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Abstract
Silica nanoparticles (SNPs) have shown great applicability potential in a number of fields like chemical, biomedical, bio-
technology, agriculture, environmental remediation and even wastewater purification. With remarkably instinctive proper-
ties like mesoporous structure, high surface area, tunable pore size/diameter, biocompatibility, modifiability and polymeric 
hybridizability, the SNPs are growing in their applicable potential even further. These particles are shown to be non-toxic in 
nature, hence safe to be used in biomedical research. Moreover, the molecular mobilizability onto the internal and external 
surface of the particles makes them excellent carriers for biotic and non-biotic compounds. In this respect, the present study 
comprehensively reviews the most important and recent applications of SNPs in a number of fields along with synthetic 
approaches. Moreover, despite versatile contributions, the applicable potential of SNPs is still a tip of the iceberg waiting to 
be exploited more, hence, the last section of the review presents the future prospects containing only few of the many gaps/
research extensions regarding SNPs that need to be addressed in future work.
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1 Introduction

Nanotechnology deals with development of unique 
nanoscale particles. These particles have found revolution-
izing applications in various industries like electronics, 

medicine and consumer products. In recent years, one such 
example of nanotechnology are silica nanoparticles that 
have found a widespread use in industrial, food and agri-
cultural fields. Generally, the nanoparticles are synthesized 
via physical and chemical methods. The physical methods 
include ultrasonic shot peeling, severe plastic deformation, 
gas condensation, high energy ball milling and pyrolysis [1]. 
These techniques usually are employed to synthesize metal-
lic nanoparticles. On the other hand, Chemical methods 
include electrochemical procedures, reduction of chemicals/
phytochemicals, chemical coprecipitation, chemical vapor 
condensation and pulse electrodeposition [2–4]. In compari-
son, the chemical methods involve the use of various toxic 
and hazardous chemicals that are harmful for the biosphere 
and environment. This paved the way for the development of 
green nanotechnology that uses environment friendly meth-
ods and bio-agents to synthesize nanoparticles. In general, 
the green nanotechnology uses microorganism (fungi, bac-
teria, algae) and nature derived substrates (plant extracts) to 
synthesize nanoparticles. Besides being eco-friendly, these 
methods are comparably inexpensive too [4, 5]. Silica nano-
particles are usually synthesized from alcohol solution of 
silicon alkoxides. Ammonia is used as a catalyst and the 
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nanoparticles can range from 50 nm – 1μm, depending upon 
the versatile applications.

Metal oxides play a significant role in many areas of 
nano-material science. In any material, the particle size 
determines its structure, size and other properties that are 
affected by the size of oxide particles. For example, the 
chemical reactivity and conductivity of metal oxide are sig-
nificantly influenced by the size of an oxide particle [6, 7]. 
Similarly, the surface properties are equally important due 
to their huge role during solid-liquid or solid-gas reactions 
[8]. Numerous metal nano-particles have been synthesized 
such as  ZrO2,  CeO2, TiO,  TiO2 etc. which can be exploited 
for applications such as sensors, coatings, agrochemicals, 
anti-corrosives, fuel cells and catalysts [9, 10]. For example, 
the NPs of iron oxide carry a strong magnetic characteristics, 
hence are used for the relevant applications such as sepa-
ration of cells parts, drug delivery, nano-coating and food 
packaging [11–13].

Silica is one of the most abundant materials on earth 
[14]. Silica nanoparticles (SNPs) have gravitated much of 
the recognition by the research world due to their diverse 
physiochemical properties [15]. Based on the pore size, 
these particles can be divided into mesoporous and nanopo-
rous [16]. The size of the particles can be varied by altering 
the surfactants’ composition during synthesis [17]. Silica 
nanoparticles (SNPs) are usually inexpensive to produce on 
a large scale, are hydrophobic with good surface area, pore 
volume and biocompatibility, hence they have found wide 
variety of applications. For example, due to their non-toxic 
nature and fantastic adsorption capacity, the silica nanopar-
ticles (SNPs) have been employed for drug delivery [18, 
19]. Recently, the researchers have successfully utilized the 
silica nanoparticles (SNPs) as loading multifarious for cargo 
ranging from drugs to macromolecules, such as RNA, DNA 
and proteins [20, 21]. So far, the silica nanoparticles have 
found applications in numerous directions of research such 
as biomedicine, biotechnology, drug delivery, food, personal 
care products, pesticides, adsorption, semiconductors and 
ceramics [22]. More recently, the silica nanoparticles have 
been employed to adsorb the oil spillage during oil explora-
tion, transportation and storage [23, 24]. The research is still 
in the progress to explore and exploit more possible applica-
tions of silica nanoparticles [22].

2  Synthesis of Silica Nanoparticles (SNPs)

2.1  Synthesis of SNPs (Chemical Methods)

In the past, silica nanoparticles were synthesized using clas-
sical methods like sol-gel method, stober’s method, flame 
synthesis and micro emulsion [17]. These chemical routes 
are easy to follow and modify in terms of parameters but 

can be costly and difficult to manage. For example, during 
reverse micro emulsion, the surfactant molecules are dis-
solved in the presence of water which produce the spheri-
cal miscelles. Although this procedure is effective, yet it is 
costly and difficult to segregate the surfactants in the final 
products [16]. Nevertheless, the nanoparticles synthesized 
via this route were successfully used as coating to attach 
functional groups [25, 26].

Another popular route to synthesize silica nanoparticles 
is chemical vapour condensation (CVC) [27]. During this 
method, silicon tetrachloride is reacted with oxygen and 
hydrogen. The physical aspects of the nanoparticles such as 
morphology and particle size can be controlled to the desired 
characteristics in this process. This method is widely used 
to produce nanoparticles in powder form [28–30]. Similarly, 
the sol-gel method is a well known technique used widely to 
synthesize silica and silica gel [31, 32]. It mainly involves 
the hydrolysis and condensation of metal alkoxides like 
TEOS or inorganic salts like sodium silicate in the pres-
ence of a catalyst. The catalyst being acid or base [33, 34]. 
When forming silica particles using metal alkoxides (TEOS, 
TMOS), the hydrolysis gives silanol groups that polymerize 
to form into silica structure. Another method called stober’s 
method was first experimented and proposed by Werner Sto-
ber. Using ammonia as a catalyst, he successfully synthe-
sized spherical silica particles from silica alkoxide alcohol 
solution. The particle size ranged from 5 to 2000 nm [35]. 
This method has evolved with time and made much more 
efficient and versatile in terms of controlling parameters and 
acquiring the desired properties [36, 37]. Usually, the acid 
catalyzed systems produce gel structure whereas the Stober’s 
method gives monodispersed silica particles [35]. Despite 
its own advantages, the chemical synthesis methods are 
expensive, involve toxic substances and require high energy, 
which necessitated the birth of biogenic routes [22]. Figure 1 
schematically represents the most commonly used chemical 
techniques to synthesize silica nanoparticles.

2.2  Synthesis of SNPs (Biogenic Methods)

The biogenic methods of synthesizing silica nanoparticles 
involve using microorganisms and nature derived substrates, 
such as bacteria, fungi, algae and plant extracts/metabolites 
[38]. For example, the biosilicification process produces sil-
ica via silicatein and silaffin, which has led to the designing 
of synthetic cationic polypeptides. Moreover, the usability 
of fungus for silica synthesis had been investigated by many 
researchers. For example, the fungus Fusarium oxysporum 
was reacted with aqueous anionic complex at room tempera-
ture to form silica [39, 40]. Recently, various biomass have 
been investigated to synthesize silica nanoparticles, like rice 
husk, sugarcane bagasse and rice straw [14, 41–44]. Silica 
present in the biomass is initially isolated and formed into 
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sodium silicate solution [45]. Number of parameters affect-
ing the process that need to be optimized like temperature, 
pH and time [46]. Such a step is an appreciative way to deal 
with the biomass and convert it into valuable products like 
silica nanoparticles that are gaining wider applications with 
time [47].

In order to synthesize silica, the biomass is usually 
washed with distilled water to remove adhering impuri-
ties followed by treatment with leaching agents [48]. The 
leaching treatment is aimed to remove the metallic impu-
rities contained by the biomass [49]. Table 1 shows the 
most common metallic impurities in rice husk and their 
removal via different acids. If not removed, these metal-
lic impurities can downgrade the physiochemical proper-
ties of the obtained silica particles [41]. In this regard, 3 
acids are most commonly used; hydrochloric acid, nitirc 
acid and sulfuric acid. Among them, the HCl is known to 

Figure 1  Common Chemical 
Synthesis Technique for Silica 
Nanoparticles. Reused with 
permission from Ref. [26]

Table 1  Metallic Impurities in Rice Husk and its leaching with differ-
ent acids. Open Access ref. [55]

Constituent (%) Non-Leached Rice 
Husk Ash at 600 °C

Acid Leached Rice Husk 
Ash at 600 °C

Hydro-
chloric 
Acid

Sulfuric Acid

SiO2 95.77 99.58 99.28
Al2O3 0.05 0.02 0.61
FeO3 0.05 0.03 0.02
CaO 0.67 0.04 0.05
MgO 0.40 0.02 0.04
Cl 0.02 0.02 0.01
SO3 0.62 0.02 0.05
K2O2 0.62 0.02 0.02
Na2O 1.26 – –
P2O5 0.46 0.11 0.13
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remove 99% of the metallic impurities [49–53]. Base and 
salt treatment is also investigated to remove the impuri-
ties, such as sodium hydroxide and  KMnO4 [54].

This leaching pre-treatment is followed by calcina-
tion of biomass. Synthesis of high purity silica highly 
depends on temperature, time and air/oxygen flow [56]. 
For example, in case of rice husk, the silica obtained at 
600 degrees was amorphous in nature while at 700 was 
both amorphous and crystalline. Higher temperature than 
700 is shown to produce more crystalline structure of rice 
husk than amorphous [57–60].

Various researchers used green synthesis route to 
obtain amorphous silica nanoparticles (SNPs) using rice 
husk and sugar beet bagasse [22]. The researchers who 
used rice husk successfully obtained semi-crystalline 
porous silica nanoparticles and silica nanoparticles [29, 
61]. On the other hand, the researchers who used sugar 
beet bagasse also synthesized silica nanoparticles [62]. 
Figure  2 shows the classified chemical and biogenic 
routes to synthesize silica nanoparticles (SNPs).

3  Applications of Silica Nanoparticles (SNPs)

3.1  Chemical Applications of SNPs

Silica nanoparticles possess specific sites that make it easy 
for the particles to get functionalized. For example, the 
mesoporous silica nanoparticles (MSNs) contains 3 major 
sites for functionalization; pore walls, pore entrance and 
interior/exterior of the particle surface [16, 63]. Figure 3 
shows the mechanism for MSNs formation.

Silica particles are usually functionalized via co-conden-
sation or post synthesis grafting using organo-substituted 
trialkoxysilanes [17]. When functionalized on to the pore 
walls, the mesopores do not get blocked by non-siliceous 
group. During functionalization, the alkoxysilanes bind to 
the surface silanol groups. Similarly, numerous metals have 
also been functionalized onto the mesoporous silica parti-
cles [65, 66]. For example, Aluminum is one of the most 
common metals functionalized on to MSNs for catalytic 
related applications. In this regard, Zhai et al. [67] synthe-
sized aluminosilicate nanoparticles. Moreover, the particles 
were mesoporous and the particle size was limited to 20 
nm by using polyethylene glycol. Similarly, Zhao et al. [68] 
synthesized magnetic MSNs using hermatite nanocore. The 

Chemical 
Synthesis

Reverse 
Micro 

Emusion

Stober's 
Method

Sol-Gel 
Method

Flame 
Synthesis

Biogenic 
Synthesis

Without Acid 
Treatment

Acid 
Treatment

Figure 2  Chemical and Biogenic routes to synthesize silica Nanoparticles

Figure 3  Formation Mechanism of Mesoporous Silica Nanoparticles (MSNs). Open Access Ref. [64]
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particles were used for drug delivery of ibuprofen. Huang 
et al. [69] used magnetic nanoparticles and quantum dots 
(CdSe/ZnS) to synthesize MSNs. Likewise, Soyoko et al. 
[70] synthesized MSNs embedded with titanium oxide and 
iron oxide. The prepared material was used for catalytic 
reactions. More recently, Sandra et al. [71] synthesized sil-
ica based silver nanoparticles to be used as antimycobacte-
rial agents against Mycobacterium tuberculosis. Similarly, 
Diogo et al. [72] used silver, copper and copper hydroxy 
salt to synthesize the respective metallic silica nanoparticles, 
which showed promising and satisfactory results when used 
as antibacterial agents. One of the advantageous features of 
using MSNs is that their inner as well as outer surfaces can 
be immobilized. In this regard, Lin et al. [73] successfully 
immobilized fluorophore on to the inner surface, whereas 
grew dense polymer onto the external surface of MSNs to 
be used for the detection of neurotransmitters. Likewise, the 
more recent development was seen by Maurel et al. [74] who 
developed hybrid silylated fluorophore in the core of SNPs 
and observed its efficiency against tumor-cell-targeting.

It has been shown to use various MSNs, each immobi-
lized with a different compound in a single-pot catalytic 
reaction. Usually, such types of MSNs are chemically 
incompatible and yet shown to participate without neutral-
izing each other. This was demonstrated by Huang et al. [69] 
where 4-nitrobenzaldehyder methyl acetal converted to alde-
hyde in the presence of 2 different immobilized species of 
MSNs. A remarkable yield of 97.7% was achieved. Simi-
larly, Zaharudin et al. [75] demonstrated the controlled load 
and release of molecules on to the pore entrance of MSNs. 
This could contribute to drug delivery applications [76].

3.2  Biomedical & Biotechnological Applications 
of SNPs

When it comes to biomedical, the research of drug deliv-
ery carries one of the highlighting importance. Using the 
engineered nanostructures for the targeted delivery of drugs 
in the patient’s body is a significantly recognized feature 
under research [76]. These nanostructures can act as carri-
ers and target specific organs or tissues in the body. In this 
regard, MSNs have achieved significant recognition due to 
their high surface area and porous structure. These particles 
have been used as nano-carriers for drug delivery in recent 
times [18, 20, 22, 77–79]. Aughenbaugh et al. [80] investi-
gated the release of drug using silica xerogels as potential 
carriers. Moreover, the hydrophobicity of the drugs reduces 
their absorption during oral dose. This is improved by using 
SNPs as carriers for such hydrophobic drugs and shown 
promising results during oral doses [76]. It is possible due 
to the negative charge on the surface of silica nanoparti-
cles whereas positive on hydrophobic drug [28]. Further-
more, what makes these nanoparticles so efficient are their 

loading capacity, biocompatibility and possible functional 
group modification [16]. In this, Zhang et al. [81] used SNPs 
as carriers for hydrophobic drug telmisartan. The SNPs 
were shown to improve the drug permeability. Likewise, 
Samira et al. [82] and Nihal et al. [83] showed a significant 
improvement in the functionality of curcumin (anticancer 
drug) conjugated with SNPs than used alone. Lein et al. [84] 
synthesized nanoparticles for controlled drug delivery by 
successfully grafting magnetic and thermosensitive nano-
particles onto the surface of  Fe3O4 coated silica particles. 
Similarly, the surface modified SNPs have been investigated 
for boron neutron capture [85–89].

Having large surface area and small size, the SNPs have 
found their applicability as biomarkers to detect specific bio-
molecules. In this regard, the use of Quantum Dots (QD) is 
widespread, however their insolubility in water and toxic-
ity caused by heavy metals have provoked researchers to 
find alternate substitutes. In this respect, various researchers 
covalently linked the compounds; such as fluorophores and 
tetramethyl rhodamine isothiocyanate dye, onto the silica 
nanoparticles. The fabricated materials showed water solu-
ble and less/non-toxic conduct with promising results, hence 
a worthy substitute for QDs [90–94]. Moreover, the adhesive 
properties of SNPs have been utilized by researchers to syn-
thesize glue like material, which is shown to be less invasive 
compared to commonly used tissue adhesives like cyanoacr-
ylate [22]. Another remarkable property owned by SNPs is 
their differentiation of cells, which has been proposed as a 
treatment for obesity [19, 95]. Flourine Nucleus (19F) is 
very sensitive and present in traces of biological tissues, 
hence used to detect even the very minute details. However, 
it is challenging to develop fluorine containing probes for 
19F MRI. This scenario has led to the grafting of fluorine 
onto the silica nanoparticles, which can be immobilized on 
the inner as well as outer layers of the particles [96–99].

Medical diagnosis and research have to interact and 
detect very minute targets like proteins, enzymes, DNA and 
mRNA, hence requiring a very precise and specific detec-
tion. In this respect, the nanotechnological developments are 
showing to be a supportive and contributive factor in medical 
research [100]. Nanotechnology has already shown promis-
ing results in drug delivery, diagnosis, medical imaging, 
cancer treatment, diabetes treatment and more [19, 61, 79]. 
SNPs have shown to be good adsorption and immobiliza-
tion medium for quinizarin diester [101]. Maleki et al. [102] 
developed drug delivery system using silica nanoparticles. 
They further showed the possible feasibility of using the 
same system for entrapment of colorless water soluble drugs 
like isoniazid. Following the same track, various researchers 
in recent time have explored more water soluble drugs that 
were successfully immobilized onto the silica nanoparticles 
and used for drug delivery [103–107]. For example, Marzieh 
et al. [108] developed silica based nanocarriers for the target 
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delivery of doxorubicin drug to breast cancer cells (4T1). 
The nanocarriers were fabricated with quantum dots (QD) 
coating on MSNs followed by amine functionalization of 
silica surface. The drug was into the silica pores and bihet-
erofunctional PEG was covalently bound to the surface of 
core-shell QDMSNs. The results were remarkably positive. 
Figure 4 shows the SEM images of the synthesized nano-
particles (QDMSNs, PEG QDMSNs, HRTEM and QDNPs).

Antibiotics have been a major development of medical 
research. However, these drugs come with its own chal-
lenges like depletion of their antibacterial effect with time 
and release of toxic substances into the environment [71]. 
On the contrary, various compounds have been synthesized 
as antibacterial agents that kill bacteria on contact, such as 
quaternary ammonium compound [109]. These antibacte-
rial agents have been cross-linked to SNPs to develop par-
ticles with chemically inert nature, tranparent and good 
mechanical properties [6, 110]. One of the issues related to 
development of latest antibiotics are their toxicity and low 
bacterial penetration. To address these issues, SNPs were 
used to encapsulate peptide, which showed to be effective 
in treating lung infection (Pseudomonas aeruginosa). The 
SNPs being biodegradable, ensured target release of peptide 
[111]. Similarly, the treatment of diseases like tuberculosis 
carries its own set of challenges that need to be overcome. 
For example, well known drug called clofazimine is shown 

to have poor solubility and adsorption in GI tract. To over-
come this, the researchers [112] encapsulated this drug onto 
SNPs, thus resulting in its enhanced stability and solubility. 
In short, the SNPs can be a reliable support for immobiliza-
tion and encapsulation of antibacterial agents/drugs in future 
with minimum/less toxicity [18, 53].

3.3  Agricultural Applications of SNPs

Higher agricultural production ensures the survival of the 
growing population in the world. Unfortunately, microbial 
and insect attacks can significantly reduce this yield. This 
issue is being resolved by using pesticides but their health 
and environmental concerns have led to even worse prob-
lems. The excessive use of pesticides is not only harmful 
for the soil, but also for human health and environment. 
The direct shower of pesticides onto the crops might get 
absorbed and become intact within the crops, consequently, 
ending up in the human bodies and giving way to numer-
ous diseases like respiratory symptoms, neurological prob-
lems, hormonal, reproductive abnormalities and even cancer 
[113]. This has provoked the researchers to synthesize an 
eco-friendly insecticides. Furthermore, another approach to 
do away with the pesticides is to strengthen the immunity 
of seeds against microbial attacks. This has been possible 
using MSNs [114, 115]. For example, Torney et al. [116] 

Figure 4  SEM Images of QD Mesoporous silica NPs (A, B), PEGylated QD Mesoporous silica NPs (C, D), HRTEM micrograph (E, F) and QD 
NPs (G, H). Open Access ref. [108]
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loaded MSNs with genetic material and chemical inducer to 
be successfully carried into intact leaves and plant cells of 
maize seeds. This pre-treatment of maize seeds with silica 
nanoparticles resulted in maize seeds with antifungal resist-
ance, higher nutritional content and greater germination rate. 
Similarly, Siddiqui et al. [117] were able to achieve 22.16% 
higher germination rate by using 8g/L of SNPs. This shows 
the impact of silica nanoparticle concentration on germina-
tion rate. Furthermore, the recent research by Maryam et al. 
[118] is worth mentioning, where the researchers developed 
poly-ethyleneimine (PEI) coated MSNs. The particles were 
loaded with genetic material (pDNA) for an efficient and 
successful transfection to plant cells via ultrasonic treatment. 
Figure 5 reflects the genetic adsorption capacity ofPEI-
MSNs for DNA.

It is very difficult for the plants to survive during the 
stress conditions like salinity. This can be resolved by encod-
ing the protein with the gene so that the plant develops more 
tolerance to the critical conditions of salinity. However, this 

process is very expensive and time consuming. Hence, the 
researchers have shown the possibility of loading the gene 
onto the silica nanoparticles. For example, Kalteh et al. 
[119] used SNPs on Basil plants with an increased saline 
conditions. The SNPs were shown to reduce sodium toxicity 
and enhance the stress tolerance in the plants. On the other 
hand, another research [120] treated algae (Scenedesmus 
obliquus) with SNPs. Contrary to the preceding research, 
it was shown that the higher SNPs concentration reduced 
the chlorophyl content of the algae. However, good stress 
tolerance was observed at moderate concentration of SNPs. 
It can be stated that overall, the use of silica nanoparticles 
strengthens the plants, enhances their stress tolerance and is 
non-hazardous Table 2.

3.4  Applications of SNPs in Food Preservation

Besides various other applications, the SNPs have also found 
their contributive role in food preservation. In this, numer-
ous fruits can be coated with silica based hybrid films to 
increase their shelf life, hence preserve for longer periods 
of time [127]. This novel approach has been explored and 
confirmed by various researchers. For example, Mirzadeh 
et al. [128] synthesized a hybrid composite film of chi-
tosan and nano-silica. The film was coated onto the Longan 
fruits and was shown to significantly enhance their shelf 
life. Also, the film reduced the weight loss and browning 
effect of the fruits. Similarly, another research [129] used the 
same hybrid film coating on Loquat and observed enhanced 
shelf life, improved enzymatic activity and increased levels 
of reducing sugars. Figure 6 shows the synthetic scheme 
of Chitosan/Silica hybrid composite film for Loquat fruit 
preservation.

Moreover, the simple process to synthesize silica based 
hybrid films have attracted the focus of researchers world 
wide and provoked to exploit for more applications. Simi-
larly, the hybrid composites made with silicates and poly-
mers are shown to possess remarkable barrier properties, i.e. 

Figure  5  Adsorption Isotherm for pDNA onto PEI-MSNs. Open 
Access Ref. [118]

Table 2  Some of the Agricultural Applications of SNPs [61, 75]

SNPs Size (nm) Concentration of SNPs Applications References

20–40 – Enhanced seed viability [121]
12 8 g L−1 Improved germination rate and mean germination time [117]
15 112.5 ppm Insecticide [122]
10–20 −

200 mg ml 1
Growth inhibition and decreased chlorophyll content in Scened-

esmus obliquus
[120]

15–30 2 g  Kg−1 Entomotoxic effect against Sitophilus oryzae [123]
50 155 ppm Nano-pesticide against Tutaabsoluta [124]
20–60 2.06 g  Kg−1 Insecticide against Callosobruchus maculates [97]
80 – Controlled delivery system for water-soluble pesticide [125]
70–100 – Controlled release of avermectin [126]
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enhancing of diffusive path for an infiltrate molecule [130, 
131]. When it comes to packaging materials, the polyethyl-
ene bags pose a great threat to the environment, hence SNPs 
can be combined with biodegradable polymers to synthe-
size a safer and reliable substitute for packaging material 
[132–135].

3.5  Industrial Applications of SNPs

The mesoporous structure and high surface area of SNPs 
have made them suitable for various industrial applica-
tions. Such applications are on the rise due to the extraor-
dinary properties possessed by these particles. For exam-
ple, mesoporous silica based nano-fibers have shown great 
potential for immobilization, hence a suitable material for 
encapsulation [136]. In this respect, Patel et al. [137] used 
the MSN fibers to successfully encapsulate Horseradish 
peroxide (HRP) enzyme without losing its activity. Fur-
thermore, using the same fiber matrix, Takeshi et al. [138] 
encapsulated capsaicin that resulted in the enzyme to have 
enhanced stimulus activity. This shows the possibility of 
successful enzymatic encapsulation using MSNs fibers.

Molecularly imprinted polymers (MIPs) are the synthetic 
polymers obtained by polymerizing functional monomers 
and crosslinkers in the presence of template [139]. Besides 

advantages, these synthetic polymers also contain various 
downsides such as non-uniform distribution of binding sites 
and irregular size/shapes. To deal with this, the researchers 
[140] combined SNPs with MIPs to form a hybrid mate-
rial. The composite was used to detect rhodamine B (RhB) 
dye. SNPs based MIPs system resulted in improved bind-
ing, enhanced RhB detection and superior affinity for RhB. 
In terms of removing methylene blue, the recent studies by 
Parida et al. [141] and Leshan et al. [64] are worth mention-
ing. In the first study, researchers developed functionalized 
MSNs via one-pot synthesis scheme using phosphate based 
nonsilane precursor. The developed particles consisted 3 
types based on NaOH concentration used. The results indi-
cated that the particles involving higher NaOH concentra-
tions showed higher removal efficiencies (Figure 7) [141]. 
Similarly, in the second study, rice husk was used as a raw 
material to synthesize amine modified silica nanoparticles 
using sol-gel route. Cetyltrimethylammonium bromide 
(CTAB) was used as a structure directing agent. As per 
results, the highest removal efficiency of 95% was shown 
by MSN-A particles (Figure 8) [64].

Moreover, SNPs were shown to improve mechanical 
properties of hybrid polymer when combined with epoxy 
[142]. Similarly, SNPs combined with alumina showed 
improved anti wear and antifriction properties [143–147]. 

Figure 6  Synthetic scheme for different Chitosan/nano-silica coatings. Reused with permission from ref. [127]
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Recently, the surface-modified SNPs were developed and 
successfully applied for oil recovery [148]. Furthermore, 
Abed and Ali. [149] synthesized environmentally responsive 
surface-modified SNPs using polyethylene glycol and propyl 
chains for enhanced oil recovery. Therefore, SNPs are show-
ing promising results as alternatives for chemical surfactants 
to achieve enhanced oil recovery in oil industries [121].

3.6  Environmental Applications of SNPs

Lead contamination in air has become a severe global prob-
lem [150]. In this, Yang et al. [151] used electrically charged 
SNPs exposed to two lead polluted plants to analyze lead 
adsorption from the atmosphere. The study showed that 
the SNPs exposed to polluted plants adsorbed more atmos-
pheric lead than without SNPs. Moreover, this was the first 
study of its kind at the time. One of the recent studies in this 
direction is by Nashwa et al. [152] where the researchers 

biosynthesized silica nanoparticles using rice husk. The par-
ticles were induced with Trichoderma harzianum MF780864 
and used for lead removal from water. Figure 9 shows the 
adsorption capacity of SNPs.

When it comes to applicability of nanoparticles in 
environmental remediation, the cost and detailed research 
are the main barriers. He et al. [153] developed MSNPs 
(Mesoporous Silica Nanoparticles) with larger pore size 
and higher surface area. The synthesized nanoparticles were 
used to successfully remove trace mercury from aqueous 
solutions. Another study [154] infused MSNPs with cellu-
lose acetate, which was used to remove boron up to 93%. 
Biocides are the chemical substances that are used to con-
trol, destroy, render harmless or exert a controlling effect 
on any harmful organism [155]. Usually, the accumulation 
of biocides are avoided via soil uptake, however, this proce-
dure poses hazardous dangers for human health as well as 
environment. This can be resolved by polymer encapsula-
tion. In this, silica based supports have been used by various 
researchers. One such study [156] used naturally obtained 
silica as a carrier for neem extract biocide combined with 
polycarboxylic acid. The study was able to achieve favorable 
results. Another study [157] used nano-sized paramagnetic 
zirconia to selectively remove fluoride from a system with 
metallic as well as non-metallic pollutants. Moreover, SNPs 
were used to synthesize stable foam for decontaminating 
radioactive components from the site. It was also shown that 
increased hydrophobicity stabilized the foam further.

3.7  Applications of SNPs in Water Purification

Silica nanoparticles have already been used by various 
studies to remove heavy metals from aqueous solutions, 
which validates their use to purify the wastewater gener-
ated by industries [158]. Furthermore, the SNPs have been 
shown to lower or eradicate the biological oxygen demand. 
Such an BOD activity is more efficient than the conven-
tional non-SNPs based methods [159]. In this, Park et al. 

Figure 7  N2 adsorption-desorption isotherm of (c) 0SiO2, (d) 1SiO2 and (e) 2SiO2. Open Access Ref. [141]

Figure  8  Performance of MSN-A, MSN-B, MSN-C and MSN-D 
adsorbents on adsorption of MB. Open Access Ref. [64]
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[160] synthesized silver nanoparticles coupled with SNPs 
to analyze their antimicrobial strength. The study used 2 
pathogen viruses; bacteriophage and murine norovirus, in 
ground, surface, tap and deionized water samples. The cou-
pled silver-silica-nanoparticles (Ag-SNPs) showed higher 
antiviral strength for murine norovirus than bacteriophage 
in all 4 types of water samples. Moreover, the antiviral per-
formance of nanoparticles was highly influenced by tem-
perature and organic matter content. The study reveals the 
possible antiviral use of the silica coupled nanoparticles to 
kill virus in wastewater. Another study [161] investigated 
the oil recovery capability of SNPs based film. The research-
ers used CVD to produce PDMS thin film on SNPs. PDMS 
being hydrophobic, the film was used to segregate oil from 
the oil-water mixture. The results were satisfactory and 
showed the possible use against accidental oil spillage or 

diffusion that could be detrimental to the environment. Per-
taining to oil recovery, another study by Fan et al. [162] syn-
thesized and analyzed the oil recovery factor for polymer-
nanosilica, polymer and water flooding. The oil recovery 
factor for polymer-nanosilica was shown to be highest with 
65% compared to polymer 55% and water flooding as 50% 
respectively (Figure 10).

Similarly, the dye industries are notorious for the release 
of harmful chemicals into the water streams. These chemi-
cals can ultimately pose great dangers for aquatic as well as 
human life. Therefore, the need to treat water before being 
released is an essential step. In this respect, the study [163] 
used APTES during SNPs synthesis to increase their pore 
size. The enhanced pore size SNPs were used to analyze the 
adsorption capacity for Methylene blue dye and the results 
were satisfactory. Moreover, the pore size was shown to 

Figure 9  Adsorption capacity 
of Biosynthesized SNPs for 
Pb removal. Open Access Ref. 
[152]

Figure 10  Oil Recovery Factor. 
Open Access Ref. [162]
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improve the adsorption capacity significantly. Similarly, 
another type of dye called Methylene red has detrimental 
consequences for human health if exposed. For example, it 
can cause skin/eye irritation and digestive disorders. This 
dye is mostly used by textile and paper industries [164]. To 
deal with this, the study [165] synthesized SNPs doped with 
silver and gold particles, which were used against MR dye 
as an adsorption medium. The results showed satisfactory 
catalytic degradation by the manufactured particles against 
MR dye. Furthermore, in terms of aquatic life, the dyes can 
block the photosynthetic activity of plants and algae [166]. 
In this respect, the study [167] developed SNPs coupled with 
Ag particles as an antifouling adsorbent for effective dye 
removal and water disinfection. In this respect, few of the 
most recent works include hybrid SNPs with functionalized 
mesostructured for methylene blue removal [141] and poly-
sulfone membrane with carbon dots grafted silica for dye 
removal [168] respectively.

4  Conclusions and Future Prospects

Silica nanoparticles (SNPs) have already found a signifi-
cantly contributive role in nanotechnology. Enriched with 
remarkable properties like mesoporous structure, high sur-
face area, tunable particle size, pore size and morphology 
and biocompatibility offer great advantages in multifaceted 
applications. These nanoparticles have provided highlighting 
contributions in the fields like agriculture, food preservation, 
biomedical and catalytic reactions. SNPs are shown to be 
excellent encapsulation agents for a wide variety of bioac-
tive molecules, which is already safe proven for targeted 
drug delivery. Moreover, the feasibility of SNPs to merge 
with different polymeric as well as non-polymeric materi-
als to form hybrid composites has extended the applicable 
functionalities even further. Mesoporous Silica nanoparti-
cles (MSNPs) have already shown excellent carrier proper-
ties, which is applied in targeting specific cancer cell dur-
ing chemotherapy. Conclusively, it can be stated that SNPs 
have proven to be safe, functional and reliable substitute 
and is finding a growing applicability in almost every field. 
However, based on the investigative review of this remark-
able material and its ever growing applications, the authors 
believe that the following prospects still need to be further 
exploited and investigated in future research:

1. Further research is needed to exploit more immobilizing 
agents compatible with MSNs that can be used for cata-
lytic reaction in a single-pot system without influencing 
mutual reactivity and system environment. Also need 
to clarify the optimization conditions for such multi-
immobilized MSNs species used in catalytic reaction of 
single-pot system.

2. There is a room for further research to explore the 
entrapment capabilities of SNPs for colorless and poorly 
water-soluble drugs for targeted delivery.

3. Need to unveil more seeds like maize seeds that can 
develop antifungal properties when coupled with SNPs.

4. Need to investigate that in some crops, the SNPs result in 
an enhanced stress tolerance in saline conditions while 
in others, it results in chlorophyl reduction.

5. Chitosan/silica hybrid film is shown to increase shelf 
life of Loquat fruit. In this respect, need to exploit more 
fruits that can develop higher shelf life when used with 
the same hybrid film.

6. More enzymes should be explored and investigated for 
encapsulation onto MSN fibers.

7. Room for exploring more aminosilanes coupled with 
SNPs as adsorbents for dye removal from wastewater.

5  Data and Code Availability

The data in this manuscript is available with the correspond-
ing author and can be provided on reasonable request
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