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Abstract

Red and purple grape juices (GJs) have long been consumed worldwide for their unique taste and nutritive value. Moreover,
grape is postulated to play an important role in the improvement of cardiovascular risk factors owing to its rich polyphenol
content. Little is known regarding GJ’s holistic chemistry and functionality as compared to those of other fruit juices. This
review aims to compile the state-of-the art chemistry of colored grape juices and in context to its analysis and nutritional
values. Further, a review of potential contaminants to be introduced during manufacturing and other factors that influence
juice quality and or health effects are presented to help maximize GJ’s quality. A comparison between analytical methods for
juice QC establishment is presented employing hyphenated platforms versus direct spectroscopic techniques. The enrichment
of the colored skin with a myriad of phenolics poses it as a functional beverage compared to that of skinless juice.
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Introduction

Grapevines [ Vitis spp.] are cultivated worldwide, leading to the
development of different species and or varieties (Sargolzaei
et al., 2021). There are three widely known Vitis species: Vita-

Highlights . ' ' ceae V. vinifera: European grapevines, V. labrusca: Ameri-

o A full comprehensive report on profiling of GJ as a functional can grapevines, and V. rotundifolia: Muscadine grapevines
beverage. o .

o Identified contaminants and their accepted levels for better (Rehman et al., 2018). V. vinifera, grapevine, represent the
quality of GJ. most widely planted grape species used for wine, juice, and

. Piffer?nt GJ processing techniques, their advantages, and raisin production (Sargolzaei et al., 2021). Grapevine fruit is a
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berry which could be red, white, or purple in color. Anthocya-
nins, a widely distributed pigment class in grapevines, vary as
per each variety. Major anthocyanins in grape include deriva-
tives of delphinidin, petunidin, cyanidin, peonidin, and malvi-
din, all of which are biosynthesized via the flavonoid pathway.
Anthocyanins influence grape fruit skin color and the juice and
wine color as well as color stability through storage (Ju et al.,
2021). The difference in color is attributed to these natural
pigments which vary in content according to genetic, envi-
ronmental, and agronomical factors (Quina & Bastos, 2018).
It was recently demonstrated that white grape could have been
derived as a mutation of the red one (Ferreira et al., 2019). As

o Different analytical procedures followed for GJ QC with future
perspectives to maximize its value.
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a result of having high sugar levels, pectin, various aromatic
compounds, and high levels of acids, i.e., tartaric acid mainly,
grapes are amenable to many different end uses. The juice
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of grapes is recognized for a combination of sweetness and
acidity taste which makes it appealing to humans (Sanyiirek
& Cakar, 2018). Grape juice (GJ) could also be further pro-
cessed, e.g., pasteurized, to attain a long tasting product with
improved shelf life. The juice is also widely used as a natural
sweetener in several industries aside from being manufactured
as juice and exploited to wine production with USA, Brazil,
and Spain as the main producing countries (Margraf et al.,
2016; VAunez-Armenta et al., 2018). Grapes could be also
sold as nutraceuticals owing to their antioxidant properties
and many other health benefits (Georgiev et al., 2014). The
most cultivated V. vinifera comprises up to 5000 true culti-
vars (cvs.), used in wine, table (fresh fruit), and dried grape
manufacturing around the world. Improvements to these cvs.
initially relied largely on random selections of natural muta-
tions and or classical breeding to improve agronomic traits and
ultimately juice quality.

Grapevines can be differentiated by species type and geo-
graphical origins where they are cultivated. For example, in
South, North, and Central America, purple grape juices, nec-
tars, and concentrate originate principally from V. labrusca
varieties, such as Bordeaux, Concord, and Isabel, whereas
in Brazil, the production of grape juices is mainly based
on hybrids of V. labrusca grapevines. In Chile, Argentina,
and Uruguay, V. vinifera varieties “red and blue grapes”
are commonly used to produce grape juices (Lutz et al.,
2011). Muscadine (V. rotundifolia) is the main variety used
for juice production in European countries, with the most
distinguished varieties named Cabernet sauvignon, Mer-
lot, Pinot noir, and Syrah (Chira et al., 2011) used for wine
manufacturing owing to their characteristic palatability as
per chemical composition.

The taste of grape juice depends on fruit cultivar type as
well as processing methods as typical in other juice types
(De Vasconcelos Facundo et al., 2010). For example, red
juices prepared from V. vinifera grapevines acquire a more
acidic taste than V. labrusca, as they generally do not pro-
cess well (Cosme et al., 2018).

This review focuses on colored grape juices (GJs) “red
and purple” owing to their unique chemical composition and
health values compared to white juice. This study presents
the most updated and comprehensive review of colored GJ
including its holistic chemical composition in context to
agronomic or cultivar type, analyses, and different process-
ing methods for the first time with future perspectives for
improvement.

GJ Chemical Composition
The chemical diversity of grapevines is composed of pri-

mary and secondary metabolites. Primary metabolites
account for the fruit nutritive value mostly from sugars,
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whereas secondary metabolites present the health benefits
in GJ (Ali et al., 2010).

Grape’s quality relies on both its secondary metabolites as
influenced by various environmental factors “climate, tem-
perature, and water,” whereas it has primary metabolites that
are crucial for the organoleptic characters and palatability
of grapes composed mostly of sugars in ripe berries and its
juice (Cosme et al., 2016; Rienth et al., 2021).

Primary Metabolites

The primary metabolites in grape berries are mostly com-
posed of sugars “mainly fructose and glucose” (Mufioz-
Robredo et al., 2011) and organic acids “not exceeding
more than 1%” (Muifioz-Robredo et al., 2011). Generally,
the qualitative and quantitative differences in grapevines’
primary metabolites are based on extrinsic factors including
temperature, pH, soil type, and agricultural practices, i.e.,
fertilizers, etc. (Rienth et al., 2021; Teixeira et al., 2014), as
highlighted in the next subsections for each metabolite class.

Sugars

Grape sugars (up to 18.36% weight) as a ripening marker
amount for the major component in fresh fruit and juice to
account for its sweet taste and energy intake (Jediyi et al.,
2019). The profile and level of sugars in grapes and conse-
quently grape juice depend on different factors such as grape
maturation stage, region of origin, climate, variety type,
agricultural practices, and processing conditions (Mufioz-
robredo et al., 2011; Navratilova et al, 2020).

Major sugars in juice derived from Vitis vines as well as
in V. vinifera grapes include glucose and fructose followed
by sucrose. Other species than V. vinifera encompasses
sucrose up to 10% as in V. rotundifolia and hybrids of V.
vinifera X V. labrusca (Cosme et al., 2016). Oligosaccharides
detected in GJ include mostly 1-kestose followed by raffinose
(dos Santos et al., 2019; Cosme et al., 2016).

Organic Acids

Organic acids in grapes are mostly represented by L-tartaric
and L-malic acids (90% of total organic acids) in addition to
minor levels of succinic, citric, acetic, and lactic acids (Cosme
et al., 2016). Organic acids are considered crucial for the pre-
servative effect, acidity, and palatability of grape juice and
wine (do Nascimento Silva et al., 2015; Cosme et al., 2016).

Amino Acids
Accumulation of amino acids usually occurs during the last

2 months of grape berry maturation. The major free amino
acids in grape berries and juice are proline “up to 2 g/L” and
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arginine “up to 1.6 g/L” followed by alanine, glutamic and
aspartic acids. The variation of amino acid levels depends
on grape’s variety as well as other environmental conditions
(Cosme et al., 2016; Gutiérrez-Gamboa et al., 2019).

Secondary Metabolites
Volatile Organic Compounds

Volatile organic compounds (VOCs) account for GJ aroma
mostly represented by terpenoids, viz., monoterpenes, ses-
quiterpenes, and carbonyl compounds, to amount for 32.9%
of the total volatile composition in fresh GJ. Linalool, citron-
ellol, geraniol, a-ylangene, bicyclogermacrene, f-ciclocitral,
p-damascenone, and f-ionone “violet aroma” are common in
grape varieties in all their ripening stages, viz., V. vinifera L.
grape varieties, Bual, Malvasia, Sercial (white grapevines),
and Tinta Negra (red grapevines), whereas other less common
volatiles were detected in some ripening stages and in certain
varieties (e.g., f-ocimene isomer, f-gurjunene, y-elemene).
Another class of aromatics, i.e., benzaldehyde, phenylacetal-
dehyde, benzyl alcohol, 2-phenylethanol, and vanillin, were
found mainly in berry skin to account for the primary aroma
that develops during ripening (Noguerol-Pato et al., 2013). Figure
1 shows the major volatile compounds in different grapes.
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Phenolics

Phenolics including flavonoids and non-flavonoids “phe-
nolic acids and stilbenes” (Cosme et al., 2016) are detected
in either berry skin or seeds, and to account for the sen-
sory characteristic, color, and astringent characteristic of
GJ (Cosme et al., 2016). Flavonoids make up a significant
portion of phenolics represented by several subclasses, such
as flavones and flavan-3-ol “proanthocyanidins or tannins”
(Gouot et al., 2019). The deep color of red and purple GJ
is mostly attributed to anthocyanins “specifically in red
grapes” and their glycosides (Rienth et al., 2021; Teixeira
et al., 2014). The next subsections shall present the different
classes of phenolics including flavonoids and non-flavonoids.
Figure 1 shows the major phenolics in different grapevines,
whereas their distribution is shown in Tables 1 and 2.

Phenolic Acids In grape pulps and juice, the major phenolic
acids either free or conjugated with anthocyanins are hydroxy
cinnamic acids. Cinnamates are considered as the third abun-
dant soluble phenolic class after tannins and anthocyanins in
GJ exemplified by p-coumaric, ferulic, caffeic, and the ester
forms (Krdl et al., 2014; Weidner et al., 2013). Table 1 shows
the major phenolic acids in different grapevines (Ali et al.,
2010; Rienth et al., 2021). High phenolic acid levels have
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Fig. 1 Representative figure of the major metabolite classes reported in different grapevines along with potential contaminants detected in juice
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Table 1 Major non-flavonoid phenolics “phenolic acids and stilbenes” classified based on type, origin, and variety reported in different grape-

vines and juice

Type of compound Compound Fruit/juice Origin Variety Reference
Phenolic acids Gallic acid Hybrid GJ Sao Francisco Valley, BRS Cora, BRS Cosme et al. (2018)
Brazil Violeta
Vitis vinifera GJ Tempranillo, Syrah, Obén et al. (2011)
Alicante Bouschet
Caffeic acid Vitis labrusca GJ Sao Francisco Valley, Isabel Precoce Cosme et al. (2018)
Hybrid GJ Brazil BRS Cora, BRS

Stilbenes

Caffeoyl tartaric (caf-
taric acid)

(E)-Caftaric acid

Cinnamic acid

Chlorogenic acid
p-Coumaric acid

Coumaroyl tartaric
(coutaric acid)

(Z/E)-p-Coutaric acid

3,4-Dihydroxybenzoic
acid

4-Hydroxybenzoic
acid

Vanillic acid

Syringic acid

Z/E-Resveratrol

Z/E-Resveratrol-3-O-
glucoside (Z/E-
piceid)

Resveratrol

Vitis vinifera GJ
Vitis vinifera L. GJ

Vitis vinifera L. GJ

Vitis vinifera GJ
Hybrid GJ

Vitis labrusca GJ
Hybrid GJ

Vitis vinifera GJ
Vitis vinifera L. G]

Vitis vinifera L. GJ

Vitis vinifera L. GJ

Mid-South purple
bunch grapes (Vitis
labrusca)

Vitis labrusca GJ
Hybrid GJ
Vitis vinifera GJ

Sao Francisco Valley,
Brazil

Sao Francisco Valley,
Brazil

Sao Francisco Valley,
Brazil

Sao Francisco Valley,
Brazil

Sao Francisco Valley,
Brazil

Hill Farm teaching
facility on the LSU
campus in Baton
Rouge, La., USA

Sdo Francisco Valley,
Brazil

Violeta

Tempranillo, Syrah,
Alicante Bouschet

Red grape Sangiovese
(SG; F9 A5 48
clone), Italy

Tempranillo
BRS Violeta

Isabel Precoce, BRS
Cora

BRS Violeta

Tempranillo, Syrah,
Alicante Bouschet

Red grape Sangiovese
(SG; F9 A5 48
clone), Italy

Isabel Precoce
BRS violeta
Alicante Bouschet

Natividade et al. (2013)
Obdn et al. (2011)

Genova et al. (2012)

Natividade et al. (2013)

Obén et al. (2011)

Oboén et al. (2011)

Obdn et al. (2011)

Natividade et al. (2013)

Obdn et al. (2011)

Genova et al. (2012)

Obdn et al. (2011)

Granato et al. (2015)

Cosme et al. (2018)

Natividade et al. (2013)

been recorded in favor to that of seeds followed by skin and
lowest in grapes pulps/juice “2178.8 mg/g, 374.6 mg/g, and
23.8 mg/g gallic acid equivalent, respectively” (Cosme et al.,
2016). The inclusion of the skin in different grape products
such as GJ could be worthy for its unique chemistry and sev-
eral human health benefits.

Stilbenes Grapes represent a rich source of stilbenes
either present free, glycosylated, or methylated includ-
ing cis, trans resveratrol, its glycoside “piceid,” piceatan-
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nol, astringin, pallidol, and different isomers of viniferin
as shown in Fig. 1. The distribution of different stilbenes
in grapevines is summarized in Table 1 (Flamini et al.,
2013; Sadovoy et al., 2011; Teixeira et al., 2013). Stilbene
accumulation in red grapes was found to be higher than
white ones and rationalizing for the famous French para-
dox in red grapes. Resveratrol, cis and trans are the sim-
plest forms of stilbenes as well as their precursor present
potential health benefits “French paradox.”
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Table 2 Major flavonoids, type, origin, and varieties reported in different grapevines and juice

Type of compound Compound Fruit/juice Origin Variety Reference
Procyanidins Procyanidin A2/B1/B2 Vitis labrusca GJ Sao Francisco Isabel Precoce Obén et al. (2011)
Hybrid GJ Valley, Brazil BRS Cora, BRS Cosme et al. (2018)
Violeta
Flavan-3-ols (+)-Catechin Vitis labrusca GJ Isabel Precoce
Hybrid GJ BRS Cora, BRS

Flavonols

Quercetin

Kaempferol

Isorhamnetin

Myricetin

(-)-Epicatechin
(-)-Epicatechin gallate
(-)-Epigallocatechin

Proanthocyanidins dimer

Quercetin

Rutin “quercetin-O-
rutinoside”

Quercetin-O-galactoside/
glucoside/acetyl
glucoside

Kaempferol-3-0O-
galactoside

Kaempferol-3-0O-
glucoside

Isorhamnetin-3-O-
glucoside

Myricetin-glucuronosyl/
glucosyl/galactosyl

Myricetin

Vitis vinifera L. GJ
Vitis labrusca GJ
Hybrid GJ

GJ unknown origin

Vitis vinifera GJ
Vitis labrusca GJ
unknown origin

GJ unknown origin
Vitis labrusca GJ

Hybrid GJ

Vitis vinifera GJ

GJ unknown origin

GJ unknown origin

GJ unknown origin

Vitis labrusca GIGJ
Vitis vinifera GIGJ

GJGJ unknown origin
Vitis labrusca GJ

Hybrid GJ
Vitis vinifera GJ

GJ unknown origin

GJ unknown origin
Vitis labrusca G

Hybrid GJ (V.

labrusca X V. vinifera)

Vitis vinifera GJ

GJ unknown origin

Sao Francisco
Valley, Brazil

Sdo Francisco
Valley, Brazil

Sao Francisco
Valley, Brazil

Sao Francisco
Valley, Brazil

Sdo Francisco
Valley, Brazil

Sao Francisco
Valley, Brazil

Sao Francisco
Valley, Brazil

Sao Francisco
Valley, Brazil

Violeta
Isabel Precoce

BRS Cora, BRS
Violeta

Tempranillo
BRS Cora

Isabel Precoce, BRS
Cora
BRS violeta

Tempranillo, Syrah,
Alicante Bouschet

Isabel Precoce, BRS
Cora

Syrah, Alicante
Bouschet

Isabel Precoce, BRS
Cora

BRS violeta

Tempranillo, Syrah,
Alicante Bouschet

Isabel Precoce, BRS
Cora

BRS violeta

Tempranillo, Syrah,
Alicante Bouschet

Xu et al. (2011)

Natividade et al. (2013)
Cosme et al. (2018)

Xuetal. (2011)
Cosme et al. (2018)

Natividade et al. (2013)

Xuetal. (2011)

Xuetal. (2011)

Xu et al. (2011)

Natividade et al. (2013)

Xu et al. (2011)
Cosme et al. (2018)

Obén et al. (2011)

Xu et al. (2011)
Xu et al. (2011)

Cosme et al. (2018)

Natividade et al. (2013)

Xuetal. (2011)
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Table 2 (continued)

Type of compound Compound Fruit/juice Origin Variety Reference
Anthocyanins Delphinidin-3-O- Concord, Salvador,
glucoside and Rubired GJ
Vitis labrusca GJ Sao Francisco Isabel precoce, BRS Natividade et al. (2013)
Valley, Brazil cora
Hybrid GJ BRS violeta

Cyanidin-3-O-glucoside

Petunidin-3-0-glucoside

Peonidin-3-0-glucoside

Malvidin-3-O-glucoside

Pelargonidin-3-0O-
glucoside

Cyanidin/delphinidine/
petunidin/malvidin-3-
O-acetyl glucoside

Peonidin acetyl glucoside

Delphinidin/petunidin/
malvidin/Peonidin
coumaroyl glucoside

Vitisin B

Malvidin
3,5-0-diglucoside

Cyanidin-3,5-0-
diglucoside

Petunidin/peonidin 3,
5-O-diglucoside

Cyanidin/petunidin/
delphinidin
3-0O-coumaroyl-5-O-
diglucoside

Vitis vinifera GJ

Vitis labrusca GJ
Hybrid GJ

Vitis labrusca GJ

Hybrid GJ
Vitis vinifera GJ

Vitis labrusca GJ

Hybrid GJ
Vitis vinifera GJ

Vitis labrusca GJ

Hybrid GJ
Vitis vinifera GJ

Vitis labrusca GJ

Hybrid GJ
Vitis vinifera GJ

Sao Francisco
Valley, Brazil

Sao Francisco
Valley, Brazil

Séo Francisco
Valley, Brazil

Sao Francisco
Valley, Brazil

Tempranillo, Syrah,
Alicante Bouschet

Isabel precoce

BRS violeta

Concord, Salvador,
and Rubired GJ

Concord, Salvador,
and Rubired GJ

Isabel precoce, BRS
cora

BRS violeta

Tempranillo, Syrah,
Alicante Bouschet

Concord, Salvador,
and Rubired GJ

Isabel precoce, BRS
cora

BRS violeta

Tempranillo, Syrah,
Alicante Bouschet

Concord, Salvador,
and Rubired GJ

Isabel precoce, BRS
cora

BRS violeta

Tempranillo, Syrah,
Alicante Bouschet

Concord, Salvador,
and Rubired GJ

Concord, Salvador,
and Rubired GJ

Isabel precoce, BRS
cora

BRS violeta

Tempranillo, Syrah,
Alicante Bouschet

Concord, Salvador,
and Rubired GJ

Xu et al. (2011)

Rizzon and Miele
(2012)

Natividade et al. (2013)

Cosme et al. (2018)

Natividade et al. (2013)

Cosme et al. (2018)

Natividade et al. (2013)

Cosme et al. (2018)

Natividade et al. (2013)

Cosme et al. (2018)
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Flavonoids

Flavonols Flavonoids comprise a characteristic makeup in
grapes mainly in the skin and seeds (Rienth et al., 2021), with
flavonols as well as their 3-O-glycosides (Ali et al., 2010)
showing differences in red to white grapes. In red grape
skin, the main flavonol was quercetin (43.99%), followed by
myricetin (36.81%). In contrast, white grape skin was pre-
dominated by the flavonol quercetin at (81.35%), followed by
kaempferol (16.91%) (Ali et al., 2010). The main flavonols in
different grapevines are shown in Fig. 1 and listed in Table 2.
Anthocyanins and Proanthocyanidins “Condensed Tannins”
Both anthocyanins and proanthocyanidins comprise the
major phenolics pool in the skin and seeds of grapevines.
They are typically responsible for the dark color of red and
purple of grapes and their juices (Curko et al., 2017). Antho-
cyanins are biosynthesized mostly in the berry skin from the
start of ripening and ought to be more exploited in the future
for producing anthocyanin-rich GJs (Rienth et al., 2021).

Proanthocyanidins “flavan-3-ols” reported in grapes were
polymers of procyanidins, viz., (4)-catechin, (—)-epicate-
chin, (—)-epicatechin gallate, (+)-gallocatechin, and (—)-epi-
gallocatechin with variation per grape parts. Figure 1 shows
the main proanthocyanidins as well as shown in more details
in Table 2 (Cosme et al., 2016; Curko et al., 2017; Rienth
et al., 2021). Procyanidin dimers and trimers were identi-
fied in grape skin and seeds (Ali et al., 2010). It is worth
mentioning that the enrichment of red grapes with a blend of
procyanidins as catechin and epicatechin polymers poses GJ
as a potential functional beverage (Xia et al., 2010).

In V. vinifera cultivar, anthocyanin derivatives, viz., glu-
cosylation at C-3' of anthocyanins, is known to improve its
stability upon processing. The composition of anthocyanin
glycosylation derivatives varies among the different grape-
vine cvs. (Ali et al., 2010; Rienth et al., 2021). In a previous
study, authors quantified different anthocyanins in different
GJs revealing that cyanidin and malvidin were the major
forms, whereas peonidin was the lowest one (Xu et al.,
2012). Major anthocyanins are shown in Fig. 1 and Table 2.

Contaminants Detected in GJ

Being generally considered safe and of a high nutritional
value, very little evidence questioned their safety and pos-
sible contamination problems either from raw grape fruits
or during manufacturing processes. This section focuses on
different reported contaminants in GJ with emphasis on con-
trol methods for the prevention and or detection to ensure
best juice quality to consumers. Figure 1 shows the chemical
structure of major grapevine contaminants.

Aspergillus and Penicillium Toxins

Ochratoxin A (OTA) is a secondary fungal metabolite pro-
duced by filamentous fungal strains, viz., Aspergillus and
Penicillium species. OTA possess severe health risks if
ingested including nephrotoxicity and hepatotoxicity, and it
is a potential carcinogen (Akdeniz et al., 2013; Wei et al.,
2018). The European Union set OTA maximum accepted lev-
els in grape products as juice, nectar, and wine not to exceed
2 pg/kg (Commission, 2005). Different analytical proce-
dures have been developed for the detection of these toxins
in grapes, wine, juice, and other food products (Wei et al.,
2018). Patulin is a toxic metabolite produced by Aspergillus
and Penicillium with possible human hazards being carci-
nogenic and to be monitored in fruit juices including that of
grape (Cho et al., 2010; Rahimi & Rezapoor Jeiran, 2015).
The identification of patulin during grape juice production
is crucial due to the misuse of moldy grapes (Hussain et al.,
2020).

Alternaria Toxins

Fruits are usually consumed by humans fresh with no pro-
cessing steps that allows for molds’ growth leading to its
spoilage. Molds such as Alternaria, Botrytis, and various
Penicillia types can grow even at refrigeration temperatures.
Strains of A. alternata produce toxic metabolites, i.e., alter-
nariol (AOH), alternariol methyl ether (AME) (Asam et al.,
2009), and tenuazonic acid (TA) (Walravens et al., 2016).

TA could cause serious problems acting as pro-carcinogen
in esophageal mucosa. Consequently, it is crucial to measure
the accepted levels of TA toxins in grape-derived products
(Prendes et al., 2018). Previously, TA was reported at high
levels (139.2-115.5 pg/L) in 42.5% of Iranian grape juice
(Safavizadeh et al., 2020).

Other toxins of A. alternata “AOH and AME” have been
reported in fresh fruits of red seedless and Concord grapes
at different temperatures, which could be limited to red
seedless grapes. The production of such toxins occurs post
3 weeks of incubation at 21 °C with levels at 3.3 “AOH”
and 1.7 pg/g “AME,” respectively. In Concord variety, the
previously mentioned toxins were produced at much lower
levels (Tournas & Stack, 2001) as it may be less susceptible
to A. alternata infection.

In previous literatures, controlling fungal infection of
grapes by Alternaria, Botrytis, Penicillia, and Aspergillus
and lowering their mycotoxins have been suggested. Some
suggestions were raised for lowering mycotoxin contain-
ments. Generally good agricultural practice, efficient aeri-
ation, and continuous visual inspection of damaged berries
in grapevines would be effective in preventing spread of
mycotoxin-producing yeasts (Paterson et al., 2018). The use
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of chemical pesticides as cyprodinil and cyprodinil/fludiox-
onil appeared the most effective in the control of A. carbon-
arius OTA toxins (Paterson et al., 2018). Natural fungicide
and tea tree oil enriched with a-terpineol and terpinen-
4-ol would inhibit the fungal growth and OTA production.
Biological control by using antagonistic yeasts as Hanse-
niaspora uvarum (Gémez-Albarran et al., 2021) and lactic
acid bacteria were found effective in controlling the spread
of OTA-producing fungi in the vineyards. Yeasts such as
Candida friedrichii and C. intermedia inhibit enzymes and
expression genes important for OTA biosynthesis (Welke,
2019). Species of Bacillus were found as promising bio-
logical tools for controlling OTA-producing fungi as they
produce lipopeptides with potential antimicrobial action
(Welke, 2019).

Thermal and Non-thermal Processing
Technologies in GJ

Thermal Technologies for Preservation of GJ

In GJ production, different techniques are implemented
at the industrial level to include mostly either hot or cold
pressing. Generally, grapes are first crushed and heated up
to 62 °C to ease the extraction of grape content. Pectinases
are then added to facilitate juice separation and release of
phenolics in the juice. Heated grapes were macerated with
continuous stirring for the complete extraction of ingredients
“colored anthocyanins and phenolics” (Ayala-Zavala, 2018);
the time of maceration depends on grapevine variety, applied
temperature, and intensity of required color. The cloudy
obtained juice is subjected to clarification from any solid

Y

Crushing  Heating& Maceration &
Pectinases addition Pressing

3 » =i g

Clarification

debris then finally thermally pasteurized at 85 °C—*the
oldest method used”—and then to be bottled (Cosme et al.,
2018). The difference between hot and cold press relies on
the maceration temperature “at room temperature in cold
press,” time, and the addition of pectolytic enzymes (pecti-
nases). The hot-press method yields juice darker in color and
rich in pigments and tannins more than the cold one. Light-
colored grapes are thus more adequate for juice extraction
by cold press than by hot press, and the temperature never
exceeds 62 °C to maintain juice quality and healthy ingredi-
ents (Siricururatana, 2011). Figure 2 shows the summary of
GJ production and different pasteurization techniques high-
lighting their advantages and or limitations.

Grapes and GIJ are rich in phenolics which is correlated
to juice antioxidant effects, in addition to anthocyanins
imparting GJ a darker color (Danigman et al., 2015). The
stability of these phenolics is affected by thermal processing
employed during the production stage. Heat processing is
the oldest and most widely used method to prevent against
microbial growth and to extend juices’ and beverages’ shelf
life. The degradation that occurs during heat treatment upon
exposure for long periods of time due to the high reactivity
and polymerization of anthocyanins is the main cause for the
loss of its characteristic red color and a decrease in health
benefits (Danigman et al., 2015).

In red grape cv. Karasakiz (V. vinifera) GJ from Boz-
caada, Canakkale, Turkey, although an increase by 6.9%
in the antioxidant activity was observed at 70 °C for over
7 h, a decline by 2.4% and 10.3% was observed at the end
of the 7-h heating period at 80 °C and 90 °C, respectively.
This decrease was linked to higher loss in anthocyanins
(Danigsman et al., 2015). Yet in another study, thermal treat-
ment at high temperature but for short periods of time was

uufi

Pasteurization Bottling GJ

U.V radiations

Thermal

” The oldest & common
Anthocyanins & colour

Health benefits

” Total phenolics

” Better quality &
Health benefits

‘ Spores' death

v Spores' death
v Influence of UV absorbents

v Less effective against yeast and fungi

Hydrostatic pressure

ﬂ Effective against yeast and fungi ‘ Keep bioactive components
‘ Spores' death
v Anthocyanins

Pulsed electric field DP-CO2

. Alter microbial cell membrane
‘ Better quality &
Health benefits
‘ Microbial cell membrane
& Grapes variety

‘ Anthocyanin's stability

Fig.2 GJ production with different pasteurization techniques, highlighting for their advantages, and limitations
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more efficient in anthocyanin extraction and consequently its
color intensity. The study was performed in 2 red wine grape
cvs. of V. vinifera from vineyards of Piedmont in Northwest
Italy, which are Malvidin Prevalent Variety (MPV, cv Bar-
bera) and Peonidin Prevalent Variety (PPV, cv Nebbiolo).
In this study (Lambri et al., 2015), the increasing extraction
temperature led to the increased red color due to anthocya-
nins, though with different patterns in anthocyanins’ profile
in examined cvs.

In another attempt, heat processing of grapes “Isabel Pre-
coce” and “BRS Violeta, Brazil” for GJ production for a
short period of time yielded enriched juice with bioactive
components including phenolics upon comparing different
extraction methods to include hot press “heated grapes at
60-65 °C for 30—60 min with addition of pectinases,” cold
press “same procedure but with no heat application,” and hot
break “applying high temperature 75—-85 °C for short time
periods 5—-10 min.” In the hot break procedure, flavanol yield
was the highest (173.4 mg/L), followed by flavonols (34.0)
mg/L. In contrast, anthocyanins were found higher in heat
processing methods at a yield of 221.7 mg/L compared to
cold press at 85.0 mm/L. Phenolic acids were also recorded
at higher levels in hot break (67.3 mg/L), than other extrac-
tion methods (Silva et al., 2019).

Although heat treatment can negatively affect anthocya-
nins’ stability in GJ if subjected for long periods of time,
it can likewise improve the extraction of bioactives from
GJ, i.e., phenolic acids and flavonoids (Silva et al., 2019).
Averilla et al. (2019) established a unique method combin-
ing enzymatic and heat treatment to increase the recovery of
resveratrol and its glucoside by heating grape peel at 95 °C
for 10 min, further subjected to a mixture of exo-1,3-4-
glucanase and pectinases at 50 °C for 60 min which aided in
the release of resveratrol from its glycoside with an overall
increase in yield by 50% (Averilla et al., 2019).

Thermal pasteurization is typically used to extend GJs’
microbial stability by killing microbes. Reduction of 7 loga-
rithms of Zygosaccharomyces rouxii which is the most abun-
dant yeast responsible for GJ spoilage was achieved after
90 s at 75 and 80 °C, and 5 s at 85 °C of the pasteurization
regimen (Rojo et al., 2019). Nevertheless, such method is
unlikely to destroy microbial spores if present in GJ (Farag
et al., 2020).

Non-Thermal Technologies for GJ Preservation

Although conventional thermal processing has several
benefits, non-thermal processing methods represent novel
technologies that have less impact on GJs’ functional and
sensory attributes, while ensuring quality and safety. In the
next subsections, different approaches for non-thermally GJ
processing methods shall be presented to include ultraviolet
irradiation, high hydrostatic pressure, and electric pulsed

field, which are discussed highlighting their applications,
advantages, and or limitations (Putnik et al., 2019).

Ultraviolet Technology

The use of ultraviolet (UV) radiation as a non-thermal tech-
nique has been shown to be both effective and simple com-
pared to other methods used for the preservation of fruit
juices with minimal costs. Aside from preserving physico-
chemical parameters, sensory characteristics, and bioactive
compounds, the technology can efficiently reduce the num-
ber of bacteria in liquid food and drinks without adverse
quality defects (Keyser et al., 2008).

UV light wavelengths ranging from 100 to 400 nm for
food processing are classified as UV-A (320-400 nm),
UV-B (280-320), UV-C (200-280 nm), and UV vacuum
(100-200 nm). UV-C light is especially germicidal at
254 nm and thus employed for disinfecting microorganisms
in food products. The use of this technology has been fre-
quently applied to liquid food and beverage products after
being authorized by the United States Food Drug Adminis-
tration (US FDA) for food pasteurization (cold pasteuriza-
tion) (Groenewald et al., 2013). The exact mechanism of UV
antimicrobial action is mainly due to that microbial DNA
can absorb UV-C which results in the generation of DNA
photoproducts that interfere with the two main vital pro-
cesses for microbial growth, transcription and translation,
leading to cell death (Guerrero-Beltran & Barbosa-Canovas,
2011).

In Groenewald et al. (2013), UV-C treatment of acidic
pH 2.8 GJ concentrate to inactivate Alicyclobacillus spores
was achieved by using the turbulent flow of UV-C radiations
at a dose of 367.2 J/L resulting in 4.6 log 10 reduction in
spores (Groenewald et al., 2013). In another use of UV-C
radiation to inhibit bacterial growth, Moscato and Prosecco
white GJ were treated with a UV-C dosage of 1000 J/L found
effective in killing different microorganisms, viz., yeast Sac-
charomyces bayanus with 67 log population reduction and
Acetobacter, Gluconacetobacter, and Gluconobacter bac-
terial reduction with no influence on the color or chemical
composition of GJ (Lorenzini et al., 2010). Pala and Toklucu
(2013) noted that single-pass UV-C treatment with nine
lamps of red GJ (12.6 J/mL) resulted in a decreased total
aerobic bacterial count by 3.5 log versus 2.8 log reduction
in yeast and mold counts (Pala & Toklucu, 2013). This sug-
gests that UV-C is slightly less effective against yeast and
fungi in preservation compared to bacteria. Inactivation of
the yeast S. cerevisiae VIN13 after applying a pilot-scale
UV-C device (1377 J/mL) showed a comparable 3.1 log
reduction in blue-red GJ (Pala & Toklucu, 2013). In contrast,
post 30 min of treatment with UV-C including a single lamp
with 450 kJ /m? UV-C dose, only a 0.5 log reduction of S.
cerevisiae ATCC 10,274 in violet GJ was observed. Such
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discrepancy could be attributed to differences in juice color,
strain of microorganisms, and the type of cultivar to affect
the efficacy of UV-C light via absorption (Guerrero-Beltran
et al., 2009).

UV permeation is inversely proportional to the medium
absorbance and is therefore influenced by the presence of
food UV absorbents that might affect the dose required for
microbial inhibition. In fruit juices, for example, various sol-
uble compounds, such as polyphenols, sugars, proteins, and
vitamins, may absorb UV-C radiation (Abdul Karim Shah
et al., 2016). In addition, insoluble substances like protein,
carbohydrates, and large tissue molecules could prohibit
or diffuse radiation are also usually one of the hurdles that
should be considered (Csap0 et al., 2019).

With regard to preserving bioactive compound level,
UV-C did not significantly affect total phenolic content or
antioxidant effect of Karasakiz GJ (Averilla et al., 2019), and
in accordance with results in red wine pasteurized using the
Sure Pure UV reactor (Milnerton, South Africa) (Lorenzini
et al., 2010). A comparison regarding UV light effect against
GJ of different colors or origin has yet to be examined to
prove such hypothesis and coupled to physicochemical analy-
sis of these juices, and to optimize for UV-C dose used for GJ
preservation. However, an exhaustive UV-C dose may cause a
photolytic activity of anthocyanins being converted to color-
less pigments as reported by Beltran et al. (2009) and to affect
GJ organoleptic characters. An increase in residence time of
deep violet—colored GJ in the UV-C reactor and a decrease in
juice color were observed as colored anthocyanins absorb the
UV-C irradiation due to its conjugated structure ultimately
leading to fading of GJ color (Guerrero-Beltran et al., 2009).
These findings confirm that UV-C light treatment time and
flow rate of the reactor both play a crucial role in determin-
ing GJ color changes post treatment and to be considered if
applied (Koutchma, 2009).

High Hydrostatic Pressure

One of the powerful non-thermal techniques used for food
preservation that operates at room or at mild process tem-
peratures at pressure values between 100 and 1000 MPa is
high hydrostatic pressure (HHP) known as high-pressure
treatment (HPP). HPP is based on three main operating
parameters as related to thermal pasteurization to include
temperature (7), pressure (p), and treatment time () (Putnik
et al., 2019).

Pathogenic and spoilage bacteria, yeasts, and molds are
inhibited by HPP, though inactive against spores were found,
which is suggestive of other adjuvant treatment for spores’
inactivation or removal if suspected to occur (Farag et al.,
2021). However, optimization of HPP parameters (pressure,
temperature, time) to ensure its effectiveness should con-
sider juice composition, pH, and the water activity. Rojo

@ Springer

et al. (2019) assessed the impact of HHP on concentrated
GJ revealing that a 7-log reduction of Zygosaccharomyces
rouxii could be achieved using over 500 MPa for 2 min.
Asides, increasing the holding time from 3 to 5 min did not
improve the juice shelf life or lead to increased log reduc-
tion values, whereas 300 MPa showed no inhibition towards
Z. rouxii cells. These results are in accordance with that of
Chang et al. (2017) reporting that microbial titers (aerobic
platform count, coliform, and yeast/mold) were not dis-
tinctly lower from those observed in control GJ treated with
300 MPa for 3 min (Chang et al., 2017). However, Rojo
et al. (2019) reported that the vegetative cell population of
Z. bailii showed a 5-log cycle reduction post 5 min of pres-
surization at 300 MPa (Rojo et al., 2019). Whether such
discrepancy is attributed to either differences in sensitivity
among Zygosaccharomyces strains or temperature regimen
has yet to be confirmed.

The effect of polyphenol oxidase (PPO) on ascorbic
acid—fortified GJ (HHP) phytochemical stability post treat-
ment at 400-550 MPa for 15 min revealed that the total PPO
activity showed a threefold increase. Such increase in PPO
was concurrent with a decline in anthocyanins and a further
antioxidant effect, with a 70 and 46% decline at 400 and
550 MPa, respectively, negatively affecting the juice color
and health benefits (Insfran et al., 2007).

Pulsed Electric Field

Pulsed electric field (PEF) is one of the advanced techniques
that could be applied for the preservation of GJ quality and
safety. Food industry interest in PEF is increasing rapidly as
it became more applicable compared to HHP. PEF usage for
mechanical and pre-pressure operation introduces promising
technology that is able to sustain the nutritional and phys-
icochemical properties of juices within the accepted limits
(Putnik et al., 2019).

A physical property called electroporation is caused when
a very short (ms or ps) and fast electric pulse (1-80 kV/
cm) is applied to a food matrix leading to a local structural
disruption of microbial cell (Putnik et al., 2019). Moreover,
the anthocyanins level showed an increase in GJ by pre-
treatment with PEF by17 and 10% compared to thermal con-
ventional methods and HHP, respectively. Such increase is
likely attributed to higher extraction rates of pigments from
pulp during treatment (Tiwari et al., 2009).

Microbial cell characteristics need to be considered in
PEF treatment, i.e., cell size and cell membrane thick-
ness were found to affect the inhibition capacity of PEF.
The larger cells showed higher transmembrane potential
and mediated field strength around the cells, attenuat-
ing PEF treatment resistance. For example, upon apply-
ing 12-24 kV/cm of field strength at a temperature of
30 °C on different microbes, viz., Staphylococcus aureus,
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Escherichia coli DH5a, and Saccharomyces cerevisiae,
treatment time ranged from 30 to 180 ps. The results
showed that the least resistant microbes in PEF treat-
ment were S. cerevisiae followed by E. coli DH5a then
S. aureus. Such difference in sensitivity was mediated
by cell membrane thickness to trigger the electrical field
concentrated in the cell membrane and to increase micro-
organism susceptibility to PEF treatment (Huang et al.,
2014).

Asides from microbial characteristics, grape variety
used in GJ preparation also presents a variable to be con-
sidered when evaluating PEF processing effect and heat
treatment. Regarding GJ nutritional value “antioxidant
activity and protein content” in Mazuelo grapevines, a
9% reduction, versus 13% in PEF and thermal treatments,
respectively, as well protein content showed a lower
level in heat treated GJ (18 +£5 ppm) than that of PEF
(29 +5 ppm). Although GIJ is not an enriched source of
protein, still the nitrogen content is crucial in the wine
industry for its aroma profiling (Marsellés-Fontanet et al.,
2013).

PEF’s effect on purple grape Graciano and red grape
Grenache volatile composition showed different effects
depending on the fruit variety type. In Graciano, differ-
ent treatment conditions revealed a decrease in monoter-
penoids post treatment. However, in conditions where
energy applied was higher (20 ps pulses and frequency
400 Hz), no significant change in terpene level was
observed (Garde-Cerdan et al., 2013). In contrast, in
Grenache the number of monoterpenoids, at whatever
energy input level, showed an increase by 50%. Variation
in terpenoid volatiles among the different varieties was
correlated with the nature, morphology, and composition
of fruit skin or the ease of extraction from Grenache than
Graciano grapes. PEF showed improved f-ionone levels.
While PEF had a beneficial impact on benzenoid level in
Grenache, they were somewhat influenced in Graciano.
Hence, the quality of aroma compounds in Grenache was
improved by applying PEF treatment, though, in Gra-
ciano, no substantial change was observed (Garde-Cerdan
et al., 2013).

PEF lowered the levels of C,; norisoprenoids in
Graciano by 28%, while no inhibition was observed in
Grenache. For ester and benzenoid classes, PEF at low
level (10 ps, 300 Hz) influenced their levels by 62% in
Graciano, while in Grenache, their levels increased by
32% at higher levels of PEF (20 ps, 400 Hz) (Garde-
Cerdan et al., 2013) suggestive of a variety type effect.

Dense Phase or Supercritical Carbon Dioxide

Dense phase CO, processing (DP-CO,) is a continuous,
cheap, accessible, non-thermal processing method for

liquid food preservation that employs pressure (<90 MPa)
with carbon dioxide (CO,) used to prevent against food
spoilage. In the supercritical state, CO, has low viscos-
ity (3-7x 107> Pa s) and zero surface tension giving it the
advantage to improve the penetration power (Tiwari et al.,
2009).

The exact mechanism behind the inhibition power of
CO, is still unknown likely to involve a decline in micro-
bial cell pH, altering cell membrane, cell rending, or loss of
pivotal enzymes (Tiwari et al., 2009). A 6-log reduction in
yeast population was achieved by applying CO, at 85 g/kg.
Increasing the CO, ratio to juice concentration, pressure,
and temperature led to higher rates of microbial inactivation
with no change in sensory characters (Gunes et al., 2005).

Generally, change in GJ color is highly linked with the
degradation of anthocyanins and formation of polymeric
brown or colorless pigments. A study on Muscadine GJ
comparing the effect of dense phase or supercritical car-
bon dioxide (DPCD) and thermal processing revealed no
significant changes in total anthocyanins, whereas 16% loss
was observed in thermal treatment. Moreover, anthocyanin
stability increased upon storage for 10 weeks at 4 °C due to
the elimination of dissolved oxygen, presenting an added
value to GJ quality (Tiwari et al., 2009).

Analytical Techniques Used for GJ Quality
Control Analysis

Different analytical platforms have been implemented to
assess for GJ quality as manifested by its metabolite reper-
toire including aroma compounds and phenolics, and moreo-
ver monitoring the levels of toxins as contaminants from
different molds as Aspergillus, Penicillium, and Alternaria.
Hereby, a summary of the previous reports on the different
analytical techniques implemented for red or purple GJ anal-
yses is presented highlighting their applications, advantages,
and/or any limitations. Table 3 shows the different analyti-
cal tools, validation parameters, advantages, and limitations
used for analysis of grape juice.

Gas Chromatography Mass Spectroscopy
Applications

Gas chromatography mass spectrometry (GC-MS) is the
standard analytical tool typically used for volatiles profiling
in plant samples directly, i.e., terpenoids or post derivati-
zation for small molecular compounds, i.e., sugars, amino
acids, and fatty acids (Hegazi et al., 2021a). Such platform
has been reported for determining the GJ aroma (Dutra
et al., 2018) influence of grape processing on aroma profile
or even the freshness level of the prepared juice (Perestrelo
et al., 2019) as well as identifying volatile contaminants
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(Schueuermann et al., 2019), (Dutra et al., 2018; Perestrelo
et al., 2019).

The aroma of grape-derived beverages “juice and nectar”
depend mostly on its volatile content which varies among
different grapevines as discussed earlier (Dutra et al., 2018).
Liquid-liquid extraction-gas chromatography-mass spectrom-
etry (LLE-GC-MS) was employed in Brazilian grapevines “V.
labrusca and hybrids” for the identification of main aroma
compounds, i.e., “anthranilate (MA), 2'-aminoacetophenone
(2-AAP) and furaneol.” The results show that in BRS (Cora),
MA was detected in nectar samples at higher levels than that
of juice (490-7570 and 460 pg/L, respectively). Higher MA
levels in nectar samples were due to its use as a natural fla-
voring agent to enhance aroma, which favors GJ as bever-
ages over nectar. In “Concord” GJ, MA varied per matura-
tion stages and processing conditions from 155 to 6120 pg/L,
whereas 2-AAP was absent in all juice and nectar samples.
Furaneol was detected in all GJ samples ranging from 150
to 7930 pg/L, and ranging from 450 to 2082 pg/L in nectar.
The implemented method was validated by both LOD and
LOQ. LOD “limit of detection” is the analyte lowest con-
centration that can be measured with statistical significance,
and LOQ “limit of quantification” is the minimum concentra-
tion of the analyte that could be detected quantitatively with
the best accuracy and precision (Jannetto, 2017). The LOD
(23.94 pg/L) and LOQ were 96.277 pg/L for MA and 2-AAP,
respectively (Dutra et al., 2018). A head space solid phase
microextraction of red grape fruits “fresh and processed” fol-
lowed by volatile profiling using GC-MS identified a total
of 169 volatiles, with heat-processed fruit juice character-
ized by the formation of furan compounds (Perestrelo et al.,
2019). The detection of these furans could aid in identifying
the thermal treatment level in GJ as employed for determin-
ing roasting levels in coffee brews (Abdelwareth et al., 2021).
A study identified toxic volatile markers of grape berry juice
as a marker for infection with fungal pathogens, i.e., Botrytis
cinerea, Penicillium expansum, and Aspergillus species “car-
bonarius and niger” of fungal origin using SPME GC-MS
coupled to a chemometric analysis. Different fungal volatiles
have been identified as per difference in pathogen type. Identi-
fied markers were 1,5-dimethylnaphthalene and unknown ses-
quiterpenes of infected grapes with B. cinerea, while m-cresol
and y-nonalactone were markers of P. expansum, whereas for
Aspergillus species, 2-(4-hexyl-2,5-dioxo-2,5-dihydrofuran-
3-yl) acetic acid was the identified marker (Schueuermann
et al., 2019).

Another report on SPME coupled to GC-MS was found
an effective tool in quantifying geosmin, a volatile fungal
toxin of Botrytis cinerea and Penicillium expansum in rotten
grapes leading to an earthy smell of GJ, typical of geosmin.
The method quantified geosmin with R of 0.995, sensitiv-
ity of 0.02 ng/L, LOD and LOQ of 4.7 ng/L and 15.6 ng/L,

@ Springer

respectively, RSD of 4.1%, and recovery rate of 115-134%
(Morales-Valle et al., 2010).

A new technique was implemented for the fabrication
and characterization of new molecularly imprinted solid
phase microextraction fibers (MI-SPME) in extracting tria-
zole fungicides from GJ followed by GC-MS analysis. The
new (MI-SPME) fiber showed an advantage of renewing
its selective binding sites due to thermal degradation of the
polymer network. The method showed good precision and
accuracy; LOQ was at 100 pug/L which was sufficient for
the quantification of triadimenol (100 pg/L), tebuconazole
(2000 pg/L), and metconazole (1000 pg/L) in Brazilian GJ
samples (de Souza Freitas et al., 2014).

In another study, the use of direct barrier discharge ioni-
zation “DBDI” coupled to a new matrix compatible fiber
of SPME-GC/MS was found effective for the detection and
quantification of pesticides “quinoxyfen, trifloxystrobin,
pyraclostrobin, and pyriproxyfen” in a short analysis time.
SPME-DBDI-GC/MS was effective in pesticide analysis
of such complex matrix of GJ samples due to high levels
of sugars and pigments which could implement artifacts in
GC results due to thermal degradation. The results revealed
pesticide LODs of 3 pg/mL and LOQ ranging from 10 to
100 pg/mL (Mirabelli et al., 2018).

Liquid Chromatography and LC-Mass Spectroscopy

The application of HPLC for primary analysis of metabo-
lites, i.e., sugars and acids, has been reported in different
Brazilian “Isabel Precoce, BRS Cora and BRS Violeta”
commercial products using validated HPLC coupled to
refractive index (RID) and photodiode (PDA) detectors,
for detection of sugars and organic acids, respectively
which account for the palatability and sensory attributes
of GJ. As described by authors, the International Vine and
Wine Organization recommends the use of HPLC-RID for
the determination of sugar levels in wine and grape musts.
The validation of the method was achieved through R?
values of >0.9982, precision CV% of less than 1.4, recov-
ery of 76-106%, and LOD and LOQ of 0.003-0.44 g/L
and 0.008-0.199 g/L, respectively. Results revealed
enrichment in sugars “glucose and fructose” detected at
86.61-108.09 and 76.4-92.9 g/L, respectively, with total
sugar levels of 163.31-200.97 g/L. Major organic acids
in GJ included malic acid (1.56-1.92 g/L) followed by
tartaric acid (0.63-5.63 g/L) with a total acid content of
3.60-7.58 g/L. Principal component analysis (PCA) aids in
sample classification as per their processing type, posing
the validated method as an effective QC tool for grapes
and its product analyses (Coelho et al., 2018b). Another
study targeted the identification of the different oligosac-
charides in different North-eastern Brazil GJs using the
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validated method on reversed-phase HPLC/RID equipped
with an RP C18 column with polar end capping. Oligosac-
charides could be utilized as prebiotics to exert a positive
effect on human gastrointestinal health. Estimation of dif-
ferent levels of these oligosaccharides in different GJ sam-
ples could present an added value aside from being used
as beverages. Method validation was achieved through
a linearity range of each oligosaccharide, with LOD at
0.047-0.090 g/L and LOQ 0.179-0.214 g/L for nystose
and 1-ketose, respectively. Oligosaccharides were detected
in GJ samples from both commercial and monovarietal GJ.
In commercial samples, 1-ketose levels were 0.445 and
0.098 g/L in Isabel Precoce + BRS Violeta and Isabel Pre-
coce + BRS Cora, respectively. In monovarietal samples,
BRS Violeta and BRS Cora, the detected levels were 0.224
and 0.399 g/L, respectively. Raffinose was detected only
in monovarietal GJ “BRS Violeta” at 0.196 g/L, whereas
nystose was not detected in either commercial or monova-
rietal GJ (dos Santos Lima et al., 2019).

Phenolics profiling using HPLC-PDA along with min-
eral analysis, viz., Cu, Mn, and Fe, was reported in organic
and conventional monovarietal GJ named Isabel Precoce
(V. labrusca) and BRS Violeta (V. labrusca X V. vinifera)
Brazil. Conventional GJ samples were enriched in pheno-
lics than organic ones exemplified in anthocyanins ranging
from 21 to 469 mg/L. The main anthocyanin was malvidin
3,5-diglucoside detected at 55.5 and 71.4 mg/L, in organic
and commercial GJ, respectively. GJ sample preparation by
hot digestion with nitric acid and hydrogen peroxide was
effective in discoloration to ease mineral detection, with
Fe levels found highest in conventional ones (1.65 mg/L).
Generally, no significant difference was observed between
organic and conventional GJ samples regarding their metal
content (Prudencio Dutra et al., 2018).

The RP-HPLC/PDA (C18) core shell column was uti-
lized as an alternative to UHPLC in profiling V. vinifera,
V. labrusca, and red hybrid-derived GJ. The selected core
shell column improved the selectivity and resolution of
the complex matrix of red GJ post SPE fractionation,
with lower detection levels of 1.2-27.5 ppb and %RSD of
0.04-0.38. Different protocols have been adopted as per
chemical fraction nature. Phloroglucinolysis of condensed
tannin fraction, the non-anthocyanin monomeric fraction
“hydroxy cinnamic acid, esters, and flavonols,” possessed
rapid separation. For anthocyanin analysis, 2 techniques
were attempted, namely, pentafluorophenyl (PFP) col-
umn or C18 reversed-phase column. The PFP column was
found superior in its resolving power for complex antho-
cyanins (diglucosides) enriched in hybrid cvs. (Manns &
Mansfield, 2012).

Anthocyanins in GJ can also be detected using the flu-
orescence detector as reported in red fruits “red Spanish
grapes” (Obon et al., 2011), with the additional advantage of

higher sensitivity of fluorescence detection. A study on GJ of
Sao Francisco Valley in Brazil using HPLC/PDA led to the
identification of 25 phenolics, with anthocyanins and tan-
nins found predominant in red GJ than in white one. Method
validation parameters LOD and LOQ were 0.001-0.19 pg/
mL and 0.003-0.37 pg/mL, respectively (Natividade et al.,
2013).

A reversed-phase HPLC method coupled to positive
ion atmospheric pressure chemical ionization (APCI) was
employed for the determination of total resveratrol “free cis
and trans” as well as resveratrol from “picied glycoside”
after enzymatic hydrolysis in different Concord grape pow-
ders, concentrates, extracts, and GJs. The levels of trans, cis,
and total resveratrol in grape powder were highest at 1185,
216, and 1401 nmol/g, respectively, while those in GJ were
lowest recorded at 1.13, 0.43, and 1.56 nmol/g, respectively,
suggestive for the recovery of resveratrol in juice, though
they need to be tested in other varieties to be conclusive.
Validation of the method was achieved through a regres-
sion coefficient (R) of 0.9999, with LOQ of 0.31 pmol and a
variant coefficient of 2.6%. Compared to electrospray ioniza-
tion, APCI has the broadest dynamic range and linearity of
response and was thus chosen for stilbene ionization (Wang
et al., 2002).

A selective imprinted polymer (MIP-SPE) was reported
for contaminant isolation, i.e., OTA (ochratoxin A) in grape-
vines and juice using HPLC coupled to a fluorescent detec-
tor in GJ samples purchased from local markets in Beijing,
China. HPLC method validation was achieved through a
linearity regression coefficient (R) of 0.9999, detection and
quantification limits of 0.025 and 0.08 ng/mL, recovery
range of 91.6-101.7%, and inter- and intraday precision of
at 1.1% and less than 1.4, respectively (Cao et al., 2013).
In another attempt to quantify OTA in red GJ, RP-HPLC
coupled to a fluorescent detector was used to quantify OTA
using nanosponge “B-cyclodextrin polyurethane polymer”
solid phase extraction. However, the method was less sensi-
tive for OTA detection at 0.5-20 ng/mL with an LOD of
0.2 ng/mL compared to Cao et al. (2013) (Appell et al.,
2018).

LC-MS is increasingly applied for metabolite profiling
in different food matrices (Hegazi et al., 2021a). In grape
analysis, the implementation of LC—MS in profiling com-
plex polyphenolic classes (Xu et al., 2011) identified antho-
cyanins, flavonols, phenolic acids, and proanthocyanidins
in GJ and wine. The application of LC-MS for phenolics
profiling was further extended using chemometric tools to
assess variation in phenolics among 7 grapevine varieties
(Crupi et al., 2015). Another application of chemometric
tools to correlate grapevine’s antioxidant effect to metabolite
profile using HPLC-PDA-MS/MS was reported in 7 table
grapevines cvs. from Apulia, Italy, to produce a nutraceutical
juice. Results attributed grapevine’s antioxidant activity to
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anthocyanin enrichment followed by flavonols and falvan-
3-ols (Crupi et al., 2015).

Direct Spectroscopic Analysis (FT-IR, "H-NMR, VIS-
NIR-MIR, and Fluorescence)

Compared to hyphenated chromatographic techniques, direct
spectroscopic measurement offers a more rapid analysis of
GJ and can be more suited for screening of many samples
and/or QC by manufacturers but is less powerful in exact
metabolite identification (Hegazi et al., 2021b). Fourier
transform infrared (FT-IR) spectroscopy coupled to chemo-
metric tools was used for the discrimination of Concord GJ
in 100% GIJ blends, as well as identification of different GJ
varieties, viz., Concord, Red, White, and Niagara GJ varie-
ties, through the differences in IR aromatic bands of pheno-
lics. The benefit of using FT-IR in the analysis of the food
complex matrix lies in that the technique is rapid, simple,
qualitative, and quantitative, with no sample destruction and
use of hazardous solvents (Snyder et al., 2014).

In another study, quercetin was identified as an indicator
for the freshness level of GJ using a fluorescent probe graphite
carbon nitride (gC3N4) coupled with molecular imprinting
for a better sensitivity and selectivity of quercetin with LOD
of 2.5 ng/mL, recovery range of 90.7-94.1%, and relative
standard deviations of 2.1-5.5%. Quantitative analytical tools
(HPLC and LC) used for quercetin analysis coupled to fluores-
cent detectors have disadvantages such as long analysis time
and high solvent consumption. In the work by Xu et al. (2018),
the use of fluorescence spectroscopy as a direct tool for the
detection of quercetin was reported with no employment
of chromatographic techniques with advantages of a short
analysis time and better physicochemical and photochemical
stabilities. The current limitation of the fluorescence method
lies in working in the UV (dexc =350 nm) which makes the
probe prone to interferences by biomatter to display strong
background UV absorption and fluorescence (Xu et al., 2018).

The utilization of proton-nuclear magnetic resonance
(‘H-NMR) coupled to a chemometric tool, i.e., PCA, for
the quality control of GJ led to the identification of ethanol
in GJ samples as an indication for microorganism fermenta-
tion. Commercial GJs purchased from different local markets
either with preservatives or sweetened by sucrose or both
as well as freshly prepared GJs from producers in Brazil
have been assessed. Results revealed a higher ethanol level
in GJs with sucrose added with no preservatives, where it
could be concluded that sugar aided in the fermentation pro-
cess, whereas added preservatives even in the presence of
sucrose lowered microorganism fermentation. As expected,
ethanol levels increased upon storing at warm temperature,
especially in added sucrose GJ, whereas GJ samples with
no added sucrose showed no ethanol levels during storage
in the refrigerator. '"H-NMR coupled to chemometric tool
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appeared a valuable tool in GJ QC being directly applied to
GJ samples with no prior treatments or extensive purification
steps (Grandizoli et al., 2014).

A comparison of visible (VIS), near infrared reflectance
(NIR), and mid infrared (MIR) spectroscopy coupled to
chemometric tools (PCA) was used to differentiate between
2 Australian grape varieties “Chardonnay and Riesling”
sourced from different wineries “commercial versus small
one.” Differences among samples of GJ could be attributed
to different processing techniques of “pressing” mostly
attributed to respective bands at 780, 1070, and 1256 cm™!
for water, sugars, and phenolic compounds. The PCA plots
of VIS-NIR spectral data were in agreement with that of
ATR-MIR showing characteristic bands of water and sugars
“fructose and sucrose.” MIR and NIR spectroscopy allowed
for the identification of specific groups which were corre-
lated to major chemicals in GJ (Cozzolino et al., 2012).

Front-face fluorescence spectroscopy was reported for the
analysis of commercial New Zealand Pinot noir GJ sam-
ples of closely related vineyards and different grapevine
clones enriched in polyphenolics and aromatic amino acids.
Fingerprinting of samples was recorded via 3-dimensional
excitation and emission matrices (EEM) over multiple exci-
tation and emission wavelengths. Parallel factor analysis
(PARAFAC) is a multiway data analysis methodology that
was applied to identify deconvulated sample components
and classify the dataset. The score plot showed differences
among samples of different vineyard and clones as per their
chemical fluorophores. The excitation/ emission maxima at
278/360 nm were assigned to tryptophan and hydroxy ben-
zoic acid derivatives for vineyard discrimination, whereas
260/390 nm contributed to caffeic acid for clonal differentia-
tion posing such tool as a sensitive technique for the analy-
sis of fluorescent compounds in GJ (Schueuermann et al.,
2018).

ICP-MS Mineral Analysis

Comparison of elemental composition in GJ derived from 19
organic and 17 ordinary grape sources from local markets in
Brazil was reported using inductively coupled plasma mass-
spectrometry (ICP-MS). Higher levels of Ba (5263 ng/g,
1818 ng/g), Ce (2311 ng/g, 1561 ng/g), and La (2080 ng/g,
1204 ng/g) were detected in organic samples rather than
ordinary GJ samples, respectively, while Na (223.77 pg/g,
24.03 pug/g) and V (31.64 ng/g, 9.58 ng/g) were higher in
ordinary GJ than organic ones, respectively. Employment of
multivariate data analysis aided in confirming the authentic-
ity of organic GJ from non-organic ones as per their micro
and macro-elemental composition (Borges et al., 2016a).
Another study confirmed the higher sodium levels in non-
organic GJ using the same platform for the determination of



Food and Bioprocess Technology (2023) 16:1-23

19

elemental levels in both 19 organic and 18 non-organic GJ
samples from different locations in Brazil. Forty-four ele-
ments were quantified with mean values of K and Sn levels
found higher in organic GJ (15,195 ng/g, 45.8 ng/g) than
non-organic samples (6571 ng/g, 18 ng/g), while Na levels
in non-organic GJ was higher (231 ng/g) versus organic ones
(24 ng/g) likely attributed to the use of high Na preservatives
in non-organic GJ (Maione et al., 2016).

Conclusions and Future Directions

This comprehensive review capitalizes on GJ with emphasis
on its holistic chemical composition and sensory characters.
The chemical profiling of grape fruit and GJ is presented in
context to their primary and secondary metabolites.

Stilbenes were abundant mostly in the skin of grapes and
suggestive for the value of skin inclusion during GJ prepara-
tion considering its health benefits. Recovery of resveratrol
in juice was found low compared to its richness in wine
though more evidence is needed by comparing wine to juice
from different cvs. or origin. Application of hurdle tech-
nology seems to be opportunistic with regard to improving
recovery of bioactive compounds during juice preparation,
i.e., enzymatic and heat treatment to increase the recovery
of resveratrol. Exploitation of non-thermal methods in juice
preparation is at the economical level, while ensuring quality
and safety shall aid to produce GJ with improved quality.
The focus on fruit cv. more enriched in anthocyanins inside
the pulp rather than the peel may provide high juice quality.
In GJ, antioxidant activity was found to be more related to
anthocyanins at higher levels compared to other flavonoid
subclasses.

Phenolic markers to distinguish dark skin grapes “red and
purple” from white grapes abundant in the former skin and
seeds typically include anthocyanins and proanthocyanidins.
Proanthocyanidins varied within grape parts, being domi-
nant in the seeds and the skin, and less abundant in while
pulps and juice. Compared to these healthy phytochemicals,
hazardous chemicals in GJ derived from infection by “Asper-
gillus, Penicillium, and Alternaria species” include toxic
metabolites such as ochratoxin A to be monitored in GJ.

To insure GJ quality with least hazards from microbial
infection, different processing techniques are implemented
typically involving heat. Although thermal techniques are the
oldest method that effectively lower the level of microbial
growth, its main drawback lies in loss of anthocyanins in GJ,
a marker for its color and health benefits. Non-thermal tech-
niques were thus increasingly implemented including UV-C
irradiation being effective for preservation of GJ as well as
sustaining its quality. High hydrostatic pressure (HHP) has
an advantage of application of high pressure at mild tem-
perature, though it is not effective against spore control if

present in GJ accidentally. An advanced preservation process
superior to thermal and HHP is pulsed electric field (PEF)
with an advantage of the use of mechanical and pre-pressure
techniques while maintaining the bioactive components and
nutritional value. Another cheap non-thermal method for GJ
preservation is dense phase CO, (DP-CO,), with its microbial
inhibition power found likewise not to affect GJ anthocyanin
stability.

The review also highlights the different analytical tech-
niques used for analysis and quality control assessment of
GJ, highlighting the advantages and limitations of each tech-
nique. Different analytical platforms have been reported for
GJ analysis as per the nature of metabolites in addition to
implementation of new techniques. GC-MS is suited for
analysis of volatile components, with coupling of SPME to
GC-MS increasing its sensitivity in volatile collection and
detection. The use of omics technology has gained attention
for the discrimination of GJ as per their varieties, authen-
ticity, and quality levels, which was implemented for the
detection and classification of volatile mycotoxins in GJ
as contaminant. Detection of pesticide contaminants in GJ
was reported using a novel matrix of SPME fiber coupled to
direct barrier discharge ionization (DBDI)-GC/MS suited
for the analysis of complex GJ samples enriched with sugars
and pigments.

Compared to GC-MS, implementation of HPLC meth-
ods is extensively reported in GJ targeting its phytonutrient
components, i.e., polyphenolics. Utilization of MS detectors
coupled to UV is effective in polyphenolic characterization,
with further chemometric analysis to allow for their level’s
discrimination among grape varieties or GJ. Anthocya-
nins as well as thiol compounds could be detected through
normal and reversed-phase HPLC, respectively coupled to
fluorescent detector in red grapes due its higher sensitivity.
RP-HPLC/APCI has been utilized in the determination of
resveratrol in GJ with APCI presenting the broadest dynamic
range compared to other ionization methods, and to be con-
sidered if stilbenes are the main target for detection in GJ.

To improve the detection limit of contaminants from
microbial infection, i.e., OTA in GJ, several attempts were
reported including MI-SPE-HPLC coupled to fluorescent
detector and or better extraction via the p-cyclodextrin pol-
yurethane polymer in red table GJ. Another indirect tool
for microbial infection based on its fermentation product
appeared through 'H-NMR used for the detection of ethanol.

ICP-MS showed potential in the authentication of organic
GJ from conventional ones based on sodium level. Imple-
mentation of FT-IR spectroscopy in the differentiation of
GJ varieties is of potential based on IR aromatic bands, and
whether direct UV fingerprint is superior has yet to be exam-
ined in GJ. The use of visible, near, and mid IR spectroscopy
was effective in the differentiation of GJ from Australian
varieties depending on their characteristic bands of water,
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sugars, and phenolics. Moreover, the inclusion of bioassays
that can determine enzyme activities or biological effects in
GJ in parallel to chemical analysis should be now pursued.
To conclude, GJ authentication as a potential functional bev-
erage should be subjected to different quality control meas-
ures to insure its health benefits and safety.
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