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ABSTRACT Microgrid, because of its advantages over conventional utility grids, is a prudent approach to

implement renewable resource-based electricity generation. Despite its advantages, microgrid has to operate

with a significant proportion of constant power loads that exhibit negative incremental impedance and thus

cause serious instability in the system. In this paper, a comprehensive review is presented on accomplished

research work on stabilization of dc and ac microgrid. After reviewing these, microgrid system stabilization

techniques are classified with required discussions. As found out in this paper, the stabilization techniques

can basically be classified as compensation done: 1) at feeder side; 2) by adding intermediate circuitry; and

3) at load side. Finally, after analyzing the merits and drawbacks of each generalized technique, several

infographics are presented to highlight the key findings of this paper.

INDEX TERMS Constant power load, feeder side compensation, load side compensation, negative incre-

mental impedance, stabilization of ac microgrid, stabilization of dc microgrid.

I. INTRODUCTION

The power sector is experiencing an unprecedented shift in

the entire system including the generation, transmission, and

distribution, fueled by extensive research into next-generation

energy systems and depleting conventional fuel resources.

Due to availability in nature and environment-friendly power

generation, power sector specialists and professionals are

preferring to adopt renewable energy resources, as the ace

up their sleeve, to face the next generation energy crisis.

To utilize renewable energy resources, microgrid systems

have been already constructed and employed to provide elec-

tricity in grid-isolated areas, and to meet general demand in

industrial setup. Microgrid - a localized group of electricity

sources and loads - functions as a single controllable entity

and is synchronized with the conventional utility grid to

provide support in case of greater demand. According to

the physical and economic conditions, it can be operated

independently and can be isolated from the utility grid in case

of any unwanted situation [1], [2].

In the next generation power system, microgrid is a

preferable option due to a number of reasons. Firstly, most

of the industries, professional organizations, and academic

institutions require reliable power backup because of the

uncertain and interrupted nature of power supply from the

utility grid. The available power backups such as private

generation, energy storage systems, and diesel engines are

very expensive. By adopting a microgrid system, it is possible

to get rid of that, and experience a cost effective and reliable

solution during power crisis. Apart from that, considering a

wider picture, it is possible to save billions of dollars if a

few hundred summer peak hours can be managed by load

shifting or load shaving techniques. Besides these, reliability

is one of the key justifications to adopt microgrid systems

in larger scale. China has already introduced microgrid sys-

tems widely and experienced appreciable performance with

sustainability. Since ‘energy security’ is one of the prime

concerns in the power industry, microgrids can offer that

much-desired fidelity to the entire system. It is also possible

to solve cyber security problems by employing microgrid

systems due to their smaller operating zones and easy control

technique [3], [4].

In the utility grid system, a considerable amount of power

is lost due to transmission. In microgrid applications, this

transmission loss can be minimized significantly. Besides
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FIGURE 1. Negative impedance characteristic of CPL, the voltage
decreases exponentially with increase in current [6].

FIGURE 2. Research timeline based on the published research articles on
Constant Power Load compensation techniques. It shows a trend of
increased research in this field. More than half of the research works
encountered for this study are published in 2014-2017 – marking this
field as a very popular one in recent times.

that, it does not require investment on fuel to generate elec-

tricity, therefore overall costs can be minimized. The places

where it is impossible to get utility grid connections can have

the privilege of electricity regardless the transmission infras-

tructure by employing microgrid systems; hence it assures

mass electrification [5]. With the advancement of technol-

ogy, applications of power electronics devices are rising,

thus increasing constant power loads (CPLs) at a tremendous

rate which has huge effects on stability of power systems,

especially in distributed power systems such as microgrids.

Microgrids deal a lot with the increasing number of constant

power loads (CPL) such as inverter-based loads. Constant

power loads exhibit negative incremental impedance, and

hence cause serious instability issues in the power system.

Fig. 1 presents the negative incremental impedance charac-

teristics of CPLs.

To compensate the CPL instability, a number of researches

have been carried out around the world. Though researches

regarding microgrid instability have been begun in early

1998-1999, with the growing industry of mass electrification,

and eventually the microgrid technology, this issue has drawn

attention of thousands of researchers around the world with

passing time and increasing necessity. The research growth

of Constant Power Load instability compensation is depicted

in Fig. 2.

FIGURE 3. Country-based infographic on Constant Power Load instability
compensation research around the world. USA leads this field and is
clearly outrunning the others, with Norway projecting a solid chance to
catch up China, which is currently in the second place.

From this illustration, it is evident that the research regard-

ing themicrogrid technology has considerably increased after

2010. To nullify any chance of misconception, it is necessary

to mention that this comprehensive review is prepared based

on research articles published up to May, 2016. Apart from

that, though the United States of America is leading the

microgrid technology and instability compensation research,

China, Norway, France, and India are also contributing to

this research in a significant manner. The country-based info-

graphic for Constant Power Load instability compensation

research in microgrid technology is illustrated in Fig. 3.

The contribution of this review article is delineated as

follows. In section two, the generic as well as mathematical

modeling of DC and AC microgrids are presented along with

the simplified equivalent circuit diagrams. Section three, four,

and five of this paper are dedicated to the investigations on

cutting edge researches conducted on stabilizing DC and AC

microgrids by the scientists, researchers, and professionals in

recent time. In section six, after studying different techniques,

we have classified three basic approaches to handle the insta-

bility problems and illustrated the subsections regarding the

stabilization approaches. Besides that, several infographics

are presented to delineate the review study from different

aspects.

II. MODELING OF DC AND AC MICROGRIDS

According to the United States Department of Energy,

a microgrid is a group of interconnected loads and distributed

energy resources within clearly defined electrical boundaries

that acts as a single controllable entity with respect to the grid

and it can be connected and disconnected from the grid to

enable it to operate in both grid-connected or island mode.

A microgrid is a small-scale power grid that can operate

independently or in conjunction with the area’s main elec-

trical grid. Any small-scale localized station with its own
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FIGURE 4. Generic modeling of DC microgrid system showing the
constituent elements. The sources and the loads are connected to the
microgrid bus through power converters configured to facilitate exchange
of DC power with it, and the entire system links up to the main grid
through the Point of Common Coupling (PCC).

power resources, loads, and definable boundaries qualifies

as a microgrid. Based on the principle of power system the

elements of microgrid can be operated both in AC and DC

power systems. This section is dedicated to the modeling

of DC and AC microgrid systems. At first, in Fig. 4 and

Fig. 5, generic models of DC and AC microgrid systems are

presented showing the constituent elements.

A detailed mathematical model of DC microgrid with con-

stant power load (CPL) and constant voltage load (CVL) is

shown in Fig. 6. The proportion of power shared between

CPL and CVL for stability is changed to insure the desired

stability condition. The transfer function of the system can

be derived as shown in equation (1) [6].

Vo

VS
=

1

[(sLeq + Req)(sCeq + 1
RCPL

+ 1
sL+R

) + 1]
(1)

Where, V0 = system input voltage, and VS = system output

voltage. The necessary conditions tomaintain the system pole

at the left half plane can be illustrated by,

a0 = CeqLeqLRCPL > 0 (2)

a1 = ReqCeqLRCPL − LeqL + CeqLeqRRCPL > 0 (3)

a2 = L(RCPL − Req) + Leq(RCPL − R) + CeqReqRRCPL > 0

(4)

a3 = R(RCPL − Req) + RCPLReq (5)

b1 =
a2a1 − a0a3

a1
> 0 (6)

FIGURE 5. Generic modeling of AC microgrid system showing the
constituent elements. The sources and the loads are connected to the
microgrid bus through power converters configured to facilitate exchange
of AC power with it, and the entire system links up to the main grid
through the Point of Common Coupling (PCC).

FIGURE 6. Mathematical model of DC microgrid for stability analysis. The
CPL causes the bus voltage to be unbalanced.

From above stability conditions, two simple relations can be

derived, which are,














RCPL >
RReq

R+ Req

PCVL + V 2
0

ReqCeq

Leq
> PCPL















(7)

From those conditions, we can conclude that, to be stable, the

CPL power must be less than that of CVL and other system

components combined. Power relation from themathematical
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model of DC microgrid is,

PCPL >

V 2LeqPCVL+LeqV
2+LeqV

2+CeqReqV
2+LReqPCVL+LReqPCVL

(LeqV 2+LReqPCVL)

(8)

Where PCPL is the power of constant power load and PCVL is

the power of constant voltage load. The power relation with

reactive power compensation is shown in equation (9).

PCPL >V 2 LLeq + CeqLLeq + Leq + Req + LeqR+ CeqRReq

LReq + LeqR

(9)

Since the proportion of constant power load is increasing in

advanced power system applications, it is necessary to take

care or handle the real and reactive power compensations

independently for the sake of stability of microgrid. In par-

ticular cases, storage systems are used to provide high power

density with quick charging and discharging time to maintain

transient and steady state instability introduced by CPLs;

hence point load compensation has to be adopted.

FIGURE 7. Mathematical model of AC microgrid for stability analysis. The
CPL causes the bus voltage to be unbalanced. The R-L load, with iv
current flowing, represents CVL.

Then, a detailed mathematical model of ACmicrogrid with

constant power load (CPL) and constant voltage load (CVL)

is showed in Fig. 7. CVL is represented as an R-L load which

is much more practical and simplified for using RMS value

and unity power factor. This model represents microgrid as

an arrangement where the Vo and stability margin vary with

the change of Req, Leq, and Ceq.

Simplified equivalent circuit of AC microgrid connected

with conventional utility grid for further stability analysis is

represented in Fig. 8. The equation (10) for governing rotor

motion of a synchronous machine is based on the elementary

principle in dynamics known as swing equation which states

that accelerating torque is the product of the moment of

inertia of the rotor times its angular acceleration.

FIGURE 8. Simplified equivalent circuit of AC microgrid. The ‘Synchronous
Generator’ part resembles the loads, while the ‘System Equivalent’
portion represents the rest of the system with loads.

This equation can be written for the synchronous generator

in the following form [7]:

Jαm(t) = J
d2δ

dt2
(t) = Tm(t) − Te(t) = Ta(t) = J

dωm

dt
(t)

(10)

Where, J is the total moment of inertia of the rotor masses. αm
is the rotor angular acceleration. δ is the angular displacement

of the rotor with respect to stationary axis. ωm is synchronous

generator rotor speed. Tm is the mechanical torque, Te is the

net electrical torque and Ta is the net accelerating torque.

Therefore, we can write equation (11) in per unit in the form,

2H

ωs

dω

dt
(t) = Pmp · u(t) − Pep · u(t) (11)

For a system with an electrical frequency of f Hertz the

equation becomes,

H

π f

dω

dt
(t) = Pmp · u(t) − Pep · u(t) (12)

H

π f

dω

dt
(t) = Pmp · u(t) − Pep · u(t) − D(ωs(t) − ωm(t))

(13)

Where, Pm is the mechanical power input while Pe is the

electrical power output, D is the Damping coefficient and H

is the inertia constant. Now from the Fig. 8 we get,

I =
Eejδ − Vt

jXg
(14)

S = P+ jQ = Vt I
∗ =

EVt (j cos δ − sin δ) − jV 2
t

Xg
(15)

Where, S is the complex power and Xg is the positive

sequence synchronous reactance. Therefore, the delivered

real and reactive power will be,

P = Re S = −
EVt

Xg
sin δ (16)

Q = Im S =
Vt

Xg
(E cos δ − Vt ) (17)

Which indicates real power increases when δ decreases.

The above equations are derived by analyzing the operating
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TABLE 1. Factors concerning microgrid stability.

principle of synchronous generators. Active power is reg-

ulated via control of the voltage phase difference between

synchronous generator and point of common coupling while

reactive power can be regulated by controlling the voltage

magnitude difference to alleviate the effect of the stability

issues in the microgrid.

III. MICROGRID STABILITY

For a given initial operating condition, the ability to regain

a state of operating equilibrium after being subjected to any

kind of physical disturbance is considered as the stability

of microgrid. The stability of microgrid is dependent on

the factors and parameters of the elements of microgrid,

and varies accordingly. Table 1 precisely depicts the fac-

tors which affect the microgrid stability. From this table,

it is evident that there are mainly three stability regions

in the microgrid systems such as feeder side, intermediate

circuitry, and load side. In the feeder side of a microgrid

system, the stability depends on certain parameters such as

system frequency, feeder impedance, d-axis voltage, q-axis

VOLUME 6, 2018 33289
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voltage, d-axis current, q-axis current, and voltage/generation

mismatch. The influence of these parameters on the system

stability is rated in this table, based on rigorous literature

review. In the intermediate circuitry of a microgrid system,

the stability depends on several parameters such as control

flexibility, reactive power capability, harmonics, losses, time

domain specification, phase balancing ability, etc. Then, in

the load side of a microgrid system, the stability of a system

depends on a number of parameters such as constant power

load, equivalent resistance, equivalent inductance, equiv-

alent capacitance, virtual inductance, virtual capacitance,

d-axis power, q-axis power, nominal voltage, sudden changes

in load, energy storage system, and so on. The ability of

these parameters to influence the system stability is rated

in this table based on comprehensive review of available

literature.

FIGURE 9. Schematic diagram of microgrid with CPL [6]. Req, Leq, and Ceq
represent the equivalent circuit for transmission lines connecting the
microgrid bus to the loads.

A general microgrid with two distributed generators sup-

plying a CPL is studied in [8]. It shows the dependence of

stability on the proportion of CPL and constant impedance

load (CIL). It also outlines simple methods of improving

stability by changing the R/L value of distribution feeders,

increasing capacitance by adding capacitors or by raising the

bus voltage level showed in Fig. 9. However, modifying the

distribution feeders is often not a feasible option and adding

capacitance to stabilize a system is comparatively expensive.

Similarly, increasing the bus voltage may not be an option

since most of the protection devices only work at certain

voltages and that cannot be changed. Thus, alternative meth-

ods are being investigated to provide stability for microgrids.

The research works on CPLs in microgrid applications are

categorized into two sections: DC microgrid applications,

and AC microgrid applications. The majority of the work on

control techniques for microgrid stabilization falls under the

former category.

IV. REVIEW ON DC MICROGRID STABILITY

To ensure the required simplicity to comprehend the findings

of the reviewed research articles, this comprehensive review

categorizes all the published researches on DC microgrid

stability into three sub-sections: Modeling and Analysis,

Controller Intervention, Novel Techniques and Tools.

A. MODELING AND ANALYSIS

Su et al. [9] analyzed the factors which engendered major

instability in a DC microgrid with multiple DC-DC convert-

ers. Khaligh [57] modeled an analog CPL which is shown

in Fig. 10.

FIGURE 10. Model of analog CPL [10]. The divider divides the reference
power, Pref by Vo to generate the command current I∗c , which is sent to
the current source.

In the course of their research, they presented two sta-

bilization methods for two operation modes: constant volt-

age source mode, and droop mode. On another occasion,

Sanchez and Molinas [10] presented an approach to estimate

the grid impedance by using two different techniques: the

Kalman filtration method, and the recursive least squares

method. After that, Liu et al. [11] and Khaligh et al. [12]

worked on modeling and small-signal stability analysis of

an islanded DC microgrid with dynamic loads. It is dif-

ficult to identify a system’s stability characteristics for a

large complicated system. Leonard [13] has proposed the

Volterra Series to model nonlinear responses of constant

power loads through Volterra kernel measurement by using

a switch-mode power converter to synthesize large-signal

perturbations to measure frequency domain Volterra kernels.

Cupelli et al. [14] adopted the particle swarm optimization

algorithm to find the best values of the parameters. Besides

that, Islam and Anand [15] from IIT Kanpur focused on sta-

bility analysis of microgrid treating the converter interfaced

loads as constant power loads. Eigenvalue analysis of highly

nonlinear loads is shown by Zhao et al. [16]. To improve

the stability scenario of DC microgrid system, several linear

and nonlinear control techniques have already been adopted.

A control design procedure based on linearization via state

feedback, is proposed in [17] to mitigate CPL destabiliza-

tion effects and to ensure medium voltage DC bus voltage

stability. A control algorithm for a DC-DC boost converter

with CPL is proposed to ensure stability and fast response

of the system while making it robust to load variations in

[18]. In [19], stability of equilibrium and an estimation of

the region of attraction are investigated for cascaded system

in the DC distribution power system based on Lyapunov

linearization and Brayton-Moser’s mixed potential theory.

The system state variables are shown in equation (18):







x1 = ie − ieo
x2 = vs − vso
x3 = vslf − vso







(18)
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FIGURE 11. Model of a system with virtual capacitor current absorbed by
the load [22].

FIGURE 12. Circuit schematic showing a line-regulating source-interface
converter on the left feeding a CPL on the right [23].

With

Ieo =
pso

vso
(19)

vso =
Ve +

√

V 2
e − 4psorf

2
(20)

Coupling two systems together can allow the oscillating

characteristics of the two systems to dampen each other

out [20]. The systems may have slightly different charac-

teristics, usually different inductances, or they may be iden-

tical but coupled with a small delay factor. Mathematical

analysis for such two systems has been done to find the

region of stability. Sanchez and Molinas [21] introduces a

comprehensive analysis with the nonlinear tools for stability

in operating systems influenced by interconnections of power

electronics, and delivered by the discrete generation. Here,

systems such as renewable as well as non-renewable energy

sources can easily supply power to the microgrid, and their

loads function as CPL. Hence, the inspection of Hopf bifurca-

tion points is applied to prevent oscillations and instabilities

in the operating system. A non-linear stabilization block is

implemented in [22] to stabilize the system by increasing

the dc-link capacitance. Model of the system with virtual

capacitor current absorbed by the load, which has been used

here is shown in Fig. 11. A designed boundary for DC-AC

buck converters is examined in [23]. Fig. 12 shows a line-

regulating source-interface converter used for CPL in [23].

Thus, the current through a general practical instantaneous

CPL is given by equation (21), where Vlim represents the

voltage limit in volts.

i(t) =







0, if v(t) < Vlim
PL

v(t)
, if v(t) > Vlim







(21)

When the switch is ON, the dynamics of the line-regulating

source-interface buck converter, shown on the left side of

Fig. 12, is governed by equation (22).

fON (x1, x2) =







dx1

dt
dx2

dt






=







1

L
(E − x2)

1

C
(x1 −

PL

x2
)






(22)

x1 ≥ 0, x2 > 0 (23)

In [24], a compensator is designed by deriving the input

impedance of CPL, and the output impedance of the filter.

Amodel of a tightly regulated practical converter is presented

in [25] which maintains the amount of added damping to sta-

ble the feeder converter. On another occasion, Awan et al. [26]

addressed global stability analysis regarding electrical sys-

tems consisting of DC power supply, an actuator, and an LC

Filter. In this case, they used Circle Criterion to study the

global stability of the system. Jusoh [27] has presented an

analysis of Constant Power Load instability of DC micro-

grids by using small signal analysis and passive damping

method.

FIGURE 13. Implementation scheme of the proposed PWM-based
SMC [29]. Inputs from the system will be used to control the switching
operation through a control function.

B. CONTROLLER INTERVENTATION

For building virtual resistance in the source side converter,

a stabilizing method is proposed in [28]. Similarly, at [29],

to limit the CPL instability in a certain level, Suresh Singh

and Deepak Fulwani proposed a non-linear sliding surface

which confirmed the constant power (Fig. 13). Maintain-

ing this by using converters, the CPL’s oscillating effect

due to negative incremental impedance has been controlled

considerably. Hence, DC microgrid stability has been main-

tained despite the continuously increasing proportion of

CPL load in grid arrangement. After this, to investigate the

VOLUME 6, 2018 33291
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FIGURE 14. Equivalent circuit of DC/DC bidirectional converter (BDC). It is
created neglecting equivalent series resistance of the capacitor and
inductor, which in turn, makes the instabilities caused by CPL
prominent [31].

CPL instability consequences with the increasing number of

constant power loads, Gautam et al. [30] adopted a novel

sliding mode controller and presented appreciable results.

Besides that, Cupelli et al. [31] investigated the application

of adaptive back-stepping to deal with the voltage stability

of the DC microgrid. The state-space averaged model of the

equivalent circuit of DC/DC bidirectional converter (BDC)

from [31] (showed in Fig. 14) in charging mode is given by

equation (24).



















ẋ1 =
1

L
[Ebusubuck − xbat ]

ẋbat =
1

C
[x1 − ibat ]

Ebat = xbat



















(24)

A precise geometric control using circular switching sur-

faces is proposed for CPL-based electric vehicle’s power

system by Anun et al. [32], [33]. For the particular case

of DC microgrid, instead of over-linearizing, sliding mode

control technique – with nonlinear modeling of the system–

has been adopted by the researchers. By using a sliding

mode controller, a sliding surface has been established to

stabilize the voltage of the entire system [34]. A sliding-

mode duty-ratio controller (SMDC) is introduced for DC/DC

buck converters with CPL in [35]. Apart from that, for the

automotive power systems, Srinivasan and Kwasinski [36]

presented an autonomous control technique of a DC micro-

grid. Next, to manage the DC bus voltage stability appre-

ciably, Stramosk and Pagano [37] designed a unique sliding

mode controller. Linear and non-linear controllers can also be

used, but the former cannot guarantee global stability of the

desired equilibrium point, and the latter is very challenging

in its design and changes with each system’s parameters.

Stabilizing power can be generated and sent to the load power

reference for slightlymodifying the CPL behavior of the load.

Using such a constrained optimization technique, a method to

design the stabilizing system is proposed in [38]. Start-up and

step response of an average current-controlled buck converter

with CPL is analyzed in [39] based on phase portrait method

through design criteria rules and proper current-limiting val-

ues. Modeling and analysis of DCmicrogrid done in different

research works are tabulated in Table 2.

C. NOVEL TECHNIQUES AND TOOLS

Virtual impedance based compensation technique is analyzed

for DC microgrid by Lu et al. [40]. Besides that, a review

on DC microgrid control system is represented at [41].

Srinivasan and Kwasinski [42] presented a stability analysis

of DC microgrid using the droop loop control technique.

Cezar et al. [43] researched on stability of interconnected

DC converters. In particular, this paper addressed the stability

issues of DC networks with CPLs. Lu et al. [44] proposed

a virtual resistance-based method to improve the stability

status of DC microgrid by an impedance matching approach.

A multi-converter with a centralized stabilizer for a DC

microgrid is designed by Zadeh et al. [45]. Besides that,

Ashourloo et al. [46] addressed stability problems of CPLs

and proposed a simple active damping strategy to efficiently

dampen the oscillations caused by CPLs. The transfer func-

tion for the cascade distributed power architecture used in this

work (showed in Fig. 15) is given by equation (25).

Vout (s) = d(s) · Vin ·
1

LsCss2 + (Ls
R

+ RLCs)s+ (1 +
RL
R
)

(25)

By implementing the proposed active damper, the equations

of LRC loads are changed as follows:

LIL(s)·s = d(s)·Vin−Vout (s)−RLIL(s) −
k · s

s+ωc
· Vout (s)

(26)

CVout (s) · s = IL(s) −
Vout (s)

R
(27)

Coupling two systems together can allow the oscillating

characteristics of the two systems to dampen each other

out [20], [47]. The systems may have slightly different char-

acteristics, usually different inductances, or they may be

identical but coupled with a small delay factor. Mathematical

analysis for two systems has been done to find the region

of stability. It is cumbersome to identify the system’s sta-

bility characteristics for a large complicated system. Active

damping for boost converters with CPLs is provided through

current mode control, which is described in [48]; and passive

damping circuit is added with filter elements in [49] to stabi-

lize the system. Various stabilization strategies such as load

shedding, addition of resistive loads, and filters are explored

in [50] to mitigate the stability issues in DC microgrids with

instantaneous CPLs. Loop cancellation, a novel nonlinear

feedback, is introduced in [51] to counter the effect of CPL by

implementing different types of converters. This technique is

shown in Fig. 16.

By implementing this nonlinear feedback loop, the equa-

tions (28-29) of the system are changed as follows:

iL =
1

s · L
· (
VFB

VTr
· vin − vo) +

Vin

L · VTr
·
KFB

vo
(28)

vo =
1

s · C
· (iL −

vo

RLoad
−
PCPL

vo
) (29)
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TABLE 2. Modeling and analysis of DC microgrid.

Introducing new variables, in terms of parameters, the power

can be derived as,

P1 =
Vin

L · VTr
· (KFB −

VTr · L · PCPL

Vin
) (30)

Kwasinski and Onwuchekwa [52] outlined the typical

strategies for mitigating the problems of CPL in DC micro-

grids. In this discussion, the effect of adding filters and
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FIGURE 15. A cascade distributed power architecture [46], here a line
regulating converter and a point of load (POL) converter is used one
after the other. Here, Vs is the input voltage (Vin), and vL is the output
voltage (Vout ).

FIGURE 16. Block diagram representation of a buck converter with the
loop-cancellation technique implemented [51].

capacitors was studied. But, this is an expensive system with

the additional problem of capacitor failure which increases

with rated voltage. Load shedding of CPLs can restore stabil-

ity, but this is of little practical value since it only temporarily

restores the system without increasing long-term capacity.

A novel active-damping technique on DC/DC converters is

shown in [53]. The mechanism of instability and oscillation

along with some passive methods for compensating CPLs are

explained and a novel method of compensating CPLs-based

on the feedback linearization technique of nonlinear system

have been proposed by Rahimi [54], which is a comprehen-

sive overview of the stabilizing control methods for power

electronic converters. A novel stabilizing control strategy

to eliminate the destabilizing elements of CPL is described

in [55] by reformulating the system dynamic equations.

To stabilize the system, an input filter state feed-forward

stabilizing controller is presented in [56]. Khaligh [57] has

proposed a fixed frequency pulse adjustment digital control

technique to mitigate the constant power load instability.

V. REVIEW ON AC MICROGRID STABILITY

To assure the required simplicity to comprehend the findings

of a number of research articles, this comprehensive review

categorizes all the published researches on AC microgrid sta-

bility into three sub-sections: Modeling and Analysis, Con-

troller Intervention, Novel Techniques and Tools.

FIGURE 17. Linear RLC circuit with a CPL, where the RLC circuit is used as
a filter, rc is a resistive load which represents constant voltage loads
(CVL) [59].

A. MODELING AND ANALYSIS

To improve the stability scenario of the ACmicrogrid system,

several linear and nonlinear control techniques have already

been adopted. Pre-planned switching events and fault events

that lead to islanding of a distribution subsystem and for-

mation of microgrid is analyzed in [58]. Considering linear

and non-linear time invariant behavior described by a port-

Hamiltonian model with constant dissipation and switching

interconnected matrix, the condition of existence of equilib-

ria for electrical system with external sources and CPLs is

investigated in [59]. Fig. 17 shows a linear RLC circuit with

a CPL, used for the investigation done in [59].

And the transfer function:

G(s) =
Ls+ r

LCs2 + (rC + L
rc
)s+ r

rc
+ 1

(31)

Because of higher power efficiency of active damping over

passive damping, a summary and classification of existing

active damping techniques is explored in [60]. Fig. 18 shows

a CPL connected to a AC power system by their equivalent

circuits, which has been used in [60]. Controller intervention

of DC microgrid done in different research works are tabu-

lated in Table 3.

FIGURE 18. A CPL in AC power system with their equivalent circuit, an LC
input filter is added before the CPL [60].

The operation of the cascaded system with linear methods

can be described by equation (32).











di

dt
= −

RL

L
i−

1

L
u+

1

L
Vin

du

dt
=

1

C
i−

P+ Pstab

Cu

(32)
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TABLE 3. Controller intervention of DC microgrid.

Apart from that, a three phase AC system has been dis-

cussed in [61]. Instead of the conventional frame analysis,

here, researchers have presented dq frame analysis for small

signal stability. Romlie et al. [62], presented the stability of

CPL-based microgrid system as a function of system param-

eters. Here, they used PSCAD simulation to investigate the

stability issues for distributed power systems. After that, to

identify the stability condition for ACmicrogrid arrangement,

Liu et al. [63] have proposed a technique using Nyquist Sta-

bility Criterion with considerable results. A brief discussion

on small-signal analysis methods for AC distributed power

system and the utilities concerning the methods is presented

in [64] with state-space modeling as well as their limitations.

Heskes et al. [65] discussed on negative differential

impedance load. They analyzed its effect on voltage stability

in case of localized grid system. Next, in [66], an observer-

based controller adopting input/output feedback lineariza-

tion has been presented with adequate robustness analysis of

the proposed technique for AC microgrid system regarding

parametric uncertainties. A brief examination on protection

issues in AC microgrids and an analysis of each proposed

method of protection issues concerning stability is repre-

sented in [67]. After that, Emadi [68] has modeled CPL load

considering the negative incremental loading characteristics

(shown in Fig. 19). In this course, he used generalized state

space averaging method. By using this for AC distribution

system, he has presented a detailed assessment in his paper.

Small-signal transfer function of the circuit of Fig. 19 is

expressed by equation (33).

ṽo

ṽac
=
RRCPL(cos(α) + s

sin(α)
ω

)

As3 + Bs2 + Cs+ D
(33)

Where

A =
Leq · Ceq · RRCPL sin(α)

ω
(34)

B =
Leq + CeqRReq

ω
RCPL sin(α) + LeqCeqRRCPL cos(α)

(35)
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FIGURE 19. Small-signal equivalent circuit of a system with constant
power loads (CPL) and constant voltage loads (CVL) connected to a
conventional bus with controlled rectifiers [68].

C = Req(
RCPL sin(α)

ω
+ CeqRRCPL cos(α))

+Leq(RCPL cos(α) − R) +
RRCPL sin(α)

ω
(36)

D = Req(RCPL cos(α) − R) + RRCPL cos(α) (37)

B. CONTROLLER INTERVENTION

A mix sensitivity based repetitive controller is proposed in

[69] along with non-linear loads and PI regulator. To control a

nonlinear system, sliding mode and Lyapunov Redesign con-

trol techniques are implemented along with PID controller to

maintain constant terminal voltage of CPL via current injec-

tion method from storage in [6]. Novel techniques and tools

for DC microgrid proposed in different research works are

tabulated in Table 4. Modeling and analysis of AC microgrid

done in different research works are shown in Table 5.

This paper suggests that load side stability management

is the key to microgrid system stability and that is why we

select load side compensation. Moreover, load side compen-

sation is point load compensation – which means it can be

accomplished in the exact point we desire. Microgrid loads

can be categorized into several types including controllable

loads, and critical loads. Controllable loads include elec-

tric vehicle charging stations, heat pumps etc.; data center,

security systems etc. fall into the category of critical loads.

Critical loads consisting of both constant power loads (CPLs)

and constant voltage loads (CVLs) require proper attention

for better performance. And to ensure that, managing those

sensitive loads from the load side is the best way of compen-

sation to maintain system stability. In microgrid applications,

it is good practice to use load side compensation of CPL

instabilities due to combination of CPLs and CVLs. In this

practice, we can combine all CPLs in one single branch

to handle their voltage collapse phenomena. Various power

sharing control schemes and controllers are illustrated in [70].

Control structure of conventional P/f and Q/V droop control

that is demonstrated here is shown in Fig. 20. The droop

functions can be expressed as equation (38):
{

ω = ω0 − mp · (P− Q)

E0 = E − nQ · (P+ Q)

}

(38)

A framework for voltage source converter independent of

any type of source with reduced computational complexity

is presented for stability study of AC microgrid in [71].

Constant power mode operation of VSC that is demonstrated

here is shown in Fig. 21.

The dynamics of a Class 2 load group can similarly be

formulated as follows:

{

p(xC2) = f̂x,C2(i
t,DQ
∑

C2
, v

t,DQ
C2 , ωg, xC2, λ̂C2)

p(i
t,DQ
∑

C2
) = f̂i,C2(i

t,DQ
∑

C2
, v

t,DQ
C2 , ωg, xC2, λ̂C2)

}

(39)

Where,

f̂i,C2(i
t,DQ
∑

C2
, v

t,DQ
C2 , ωg, xC2, λ̂C2)

= nC2fi,C2(
i
t,DQ
∑

C2

nC2
, v

t,DQ
C2 , ωg, xC2, λ̂C2) (40)

A non-linear control strategy for controlling a DC/DC buck

converter feeding a CPL is proposed in [72] and [73] combin-

ing a feedback controller with a feedforward strategy. A fully

distributed control scheme without central controller or exter-

nal information exchange for island AC microgrid with

locally distributed generators is proposed in [74]. During

faults, to maintain the active and the reactive power balance,

a nonlinear distributed controller is presented in [75] using

partial feedback linearization. Decentralized control methods

with distributed generator feedback controller as well as the

power controller gain and the eigenvalue trajectory is shown

in [7]. In [76], feedback-based compensation techniques have

been analyzed. Here, by taking a continuous feedback from

the output, the reference level can be modified. From there,

a virtual resistance-based damping technique has been intro-

duced to mitigate the CPL instability in case of complex

loading in microgrid. From the additional virtual resistor,

the transfer function has been modified. The significance of

this technique is it can assure the desired stability without

any energy wastage (by cost). Besides the advantage, its

limitation is that the improvement in the loading limit is

not very appreciable. Yanjun Dong et al. worked with pulse

widthmodulation rectifier tomitigate the constant power load

instability. In their research, they introduced a simulation

model for AC microgrid system loaded with CPL in [77].

Controller intervention of AC microgrid done in different

research works are tabulated in Table 6.

C. NOVEL TECHINIQUES AND TOOLS

Karimipour and Salmasi [78] worked on Popov’s Stability

criterion, one of the advanced nonlinear techniques, to handle

CPL instability issues. Using this technique for AC system,

they have accomplished stability analysis of the microgrid

system. The CPL architecture in AC microgrid used there is

shown in Fig. 22.

Here, state variables are introduced as x1 = itd , x2 =

itq, x3 = ild , x4 = ilq, x5 = Vd , x6 = Vq, x7 = Idc, and
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TABLE 4. Novel techniques and tools for DC microgrid.

x8 = vc. And the state space model is:















































ẋ1 = −Rt/Ltx1 − 1/Ltx5 + 1/LtE1 + ω0x2
ẋ2 = −Rt/Ltx2 − 1/Ltx6 + 1/LtE2 − ω0x1
ẋ3 = 1/Lx5 − RL/Lx3 − ω0x4
ẋ4 = 1/Lx6 − RL/Lx4 − ω0x3
ẋ5 = 1/Cx1 − 1/(RC)x5 − 1/Cx3 − 3/(2C)m1x7+ω0x6
ẋ6 = 1/Cx2 − 1/(RC)x6 − 1/Cx4 − ω0x5
ẋ7 = −rf /Lf x7 − 1/Lf x8 + 3/(2Lf )m1x5
ẋ8 = 1/Cf x7 − Pin/Cf x8















































(41)

Next, Liu et al. [79] have researched on distributed power

system (DPS). Through their research, using infinite norms

input/output matrix, they have identified a stability criterion

for DPS. It is evident that, due to the negative incremental

load characteristics, the instability problem is intensified with

the increasing proportion of constant power loads. Nadeem

Jelani has worked to find out the nature of this relationship

and investigated the previous works on this issue. A pro-

posal for using distributed CPLs for asymmetrical fault ride

through (FRT) instead of using a centralized STATCOM is

presented in [80]. To solve the instability problem, the authors
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TABLE 5. Modeling and analysis of AC microgrid.

FIGURE 20. Control structure of conventional P/f and Q/V droop
control [70].

introduced a STATCOMcompensation technique in [81]. The

novel techniques and tools for AC microgrid proposed in

different research works are tabulated in Table 7.

FIGURE 21. Source in constant power mode with controlled DC
voltage [71]. The switching signal to the VSC is generated by the sinusoidal
pulse width modulation (SPWM) circuit, which is controlled by signals
(in dq-frame) from the phase-locked loop (PLL) and the current controller.

On another occasion, in [82], Immersion & Invariance

control technique has been presented. Tools for large signal

stability analysis by estimating the domain of attraction of

the system operating point is presented in [83], which helps

to design the system to optimize the criteria of the stability
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TABLE 6. Controller intervention of AC microgrid.

FIGURE 22. Typical architecture of CPL in an AC microgrid containing a
rectifier, RLC filter and converter [78].

with CPLs. Acevedo and Molinas [84] worked on islanded

mode operation of the microgrid system. To have apprecia-

ble operational performance, they introduced a four-wire-

grid architecture to implement renewable energy resources

in islanded mode operation. Next, Jelani and Molinas [85]

used discrete Fourier transformation. Besides that, they have

implemented vector control techniques to develop a shunt

filter as a constant power load compensator. After that, to

analyze the CPL stability, single phase matrix control

(commonly known as SPMC) technique has been illus-

trated in [86]. The rectifier system proposed here is shown

in figure 23, whose output impedance is defined by

equation (42).

Zo =
sL(1 + sRC2)

s2LRC1C2 + s2L(C1 + C2) + sRC2 + 1
(42)

Voltage gain of LC filter with passive damping network:

VC

VS
=

1 + sRC2

s3LRC1C2 + s2L(C1 + C2) + sRC2 + 1
(43)

And the transfer function:

H (s) = −R = −
1

K
=
s2L(C1 + C2) + 1

s3LC1C2 + sC2
(44)
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TABLE 7. Novel techniques and tools of AC microgrid.

Jelani and Molinas [87] used vector control techniques to

mitigate the CPL instability issues. Vector control technique

is a technique in which a voltage source converter is used

as a CPL load. By using this technique on distribution sys-

tem, they have conducted phase margin analysis of the AC

microgrid system. Besides that, in [88], a novel technique

has been introduced to stabilize the CPL-based AC system.

It covered the automotive system as well as the localized

microgrid system. Here, large signal phase plane analysis and

system level analysis have been presented. In [89] a numerical

procedure is presented to calculate the time for a capacitor to

supply a CPL through a DC-DC converter by observing the

deviation in terminal voltage.

VI. CLASSIFICATION OF COMPENSATION TECHNIQUES

During the literature review for our research studies, we have

noticed that all available techniques for CPL compensation

can be classified into several groups of common criteria based

on the location where the compensations are applied. The

classifications are mentioned below.

FIGURE 23. Rectifier system proposed in [86], it has a LC filter connected
to a passive damping network created by R and C2.

• Feeder side compensation to make the system robust

against CPL instability.

• Compensation by adding intermediate circuitry or ele-

ments between the feeder side and load to enhance sys-

tem stability.
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FIGURE 24. Usage of different compensation techniques according to the
compensation side. Feeder side compensation is the most used one,
while load side compensation appears to be the least popular.

FIGURE 25. Comparing the use of different techniques for stable
operation with CPL on various aspects. Nonlinear design approach can be
seen as the most used one, with most of the compensation done at the
feeder side, while the analysis is done in the time domain predominantly.

• Load side compensation so that the system does not

experience the effect of constant power loads.

From the review analysis, we have the infographic shown

in Fig. 24 that indicates the distribution of the techniques used

to retain microgrid stability. It is evident that feeder side com-

pensation techniques are mostly used for microgrid stability.

Recently, the load side compensation technique has grown

into themost robust technique for this purpose. Fig. 25 depicts

the infographic on the frequency of generalized techniques

FIGURE 26. Frequently used techniques and tools to mitigate the
instability due to CPL.

FIGURE 27. Design approach of the stability techniques concerning
Constant Power Load. Nonlinear approach is the one that is adopted
mostly, followed closely by the hybrid system.

to mitigate CPL instability. This infographic includes statis-

tics on design approaches, compensation sides, and analyzed

domain apropos of the overall research works. In the case

of design approaches, it can be seen that nonlinear control

techniques were majorly adopted to mitigate microgrid insta-

bility. Hybrid techniques combining both linear and nonlinear

technique were also proposed by several researchers on this

occasion.

Another infographic is shown in Fig. 26 that illus-

trates the frequency of the techniques employed to mitigate

CPL instability. Then, the infographic on the frequency of
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FIGURE 28. Used Simulation platforms or experimental environment for
analysis and verification.

linearized, non-linearized, and hybrid techniques used on

stability purpose is presented in Fig. 27. After that,

Fig. 28 depicts the infographic on the frequently used plat-

forms to analyze system stability. Based on application

and compensation criteria, among the various techniques

employed to mitigate the instability of microgrid with con-

stant power load, damping techniques and small signal anal-

ysis are used most frequently along with various filters and

feedback controllers. Sliding mode control techniques are

also popular in compensating nonlinear systems with CPL.

From this figure, it can be seen that MATLAB/Simulink

based analyses are mainly adopted in the research purposes

on this regard. Then, EMTDC, PSCAD, Oscilloscope, and

Pspice are also frequently used to analyze system stability.

Though not frequently, OPAL-RT, PSIM, SABER, PLECS,

RTDS, AP300, and Simplis simulators are used on this pur-

poses too in several occasions.

VII. CONCLUSION

In this paper, initially, the inclination towards microgrid sys-

tem has been justified by discussing a number of advantages

of it over the conventional utility grid system. Despite these

advantages, the future of microgrid systems faces a potential

challenge coming from instabilities due to the increasing

proportion of CPL load. The research works conducted on

stabilization of DC microgrid system have been reviewed

thoroughly in this paper. Besides that, a comprehensive study

has been conducted on the state of art researches on sta-

bilization of AC microgrid system. After reviewing these,

a generalized classification has been depicted on the sta-

bilization of microgrid system with elaborated subsections

of each. According to this classification, the stabilization

techniques can basically be classified as: a) feeder side

compensation, b) compensation by adding intermediate cir-

cuitry, and c) load side compensation. Then, the merits and

the drawbacks of each generalized technique have been ana-

lyzed to determine the suitable compensation technique to

retain the stability of microgrid systems. Then, several info-

graphics have been presented to present the findings of this

review study from different aspects.
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