-α), vascular endothelial growth factor, and transforming growth
factor-β) and suppressing NF-κB p65 expression in the microenvironment [249].

Regarding the 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats,
many pathological phenomena have been easily found and tested in the liver and colon such
as a large number of colonic tumors, decreased lipid peroxidation, antioxidant status and
glutathione-S-transferase activity, md elevated cytochrome P450 content and p-nitrophenol
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hydroxylase activity, which were significantly reversed by RA (5 mg/kg). The pronounced
effects indicated the possibility of RA as a chemopreventive agent against colon cancer [250].
In another DMH-stimulated rat model with colon carcinogenesis, oral supplementation
with RA (5 mg/kg) also demonstrated a pronounced anti-tumor activity, probably due
to the reduction in aberrant crypt foci formation and multiplicity, the suppression of
fecal and colonic mucosal bacterial enzyme activities, and the improvement in circulatory
thiobarbituric acid reactive substances (TBARS), enzymic, and non-enzymic antioxidant
status [251].

In addition, RA also showed an anti-tumor effect on 7,12-dimethylbenz(a)anthracene-
induced skin carcinogenesis [252], a cytotoxic effect on ARH-77 human (multiple myeloma)
cells [253], prostate cancer cells [254], and human Hep-G2 liver carcinoma cells [255], and
an inhibitory effect on the metastatic properties of colorectal cancer cells [256].

6.5. Anti-Virus

Enterovirus 71 (EV71) is a nonenveloped single-stranded RNA virus and easily causes
hand, foot, and mouth disease, and even neurological complications or fatality in children.
However, there is no specific and pointed treatment. Recently, phytomedicines and phyto-
chemicals have been the alternative to chemical drugs for anti-virus. The Melissa officinalis
extract was investigated to possess anti-EV71 activity and RA was identified and proven to
be the responsible bioactive component therein, in which the alleviations of p38 kinase and
epidermal growth factor receptor substrate 15 hyperphosphorylation were deduced to be
involved [257]. In EV71-infected human rhabdomyosarcoma cells, RA was tested with a
low IC50 value (4.33 µM) and a high therapeutic index (340) when the infection multiplicity
was 1. Further investigation showed that RA could protect the cells from the cytopathic
effects and apoptosis at the early stage of viral infection. In EV71-challenged neonatal mice,
RA (20 mg/kg) also manifested the similar protective effect at the early stage, prolonging
survival time and reducing mortality [258]. The results of another study were consistent
with these findings and revealed the possible mechanism associated with virus-P-selectin
glycoprotein ligand-1 and virus-heparan sulfate interactions [259]. The above findings
indicated RA as a potential EV71 inhibitor in the initial stages of viral infection.

Japanese encephalitis virus (JEV) is a crucial cause of acute encephalopathy in children,
targeting the central nervous system. With intraperitoneal treatment of RA (25 mg/kg), the
significant reduction in the mortality of JEV-infected mice was observed, along with the
dramatic decreases in viral loads and proinflammatory cytokines including IL-12, TNF-α,
IFN-γ, monocyte chemotactic protein 1 (MCP-1), and IL-6. These findings suggest the
potential of RA as a candidate for JEV treatment [260]. In primary human hepatocytes
infected by the hepatitis B virus (HBV), RA exhibited an inhibitory effect on HBV replication
and a potentiation effect on the anti-HBV activity of lamivudine [261]. Furthermore, like
oseltamivir, RA (IC50 = 0.40 µM) showed high neuraminidase (NA)-inhibiting activity from
an in vitro study of the anti-influenza virus, which was confirmed by the high binding
affinity, hot-spot residues, and II-bond formations of the RA/NA complex from the in silico
study [262].

6.6. Neuroprotection

6-Hydroxydopamine (6-OHDA) is known to be a neurotoxin used to create similar
symptoms as Parkinson’s disease (PD). In MES23.5 dopaminergic cells co-incubated with
6-OHDA, RA (0.1 mM) could protect them from induced neurotoxicity through preventing
the viability reduction and upregulating the ROS generation and mitochondria membrane
potential [263]. In an in vivo study on the 6-OHDA-induced rat model, RA (20 mg/kg)
through intragastric administration showed a neuroreparative function on the degeneration
of the nigrostriatal dopaminergic system by decreasing the nigral iron level and regulating
the Bcl-2/Bax gene expression [264]. Therefore, regarding PD, RA might be viewed as a
therapeutic treatment for related patients in the future.
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Aβ42 was used to induce an Alzheimer’s disease-like rat model, resulting in a signifi-
cant increase in the levels of TBARS and 4-hydroxy-2-nonenal and decrease in the SOD,
CAT, GSH-Px, and glutathione levels with the reduction in acetylcholine content and acetyl-
choline esterase activity. In addition, mismatch negativity response and θ power/coherence
of auditory event related potentials were also decreased. Fortunately, RA (50 mg/kg, oral
administration) demonstrated an attenuating effect on these observed pathological changes
and the increased Aβ staining and astrocyte activation [265]. In a kainate-induced rat model,
seizure intensity, apoptosis, oxidative stress markers (MDA, GSH, CAT), Timm index, and
the number of Nissl-stained neurons were employed as the indicators to evaluate the
beneficial effect of RA. The results supported the neuroprotective effect of RA (10 mg/kg)
against temporal lobe epilepsy [266]. Intraperitoneal administration of RA (20 mg/kg) was
observed to improve the working, spatial, and recognition memory deficits, and to reduce
the infarct size and neurological deficits of the rats lesioned by permanent middle cerebral
artery occlusion, which were speculated to be related to suppressing neuronal loss and
increasing synaptophysin expression and brain-derived neurotrophic factor. Therefore, the
results indicate the memory protective effect of RA [267]. As for spinal cord injury, RA was
investigated to show a neuroprotective effect on this severe central nervous system injury
through inhibiting the TLR4/NF-κB pathway and activating the Nrf2/HO-1 pathway, as
witnessed by in vitro (55.6 µM) and in vivo (40 mg/kg, intraperitoneal administration)
studies [268].

6.7. Hepatoprotection

Li et al. conducted in vitro and in vivo studies to observe the hepatoprotective ef-
fect of RA against experimental liver fibrosis. In hepatic stellate cells, RA co-incubation
(32 µM) was found to inhibit cell proliferation and the expressions of transforming growth
factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and α-smooth muscle actin. In
CCl4-intoxicated rats with liver fibrosis, RA (10 mg/kg) could reduce the fibrosis grade,
ameliorate biochemical indicators (albumin, globulin, alanine aminotransferase, glutamate-
pyruvate transaminase) and histopathological morphology, and downregulate the liver
TGF-β1 and CTGF expression [269]. The findings were then witnessed and confirmed by
Domitrovic and his colleagues in a mice model with CCl4-intoxicated liver fibrosis. In addi-
tion to improvements in the histological and serum markers concerning liver damage and
the inhibition of TGF-β1 and CTGF expression, the amelioration of oxidative/nitrosative
stress and inflammatory response (NF-κB, TNF-α, COX-2) and the upregulation of Nrf2
and heme oxygenase-1 expression were also found after RA treatment (50 mg/kg) [270].

In the bile duct ligation-induced extrahepatic cholestasis rat model, RA (20 mg/kg)
exhibited a hepatoprotective effect by alleviating TGF-β1 production and hepatic collagen
deposition and ameliorating hepatic inflammation. Resolution of oxidative burden and
downregulation of high mobility group box-1/toll-like receptor-4 (HMGB1/TLR4), NF-κB,
AP-1, and TGF-β1/Smad signaling were investigated to be involved in RA hepatopro-
tection [271]. Furthermore, Lou et al. used the partial hepatectomy model to explore the
effects of RA on liver regeneration. The evaluation content included the index of the liver
to body weight and the expression of proliferating cell nuclear antigen and liver transami-
nases. As a result, RA (200 mg/kg) could promote liver regeneration and restore lesioned
liver function via the mammalian target of rapamycin/S6 protein kinase (mTOR/S6K)
pathway [272]. Furthermore, in a mouse model of non-alcohol steatohepatitis induced by a
methionine-choline-deficient diet, RA (10 mg/kg) exhibited a remarkable hepatoprotective
potential by decreasing the plasma triglyceride, cholesterol, liver steatosis, and oxidative
stress, which was deemed to be related to the activation of the silent information regulator-
two 1 (SIRT1)/Nrf2, SIRT1/NF-κB, and SIRT1/peroxisome proliferator-activated receptor
α (PPARα) pathways [273].
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6.8. Other Activities

To study RA protection against premature ovarian failure (POF), the intraperitoneal
injection of cyclophosphamide was used to induce the mouse model. With the help
of fluorescence immunohistochemistry, histological analysis, Western blot analysis and
polymerase chain reaction, RA (40 mg/kg) was investigated to effectively attenuate the
abnormal situations of the model including injured ovarian, increased ovarian index, and
serum sex hormone levels, the overexpression of the nucleotide-binding oligomerization
domain receptor protein-3 (NLRP3) inflammasome, and apoptosis-related proteins in the
ovarian. The findings indicate that RA might have a bright prospect in POF treatment in
the future [274].

In the treatment of thoracic tumor, radiotherapy is an essential therapy method,
which will unfortunately cause pulmonary fibrosis later. Zhang et al. observed that
RA (120 mg/kg) could regulate NF-κB signaling and the RhoA/Rock pathway through
microRNA-19b-3p, which were responsible for the alleviation of inflammatory reactions, the
reduction in collagen hyperplasia, and the suppression of pulmonary fibrosis development
in the X-ray irradiation-induced rat model. Thus, RA is believed to be a potential alternative
to attenuating radiotherapy-caused pulmonary fibrosis [275].

Ji et al. established aa high-fat diet and VD3-induced rat model to observe the effect
of RA on vascular calcification. The results showed that RA (200 mg/kg) could notably
decrease the levels of alkaline phosphatase, phosphorus, calcium, MDA, increase the SOD
level, and reduce the calcified nodule content and ROS production. Additionally, the levels
of Nrf2, heme oxygenase-1, NAD(P)H quinone dehydrogenase, and osteoprotegerin were
upregulated, while the levels of kelch-like ECH-associated protein 1, NF-κB, β-catenin, and
osteogenic transcription factor were significantly downregulated. RA coincubation (80 µM)
also showed similar effects in the β-glyerophosphate-induced rat aortic smooth muscle cell
model. These functions in improvement were proven to be related to the regulation of the
Nrf2 pathway [276].

7. Clinical Studies

Although RA has been proven to have potential for drug application in many re-
search articles, only two papers have been published on the clinical study of RA as a
pure compound.

It was reported that there were 14 female and seven male patients with mild AD
inclusive in a clinical study, in which a RA (0.3%) emulsion was applied to the elbow
flexures twice a day. Compared to before the treatment, erythema and transepidermal
water loss of the antecubital fossa were reduced notably after treatment of four or eight
weeks. Self-reports from the patients showed that dryness, pruritus, and general AD
symptoms were ameliorated after RA smearing [277]. Another clinical study enrolled
29 patients with seasonal allergic rhinoconjunctivitis. The results indicated that RA oral
treatment (80, 200 mg/kg) led to significant decreases in the incidence rates for itchy nose,
watery eyes, itchy eyes, and total symptoms compared to the placebo. Meanwhile, the
number of neutrophils and eosinophils in the nasal lavage fluid were also significantly
decreased [278].

8. Applications in Food Science

It is well-known that the polyphenol natural products are characterized by their
multiple phenolic hydroxyl groups and accompanying anti-oxidation. As an organic acid
with four phenolic hydroxyl groups, RA has exhibited its anti-oxidant capacity not only in
pharmacological studies, but also in food scientific studies.

In sea buckthorn fruit wine, concerning DPPH radical scavenging and hydroxide
radical scavenging, RA showed a greater antioxidant capacity (IC50 = 8.02 mg/mL, 99.31%
clearance rate) than sulfur dioxide (IC50 = 10.31 mg/mL, 98.67% clearance rate), the con-
ventional antioxidant. Therefore, RA was speculated to be an ideal antioxidant alternative
to sulfur dioxide in wine fermentation due to its safety and stability [279]. Li et al. prepared
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different rabbit skin gelatin–RA composite films to study their preservation effects on the
pork quality during cold storage. As a result, a composite film with RA of 0.8 g/L could
effectively inhibit the increase in the total number of colonies, total volatile basic nitrogen
content and pH, extend the shelf life of pork from 4 to 8 days, remain at a high hardness,
and reasonable chromatic aberration. Therefore, the rabbit skin gelatin–RA composite film
was proposed to be a potential packaging material for the preservation and freshness of
pork [280]. A total of 1% chitosan containing 30 mg/L RA was studied with total viable
counts (less than 6.0 log CFU/g), potassium value (less than 60%), free fatty acids (2.5%),
trimethylamine (2 mg/100 g), and H2S-producing bacteria (less than 6.0 log CFU/g) and to
maintain better sensory characteristics and flavor quality of the half-smooth tongue sole
fillets stored at 4 ◦C for 18 days. On the other hand, the results for the control group were
7.5 log CFU/g, nearly 90%, 5.0%, and 3.7 mg/100 g more than 6.0 log CFU/g, respectively.
Therefore, these significant differences indicate the complex potential to improve the quality
of this fish during refrigerated storage [281].

Therefore, as a polyphenolic acid with antioxidant and antibacterial activity, RA
could retard the growth of microorganisms and inhibit the increase in the pH value and
perioxidation in food, contributing to its capacity of keeping food quality, slowing decay,
and extending the shelf life.

9. Pharmacokinetics

It is well-known that the pharmacokinetic profiles are fundamental for a potential
candidate drug. Regarding RA with the pronounced bioactivities, it is exactly that. A study
of this polyphenolic acid was carried out on the metabolites and the pharmacokinetic path-
ways in normal rats. As a result, a total of 36 metabolites including RA itself were identified
in plasma, urine, and feces after oral administration. The prototype and glucuronic acid
conjugation were found to be predominant in plasma. Furthermore, Phase I metabolism
(primarily hydrolysis) and Phase II metabolism (sulfation, methylation, glucuronic acid
conjugation, and glucose conjugation) were mainly involved in the feces and urine, re-
spectively [282]. In another study associated with human liver microsomes, after 1 h of
incubation, RA was transformed to yield 14 metabolites and several metabolic pathways
were speculated including oxidation, glucuronic acid conjugation, hydroxylation, and GSH
conjugation [283].

To reveal the oral absolute bioavailability of RA, the normal rats were adminis-
tered with the phytochemical through intragastrical (12.5, 25, 50 mg/kg) and intravenous
(0.625 mg/kg) methods. The calculated parameters showed rapid absorption and middle-
speed elimination for the pharmacokinetic characters of RA after oral administration in
rats. In addition, poor absolute bioavailability was demonstrated with 1.69%, 1.28%, and
0.91% for 12.5 mg/kg, 25 mg/kg, and 50 mg/kg, respectively [284]. In a hepatoprotective
and metabolic study, RA treatment could significantly suppress the pathological changes
in the bile rate, thiobarbituric acid (TBA), total bilirubin (TBIL), alanine aminotransferase
(ALT), and aspartate aminotransferase (AST) of rats with cholestatic liver injury. On the
other hand, cholestasis resulted in PK behavior variations and the drug accumulation of
RA, which were witnessed by the decrease of 14.5% for CL and the increase of 17.0% for
AUC(0→∞), 40.3% for Tmax, and 13.1% for Cmax, compared to those of normal rats [285]. As
above-mentioned, RA often serves as an indicator for the quality evaluation of some folk
herbal medicines or compound medicines. In the same way, RA also acts as a representative
component in the pharmacokinetic studies of these medicines such as the Salvia miltiorrhiza
polyphenolic acid solution [286], Prunella vulgaris extract [287], ZibuPiyin Recipe [288], and
Xuebijing Injection [289]. Table 2 presents the specific parameters of these pharmacokinetic
studies including the AUC(0→∞), Tmax, Cmax, and CL.
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Table 2. The pharmacokinetic characteristics of RA in different test drugs and animals.

No. Drug Animal Administration Mode Pharmacokinetic Characters Reference

1 RA Normal rats

Intragastrical administration,
12.5 mg/kg

AUC(0→∞) = 866.51 ng/mL·h,
Tmax = 0.139 h,

Cmax = 215.21 ng/mL,
CL = 15.00 L/(h·kg)

[284]

Intragastrical administration,
25 mg/kg

AUC(0→∞) = 1308.62 ng/mL·h,
Tmax = 0.181 h,

Cmax = 361.57 ng/mL,
CL = 19.20 L/(h·kg)

Intragastrical administration,
50 mg/kg

AUC(0→∞) = 1866.58 ng/mL·h,
Tmax = 0.306 h,

Cmax = 790.96 ng/mL,
CL = 27.60 L/(h·kg)

Intravenous administration,
0.625 mg/kg

AUC(0→∞) = 2556.14 ng/mL·h,
Cmax = 6166.89 ng/mL,

CL = 6.00 L/(h·kg)

2 RA

Cholestatic liver
injured rats

Intragastrical administration,
100 mg/kg

AUC(0→∞) = 23.984 mg/mL·h,
Tmax = 0.988 h,

Cmax = 2.876 mg/mL,
CL = 4.169 L/(h·kg)

[285]

Normal rats

AUC(0→∞) = 20.500 mg/mL·h,
Tmax = 0.704 h,

Cmax = 2.542 mg/mL,
CL = 4.876 L/(h·kg)

3

Salvia
miltiorrhiza

polyphenolic
acid solution

Normal rats

Pulmonary administration,
10 mg/kg

AUC(0→∞) = 200.01 ng/mL·h,
Tmax = 0.07 h,

Cmax = 370.78 ng/mL,
CL = 0.05 L/(h·kg)

[286]

Intravenous administration,
10 mg/kg

AUC(0→∞) = 209.34 ng/mL·h,
Tmax = 0.03 h,

Cmax = 1344.10 ng/mL,
CL = 0.05 L/(h·kg)

4
Prunella
vulgaris
extract

Normal rats
Intragastrical administration,

10 mL/kg (1.25 mg/mL
for RA)

AUC(0→∞) = 737.7 ng/mL·h,
Tmax = 1.5 h,

Cmax = 120.8 ng/mL,
CL = 21.0 L/(h·kg)

[287]

5 ZibuPiyin
Recipe Normal rats Intragastrical administration,

3.951 g/kg (0.03 mg/g for RA)

AUC(0→∞) = 3099.4 µg/mL·h,
Tmax = 1.7 h,

Cmax = 222.7 ng/mL
[288]

6 Xuebijing
Injection Normal rats

Intravenous administration,
6 mL/kg (12.56 µg/mL

for RA)

AUC(0→∞) = 4.10 ng/mL·h,
Tmax = 0.08 h,

Cmax = 173.19 ng/mL
[289]

As a potential candidate drug with various effects, RA should first be based on its toxi-
city. However, there have only been several in vitro studies mentioning its non-cytotoxicity
at the test concentrations in normal cells such as chondrocytes (100 µM) [228], HepG2 cells
(100 µM) [290], N2A mouse neuroblastoma cells (250 µM) [291], and A172 human astrocytes
(83 µM) [292], with the median lethal concentration in zebrafish embryos of 296.0 µM [236].
In the two clinical studies, it was reported that there were no self-feeling adverse events
and no significant abnormalities in routine blood tests [277,278]. Therefore, a systematic
toxicity investigation of RA should be conducted urgently in the future including acute
toxicity, chronic toxicity, LD50, therapeutic window, etc. Additionally, according to the
administration approach of the phytochemical, different types of test animals should be
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involved, where each important tissue and organ should be observed, and each blood index
should be tested. After all, safety is the first key character of a drug, especially prior to its
clinical application.

10. Future Perspectives

As above-mentioned, RA is believed to be a polyphenolic acid that widely occurs
in natural plants, especially from Lamiaceae. During over the past sixty years, RA has
exhibited miscellaneous pharmacological activities, pharmacokinetic characteristics, and a
variety of natural sources and derivatives.

Generally speaking, the structural modification of a natural product often aims to
improve its bioavailability, to extend (improve) its bioactivities, or to diminish its toxicity.
Up to now, many RA derivatives have been found in nature and some have revealed
impressive biological effects, which could be considered as the products of RA structural
modification. However, it was unordered and unscheduled in the way in which they were
isolated and found biological. With the further understanding of the RA action mechanism,
structural modification with specific purposes should be well-designed and carried out
in the future including (1) investigating the RA chemical structure by crystallology and
quantum mechanics; (2) simulating the combination of the RA and target from the protein
database; (3) summarizing the action rules of the RA derivatives with different substituent
groups; (4) systematically proving their bioactivities with high throughput screening.

In terms of pharmacokinetic study of RA, there have been many articles reported
including the intragastrical administration of this pure component or some compound
formulations, its application on the test animals or humans, and its application on normal
or model animals. However, there still exist some issues worth discussing. (1) The rats,
especially the normal ones, were used in the majority of pharmacokinetic studies. Now that
RA has showed a variety of pharmacological activities, the corresponding model animals
should be the first choices. Additionally, rats should not be the only test species. (2) A
single dose of RA administration was involved in a large number of pharmacokinetic
studies. Since RA will act as a candidate drug and the treatment will last for several days,
it seems that a multi-dose of RA administration is necessary and the relevant pharma-
cokinetic studies are essential. (3) The number of clinical pharmacokinetic studies of RA
is small [293,294]. At present, RA is not approved as a legal drug and is prohibited for
medical application on humans. However, in traditional medicines, some herbal extracts or
compound formulations enriched with RA are allowable. Their pharmacokinetic studies
could provide some basis for further drawing of the RA pharmacokinetic profile. (4) Intra-
gastrical administration was the main focus while other administration methods have been
rarely investigated and would be interesting to pursue in the future.

Until now, RA has been well-acknowledged as a promising natural product with a
variety of pharmacological activities such as anti-oxidation, anti-inflammation, anti-tumor,
anti-virus, anti-diabetes, etc. Furthermore, some possible signaling pathways have been
explored. However, to be developed as a true candidate drug, RA should be investigated
with a focus on some straightforward and effective bioactivity for some diseases including
the drug-delivery method, therapeutic dose, and possible action mechanism. On the other
hand, based on the clear action targets and the results of the in vitro studies, computer-
assisted molecular docking is becoming a virtual screening method for both drugs and their
bioactivities. RA has been found to inhibit peptide deformylase, N-myristoyltransferase,
human hyaluronidase enzyme, and influenza neuraminidase through in silico evalua-
tions [262,295]. Therefore, in the future, this technology would help us discover more
activities and widen the medical application range of RA.

RA is a polyphenolic acid characterized by poor lipid solubility, poor membrane
permeability, and low oral absolute bioavailability, which has limited its application. Some
liposomes and solid lipid nanoparticles have been revealed to be promising [296,297].
Therefore, aside from structural modification, some systematic studies concerning pharma-
ceutical formulations or special excipients should be carried out to avoid RA degradation
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in the gastrointestinal tract and to transport RA to the target tissues. With these achieve-
ments, the shortcomings of limited absorption, fast distribution, fast metabolism, and fast
elimination might be overcome in the future. Meanwhile, the present research of RA in
food science are around anti-oxidation and maintaining the food color and luster. However,
it is important to explore the possibility of RA being used as an alternative to the traditional
additives. Therefore, the study hotspots should be to compare this phytochemical and the
main additives not only affecting the food quality, but also in its safe use.

11. Conclusions

Taken together, all the research findings indicate that RA is a candidate drug or a
lead component naturally occurring in plants. In the present paper, we summarized the
achievements from phytochemistry, pharmacology, pharmacokinetics, and other study
aspects of RA and proposed some interesting issues worth investigating in the future. We
hope this paper can help researchers either in fundamental research or in applied research to
understand RA more comprehensively, utilize RA more efficiently, and eventually develop
RA as a novel drug.
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