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ABSTRACT According to the recent studies, malicious software (malware) is increasing at an alarming
rate, and some malware can hide in the system by using different obfuscation techniques. In order to protect
computer systems and the Internet from the malware, the malware needs to be detected before it affects a
large number of systems. Recently, there have been made several studies on malware detection approaches.
However, the detection of malware still remains problematic. Signature-based and heuristic-based detection
approaches are fast and efficient to detect known malware, but especially signature-based detection approach
has failed to detect unknown malware. On the other hand, behavior-based, model checking-based, and
cloud-based approaches perform well for unknown and complicated malware; and deep learning-based,
mobile devices-based, and IoT-based approaches also emerge to detect some portion of known and unknown
malware. However, no approach can detect all malware in the wild. This shows that to build an effective
method to detect malware is a very challenging task, and there is a huge gap for new studies and methods.
This paper presents a detailed review on malware detection approaches and recent detection methods which
use these approaches. Paper goal is to help researchers to have a general idea of the malware detection
approaches, pros and cons of each detection approach, and methods that are used in these approaches.

INDEX TERMS Cyber security, malware classification, malware detection approaches, malware features.

I. INTRODUCTION

In recent years, almost every member of the society has been
using the Internet for daily life. This is because it is almost
impossible to do anything without the Internet including
social interactions, online banking, health related transaction,
and marketing. Since the Internet has been growing rapidly,
criminals have started to commit crimes on the Internet rather
than in real world. Criminals are generally using malicious
software to launch cyber-attacks to the victim machines. Any
software which intentionally executes malicious payloads
on victim machines (computers, smart phones, computer
networks, etc.) is considered as malware. There are differ-
ent types of malware including virus, worm, Trojan horse,
rootkit, and ransomware. Each malware type and family is
designed to affect original victim machine in different ways
such as damaging the targeted system, allowing remote code
execution, stealing confidential data, etc. These days, the
classification of malware is getting harder because some
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malware instances can present the characteristics of multiple
classes at the same time.

In the early days, malware was written for simple purposes,
thus, it was easier to detect. This kind of malware can be
defined as traditional (simple) malware. However, these days,
the malware which can run in kernel mode, and is more
destructive and harder to detect than traditional malware can
be defined as new generation malware (next-generation). This
kind of malware can easily bypass protection software that is
running in kernel mode such as firewalls, antivirus software,
etc. Generally, traditional malware consists of one process
and does not use complicated techniques to hide itself. On the
other hand, new generation malware uses multiple different
existing or new processes at the same time, and uses some
obfuscated techniques to hide itself and become persistent
in the system. New generation malware can launch more
destructive attacks such as targeted and persistent which have
never been seen before, and more than one type of malware is
used during the attacks. The comparison of traditional versus
new generation of malware can be seen in Table 1.

These days, the number, sophistication, and cost of mal-
ware inflicted on the world economy have been increasing
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TABLE 1. Traditional versus new generation malware.

Comparison Traditional New Generation
Parameter
Implementation simple coded hard coded
level
State of behaviors static dynamic
Proliferation each copy is each copy is
similar different
Through spreading uses .exe uses also different
extension extensions
Permanence in the temporal persistent
system
Interaction with a few multiple processes
processes processes
Use concealment none yes
techniques
Attack type general targeted
Defensive challenge easy difficult
Targeted devices general many different
computers devices

incrementally. According to scientific and business reports,
approximately 1 million malware files are created every day,
and cybercrime will damage the world economy by approxi-
mately $6 trillion annually by 2021 [1]. Recent studies show
that mobile malware is on the rise. According to the McAfee
mobile threat report, there is a huge increase in backdoors,
fake applications and banking Trojans for mobile devices [2].
Besides, the malware attacks related to the social media,
healthcare industry, cloud computing, internet of things (IoT),
and cryptocurrencies are also on the rise. According to cyber-
security ventures, ransomware malware will cost around
$11.5 billion globally at the end of 2019 [1].

To protect legitimate users and companies from mal-
ware, malware need to be detected. Malware detection is
the process of determining whether a given program has
malicious intent or not. In early days, signature-based detec-
tion approach was used widely to detect malware. However,
this approach has some limitations such as it cannot detect
unknown and new generation malware. In process of time,
researchers proposed new approaches including behavioral-,
heuristic-, and model checking-based detection. With these
approaches, datamining and machine learning (ML) algo-
rithms are also started to be used widely in malware detec-
tion. Recently, new approaches have been proposed such
as deep learning-, cloud-, mobile devices-, and IoT-based
detection. For known and some of unknown malware, heuris-
tic detection approach performs well. On the other hand,
for unknown and complicated malware; behavior-, model
checking-, and cloud-based approaches perform better. Deep
learning-, mobile devices-, and IoT-based approaches also
emerge to detect some portion of known and unknown
malware. It has not been proved exactly that one detec-
tion approach is more effective than the others. This is
because each method has its own advantages and disadvan-
tages, and in different situation one method can detect better
than another. Even though several new methods have been
proposed by using different malware detection approaches,
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no method could detect all new generation and sophisticated
malware. This shows that building an effective method to
detect malware is a very challenging task, and there is a huge
demand for new studies and methods.

This paper presents the literature review in order to inves-
tigate the current situation of malware detection approaches.
The paper makes the following contributions:

« Explains new technological trends for malware creation
and new approaches to detect malware.

« Investigates the probability of detecting malware.

o Presents a summary of the current studies on malware
detection.

o Explains important approaches and methods for mal-
ware detection.

« Discusses current challenges and proposes new assump-
tions for malware detection approaches.

« Provides a systematic overview of malware detection
approaches and methods for further studies.

The rest of the paper is organized as follows: Section II
demonstrates problem definition. Malware detection tech-
niques and algorithms are explained in section III, and
malware detection approaches are explained in section IV.
Evaluation on malware detection approaches are presented in
section V. Finally, the conclusion and future works are given
in section VI.

Il. PROBLEM DEFINITION

This section investigates the problem of malware and possi-
bility of detection. It can be said that it is impossible to design
an algorithm which can detect all malware. This is because
the problem of detecting the malware has shown NP-complete
in many studies. This is important because before starting to
build an effective detection system, it is a good practice and
experience for researcher to understand the scope, limitation,
and possibility of malware detector. The possibility of detec-
tion malware is remaining problematic because theoretically
it is a hard problem, and practically malware creators using
complicated techniques such as obfuscation to make detect-
ing process very challenging.

A. DIFFICULTY OF PROBLEM IN THEORY

Since the first malware that appeared in the wild was a virus,
most of the studies had been done theoretically were based on
the detection of virus. According to early studies, the detec-
tion of virus is impossible [3]-[5] and NP-complete [6]-[9].
According to F. Cohen, the detection of computer virus is
an undecidable because detection process itself contains a
contradiction [3], [5], [6]. If the detection problem is seen as
a decision-making problem, D (decision-maker) will decide
whether P is a virus or not. According to Cohen, it cannot
be decided whether P is a virus because if P is a virus,
it will be marked by D as a virus and will not be able to
make changes to other programs, as it will not act as a virus.
If D decision maker did not identify P as a virus, P will
interact with other programs to spread and become infected.
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This decision process involves contradiction, and therefore
it is not possible to identify P as a virus. According to
M. Chess and R. White, there is no program that detects
all viruses without false positives (FPs) because viruses are
polymorphic and can be exist in different forms [5]. Accord-
ing to M. Adleman detecting a virus is quite intractable and
almost impossible [7]. This is because according to Godel
numberings of the partial recursive functions, it is not pos-
sible to create detecting mechanism. To reliably identifying
a bounded-length mutating virus is NP-complete explained
in [8]. According to the author, virus detector for certain virus
strain can be used to solve the satisfiability problem. Since
satisfiability problem is known to be NP-complete, so the
detection of the malware is NP-complete. Zuo et al. claim that
there exist computer viruses whose detecting procedures have
sufficiently large time complexity, and there are undecidable
viruses which have no minimal detecting procedure [9].

B. DIFFICULTY OF PROBLEM IN PRACTICE

The new generation malware uses the common obfusca-
tion techniques such as encryption, oligomorphic, polymor-
phic, metamorphic, stealth, and packing methods to make
detection process more difficult. This kind of malware can
easily bypass protection software that is running in kernel
mode such as firewalls, antivirus software, etc. and some
malware instances can also present the characteristics of
multiple classes at the same time. This makes practically
almost impossible to detect all malware with single detection
approach. The definition of common obfuscation techniques
explain as follows:

« Encryption: In encryption, malware uses encryption to
hide malicious code block in its entire code [10]. Hence,
malware becomes invisible in the host.

« Oligomorphic: In oligomorphic method, a different key
is used when encrypting and decrypting malware pay-
load [11]. Thus, it is more difficult to detect malware
which uses oligomorphic method than encryption.

o Polymorphic: In polymorphic method, malware uses a
different key to encrypt and decrypt [12] likewise the key
used in oligomorphic method. However, the encrypted
payload portion contains several copies of the decoder
and can be encrypted in layered [13]. Thus, it is more
difficult to detect polymorphic malware when compared
to oligomorphic malware.

o Metamorphic: Metamorphic method does not use
encryption. Instead, it uses dynamic code hiding which
the opcode changes on each iteration when the malicious
process is executed [14]. It is very difficult to detect
such malware because each new copy has a completely
different signature.

o Stealth: Stealth method also called code protection,
implements a number of counter techniques to prevent it
from being analyzed correctly [11]. For instance, it can
make changes on the system and keep it hidden from
detection systems.
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« Packaging: Packaging is an obfuscation technique to
compress malware to prevent detection, or hiding the
actual code by using encryption [15], [16]. Due to this
technique, malware can easily bypass firewall and anti-
virus software. Packaged malware need to be unpacked
before being analyzed. The packers can be divided into
4 different groups include compressors, crypters, protec-
tors, and bundlers.

In this section, the limitations of malware detecting sys-
tems have been summarized. Current studies demonstrate that
it is almost impossible to write an algorithm to detect all
malware. This is because the computational complexity of
malware is not clear, and the detection of malware problem
is proved to be NP-complete. Besides, the use of new tech-
niques (obfuscation and packing) during malware creation
also makes detection process more challenging.

Ill. MALWARE DETECTION TECHNIQUES AND
ALGORITHMS

In recent years, datamining and ML algorithms have been
used extensively for malware detection. Malware detection
is the process of investigating the content of the program and
deciding whether the analyzed program malware or benign.
The malware detection process includes 3 stages: Malware
analysis, feature extraction, and classification.

A. MALWARE ANALYSIS

In order to understand the content and behaviors of malware,
it needs to be analyzed. Malware analysis is the process
of determining the functionality of malware and answers to
following questions [17], [18]. How malware works, which
machines and programs are affected, which data is being
damaged and stolen, etc. There are mainly two techniques
to analyze malware: static and dynamic [17]. Static analysis
examines the malware without running the actual code [19].
On the other hand, dynamic analysis examines the malware
behaviors while running its code. Malware analysis starts
with basic static analysis and finishes with advanced dynamic
analysis. The malware is analyzed by using reverse engineer-
ing [20] and some other malware analysis tools to represent
the malware in different format. Reverse engineering process
can be seen in Figure 1.

| Source Code €
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v

Control Flow Diagram

v

Assembly Code
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Ly Machine Code B

Reverse
Engineering

Compilation

FIGURE 1. A flow chart of reverse engineering process.
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B. MALWARE FEATURE EXTRACTION

Malware features are extracted by using data mining tech-
niques. Data mining is the process of extracting new mean-
ingful information from large datasets or databases which has
been unknown before this process. In recent years, by using
datamining new models and datasets have been created [21].
There are different models such as n-gram, and graph model
to create malware dataset and features.

1) THE n-gram MODEL

The n-gram is a feature extraction technique which has been
used widely in many areas as well as malware detection.
The n-gram can use both static and dynamic attributes to cre-
ate features. To create features from behaviors, n-gram group
the system calls or application programing interfaces (APIs)
in a consecutive order by specified n (n = 2,n = 3,n =
4,n = 6, etc.) values. Although the n-gram model has been
used widely in malware detection, it has some drawbacks
when determining features. This is because every sequential
static and dynamic attributes are not related to one another.
This makes classification and clustering more challenging for
later processes. Besides, n-gram generates enormous feature
space which increases the analysis time and decreases the
model performance. For these reasons, there is a huge demand
to find out new models to achieve better performance than
n-gram.

2) GRAPH-BASED MODEL

The graph-based model is one of the commonly used tech-
niques to generate features as well. System calls made in
this method are converted into graph G (V, E) such that
V represents nodes which identify system calls and the E
represents edges which identify the relationship among the
system calls. Since the size of the graph increases over time,
sub-diagrams can be used to describe the graph. The sub-
diagram is defined in many studies as NP-Complete. This
means that it requires a lot of time to define each sub-diagram.
After the whole diagram is expressed with fewer nodes and
edges, the programs are identified as malicious or benign.

3) MALWARE DATASET

As in other research areas, there are not many datasets pub-
lished previously which are accepted and widely used for
malware detection. In addition, most of the existing datasets
are not accessible for research, and in most cases the datasets
accessed are not in the appropriate formats for data mining
processes and ML algorithms. The datasets used in mal-
ware analysis can be listed as follows: NSL-KDD, Drebin,
Microsoft malware classification challenge, ClaMP (classifi-
cation of Malware with PE headers), AAGM, and EMBER
dataset.

« NSL-KDD dataset (2009): It is an updated version of
the KDD’99 dataset which consists of approximately
125,000 records and 41 features [22]. It shows the
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network related attacks which are used for intrusion
detection system.

o Drebin dataset (2014): This dataset is created for smart
phones to examine the effectiveness of the existing anti-
virus software [23]. It consists of 5560 malware across
20 families and 123,453 benign samples.

o Microsoft malware classification challenge dataset
(2015): It has been published by Microsoft and consists
of 20,000 malware [24]. Malware has been analyzed
using the IDA packet disassembler and the output should
be processed using data mining prior to ML.

o ClaMP (Classification of Malware with PE headers)
dataset (2016): It consists of 5184 records and has
55 properties [25]. The dataset uses API arrays, contains
examples of malicious and benign software with their
features.

o AAGM dataset (2017): It is a network-based dataset for
android malware [26]. It consists of 400 malware and
1500 benign samples from 12 families [26].

« EMBER dataset (2018): It consists of 1 million records
and holds malware and benign features [27].

These datasets can be used for researches who want to get
some experience before proposing a new malware detection
approach.

C. MALWARE CLASSIFICATION

Machine learning (ML) is a set of algorithm that correctly
estimates the outcomes of the applications without being
explicitly programmed. The purpose of the ML is to convert
the input data into acceptable value intervals by using statisti-
cal analysis. By using ML, many operations can be performed
on related data such as classification, regression and cluster-
ing. ML algorithms have been used in malware detection for
many years [28]. Well-known ML algorithms are Bayesian
network (BN), naive Bayes (NB), C4.5 decision tree variant
(J48), logistic model trees (LMT), random forest tree (RF),
k-nearest neighbor (KNN), multilayer perceptron (MLP),
simple logistic regression (SLR), support vector machine
(SVM), and sequential minimal optimization (SMO). These
algorithms are used especially in behavior-based detection
and some of other detection approaches. Although each algo-
rithm has its own advantages and disadvantages, it cannot be
concluded that one algorithm is more efficient than another.
However, an algorithm can perform better than other algo-
rithms in terms of the distribution of the data, number of
features, and dependencies between properties.

IV. MALWARE DETECTION APPROACHES

In recent years, there has been a rapid increase in the num-
ber of academic studies on malware detection. In the early
days, signature-based detection method was widely used.
This method works fast and efficiently against the known
malware, but does not perform well against the zero-day
malware [21], [29]. In the process of time, researchers have
started to use techniques such as behavior-, heuristic-, and
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FIGURE 2. A flow chart of malware detection approaches and features.

model checking-based detection; and new techniques such as
deep learning-, cloud-, mobile devices-, and IoT-based detec-
tion. Overview of malware detection approaches, features,
and used techniques can be seen in Figure 2.

In each approach, feature extracting method is different one
from another. It could not have been proven one detection
method works better than another because each method has
its own advantages and disadvantages. By using behavior-,
heuristic-, and model checking-based detection approaches;
huge number of malware can be detected with a few behaviors
and specifications. In addition, new malware can be detected
by using these approaches as well. However, they cannot
detect all malware. There is great necessity to find the method
which effectively detects more complex and unknown mal-
ware. Before explaining each detection approach in details,
some well-known methods in each detection approach and
their related works are summarized in Table 2. Then, detailed
literature review is presented, and the pros and cons of each
study are explained.
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A. SIGNATURE-BASED MALWARE DETECTION

Signature is a malware feature which encapsulates the
program structure and identifies each malware uniquely.
Signature- based detection approach is widely used within
commercial antivirus. This approach is fast and efficient to
detect known malware, but insufficient to detect unknown
malware. In addition, malware belonging to the same fam-
ily can easily escape the signature-based detection by using
obfuscation techniques. General view of signature-based
detection schema can be seen in Figure 3.

1) SIGNATURE GENERATION PROCESS

During the signature generation, first features are extracted
from executables (Figure 3). Then, signature generation
engine generates a signatures and stores them into signature
database. When sample program needs to be marked as mal-
ware or benign, signature of the related sample is extracted
as the same way before and compared with signatures on
the database. Based on the comparison, sample program is
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TABLE 2. Summary of related works on malware detection approaches.

Paper Features Representation/ Goal/Success Year
Representation method
Signature-based approach
Schultz et al.[30] Printable strings, DLL and API system Detecting new malware 2001
calls
Karnik ez al. [31] Assembly instructions, cosine similarity | Identify different forms of malware 2007
Cha et al. [32] Vector transformations of file hashes Capture multiple malware with one signature 2011
Baldangombo ez al. [33] | File header information, DLL and API Detection of known malware with a success rate 2013
names 0f99%
Aashima and Bajaj [34] Hybrid based text mining technique to Can predict types of malware with low overhead | 2016
extract instructions
Behavior-based approach
Moser et al. [35] Conditional branching instructions Identify multiple execution paths 2007
Wagener et al. [36] System calls, Hellinger distance, Identify new malware and different forms of 2008
phylogenetic tree malware
Park et al. [37] Creating system call diagrams Identify different forms of malware 2013
Das et al. [38] System call frequencies, n-gram Identify new malware and different forms of 2016
malware
Monire et al. [39] Executive history XML file, nonsparse Identify traditional and new malware 2016
matrix
Heuristic-based approach
Zhang et al. [40] The n-gram byte sequences Identify traditional and different forms of 2007
malware
Griffin et al. [41] Byte sequences Identify different forms of malware 2009
Anderson et al. [42] The n-gram, Markov chain and Identify different forms of malware with 96.41% | 2011
diagrams
Islam et al. [43] Printable strings, API method Identify new and different forms of malware with | 2013
frequencies 97%
Naval et al. [44] Diagram of system calls and relations Detect code insertion attacks 2015
Model checking-based approach
Singh and Lakhotia [45] LTL (linear logic) formulas Identify new and different forms of malware 2003
Kinder et al. [46] Calculation tree validation logic Identify different forms of malware 2005
Beaucams and Marion LTL formulas Identify new and different forms of malware 2009
[47]
Song et al. [48] Determining the stack behavior of the Identify new malware 2012
program using pushdown systems
Cimitile et al. [49] Elective Mu-Calculus Logic and Identify new and different forms of malware 2017
phylogenetic trees
Deep learning-based approach
Saxe and Berlin [50] Contextual byte features, PE import 95% DR with 0.1% FP 2015
features, Score calibration model
Huang and W. Stokes Raw bytes, gradient based attack Show the inefficiency of deep learning 2016
[51]
Dali et al. [52] Hybrid features, DeepFlow technique, High detection F1 score of 95.05%, which 2017
DBN model outperformed traditional ML based learning
Yanfang et al. [53] Greedy layer-wise training operations Improved overall performance when compared 2018
with traditional learning techniques
Cloud-based approach
Martignoni et al. [54] API traces, system calls, dynamic To get multiple execution traces of the same 2009
features malware
Hao et al. [55] Multiple hash functions, reversible Outperform other existing systems with less time | 2015
sketch structure, bucket cross-filtering and communication consumption
method
Xiao et al. [56] Application traces, Dyna architecture, To increase detection accuracy, reduce the 2017
Q-learning strategy detection delay
Mobile devices-based approach
Takamasa et al. [57] System calls To detect unknown malware 2011
Shabtai et al.[58] APIs, permissions To detect new malware 2012
Narayanan et al. [59] Security-sensitive behaviors, context Outperforms two state-of-the-art techniques ona | 2017
information from dependence benchmark dataset achieving 99.23% f-measure
IoT-based approach
Amin et al. [60] Monitors the energy consumption Outperformed KNN, neural networks, SVM and 2018
patterns of different processes RF

marked as malware or benign. There are many different tech-
niques to create a signature such as string scanning, top-and-
tail scanning, entry point scanning, and integrity checking.

o String Scanning: Compares the byte sequence in
the analyzed file with the byte sequences previously
saved in the database. Byte signatures have been
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TABLE 3. Example ClamAV byte signature.

90FF1683EE0483EB0175F6

TABLE 4. “90FF1683EE0483EB0175F6"” Assembly byte sequence.

Start: 0x401A2E length: 0xC
90 nop

FF 16 call dword ptr [esi]

83 EE 04 sub esi, 4

83 EB 01 sub ebx, 1

75 F6 jnz short loc_ 401A30

TABLE 5. Display of byte signatures in Yara format.

Rules
{

strings:

signature = {66 90 FF 16 83 EE 04 83 EB 01 75 F6}
condition:

signature

used extensively by antivirus scanners for many years.
They are often used to detect malware which belongs
to the same family with different signatures [61].
Table 3 shows the ClamAV byte signature [62].
“O0FF1683EE0483EBO175F6” is the hexadecimal rep-
resentation of the relevant code section and it is shown in
assembly language as in Table 4. The same byte signature
is shown in Yara format in Table 5 [62].

o Top-and-Tail Scanning: Instead of the whole file, only
the top and end points of the file are taken and certain
signatures are created [11]. It is a very convenient signa-
ture method to detect viruses that attach themselves to
the beginning and end of files.

« Entry Point Scanning: The entry point of a file indi-
cates where the first run starts when that file starts to run.
Malware usually changes the entry point of a program,
so that malicious code being executed before the actual
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code [11]. Therefore, certain malware can be detected
by extracting the signature from the sequences at the
program entry points.

« Integrity Checking (Hash Signatures): Integrity check
generates a cryptographic checksum such as MDS5 and
SHA-256 for each file in a system at regular intervals,
and it is used to identify possible changes that may be
caused by malware.

Different signature generation techniques have been sum-
marized. Even though these techniques are quite fast and effi-
cient to generate a signature, they are not resistant to malware
obfuscating techniques. For example, malware can easily
change the strings and program entry point in its instruction
set. By this, generated signature may mislead the detecting
schema. To extract more powerful and general signatures, dif-
ferent techniques and features can be used. Detailed review of
signature-based malware detection approach and its methods
are summarized as follows:

2) RELATED WORKS FOR SIGNATURE-BASED DETECTION

F. Zolkipli and Jantan proposed a new malware detection
framework which is based on s-based detection, genetic
algorithm (GA), and signature generator [63]. Even though
the authors claim that this method can detect unknown mal-
ware, there is not enough information given in the paper
for proposed framework such as test results, number of
malware analyzed, and comparison of proposed method with
other existing studies. Tang et al. proposed a bioinformatics
technique to generate accurate exploit-based signatures for
polymorphic worms [64]. The technique involves three steps:
multiple sequence alignment to reward consecutive sub-
string extractions, noise elimination to remove noise effects,
and signature transformation to make the simplified regular
expression signature compatible with current IDSs.

The authors claim that suggested schema is noise-tolerant,
and more accurate and precise than those generated by
some other exploit-based signature generation schemas. This
is because it extracts more polymorphic worm characters
like one-byte invariants and distance restrictions between
invariant bytes. However, proposed schema is limited to
polymorphic worm and cannot be generalized to other
malware types.

Borojerdi and Abadi proposed a MalHunter detection sys-
tem which is a new method based on sequence clustering
and alignment [65]. It generates signatures automatically
based on malware behaviors for polymorphic malware. The
novel method works as follows: First, from different malware
samples, behavior sequences are generated. Then, based on
similar behavioral sequences, different groups are generated
and stored in the database. To detect malware sample, behav-
ior sequences are gathered and compared with sequences
which have been generated earlier and stored in the database.
Based on the comparison, the sample is marked as mal-
ware or benign. The test results showed that by choosing
the cluster radius 0.4 and similarity threshold 0.05, they
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achieved detection rate of 90.83% with a FPR of 0.80%.
The authors claim that proposed schema is resistant to
obfuscation techniques, and it can be used for the generic
detection of all types of polymorphic malware rather than
being limited to a specific malware type. The authors also
claim that the suggested system outperformed state-of-the-
art signature generation methods including Tang et al. [64],
Newsome ef al. [66], and Perdisci et al. [67] previously
reported in the literature. The proposed method is limited to
polymorphic malware and it has been tested on only hundreds
of malware which is not enough to determine the performance
of proposed method.

Automatic string signatures generation (Hancock) is
explained in [41]. According to the paper, proposed schema
can automatically generate high-quality string signatures
with minimal FPs and maximal malware coverage. The pro-
posed method uses a set of library code identification tech-
niques, and diversity-based heuristics techniques to ensure
the contexts in which a signature is embedded in contain-
ing malware files similar to one another [41]. Although the
authors claim that Hancock can automatically generate string
signatures with a FPR below 0.1%, this FPR will be changed
based on benign samples that are analyzed. This is because
benign set is constantly growing, and getting some satisfy-
ing result on some part of benign cannot be generalized to
whole set. Thus, these problems need to be solved for further
studies. Santos et al. proposed n-grams-based file signatures
to detect malware [68]. First, for known files n-grams are
extracted for every file and used as a file signature. Then, for
any unknown instance, n-grams are generated, and by using
measuring function and k-nearest neighbor algorithm [69],
file is marked malware or benign. Paper demonstrated that
n-grams-based signatures can detect unknown malware to a
certain degree.

Efficient signature based malware detection on mobile
devices is proposed in [70]. First, signature has been cre-
ated. Second, hash table has been used to store the hash
values of signatures to increase scanning speed. Finally, sig-
nature matching algorithm is used to compare the signatures.
To eliminate the mismatches, the probability of occurrence
of signature bytes in non-malicious content has been used.
According to the authors, the results have shown that sug-
gested schema performs well when compared to the Clam-AV
scanner, and provides huge memory savings while main-
taining fast scanning speed. The proposed system was only
compared with Clam-AV scanner, which is not enough for
overall evaluation. Zheng et al. presented the Droid Analytics,
an Android malware analytic system which can automatically
collect malware, generate signatures for applications, identify
malicious code segment, and associate the malware under
study with various malware in the database [71]. In proposed
system three-level signature generation schema has been used
to identify each application. The authors assert that proposed
signature methodology provides significant advantages over
traditional cryptographic hash like MD5-based signature, and
resistant to packing and mutations. The proposed system has
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not been compared with other studies in the literature, and
the evaluation metrics are not very high and are not explained
in detail.

3) EVALUATION OF SIGNATURE-BASED DETECTION

In the literature review, signature-based detection methods
have been summarized. Signature-based detection schema
has been used for antivirus vendors for many years and it
is quite fast and effective to detect known malware. This
approach is generally used to detect malware which belongs
to the same family. However, it fails to detect new gen-
eration malware which uses obfuscation and polymorphic
techniques. Besides, it is prone to many FPs and extracting
signature takes a lot of man-power.

Although previous signature-based methods have achieved
some success, they are not enough to detect new generation
malware. To build an effective signature, the following key
points are taken into consideration:

« Signature should be as short as possible and can repre-
sent many malware with single signature,

o Effective automatic signature generation mechanism
must be built,

o During the signature generation, datamining and ML
techniques need to be used more,

« Signature should be resistant to packing and obfuscation
techniques.

B. BEHAVIOR-BASED MALWARE DETECTION
Behavior-based malware detection approach observes the
program behaviors with monitoring tools and determines
whether the program is malware or benign. Although the pro-
gram codes are being changed, the behavior of the program
will be similar; thus, majority of new malware can be detected
with this method [29]. On the other hand, some malware bina-
ries do not run properly under protected environment (virtual
machine, sandbox environment). Hence, malware samples
are may be incorrectly marked as benign.

1) BEHAVIOR DETECTION PROCESS

When establishing a behavior-based detection system,
behaviors are obtained by using one the following
procedure:

« Automatic analysis by using sandbox [18];
« Monitoring of system calls [36], [38];

o Monitoring of file changes [18];

o Comparison of registry snapshots [29];

« Monitoring network activities [17];

« Process monitoring [18].

In behavior-based detection, first, behaviors are deter-
mined by using one of the technique used above and the
dataset is created by subtracting the features using datamin-
ing. Then, specific features from the dataset are obtained and
classification done by using ML algorithms. General view of
behavior-based schema can be seen in Figure 4.
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FIGURE 4. Behavior-based malware detection schema.

2) RELATED WORKS FOR BEHAVIOR-BASED DETECTION
The program similarities using system calls were described
in [36]. Wagener et al. proposed a flexible and automated
technique to extract malware behaviors from the system
calls. The alignment technique has been used to identify
similarities, and Hellinger distance has been calculated to
compute associated distances. According to the paper, obfus-
cated malware variants that show similar behaviors can be
detected. The authors assert that the classification process
can be improved using a phylogenetic tree that represents the
common functionalities of malware. The missing aspects of
the article can be address as the following:

o Lack of knowledge about the malware dataset is shown,

« Statistical evaluation of performance is not provided,

« Comparison of proposed method against other methods
are not given.

Besides, it is not clear how phylogenetic tree can improve
the performance.

The behavior-based detection approach is proposed by
Fukushima et al. in [72]. The proposed method can detect
both unknown and encrypted malware on Windows OS.
The proposed framework checks not only specific behaviors
that malware performs, but also normal behaviors that mal-
ware usually does not perform. According to authors, DR
was approximately 60% to 67% without any FP. The DR
is very low, to increase the DR, more malicious behaviors
can be identified, and to prove the effectiveness of new
method, test set will be extended. Semantics-aware malware
detection is proposed in [73]. The authors are determined
that certain malicious behaviors such as a decryption loop
in a polymorphic virus appears in all variants of a certain
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malware. According to the authors, experimental evaluation
demonstrated that algorithm can detect all variants of certain
malware with noFPs, and is resilient to obfuscation trans-
formations. However, the algorithm has some limitation for
obfuscation transformations. For instance, it cannot handle
instruction replacement very well, and fails to detect mal-
ware which uses this technique. Handling instruction replace-
ment problem and different ordering of memory updates can
improve the performance.

The behavior detection methods which limit the number of
features are represented in [74], [75], [38]. Lanzi et al. [74]
proposed a system-centric behavior model. In proposed
model, the interaction of the malware programs with system
resources (directory, file, registry, etc.) is different from the
benign. The behavior sequences of the program to be marked
were compared with the behavior sequences of the two groups
(malware, benign). The authors claim that the proposed sys-
tem detected a significant fraction of malware with a few
FP. The proposed method could not detect all malicious
activities such as malware which does not attempt to hide
its presence or to gain control of the OS, and which uses
only computer network for transmission. To include network-
related policies, and rules for malware programs that ignore
other applications and the OS can improve the performance.
M. Chandramohan et al. suggested Bounded Feature Space
Behavior Modeling (BOFM) which limits the number of
features to detect malware [75]. In this model, system calls
were transformed into high-level behaviors and features were
created using the behaviors. The feature vector was created
and ML algorithms were applied to the feature vector to
determine whether the given program is malware or benign.
BOFM is fixed dimension which means it does not grow in
proportion with the number of malware samples. This makes
BOFM efficient and scalable in practice. Also, by using
BOFM a better detection accuracy, lower computation times,
and memory usage were obtained. This method ignored the
frequency of system calls. Executing the same system call
repeatedly can cause DoS attacks. Considering the frequency
of system calls can improve DR and accuracy. A hardware-
enhanced architecture which uses a processor and field-
programmable gate array (FPGA) is proposed in [38]. The
authors represented a frequency-centralized model (FCM) to
extract the system calls and construct the features from the
behaviors. Features obtained from the benign and malware
samples were used for training the ML classifier to detect
the malware. The paper claims that the suggested system
achieved a high classification accuracy, fast DR, low power
consumption, and can detect new malware samples. Besides,
proposed method supports early prediction which can detect
malware while malware is still running. However, malware
can perform various behaviors, and there is no uniform policy
to specify number of behaviors and features to be extracted
before triggering the early prediction. Furthermore, the pro-
posed method performance has only been compared with
BOFM and n-gram which is not enough to determine the
efficiency of the proposed algorithm.
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Liu et al. used MapReduce to group malware behaviors
and detect malware [76]. According to the authors, most
of the studies done so far were process-oriented, and deter-
mined a process as a malware only by its invoking system
calls. However, now most of the malware, which is defined
as complex malware, consists of several processes and is
transmitted to the system by driver or by DLL [77]. In such
cases, malware performs actions on victim machine by using
more than one process instead of its own processes. When
only one process is analyzed, malware can be marked as
benign. The paper emphasized persistent behaviors by using
Auto-Start Extensibility Points (ASEP), and based on these
behaviors it differentiated malware from benign. The exper-
imental results showed that the DR improved on previous
research by 28%. However, there are some limitations of pro-
posed method. The limitations of this method can be address
as follows:

« Some malware binaries do not require persistent behav-
ior ASEP,

« Persistent malware behaviors can be completed without
using system calls,

o The cost of data transmission has not been measured.

Besides, the proposed method results have not been compared
with other studies in the literature. Eliminating above limita-
tions can improve the method performance.

A supervised ML model is proposed in [78]. The model
applied a kernel base SVM that used weighting measures,
which calculates the frequency of each library call to detect
Mac OS X malware. The DR was calculated as 91% with
3.9% FP rate. Test results indicated that increasing sample
size increased the detection accuracy, but decreased the FPR.
Combining static and dynamic features, using other tech-
niques such as fuzzy classification and deep learning can
increase the performance.

A graph-based detection schema was defined in [79],
[37]. Kolbitsch et al. [79] proposed a graph-based detection,
in which the system calls are converted into a behavior graph,
where nodes represented system calls and edges indicated
transitions among system calls that showed the data depen-
dency. The program graph to be marked is extracted and
compared with the existing graph to determine whether the
given program is malware. Even though the proposed model
performed well for the known malware, it has difficulties in
detecting unknown malware. A graph-based method which
specifies the common behaviors of malware and benign sam-
ples is represented in [37]. In proposed system, kernel objects
were determined by system calls and behaviors were deter-
mined according to these objects. According to the authors,
the proposed method is scalable and can detect unknown
malware with high DR, and with low FP rates. In addition,
the proposed model is highly scalable regardless of new
instances added and robust against system call attacks. How-
ever, the proposed method can observe only partial behavior
of an executable. To explore more possible execution paths
would improve the accuracy of this method.
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Graph-based malware detection using dynamic analysis
is proposed in [42]. The proposed schema works on graphs
which are constructed from dynamically collected instruction
traces of the target executable. Markov chains have been used
in which the vertices are the instructions and the transition
probabilities are estimated by the data contained in the trace.
They constructed similarity matrix which is combination of
graph kernels between the instruction trace graphs. They per-
formed classification by using SVM on similarity matrix. The
results showed that there is a significant improvement over
signature-based and other machine learning-based detection
techniques. For the test case, modified version of Ether frame-
work has been used. There are some limitations of Ether
system including:

« Ether is not completely invisible which means that some
intelligent malware can detect it and does not show their
real behaviors,

o Ethernet card can be emulated by the underlying Xen
system and string settings can be changed by malware,

« Ether is quite slow for malware analysis.

Using different framework can increase the performance.

Mojtaba and Hashemi proposed a graph mining method
for detecting unknown malware binaries [80]. First, the paper
extracted control flow graph (CFG) from programs and com-
bined it with extracted API calls to have more information
about executable files. This new representation model was
called API-CFG. Then, the CFGs were converted to a set
of feature vectors. Finally, the classification was performed
by ML algorithms. According to the authors, the proposed
method classified unseen benign and malicious code with
high accuracy, and outperformed n-grams based detection
method. However, the paper did not evaluate the performance
for obfuscated malware, and also did not compare the results
with known methods. To compare performance with other
graph mining approaches may generate more trustworthy
results.

3) EVALUATION OF BEHAVIOR-BASED DETECTION

In literature review, behavior-based detection approach and
related methods have been summarized. Detection schema
based on behaviors consists of 3 steps:

« Determine behaviors (datamining can be used),
o Extract features from behaviors (datamining is used),
o Apply classification (machine learning is used).

Data mining techniques such as n-gram, n-tuple, bag, graph
model, etc. have been used to determine the features from
behaviors; Hellinger distance, cosine coefficient, chi-square,
etc. (probability and statistical method) distance algorithms
are used to specify similarities among features. The diffi-
culties in defining a behavior, the large number of extracted
features (when using n-grams, etc.), and the difficulties
in identifying the similarities and differences among the
extracted properties have prevented the creation of an effec-
tive detection system. Besides, some malware does not
run properly within the virtual machines/sandboxes, and
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advanced code obfuscating techniques prevent malware from
being analyzed correctly. The use of new methods and tech-
niques along with the use of ML and data mining algorithms
in malware detection has begun to play a major role when
generating features meaningfully. There is huge demand for
more scientific studies to cover shortcomings of existing
methods. This study has summarized the existing researches
and makes suggestions to fill the gap.

C. HEURISTIC-BASED MALWARE DETECTION

In recent years, heuristic based detection approach has been
used frequently [81]. It is a complex detection method which
uses experiences and different techniques such as rules and
ML techniques [10]. Although it has a high accuracy rate to
detect zero-day malware to a certain degree, it cannot detect
complicated malware. Heuristic-based detection schema can
be seen in Figure 5.
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v v
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FIGURE 5. Heuristic-based malware detection schema.

1) RELATED WORKS FOR HEURISTIC-BASED DETECTION

Arnold and Tesauro proposed an automatically generated
Win32 heuristic virus detection in [82]. They automatically
construct multiple neural network classifiers which can detect
unknown Win32 viruses. Generally, heuristic schema has
high FP rate, but the authors claim that by combining the
individual classifier outputs using a voting procedure, the risk
of FP is reduced to an arbitrarily low level. The study is
limited to Win32 virus, and can be extended to other mal-
ware. More malware needs to be examined for this method.
Expert-designed heuristic features can improve the perfor-
mance. Yanfang et al. proposed post-processing techniques
of associative classification for malware detection [83]. The
proposed system greatly reduced the number of generated
rules by using rule pruning, rule ranking, and rule selection.
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This way, the technique did not need to deal with a large
database of rules, which also accelerates the detection time
and accuracy rate. According to the paper, the proposed
system outperformed popular antivirus software tools such as
McAfee, VirusScan and Norton AntiVirus; and outperformed
data-mining-based detection systems including naive Bayes,
support vector machine (SVM), and decision tree techniques.
To collect more API calls which can provide more informa-
tion about malware and identify complex relationships among
the API calls may improve the performance.

Since traditional signature-based anti-virus systems fail to
detect polymorphic, metamorphic, and previously unknown
malicious executables; heuristic-based malware detection is
explained in [84], [85]. Yanfang et al. proposed intelli-
gent malware detection system (IMDS) [84]. The IMDS
used objective-oriented association (OOA) mining that works
based on windows API calls. The method consists of 3
parts: PE (portable executables) parser, OOA rule genera-
tor, and rule based classifier. PE parser extracted Windows
API execution calls from PE. OOA Fast_FP-Growth algo-
rithm used API calls and generated association rules. Finally,
based on the association rules, OOA mining algorithms per-
formed and executables marked malicious or benign. The
paper claims that the proposed system performed better
than other techniques including anti-virus software such as
Norton AntiVirus, McAfee VirusScan and KAV, as well as
the systems using data mining techniques such as naive
Bayes, SVM and decision tree. To overcome the disadvan-
tages of signature-, and behavioral-based malware detection
approaches, B. Zahra, et al. proposed heuristic type of method
which can detect malware that cannot be detected by previous
two approaches [85]. Authors applied learning algorithm to
generate a pattern which was similar to signature. Based on
the signature, new suspicious programs were marked mal-
ware or benign. The paper mentioned API system calls, oper-
ational code (Opcode), n-grams, control flow graph (CFG),
and hybrid features that are used extensively in heuristic
approach [85].

A statistical analysis of opcode frequency distributions to
identify and differentiate modern (polymorphic and meta-
morphic) malware is explained in [86]. A total of 67 malware
executables were sampled statically disassembled and their
statistical opcode frequency distributions were compared
with the aggregate statistics of 20 non-malicious samples.
Test results showed that there is a statistically significant dif-
ference in opcode distribution between malware and benign.
To get more reliable results, more samples need to be ana-
lyzed and suggested method results’ need to be compared
with other well-known heuristic methods. A detection system
that combines static and dynamic features has been suggested
in [43]. According to the paper, combining static and dynamic
features improve the method performance. By combining
these features, the feature vector was constructed and classi-
fied using ML classifiers. The paper claims that the detection
rate of the proposed system is satisfactory and increased when
compared to their first study. However, the probability of
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detecting unknown malware is still low and FPR is high.
Using more distinctive features and train the model with more
malware may improve the method performance for unknown
malware.

Naval et al. [44] suggested a dynamic malware detec-
tion system, which collects system calls and constructs a
graph that finds the semantically relevant paths among them.
To find all semantically-relevant paths in a graph is a NP-
complete problem. Thus, to reduce the time complexity,
the authors measured the most relevant paths, which specify
malware behaviors that cannot be found in benign samples.
The authors claim that the proposed method outperforms
its counterparts because it can detect malware even using
system-call injection attacks at a high percentage, which the
similar methods cannot detect. The paper has some limita-
tions such as performance overhead during path computation,
it is vulnerable to call-injection attacks, and cannot identify
all semantically-relevant paths efficiently. Eliminating these
limitations may improve the performance.

2) EVALUATION OF HEURISTIC-BASED DETECTION

The literature review of heuristic-based malware detection
has been explained. Heuristic-based schema can use both
strings and some behaviors to generate rules, and based on
that rules it generates signature. It uses API calls, CFG,
n-grams, Opcode, and hybrid features when generates a sig-
nature [85]. Although the heuristic-based detection can detect
various forms of known and unknown malware, it is insuffi-
cient to detect all new generation of malware. In addition,
heuristic-based approaches are prone to high FPR.

D. MODEL CHECKING-BASED MALWARE DETECTION
Although model checking is originally developed to verify
the correctness of system against specifications, it has been
used to detect malware as well. In this detection approach,
malware behaviors are manually extracted and behavior
groups are coded using linear temporal logic (LTL) to display
a specific feature [10]. Program behaviors are created by
looking at the flow relationship of one or more system calls
and define behaviors by using properties such as hiding,
spreading, and injecting. By comparing these behaviors, it is
determined whether the program is malware or benign. Model
checking-based detection can detect some new malware to
a certain degree, but cannot detect all new generation of
malware. Model checking-based detection schema can be
seen in Figure 6.

1) RELATED WORKS FOR MODEL CHECKING-BASED
DETECTION

Kinder et al. proposed a flexible method to detect malicious
code patterns in executables by model checking [46]. They
introduced the specification language CTPL (computation
tree predicate logic) which extends the well-known logic CTL
(computation tree logic), and describes an efficient model
checking algorithm. According to the authors, test results
demonstrated that proposed method can detect many worm
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FIGURE 6. Model checking-based malware detection schema.

variants with a single specification. Proposed method has
some limitations as follows:

« Can only detect worm variants,
« Some part of process has to be done manually,
o Performance of proposed method is low.

To get better results, CTPL can be extended to detect other
malware. In addition, more accurate data integrity construc-
tions and efficient data structures can be used to improve the
method performance.

Holzer et al. presented verification technology to specify
and detect malware [87]. They explained malware detection
tool chain which integrates the process of specification devel-
opment, and enables future automated malware analysis with
specification extraction. In this method, malicious behavior is
formalized using the expressive specification language CTPL
based on classic CTL, and extracts a finite state model from
the disassembled executable. Authors claim that a model
checking-based approach can capture the semantics of mal-
ware more accurately than traditional methods, and conse-
quently achieve higher DR. There is not enough information
about proposed method and its test results. To get more
reliable results, more malware and benign samples need to be
analyzed, behavioral dependencies should be clear to extract
more accurate specifications, and the whole process can be
automated.

Kinder et al. proposed a proactive malware detector which
works based on model checking and can detect worm variants
without signature updates [88]. They described a tool that
extracts an annotated control flow graph from the binary and
automatically verifies against a formal malware specifica-
tion. For this, they introduced the new specification language
CTPL, which balances the high expressive power needed for
malware signatures with efficient model checking algorithms.
Test results showed that suggested method can recognize
variants of existing malware with a low risk of FP. The
suggested approach is an early stage and subject to some
limitations:

o Model extraction process is syntactic and does not
include data flow analysis,
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« Malicious behaviors are split across several procedures
and cannot be identified unless procedures are inlined,
which decreases the method performance,

o The macro does not cover all instruction sets of the
x86 architecture.

Eliminating or decreasing these deficiencies will surely
improve the performance.

Beaucamps et al. represented rewriting and model check-
ing which capture high-level malware behaviors when detect-
ing malware [89]. Proposed method uses a rewriting-based
abstraction mechanism which produces abstracted forms of
program traces, independent of the program implementation.
It can handle similar behaviors in a generic way and thus to be
robust with respect to its variants. The authors claim that this
method can be useful for both static and dynamic analysis.
This approach is at an early stage and in the study only
theoretical results are presented. To see the method efficiency,
the proposed method needs to be tested.

Song and Touili proposed a pushdown model-checking
method for malware detection [90]. Proposed schema works
as follows:

« Binary code translates to pushdown systems (PDS),

o The paper introduced a stack computation tree predicate
logic (SCTPL) to represent the malicious behaviors,

« It provides an algorithm to model-check pushdown sys-
tems against SCTPL specifications.

Proposed method reduced the model-checking problem to
checking the emptiness of Symbolic Alternating Biichi Push-
down Systems. The authors claim that they obtained encour-
aging experimental results. However, suggested method
works if the data in the stack cannot be changed by direct
memory access. Identification of android malware families
with model checking is represented in [91]. To show the effec-
tiveness of suggested system most common malware family
in Android environment the DroidKungFu and the Opfake
families have been analyzed. The suggested algorithm can
analyze and verify the java bytecode that is produced when
the source code is compiled. A preliminary investigation has
been also conducted to assess the validity of the proposed
method. The authors mentioned that test results are promis-
ing, and they can identify malicious payloads with a very high
accuracy in a reasonable time. The paper has analyzed only
a few malware families, to extend the analysis and evaluate
more malware families will produce more reliable results.
Also, investigating the payload family tree can give clues
about phylogenies of malware which will result in better
classification.

2) EVALUATION OF MODEL CHECKING-BASED DETECTION

The literature review of model checking-based detection
schema has been summarized. This approach is generally
used for program verification and not used sufficiently for
malware detection. Although it is effective to detect some new
malware variants, it is still insufficient to detect all complex
malware. Besides, it is a complex and resource-intensive
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approach which can provide only a limited view of the mal-
ware. To identify behavioral dependencies more accurately;
extract more accurate specifications; and using effective LTL,
CTL, CTPL formulas can improve the performance. Model
checking-based detection approach can be evaluated at the
early stage, so, to see the effectiveness of the approach, more
studies need to be done.

E. DEEP LEARNING-BASED MALWARE DETECTION

Deep Learning is a subfield of ML that inherited from artifi-
cial neural networks (ANN) which learn from examples. It is
anew approach and widely used for image processing, driver-
less cars, and voice control; but it is not used sufficiently in
malware detection. Although it is quite effective and reduces
feature space drastically, it is not resistant to evasion attacks.
Deep learning-based schema can be seen in Figure 7.
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FIGURE 7. Deep learning-based malware detection schema.

1) RELATED WORKS FOR DEEP LEARNING-BASED
DETECTION

Large-scale malware classification using random projections
and neural networks is presented in [92]. In the suggested sys-
tem, dimensionality of the original input space had reduced
by a factor of 45 (179K/4K). Using suggested architecture,
several very large-scale neural network systems with over
2.6 million labeled samples were trained and achieved clas-
sification results with a two-class error rate of 0.49% for a
single neural network and 0.42% for an ensemble of neural
networks. Authors emphasized that using more hidden layer
could not improve the accuracy. For example, using one-layer
neural network performed better than two and three-layer
neural network. Droid-Sec which uses deep learning- based
detection is proposed in [93]. It used both static and dynamic
analysis and extracted more than 200 features. They used
unsupervised pre-training phase and the supervised back-
propagation phase. In the pre-training phase, they adopted
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the deep belief network (DBN) [94] that utilizes the built
restricted Boltzmann machines (RBM) which is beneficial for
better characterizing Android apps. In the back-propagation
phase, the pre-trained neural network fine-tuned with labeled
value in a supervised manner. This way, the whole deep
learning model is built completely. According to test results,
96% accuracy has been measured which outperformed SVM,
C4.5, LR, and naive Bayes. To analyze more apps and to
automate the analysis processes can be useful to build more
reliable detector.

Deep neural network based malware detection using two
dimensional binary program features explained is in [50].
Proposed framework consists of 3 main parts:

o In the first part, 4 different types of complementary
features from the benign and malicious binaries are
extracted,

« In the second part, deep neural network which consists
of an input layer, two hidden layers and an output layer
has been used,

« In the third part, score calibrator, which translates the
outputs of the neural network, is used and the probability
of the file being malware is measured.

According to the authors, suggested system achieves a 95%
DR at 0.1% FPR over an experimental dataset of over
400,000 software binaries. Even though proposed approach
achieved high accuracy rate on the standard cross-validation,
the performance decreased sharply when split validation was
used. This can be eliminated by using deobfuscation the
binary before feature extraction. Besides, the number of
benign samples is too small when compared with the number
of malware analyzed. To get accurate estimation more benign
samples need to be analyzed.

Huang and W. Stokes proposed a new multi-task deep
learning (multi-task neural network- MtNet) architecture for
malware classification [51]. The proposed model is trained
with data extracted from dynamic analysis of malicious and
benign files. The system is trained on 4.5 million files and
tested on a holdout test set of 2 million files. The paper
claims that MtNet has made a big improvement compared to
a shallow neural architecture. Multi-task learning encourages
the hidden layers to learn a more generalized representation at
lower levels in the neural architecture. Besides, MtNet archi-
tecture also employs rectified linear unit (ReLU) activation
functions and dropout for the hidden layers. ReLU activation
functions cut the number of epochs needed for training a
binary malware classifier in half while dropout leads to sig-
nificant reductions in the test error rate. The main challenge
of this study is that it is almost impossible to increase the
model performance by adding extra layers. Besides, MtNet is
susceptible to attacks and can be evaded. Overcoming these
challenges may improve the model performance.

2) EVALUATION OF DEEP LEARNING-BASED DETECTION
Although deep learning-based malware detection methods
seem new and powerful to detect malware, it can be also
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fooled by evasion attacks. Grosse et al. investigated the
viability of adversarial crafting against deep neural net-
works [95]. The authors mentioned that crafted inputs lead
to deceive ML models which results misclassifications. For
evaluation, DREBIN dataset has been used. They achieved
misclassification rates of up to 80% against neural network,
which shows that adversarial crafting is indeed a real threat
in security critical domains. Kolosnjaji et al. investigated the
vulnerabilities of malware detection methods that use deep
networks to learn from raw bytes [96]. They proposed a
gradient-based attack that is capable of evading a recently-
proposed deep network by only changing few specific bytes
at the end of each malware sample, while preserving its
intrusive functionality. According to their test results, adver-
sarial malware binaries evade the targeted network with
high probability, even though less than 1% of their bytes
are modified.

The literature review of deep learning-based malware
detection has been summarized. Even though it is power-
ful, effective and reduces feature space drastically, it is not
resistant to evasion attacks. Besides, building a hidden layer
takes time and adding extra hidden layers rarely increases the
model performance. Deep learning-based malware detection
approach is quite in the early stages, so more studies need to
be done to identify this approach more correctly.

F. CLOUD-BASED MALWARE DETECTION

Cloud computing has been rapidly developing because it
provides a lot of advantages including easy accessibility, on-
request storage, and decreasing costs. Since cloud has been so
popular, it has also been used to detect malware. Cloud-based
malware detection enhances the detection performance for
Pcs and mobile devices with much bigger malware databases
and intensive computational resources. Cloud-based detec-
tion uses different types of detection agents over the cloud
servers and offers security as a service. A user can upload
any type of file and receive a report whether uploaded file is
malware or not. Cloud-based detection schema can be seen
in Figure 8.

| Cloud |

1 Cloud server F.
& v
Malware detection
mechanism
Host (PCs, mobile
devices, etc.) ¢
- Behavior
detection
‘ Evaluation k

FIGURE 8. Cloud-based malware detection schema.
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Even though cloud-based detection approach has many
advantages, there are some issues with this detecting schema.
Some of disadvantages can be the following:

(1) User needs to upload file contents to the cloud which
can disclose some sensitive data such as location, password,
and credit card information,

(2) The cloud detection mechanism has some over-head
over other detection mechanism, so communication between
the client and server must be optimized, especially for the IoT
and mobile devices.

(3) The lack of real time monitoring for all files within all
locations.

1) RELATED WORKS FOR CLOUD-BASED DETECTION

Sang Kil et al. proposed a design and implementation of a
novel anti-malware system called SplitScreen [32]. It is a dis-
tributed malware detection schema which uses an additional
screening step prior to the signature matching phase found
in existing approach. The SplitScreen’s two-phase scanning
enables fast and memory efficient malware detection that
can be decomposed into a client/server process that reduces
the amount of storage. Proposed method implemented as an
extension of ClamAV which improves scanning throughput
using today’s signature sets by over 2x by using half the
memory. According to the authors, the speedup and memory
savings of SplitScreen improve further as the number of
signatures increases. The proposed method is scalable on a
wide range of low-end consumer and handheld devices. Since
single server is used in the cloud, it will be better to optimize
the server performance, and load some works on client side.

Yanfang et al. presented cloud-based schema which
combines file content and file relations to improve malware
detection results and develops a file verdict system [97].
The system incorporated into the Comodo’s Anti-malware
products, and empirical studies were conducted on large
daily datasets collected by Comodo cloud security center.
The authors claim that their experimental results demon-
strated that the accuracy and efficiency of Valkyrie system
outperform other popular anti-malware software tools such
as Kaspersky AntiVirus and McAfee VirusScan, as well
as other alternative data mining based detection systems.
However, since file relations and file content have different
properties, combining these 2 features directly can decrease
the quality of information including correlation and consis-
tency issues. Using different approaches as well as Joint-
Embedding approach can help to solve the correlation and
consistency problem.

Martignoni et al. presented a framework that enhances
the capabilities of existing dynamic behavior-based detec-
tors. The proposed framework enables sophisticated behavior
based analysis of suspicious programs in multiple realis-
tic and heterogeneous environments in the cloud [54]. The
suggested schema forces sample programs to execute in a
distributed environment including security lab and potential
victim machines. The evaluation results demonstrated that the
analysis of multiple execution traces of the same malware
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sample in multiple end-users’ environments can improve the
results of the analysis with very small overhead. On the other
hand, suggested framework raises the privacy and security
issues, and is prone to various forms of detection and eva-
sion attacks. Solving security related issues and implement
resistant framework against evasion attacks will increase the
framework performance.

A cloud-based anti-malware system called CloudEyes,
which provides efficient and trusted security services for
resource-constrained IoT devices presented is in [98]. For
the client side, CloudEyes implemented a lightweight scan-
ning agent that utilizes the digest of signature fragments to
dramatically reduce the range of accurate matching. For the
cloud server side, CloudEyes presented suspicious bucket
cross filtering, a novel signature detection mechanism based
on the reversible sketch structure, which provides retrospec-
tive and accurate orientations of malicious signature frag-
ments. Furthermore, by transmitting sketch coordinates and
the modular hashing, CloudEyes guarantees both the data
privacy and low-cost communications by transmitting sketch
coordinates and the modular hashing. Authors claim that the
mechanisms in CloudEyes are effective and practical which
can outperform other existing systems with less time and
communication consumption. On the other hand, the detec-
tion rate and accuracy can be further improved. Also, some
methods can be used such as Winnowing Block Shingling
and Winnowing Multi-Hashing to reduce the size of the data
in order to optimize the storage and matching performances
during signature initialization.

Xiao, Liang, et al. investigated the cloud-based malware
detection game, in which mobile devices offload their appli-
cation traces to security servers via base stations or access
points in dynamic networks [56]. They designed a malware
detection scheme with Q-learning for a mobile device to
derive the optimal offloading rate without knowing the trace
generation and the radio bandwidth model of other mobile
devices. The Dyna architecture is used to improve perfor-
mance, and post-decision state learning-based scheme is used
to accelerate the reinforcement learning process.

According to the authors, test results showed that the pro-
posed schemes improve the detection accuracy, reduce the
detection delay, and increase the utility of a mobile device in
the dynamic malware detection game when compared with
the benchmark strategy. Since many different parties com-
municate with each other during the detection process, some
overhead can mitigate the performance including the net-
work transmission delay, detection delay for mobile device,
the cloud processing time, and the local detection delay.
Reducing these delays will improve the performance.

Yadav R. Mahesh presented malware detection system for
cloud environment [99]. The proposed work consists of 2
modules, clustering and classification. In clustering module,
the input dataset is gathered into clusters with the utilization
of Weighted Fuzzy C-means clustering (MFCM) algorithm.
In classification module, the centroid from the clusters is
given to the intermittent Auto Associative Neural Network
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which is used to characterize whether the information is
intruded or not. The authors claim that proposed classifier
successfully identifies the malware with high detection preci-
sion thereby outperforming existing classifiers. The proposed
system performance needs to be improved more in the future.

2) EVALUATION OF CLOUD-BASED DETECTION

The literature review of the cloud-based malware detec-
tion has been summarized. Recently, since cloud computing
is becoming very popular, cloud-based malware detection
has become popular as well. Cloud-based malware detec-
tion enhances the detection performance for Pcs and mobile
devices with much bigger malware databases, and intensive
computational resources. Other advantages of cloud-based
detection are installations, configurations and updating regu-
larly. However, there are some disadvantages of cloud- based
detection. In order to work properly the Internet connection
must be always fast, but in some cases internet connection
is slow. Furthermore, real time monitoring for all files is not
possible in the cloud.

G. MOBILE DEVICES-BASED MALWARE DETECTION

In mobile devices world, Android platform has become the
market leader. According to recent studies, new malicious
app for Android is introduced every 10s. Because of that
researchers have focused on Android platform rather than
other platforms for malware detection. Numerous malware
detection methods have been proposed for smartphones espe-
cially for Android platform. Generally, these methods use
datamining and ML algorithms to detect malware. A number
of different features such as system calls, security-sensitive
APIs, information flows, and control flow structures are used.
Even if current studies have made improvement in detecting
traditional and new generation malware for mobile devices;
detecting of complex malware, and scaling the detection tech-
niques for a large bundle of apps still remain a challenging
task. Mobile devices-based detection schema can be seen
in Figure 9.

1) RELATED WORKS FOR MOBILE DEVICES-BASED
MALWARE DETECTION
Isohara et al. proposed a kernel-base behavior analysis for
Android malware inspection [57]. The system consists of a
log collector and a log analysis application. The log collector
records all system calls and filters events with the target appli-
cation, and the log analyzer matches activities with signatures
described by regular expressions to detect a malicious activ-
ity. They evaluated 230 applications in total. According to
the authors, system can effectively detect malicious behaviors
of the unknown applications. 230 apps are not enough to
measure the efficiency of the suggested system, so more apps
need to be analyzed. Besides, there is no enough information
about DR, accuracy, and FP.

A new framework to obtain and analyze smartphone appli-
cation activity is presented in [100]. The 2 types of datasets
have been used: those from artificial malware created for test
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FIGURE 9. Mobile devices-based malware detection schema.

purposes, and those from real malware found in the wild.
Simple 2-means clustering algorithm is chosen to distinguish
benign applications and their correspondent malware version.
The authors specified that API call analysis, information
flow tracking, and network monitoring technique contribute
to a deeper analysis of the malware, and provide malware
behaviors and more accurate results. The authors identified
that open(), read(), access(), chmod(), and chown() are the
most used system calls by malware. The authors mentioned
that the proposed method has shown to be an effective means
of isolating the malware and alerting the users to downloaded
malware. However, test cases have been done generally on
self-written malware and a few real malware which is not
enough for real evaluation. Thus, more real malware needs to
be analyzed. Moreover, there is no enough information about
metrics which represent the framework performance such as
DR, accuracy, and FP. In addition, the authors did not mention
how they handle zero-day malware.

Host-based malware detection system for Android is pre-
sented in [58], [101]. Andromaly—a behavioral malware
detection framework for Android devices is represented in
[58]. The proposed framework used a host-based malware
detection system that continuously monitors various features
and events obtained from the mobile device and then applies
ML anomaly detectors to classify the collected data as nor-
mal or malicious. They evaluated several combinations of
anomaly detection algorithms, feature selection techniques
and the number of top features to find the combination
that yields the best performance when detecting new mal-
ware on Android. The authors claim that proposed frame-
work is effective for both mobile devices in general and
on Android in particular. However, experiments have been
done on artificially-created malware rather than real malware.
Saracino et al. proposed MADAM, a novel multi-level host-
based malware detection system for Android devices that
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simultaneously analyzes and correlates features at 4 levels:
kernel, application, user, and package to detect malicious
behaviors [101]. In this study, the actions of each malware are
examined and misbehavior classes are generated from mal-
ware behaviors, which encompass most of the known mal-
ware behaviors. According to the authors, MADAM detects
and effectively blocks more than 96% of malicious apps
among the 2800 apps. MADAM is subject to mimicry attacks
which inserting malicious code into benign apps to mislead-
ing the detection system. Besides, the paper did not mention
how they handled unknown malware.

Li et al. introduced significant permission identification
(SigPID) method to detect android malware [102]. Instead
of extracting and analyzing all Android permissions, three
levels of pruning by mining the permission data have been
developed which identifies the most significant permissions
to distinguishing malware and benign. SigPID then utilizes
ML classification algorithms to classify different families of
malware and benign apps. According to the authors’ findings,
only 22 permissions are significant out of 135 when over
2000 malware analyzed. The test results indicated that when
a SVM is used as the classifier, they could achieve over
90% of precision, recall, accuracy, and f-measure; which are
about the same as those produced by the baseline technique.
When proposed schema is compared with other state-of-the-
art methods, SigPID is more effective by detecting 93.62%
of malware in the dataset and 91.4% new malware samples.
To use SigPID features with static features can improve the
performance. A review on feature selection in mobile mal-
ware detection is presented in [103]. In the paper, 100 stud-
ies were examined based on features selection techniques.
They categorized features into 4 groups including: static,
dynamic, hybrid features and applications metadata. The
authors identified that the most common and distinctive static
features are Android permission, network address, strings,
and hardware components; dynamic features are system calls,
network traffic, system components, and user interaction;
hybrid features are permissions and Java code, system calls,
and AndroidManifest.xml; metadata features are category,
description, permissions, contact email, number of screen-
shots, and version. The authors emphasized that some of
examined papers introduced novel methods, however due to
lack of malware sample, authors could not test their systems
thoroughly.

Malware detection using graph kernel for Android is pre-
sented in [59], [104]. Narayanan et al. proposed CASAN-
DRA context-aware, adaptive and scalable android malware
detector through online learning [59]. The authors proposed a
novel graph kernel, which facilitates capturing apps security-
sensitive behaviors along with their context information from
dependence. The authors mentioned that CASANDRA has
specific advantages: it is adaptive to the evolution in mal-
ware features over time, and explains the significant fea-
tures that led to an apps classification as being malware
or benign. According to the authors, CASANDRA outper-
forms two state-of-the-art methods on a benchmark dataset
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achieving 99.23% f-measure. Furthermore, when evaluated
with more than 87.000 apps collected in-the-wild, CASAN-
DRA achieves 89.92% accuracy, which has outperformed
existing methods by more than 25% in their typical batch
learning setting and more than 7% when they are continu-
ously retained. The authors, did not mention how they handle
malware which uses obfuscation techniques and unknown
malware. To improve the model performance different graph
kernel, and API dependencies such as information flows and
permission dependencies can be used.

Narayanan et al. proposed a MKLDROID, a unified frame-
work for Android that systematically integrates multiple
views of apps for performing comprehensive malware detec-
tion and malicious code localization [104]. The MKLDROID
uses a graph kernel to capture structural and contextual
information from apps’ dependency graphs when identifies
malicious code patterns. Then, it employs multiple kernel
learning (MKL) to find a weighted combination of the views
which yields the best detection accuracy. Through large-scale
experiments on several datasets wild apps, authors claim
that MKLDROID outperforms three state-of the-art methods
consistently, in terms of accuracy. In addition, malicious code
localization experiments on a dataset of repackaged malware,
MKLDROID was able to identify all the malware classes with
94% average recall. On the other hand, MKLDROID, cannot
detect all sorts of malicious behaviors and cannot be resistant
to obfuscating techniques. Furthermore, MKLDROID can
be fooled by adversarial attacks. MKLDROID used only
user-awareness contextual information to separate malware
from benign. However, other types of contextual informa-
tion such as probing and device-specific privileges could be
used.

2) EVALUATION OF MOBILE DEVICES-BASED MALWARE
DETECTION

The literature review of the mobile devices-based detec-
tion approach has been summarized. It can use both static
and dynamic features. Although the proposed methods seem
effective when detecting traditional malware, it needs to be
improved to detect up-to-date malware. Besides, it is not
scalable for large bundle of apps. In mobile area, the malware
detection is still in the earlier stages, and there need to be more
studies on this area to fill the gaps.

H. 1oT-BASED MALWARE DETECTION

Internet of Things (IoT) architecture generally consists of
a wide range of Internet-connected smart devices such as
home appliances, network cameras, and sensors. The IoT and
mobile devices have started to dominate the Internet more
than PCs. Since mobile and IoT devices are becoming more
popular among users day by day, they are also becoming more
favorite targets for attackers. Because of that the malware
detection schema landscape is changing from computers to
IoT and mobile devices. IoT-based detection schema can be
seen in Figure 10.
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FIGURE 10. loT-based malware detection schema.

1) RELATED WORKS FOR loT-BASED MALWARE DETECTION
Malware detection approach for IoT devices is represented in
[105], [60]. Novel light-weight technique for detecting DDos
malware in IoT environments is explained in [105]. They
extracted the malware images such as one-channel gray-scale
image from a malware binary, then utilized a light-weight
convolutional neural network for classifying their families.
According to the paper, experimental results showed that the
proposed system can achieve 94.0% accuracy for the classi-
fication of benign and DDoS malware, and 81.8% accuracy
for the classification of benign and two main malware fam-
ilies. Even though proposed method is fast and lightweight,
it is vulnerable to complex code obfuscation techniques. The
author mentioned that this problem can be partially reduced
by using more complex static features, such as Opcode
sequences and API calls to a certain degree. Detecting crypto-
ransomware in IoT networks based on energy consumption
footprint for Android devices is represented in [60]. The pro-
posed system use ML algorithms and specifically monitors
the energy consumption patterns of different processes to
classify ransomware from malware applications. According
to the authors, proposed technique outperformed KNN, neu-
ral networks, SVM and REF, in terms of accuracy rate, recall
rate, precision rate and f-measure. The proposed method
description is not clear. Besides, there is no information about
which ransomware family was analyzed and how they han-
dled unknown ransomware. Also, the paper did not mention
any limitations and challenging tasks.

2) EVALUATION OF loT-BASED MALWARE DETECTION

The literature review of the IoT-based detection approach
has been summarized. Although the proposed methods seem
effective when detecting traditional malware, it needs to be
improved to detect up-to-date malware. Besides, the malware
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TABLE 6. Comparison of malware detection approaches.

Malware Detect Resistant to Well-known New
Detection unknown obfuscation approach approach
Approach malware
Signature-based x x v x
Behavior-based v v v x
Heuristic-based v x v x
Model checking- v v v %
based
Deep learning- v x x v
based
Cloud-based v x x v
Mobile devices- v x x v
based
loT-based v x x v

detection is still in the earlier stages for 10T, and there need
to be more studies on this area to fill the gaps.

V.EVALUATION ON MALWARE DETECTION APPROACHES
In previous section, malware detection approaches were ana-
lyzed based on the main idea, algorithm types, and feature
extraction methods, etc. This section summarizes detection
approaches and their methods, provides advantages and dis-
advantages of each detection approach, and provides some
suggestions to build a more effective detection schema. The
comparison of malware detection approaches, and advan-
tages, disadvantages of each malware detection approach can
be seen in Table 6 and Table 7, appropriately.

Signature-, behavior-, heuristic-, and model checking-
based approaches are well-known and have been used for
malware detection more than a decade. These approaches are
using reverse engineering, datamining, and ML techniques to
detect malware.

Signature-based detection approach is fast and effective
to detect known malware. During the signature generation;
static features such as byte sequences, assembly instructions,
strings, Opcode, and list of DLLs are used. Signature detec-
tion schema has been used for many years and decreases over-
head and execution time. However, it cannot detect new gen-
eration of malware (Table 6), it is vulnerable to obfuscation
and polymorphic techniques, and omitting feature selection.
To build an effective signature-based detection schema: some
dynamic features can be used to avoid obfuscation; feature
selection phase can be added; and new technologies such as
deep learning, active learning, and ML can be used to increase
the detection rate.

Behavior-based detection approach is used to determine
the functionality of malware. Thus, even if malware instruc-
tion sequence and signature may change, the functionality of
malware will be more or less the same. So, it can detect new
malware, and different variants of the same malware [106].
It is also effective against obfuscation and polymorphic tech-
niques (Table 7). However, it produces high FPs. Besides,
some behaviors are similar in malware and benign sam-
ples, so grouping these behaviors is difficult, and some mal-
ware does not run in protected environment and mistakenly
marked as benign. To specify all behaviors correctly, multiple

VOLUME 8, 2020



0. Aslan, R. Samet: Comprehensive Review on Malware Detection Approaches

IEEE Access

TABLE 7. Pros and cons of each malware detection approach.

Malware Detection Pros
Approach

Cons

Signature-Based Fast and efficient for known malware

Insufficient to detect new generation malware

Used for many years

Prone to many FPs

Effective to detect malware which belongs to the same family

Extracting signature takes time
Vulnerable to obfuscation and polymorphic techniques

Determines the malware functionality

Produces high FPs

Effective to detect new malware

Some behaviors are similar in malware and benign samples

Behavior-Based

Effective to detect different variants of the same malware

Impossible to specify all behaviors

Effective against obfuscation and polymorphic techniques

Difficult to group behavior as malicious and normal

Heuristic-Based Can detect some previously unknown malware

Numerous rules and training phases

Can use both static and dynamic features

Vulnerable to metamorphic techniques

Model Checking-

Effective to detect malware that belongs to the same family

Complex and resource-intensive technique

Based Effective against obfuscation and polymorphic techniques

Obtains a limited view of the malware
Cannot detect all new generation of malware

Deep Learning- Powerful and effective

Not resistant to evasion attacks

Based Reduces feature space drastically

Building a hidden layer takes time

Cloud-Based devices

Enhances the detection performance for PCs and mobile

Lacks real-time monitoring

resources

Bigger malware databases and intensive computational

Can disclose some sensitive data such as password, and location

Easily accessible, manageable, and updates regularly

Over-head between client and server

Mobile devices-

Effective to detect traditional and new generation malware

Cannot detect complex malware

Based Can use both static and dynamic features

Cannot scale large bundle of apps

IoT-Based

Can use both static and dynamic features

Cannot detect complex malware

execution paths can be gathered using different machines on
clouds. This can decrease the number of malware mistakenly
marked as benign.

Heuristic-based detection approach can use both static and
dynamic features such as API calls, Opcode, CFG, n-gram,
list of DLLs, and hybrid features. It can detect some previ-
ously unknown malware, but it is vulnerable to metamorphic
techniques, and numerous rules and training phases [107]
make this detection approach complicated (Table 7). Decreas-
ing the number of rules, and building a more efficient learning
phase can improve the method performance.

Model checking-based approach is powerful, can detect
unknown malware, and is resistant against obfuscation and
polymorphic techniques (Table 7). However, it can obtain a
limited view of the malware, not resistant to evasion attacks,
and cannot detect all new generation of malware. To identify
more accurate formulas, and using effective model checker
may improve performance.

Recently; deep learning-, cloud-, mobile devices-, and
IoT-based approaches have started to be used in malware
detection (VI). Deep learning-based detection approaches are
effective to detect new malware and reduce features space
sharply [108], [109], but it is not resistant to some evasion
attacks. On the other hand, cloud-based detection approaches
increase DR, decrease FPs, and provide bigger malware
databases and powerful computational resources [110]. The
overhead between client and server, and lack of real monitor-
ing are still a challenging tasks in cloud environment. Mobile
devices- and IoT-based detection approaches can use both
static and dynamic features, and improve detection rates on
traditional and new generation of malware [111]. But, it has
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difficulties to detect complex malware, and is not scalable
for large bundle of apps. To integrate the mobile and IoT-
based approach with cloud-based can improve theDR and
scale better for large bundle of apps.

Even though each detection method has its own advan-
tages and works better for different datasets, no detection
method could detect all malware. Malware detection rate
versus complexity of malware can be seen in Figure 11.
When complexity of malware (unknown malware, new gen-
eration of malware, obfuscated malware) increases, the detec-
tion rate decreases for all detection approaches. It can be
seen that signature types of detection approaches such as
signature-, heuristic-, and most of the time mobile devices-
and IoT-based schemas show lower performance than other
approaches such as behavior-, model checking-, cloud-, and
deep learning-based approaches (Figure 11).

This is because the later approaches are more effective
to detect unknown and obfuscated malware. Behavior-
based detection approach performs pretty well, while sig-
nature based detection approach shows lowest performance
(Figure 11). Model checking- and cloud-based detection
approaches perform slightly better than deep-learning-,
heuristic-, mobile devices-, and IoT-based detection
approaches. Combining malware detection approaches can
provide better detection mechanism. For example, combin-
ing behavior-based with model checking-based approaches,
and using deep learning and cloud at the same time
will surely provide better detection mechanism. Besides,
using new technologies such as block chain and big data
may give more opportunity to build a more effective
detector.
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FIGURE 11. Malware detection rate versus complexity of malware based on previous studies.

Although malware detectors are being improved every day,
the following research challenges still remain an open issue
in malware detection approaches:

o New generation malware uses some obfuscation and
packing techniques to hide itself. By using these tech-
niques malware can prevent itself from being correctly
analyzed and avoid detection. Signature-based detection
approach is not resistant to malware obfuscation. Even
if behavior-, and model checking-based approaches are
effective to most of obfuscation techniques, they cannot
be resistant to all obfuscation techniques.

o Real-time monitoring and detection are a challenging
tasks. Most of the studies have been done so far to detect
malware by using dataset and are not appropriate for
real-time monitoring.

« Most of the malware detection approaches are prone to
FPs and FNs. Some features and signatures can be very
close in malware and benign samples which raises FPs
and FNs.

« No detection method can affectively detect all unknown
malware.

o Generally, learning algorithms are prone to bias, and
overfitting. This leads to decreases DRs and increases
FPs.

o There is no well-known and accepted dataset which can
be used to evaluate the malware detection approaches
performance. This is because each malware detection
method uses different malware and dataset.

VI. CONCLUSION

Even though several new methods have been proposed
by using these different malware detection approaches,
no method could detect all new generation and sophisticated
malware. For the known malware signature- and heuristic-
based detection approaches perform well. On the other
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hand, for an unknown and complicated malware behavior-,
model checking-, and cloud-based approaches perform bet-
ter. Deep learning-, mobile-, and IoT-based approaches have
also emerged to detect some portion of known and unknown
malware. However, some portion of malware could not be
detected by using these approaches. This shows that to build
an effective method to detect malware is a very challenging
task, and there is a huge gap to fill in new studies and
methods. Even though the trends in malware creation and
detection approaches are changing rapidly, this study still can
be considered as a key reference for the computer scientist
and developers who work in this field. As a future work,
new approach and method need to be proposed. To do that
combining malware detection approaches can be one of the
solutions among many. For instance, combining behavior-
based with model checking-based approaches, and using deep
learning and cloud at the same time will surely provide better
detection mechanism.

Recently, the number, severity, sophistication of malware
attacks, and cost of malware inflicts on the world econ-
omy have been increasing exponentially. Attacks with these
kinds of software have a disastrous effect and cause con-
siderable material damage to individuals, private compa-
nies, and governments’ assets. Thus, malware should be
detected before damaging the important assets in the com-
pany. However, there are large gaps in the research area of
malware detection and prevention. The aim of this study is
to contribute to the research of malware. In this context,
the paper has presented a detailed review of the state-of-
the-art studies for malware detection approaches, and tech-
niques and algorithms that are used for malware detection.
The advantages and disadvantages of each malware detection
approach have been explained. As well as datamining and
ML, new technologies such as deep learning-, cloud-, mobile
devices-, and IoT-based detection schemas have also become
popular.
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