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Background

Supreme cyberspace protection against internet phishing became a necessity. �e intim-

idation imposed via ever-increasing phishing attacks with advanced deceptions created 

a new challenge in terms of mitigation. Lately, internet phishing caused significant secu-

rity and economic concerns on the users and enterprises worldwide. Diversified com-

munication channels via internet services such as electronic commerce, online-banking, 

research, and online trade exploiting both human and software vulnerabilities suffered 

from tremendous financial loss. �erefore, enhanced privacy preserving data mining 

methods are ever-demanding for secured and reliable information exchange over the 

internet. �e dramatic increase of storing customers’ personal data led to an enhanced 

complexity of data mining algorithm with significant impact on the information sharing. 

Amongst several existing algorithm, the Privacy Preserving Data Mining (PPDM) ren-

ders excellent results related to inner perception of privacy preservation and data min-

ing. Truly, the privacy must protect all the three mining aspects including association 
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rules, classification, and clustering (Sachan et al. 2013). �e problems faced in data min-

ing are widely deliberated in many communities such as the database, the statistical 

disclosure control and the cryptography community (Nayak and Devi 2011). �e emer-

gence new cloud computing technology allowed the business collaborators to share the 

data and supply the information for the mutual benefits. All of these are related to the 

cumulative capability to store users’ individual data together with the rising complex-

ity of data mining algorithms that affects the information exchange. Yet, the concepts, 

utilization, categorization, and various attributes of PPDM in terms of its strength and 

weakness are not methodically reviewed.

Currently, several privacy preservation methods for data mining are available. �ese 

include K-anonymity, classification, clustering, association rule, distributed privacy pres-

ervation, L-diverse, randomization, taxonomy tree, condensation, and cryptographic 

(Sachan et  al. 2013). �e PPDM methods protect the data by changing them to mask 

or erase the original sensitive one to be concealed. Typically, they are based on the con-

cepts of privacy failure, the capacity to determine the original user data from the modi-

fied one, loss of information and estimation of the data accuracy loss (Xu and Yi 2011). 

�e basic purpose of these approaches is to render a trade-off among accuracy and pri-

vacy. Other approaches that employ cryptographic techniques to prevent information 

leakage are computationally very expensive (Ciriani et al. 2008). Conversely, PPDMs use 

data distribution and horizontally or vertically distributed partitioning through multiple 

entities.

Sometimes the individuals are reluctant to share the entire data set and may wish to 

block the information using varieties of protocols. �e main rationale for implement-

ing such techniques is to maintain individuals’ privacy while deriving collective results 

over the entire data (Aggarwal and Yu 2008). Despite much research a method with sat-

isfactory privacy settings are far from being achieved. It is essential to protect the data 

information before it gets distributed to multi-cloud providers. To protect the privacy, 

clients’ information must be identified prior to sharing with those unknown users not 

directly allowed to access the relevant data. �is can be achieved by deleting from the 

dataset the unique identity fields such as name and passport number. Despite this infor-

mation removal, there are still other types of information including date of birth, zip 

code, gender, number of child, number of calls, and account numbers which can be used 

for possible subjects’ identification. Intensified and extensively robust privacy preserva-

tion measures in data mining must be implemented to prevent such types of breaching.

�is presentation underscores the significant development of privacy preserving data 

mining methods, the future vision and fundamental insight. Several perspectives and 

new elucidations on privacy preserving data mining approaches are rendered. Existing 

literatures are systematically subcategorized to identify the strengths, gap, and weakness 

of various approaches. �e paper is organized as follows. “Privacy preserving data min-

ing” discusses in detail the requirement of privacy preserving data mining scheme in 

the context of internet phishing mitigation. �e notable advantages and disadvantages 

of the existing methods are highlighted in “Shortcomings of PPDM methods”. �is sec-

tion primarily focused on the creation of awareness and relevant action to be taken by all 

relevant quarters to protect privacy in secured data transfer over the web. “Conclusion” 

concludes the paper with further outlook in this field.
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Di�erential privacy model

Recently, differential privacy model is widely explored to render maximum security to 

the private statistical databases  by minimizing the chances of  records identification. 

�ere are several trusted party that holds a dataset of sensitive information such as med-

ical records, voter registration information, email usage, and tourism. �e primary aim 

is to providing global, statistical information about the data publicly available, while 

protecting those users privacy whose information is contained in the dataset. �e con-

cept of  “indistinguishability” also called “differential privacy” signifies the “privacy” in 

the context of statistical databases. Generally, data privacy is viewed as a characteristic 

or annotation to data safety. Obviously, this view is incorrect because the objectives of 

the two domains are opposite. Conversely, security protects the data against unauthor-

ized access when transmitted across a network. However, upon arriving to an authorized 

user no additional constraints are imposed on the data security to revealing the personal 

information of an individual. �us, it is worth to determine the correlation between data 

security and data privacy because the former is prerequisite of the latter.

Data must be protected at storage and the transmission must be made via data secu-

rity protocols. Moreover, in case data privacy is a goal, then some other steps must be 

considered to protect individuals confidentiality embodied in the data. It is important to 

describe the process of PPDM addresses in terms of data sharing and the results of data 

mining operation between a number of users u1,…um with m ≥ 2. �e data is viewed as 

a database of n records, each consisting of l fields, where each record represents an indi-

vidual ii and illustrates them through its fields. In a simplified representation a table T 

contains rows to signify i1,…in and columns that symbolizes the fields a1,…al. Assuming 

a fixed representation, each individual is represented by a vector of components a1,…al. 

�e most useful dimension in PPDM is the protected privacy embedded in T, which an 

attacker wants to acquire. �e other practical dimension is the possessive data structure, 

which belongs to one entity and need to be shared with another (m = 2). It may be built 

from parts owned by different entities.

It is important to introduce some definitions to strengthen the PPDM concepts. Espe-

cially, an explicit identifier is an attribute that permits a direct connection of an instance 

(a row in T) to a user i. For example, by identifying a cellular phone number or a driver’s 

license number it may unambiguously connect the row in T, where this explicit iden-

tifier to a person i is embedded. Conversely, a quasi-identifier being a set of individu-

als’ non-explicit attributes may also link a row in T to a specific person. For instance, 

in the United States the quasi-identifier triplet <date of birth, 5 digit postal code, gen-

der> uniquely identifies 87 % of the nation’s population (Sweeney 2002). By combining 

a public healthcare information dataset with a publicly available voters’ list and using 

quasi-identifiers, Sweeney convinced that it is possible to mine the secret health records 

of all state employees from a published dataset of the Massachusetts governor, where 

only explicit identifiers is removed. Generally, the primary PPDM identity protection 

methods that are drawn on simple ideas are known to people as they are abundantly 

accessible in the literatures and films. �ese concepts are portrayed as “hiding in the 

crowd” and “camouflage”. One of the “hiding in the crowd” approach to data privacy is 

the k-anonymity. Actually, the k-anonymity method (Sweeney 2002; Nergiz et al. 2009) 

modifies the original data T to obtain T′ such that for any quasi-identifier q that can 
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be built from attributes of T there are at least k instances in T′ so that q matches these 

instances. Moreover, datasets require generalization to satisfy k-anonymity.

Privacy preserving data mining

Recently, the relevance of privacy-preserving data mining techniques is thoroughly ana-

lyzed and discussed by Matwin (2013). Utilization of specific methods revealed their 

ability to preventing the discriminatory use of data mining. Some methods suggested 

that any stigmatized group must not be targeted more on generalization of data than 

the general population. Vatsalan et  al. (2013) reviewed the technique called ‘Privacy-

Preserving Record Linkage’ (PPRL), which allowed the linkage of databases to organiza-

tions by protecting the privacy. �us, a PPRL methods based taxonomy is proposed to 

analyse them in 15 dimensions. Qi and Zong (2012) overviewed several available tech-

niques of data mining for the privacy protection depending on data distribution, dis-

tortion, mining algorithms, and data or rules hiding. Regarding data distribution, only 

few algorithms are currently used for privacy protection data mining on centralized and 

distributed data. Raju et al. (2009) acknowledged the need to add or to multiply the pro-

tocol based homomorphic encryption along with the existing concept of digital envelope 

technique in obtaining collaborative data mining while keeping the private data intact 

among the mutual parties. �e proposed technique exhibited considerable influence on 

different applications.

Malina and Hajny (2013) and Sachan et  al. (2013) analysed the current privacy pre-

serving solutions for cloud services, where the solution is outlined based on advanced 

cryptographic components. �e solution offered the anonymous access, the unlink 

ability and the retention of confidentiality of transmitted data. Finally, this solution is 

implemented, the experimental results are obtained and the performance is compared. 

Mukkamala and Ashok (2011) compared a set of fuzzy-based mapping methods in the 

context of privacy-preserving characteristics and the capability to maintain the same 

connection with other fields. �is comparison is subjected to: (1) the four front modi-

fication of the fuzzy function definition, (2) the introduction of the seven ways to join 

different functional values of a particular data item to a single value, (3) the utilization of 

several similarity metrics for the comparison of the original data and mapped data, and 

(4) the evaluation of the influence of mapping on the derived association rule.

Data distortion dependent PPDM

Kamakshi (2012) proposed a novel idea to dynamically identify the sensitive attributes 

of PPDM. Identification of these attributes depends on the threshold limit of sensitivity 

of each characteristic. It is observed that the data owner modified the value under iden-

tified sensitive attributes using swapping technique to protect the privacy of sensitive 

information. �e data is modified in such a manner that the original properties of the 

data remain unchanged. Despite the novelty it remains time expensive. Subsequently, 

Zhang et  al. (2012a) introduced a newly enhanced historical probability based noise 

generation strategy called HPNGS. �e simulation results confirmed that the HPNGS 

is capable in reducing the number of noise requirements over its random complement 

as much as 90 %. Later, they focused on the privacy protection and noise obfuscation 

in cloud computing (Zhang et al. 2012b). Consequently, a novel association probability 
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based noise generation strategy (APNGS) is developed. �e analysis confirmed that the 

proposed APNGS significantly improved the privacy protection on noise obfuscation 

involving association probabilities at a reasonable extra cost than standard representa-

tive strategies.

Li et al. (2009a) presented a low-cost and less risky anonymous perturbation technique 

via homomorphism encryption and anonymous exchange. �e proposed technique dis-

played robustness for optimized parameters. It is complex, loss in utility of data. Kam-

akshi and Babu (2010) introduced three models including clients, data centres, and 

database in every site. �e data centre is completely passive, so that the clients and the 

site database role appear exchangeable. Islam and Brankovic (2011) proposed an archi-

tecture involving different novel techniques that affected all the attributes in the data-

base. Experimental findings showed that the proposed architecture is very efficient in 

preserving the original patterns in a perturbed dataset. Wang and Lee (2008) introduced 

a technique to prevent Forward-Inference Attacks, in the sanitized data (implies original 

data) created by the sanitization.

Association rule based PPDM

An improved distortion technique for privacy preserving frequent item-set mining is 

proposed by Shrivastava et al. (2011), where two probability parameters (fp and nfp) are 

employed. Better accuracy is achieved in the presence of a minor reduction in the pri-

vacy by tuning these two parameters. Furthermore, this algorithm produced the opti-

mum results when the fraction of frequent items among all the available items is less. 

PPDM is used in various fields for its enhanced efficiency and security. Presently, it is 

facing a rule mining challenge. Vijayarani et al. (2010a) explained the techniques of sta-

tistical disclosure control community, the database community, and the cryptography 

community. Less utility of data requires high cost. Aggarwal and Yu (2008) emphasized 

two significant factors involving the association rule mining such as confidence and sup-

port. For an association rule X => Y, the support is the percentage of transactions in 

the dataset which includes X U Y. �e confidence (also called strength) of an associa-

tion rule X => Y is the ratio of the transactions number by X. Furthermore, Belwal et al. 

(2013) reduced the basis of support and confidence of sensitive rules without modifying 

directly the given database. However, alteration can indirectly be performed via newly 

incorporating parameters associated to database transactions and association rules. New 

additions include M support (modified support), M confidence (modified confidence) 

and Hiding counter. �e algorithm utilized the definition of support and confidence. 

�us, it hided the required sensitive association rule without any side effect. However, it 

can hide only the rules for single sensitive item on the LHS.

Jain et al. (2011) developed a new algorithm to enhance and reduce the support of the 

LHS and RHS rule item to hide or secure the association rules. �e proposed algorithm 

is found to be advantageous as it made minimum modification to the data entries to hide 

a set of rules with lesser CPU time than the previous work. It is limited to association 

rule only. Naeem et al. (2010) proposed an architecture which screened the restricted 

association rules with complete removal of the known side effects such as the genera-

tion of unwanted, non-genuine association rules while yielding no ‘hiding’ failure. In this 

architecture, standard statistical measures are used instead of conventional framework 
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of support and confidence to create association rules, particularly weighing procedure 

based on central tendency. Li and Liu (2009) introduced an association rule mining 

algorithm for privacy preserving known as DDIL. �e proposed algorithm is based on 

inquiry limitation and data disturbance. �e original data can be hidden or disturbed by 

using DDIL algorithm to improve the privacy efficiently. �is is an effective technique to 

generating frequent items from transformed data. Experimental results displayed that 

the proposed technique is efficient to generating acceptable values of privacy balance 

with suitable selection of random parameters.

Hide association rule based PPDM

Fast Hiding Sensitive Association Rules (FHSAR) algorithm is introduced by Weng et al. 

(2008). �is secured the SAR with fewer side effects, where a strategy is established to 

avoid hidden failures. Besides, two heuristic techniques are developed to improve the 

efficiency of the system to solve the problems. �e heuristic function is further utilized 

to determine the earlier weight for each particular transaction so that the order of modi-

fied transactions can be decided efficiently. Consequently, the connection between the 

sensitive association rules and each transaction in the original database are analyzed 

by successfully choosing the suitable item for modification. �e efficient sanitization of 

sensitive information for updated database need to be studied. Dehkordi et  al. (2009) 

presented a new multi-objective technique to hide the sensitive association rules and to 

enhance the security of database. In fact, this maintained the utility and of mined rules 

at efficient level. �e proposed algorithm is based on genetic algorithm (GA) concept, 

where the privacy and accuracy of dataset are enhanced. Gkoulalas-Divanis and Very-

kios (2009) developed an exact border-based technique to obtain an optimal solution to 

hide sensitive frequent item sets with minimum extension of the original database gen-

erated synthetically via the database extension. �is is accomplished via the following: 

(1) by formulating the generation of the database extension as a constraint satisfaction 

problem, (2) using mapping of the constraint satisfaction issues to an equivalent binary 

integer programming problem, (3) via the manipulation of underutilized synthetic trans-

actions to increase the support of non-sensitive item sets, (4) employing the minimally 

relaxing constraint satisfaction problem to offer an approximate solution close to the 

optimal one when an ideal solution does not exist, and (5) by partitioning the universe of 

the items to enhance the efficiency of the proposed hiding algorithm.

Li et al. (2009b) proposed a new algorithm to sanitize a transactional database. �is is 

item-set oriented, where the support of large item-sets are considerably reduced below 

the threshold defined by the client. �us, no rules can be obtained from the specific 

item-sets. A new technique is also introduced to select the items that required removal 

from the dataset to avoid the detection of a set of rules. �e main limitations are associ-

ated with the selection of victim-items without affecting the non-sensitive patterns when 

the sanitization of 3rd and the 4th sensitive transactions are defined. Kasthuri and Mey-

yappan (2013) presented a new technique to identify the sensitive items by hiding the 

susceptible association rules. �e proposed technique located the frequent item sets and 

produced the association rules. Representative association rules concept is employed 

to detect the sensitive items. Hiding the sensitive association rules using selected sensi-

tive items is worth looking. Quoc et al. (2013) have developed heuristic algorithm based 
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on the intersection lattice of frequent item-sets to secure the set of sensitive association 

rules employing distortion method. To reduce the side effects, the heuristic for confi-

dence and support reduction based on intersection lattice (HCSRIL) algorithm are used. 

�is specified the victim item and reduced the number of transactions by causing least 

impact on item-sets variations in Gen(FI). In addition, Domadiya and Rao (2013) intro-

duced a heuristic based algorithm called Modified Decrease Support of RHS item of 

Rule Clusters (MDSRRC) to secure the delicate association rules using multiple items 

in consequent (RHS) and antecedent (LHS). �is algorithm successfully addressed the 

drawbacks of existing rule hiding DSRRC algorithm. Experimental findings revealed the 

efficiency and capability of the proposed algorithm to maintaining the database qual-

ity. By minimizing the modifications on database the efficiency can be enhanced with 

reduced side effects.

Classi�cation based PPDM

Xiong et  al. (2006) proposed a closet neighbour classification method based on SMC 

techniques to resolve the privacy challenges in few stages including the pf selection of 

the privacy preserving closet neighbour and the categorization of privacy preserving. 

�e proposed algorithm is balanced in terms of accuracy, performance, and privacy pro-

tection. Furthermore, it is adaptable to the various settings to fulfilling different optimi-

zation condition. Singh et al. (2010) provided a simple and efficient privacy preserving 

classification for cloud data. Jaccard similarity measure is used to compute the near-

est neighbours for K-NN classification and the equality test is introduced to compute 

it between two encrypted records. �is approach facilitated a secured local neighbour 

computation at each node in the cloud and classified the unseen records via weighted 

K-NN classification scheme. It is significant to focus on enabling the robustness of the 

presented approach so that generalization to multiple data mining tasks can be made, 

where security and privacy are needed.

Baotou (2010) introduced an efficient algorithm based on random perturbation matrix 

to protect privacy classification mining. It is applied on discrete data of character type, 

Boolean type, classification type and number types. �e experimental revealed the sig-

nificantly enhanced features of proposed algorithm in terms of privacy protection and 

accuracy of mining computation, where the computation process is greatly simplified 

but at higher cost. Vaidya et al. (2008) developed an approach for vertically partitioned 

mining data. �is technique could modify and extend a variety of data mining applica-

tions as decision trees. More efficient solutions are needed to find tight upper bound on 

the complexity. Kantarcıoglu and Vaidya (2003) emphasized the use of secure logarithm 

and summation, where the distributed naive Bayes classifier are securely determined. 

�e experimental results strongly supported the concept of few useful protected proto-

cols that facilitated the secure deployment of different types of distributed data mining 

algorithms. �e classification of privacy preserving methods and standard algorithms 

for each class is reviewed by Sathiyapriya and Sadasivam (2013), where the merits and 

limitations of different methods are exemplified. �e optimal sanitization is found to be 

NP-Hard in the presence of privacy and accuracy trade-off.
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Clustering based PPDM

Yi and Zhang (2013) overviewed various earlier solutions to preserve privacy of distrib-

uted k-means clustering and provided a formal definition for equally contributed mul-

tiparty protocol. An equally contributed multiparty k-means clustering is applied on 

vertically partitioned data, wherein each data site contributed k-means clustering evenly. 

According to basic concept, data sites collaborated to encrypt k values (each associated 

to a distance between the centre and point) with a common public key in each step of 

clustering. �en, it securely compared k values and outputted the index of the minimum 

without displaying the intermediate values. In some setting, this is practical and more 

efficient than Vaidya–Clifton protocol (Vaidya et al. 2008).

Associative classi�cation based PPDM

An associative classification model based on vertically partitioned datasets is introduced 

by Raghuram and Gyani (2012). A scalar product based third party privacy preserv-

ing model is adopted to preserve the privacy for data sharing process between multiple 

users. �e accuracy of the presented method is authenticated on its VCI databases with 

inspiring results. Lin and Lo (2013) presented a set of algorithms comprising of Equal 

Working Set (EWS), Small Size Working Set (SSWS), Request on Demand (ROD) and 

the Progressive Size Working Set (PSWS). �is repeated mining offered a scalable, fast 

and reliable service for different-tasks on computing environments. �e presented algo-

rithms demonstrated an outstanding efficiency in terms of scalability and execution time 

under different simulation conditions. Although CARM is a fast and scalable distrib-

uted algorithm in comparison with previous studies, the scalability is still limited. �is 

is because the HD-Mine used in CARM establishes the FP-tree in the main memory of 

the trusted node. In the absence of any memory space to mine the conditional FP-tree 

in the trusted node, the reconstructed conditional FP-tree is distributed to an available 

computing node for mining. �e trusted node must provide sufficient memory space for 

the original FP-tree. Clearly, the scalability is restricted by the major memory size of the 

trusted node.

Harnsamut and Natwichai (2008) developed a novel heuristic algorithm based on 

Classification Correction Rate (CCR) of particular database to secure the privacy and 

sustain the quality of data. �e proposed algorithm is tested and the experimental 

results are validated. �e heuristic algorithm is found to be highly effective and efficient. 

Seisungsittisunti and Natwichai 2011) highlighted the issues related to data transforma-

tion to protecting privacy for data mining technique and associative classification in an 

incremental-data scenario. An incremental polynomial-time algorithm is proposed to 

transform the data to maintain a privacy standard called k-anonymity. Quality can still 

be maintained even under transformation when constructing an associative classifica-

tion model. Different experiments are performed to evaluate developed algorithm per-

formance and compared with non-incremental algorithm. It is established to be more 

efficient in every problem setting. It is worth to examine the stored data in the distrib-

uted systems rather than a single repository.
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Privacy preserving outsourced data mining

Giannotti et al. (2013) explained the issues involving the outsourcing of association rule 

mining task for a corporate privacy-preserving network. An attack model is developed 

based on the background knowledge for privacy preserving outsourced mining. An 

encryption scheme, known as Rob Frugal is proposed. �is is based on 1–1 substitution 

ciphers of items, which included the fake transactions to share each cipher item with the 

same frequency as ≥k − 1 to the others. A compact synopsis of the fake transactions is 

used for true support of mined patterns from which the server can be recovered effi-

ciently. It is demonstrated that the proposed scheme is robust against adversarial attack 

which is based on the actual items and their exact support. �is framework assumed 

that the attacker is unaware of such information. Furthermore, any relaxation may break 

our encryption scheme and bring privacy vulnerabilities. �ey investigated encryption 

schemes that could resist such privacy vulnerabilities. �e strategies for the improve-

ment of the RobFrugal algorithm to minimize the number of spurious patterns are also 

explored.

Worku et  al. (2014) enhanced efficiency of the above scheme by reducing the com-

putational intensive operations such as bilinear mapping. �e scheme revealed secure 

and efficient results after a detailed analysis on security performance. However, the data 

block insertion made the proposed scheme non-dynamic. �us, the development of a 

fully dynamic and secure public auditing scheme remains an open challenge for a cloud 

system. Arunadevi and Anuradha (2014) investigated the issues related to outsourcing 

of frequent item-sets for a corporate privacy preserving architecture. An attack model 

is introduced by considering that the attackers are fully aware of the items and support 

of the item. In addition, even in the eventuality the attackers are totally conscious of 

the details of the encryption algorithm and some pairs of item with the corresponding 

cipher values. �ese basic assumptions remarkably improved the security of the system 

and eliminated the item and item-set based attack as well as reduced the processing 

time.

Lai et al. (2014) proposed the first semantically secured solution for outsourcing asso-

ciation rule mining with data privacy, mining privacy and soundness. �ese solutions 

are non-deterministic and secured against an adversary at cloud servers. It is capable 

to adaptively obtaining plaintext–cipher text pairs as required by semantic security. �e 

adversary may also insert false data into the data mining results. In comparison, adver-

sary models used in previous works on outsourcing association rule mining assumed 

that the honesty of adversary/server but remained curious. It is not capable to obtain-

ing any plaintext–cipher text pairs in attacks. Consequently, the sub-situation mappings 

based solutions are neither semantically secured nor ensured the soundness for the 

data mining results. Kerschbaum and Julien (2008) presented a searchable encryption 

scheme for outsource data analysis. In this scheme the client had to encrypt the data 

only once and transmit the encrypted information to the data analyst. �e data analyst 

conducted a number of queries for required permission from the client to translate the 

data contents in the queries. �e proposed encryption schemes permitted the search of 

keyword and range queries. �e scheme also allowed queries to reprocess the output 

of earlier queries as tokens to make dependent queries without interface. �e proposed 

scheme is found to be secured. �ere are many open questions in the area of search-able 



Page 10 of 36Aldeen et al. SpringerPlus  (2015) 4:694 

encryption. In case of outsourced data analytics, it is most interesting to combine the 

efficiency improvements possible for range queries with the necessary security require-

ments via pairing-based cryptography.

Distributed method based PPDM

Ying-hua et  al. (2011) surveyed the Distributed Privacy Preserving Data Mining 

(DPPDM) depending on different underlying technologies. Existing techniques are 

categorized into three groups such as (1) secure multi-party computation, (2) pertur-

bation and (3) restricted query. Li (2013) elucidated the advantages and drawbacks of 

each method by developing and analyzing a symmetric-key based privacy-preserving 

scheme to support mining counts. An incentive consideration is proposed to the study 

the secure computation by presenting a reputation system in wireless network. �e pro-

posed system offered an incentive for misbehaving nodes to behave properly. Experi-

mental results revealed the system effectiveness in detecting the misbehaving nodes and 

enhancing the average throughput in the whole network. Furthermore, Dev et al. 2012) 

acknowledged the privacy risks related to data mining on cloud system and presented a 

distributed framework to remove such risks. �e proposed approach involved classifica-

tion, disintegration, and distribution. �is avoided the data mining by preserving the pri-

vacy levels, splitting the data into chunks and storing them into suitable cloud providers. 

�ough, the proposed system offered a suitable way to safe privacy from mining based 

attacks, but it added a performance overhead as client accessed the data frequently. For 

instance, client had to run a global data analysis for a complete dataset, where the analy-

sis required accessing the data through different locations with a degraded performance.

Tassa (2014) developed a protocol for secured mining of association rules in horizon-

tally distributed database. �e proposed protocol possessed advantages over leading 

protocols in terms of performance and security. It included two set of rules including 

(1) a multi-party protocol to compute the union or intersection of private subsets pos-

sessed by each client and (2) a protocol to test the presence of an element held by client 

in a subset held by another. Techniques based on Field and Row-Level distribution of 

transactional data are proposed by Chan and Keng (2013). �ey presented a distributed 

framework to preserve outsourcing association mining rules and explored the possibil-

ity of its deployment. Database information based on its characteristics is distinguished 

for the distribution to multiple servers. Its privacy notions are examined from two sepa-

rate viewpoints such as distribution of support values and K-anonymity. �e proposed 

algorithms for allocating transactions to outsourced servers are based on the importance 

of the types of privacy notion to a user. Dong and Kresman (2009) explained the rela-

tion between distributed data mining and prevention of indirect disclosure of private 

data in privacy preserving algorithms, where two protocols are devised to avoid such 

disclosures. �e first one was a simple add-on to a protocol used for different applica-

tion, whereas the second one provided the suitability of collusion resistance and fewer 

broadcasts. �e simplicity of the proposed protocols enabled minimal requirements for 

computation, easy data storage or data structures. Consequently, the notion of trust is 

introduced and the performance of certain ID assignment protocols is addressed.

Aggarwal et  al. (2005) discussed data encryption based methods, which caused a 

large overhead in query processing. A new distributed framework is proposed to enable 
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privacy-preservation for the outsourced storage of data. Different techniques are used 

to decompose the data. It demonstrated improved queries when implemented in such 

types of distributed system. A new definition for privacy is coined based on hiding sets 

of attributes. It discussed the secured privacy achievement of the proposed decompo-

sition approaches and identified the best privacy-preserving decomposition technique. 

Other future work includes identifying improved algorithms for decomposition, expand-

ing the scope of techniques available for decomposition (supporting replication, and 

incorporation of these techniques into the query optimization framework). Xu and Yi 

(2011) investigated the privacy-preserving distributed data mining that passed through 

different stages and persisted. Taxonomy is proposed to endorse the standardization and 

assessment of the protocols efficiency. �is might be applied to categorize such PPDDM 

protocols based on predefined dimensions. �e dimensions included the data partition-

ing model, mining algorithms, privacy preservation methods and secured communica-

tion model. �is area is prospective. Yet, the solution and evaluation work is still open 

for further investigation.

Inan and Saygin (2010) presented a technique to assemble dissimilarity matrix for hor-

izontal distributed data mining. �e comparison required all the record operations in 

the form of pair for personal private datasets which are distributed horizontally to differ-

ent sites. �is approach considered the data either in the form of character or numerical. 

For these two different types of data sets, a number of comparison functions are made 

available. However, as expected, ensuring privacy has its costs, considering the compari-

son against the baseline protocol where private data is shared with third parties. We used 

the secured comparison protocols for clustering horizontally partitioned datasets. �ere 

are various other application areas of these methods such as record linkage and outlier 

detection problems Nanavati and Jinwala (2012) elaborated different approaches used 

to find global and partial cycles in a distributed setup while keeping the privacy of the 

particular parties secured in a co-operative setup. �e interleaved algorithm is extended 

and modified to determine global cycles in cyclic association rules privately. �e pri-

vacy preservation techniques are recommended on the basis of homomorphic approach 

and secret sharing. It is concluded that the approaches based on Shamir’s secret sharing 

can be employed to detect the partial global cycles. However, few open research chal-

lenges including the application of these privacy preserving theories to other temporal 

rule mining methods like calendric association rules and temporal predicate association 

rules need to be addressed. Another research challenge also involves deciphering the 

most efficient and accurate technique in this scenario by practically comparing the cost 

for each method.

Agrawal and Srikant (2000) developed a uniform randomization method based asso-

ciation rule for the categorical datasets. In this approach, before sending a data to server, 

the client is replaced each item by a new item which is originally absent in the data. �e 

substitution process of specific values from datasets with other values is called uniform 

randomization. �is is a generalization of the Warner’s “randomized response” tech-

nique. In other types of data reconstruction techniques the original data are put aside 

and are initiated via sanitizing known as “knowledge base”. �us, newly obtained data is 

then reassembled based on the sanitized knowledge. �e effectiveness of randomization 

with reconstruction for categorical attributes is exemplified.
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Wang et al. (2010) proposed a modified algorithm called PPFDM and related computa-

tion technique based on the Frequent Data Mining (FDM) to preserve privacy. �e pro-

cess involved the computation of total support count along with the privacy-preserved 

technique while ensuring the local large item-set and local support count source is cov-

ered. �us, the time needed for the communication is saved and secured the distributed 

data privacy at each site. �e experimental results demonstrated the effectiveness and 

suitability of the method for practical application, especially in privacy preservation dur-

ing mining process.

Nguyen et al. (2012) presented an Enhanced M. Hussein et al.’s Scheme (EMHS) for 

secured privacy association rules mining, where horizontally distributed database is 

used. EMHS (developed in 2008) is capable to modify the privacy and efficiency with 

increasing number of sites. �e efficiency of EMHS is discerned to be much better than 

MHS, particularly for databases with increasing number of sites. A second approach is 

also presented for the other types of datasets. It is important to solving the collusion 

of Initiator and Combiner. Om Kumar et al. (2013) used WEKA to predict the patterns 

in a single cloud. By using cloud data distributor with a secured distributed approach 

they provided an effective solution that prevented such mining attacks on cloud. �us, it 

made the cloud a secured platform for service and storage.

Mokeddem and Belbachir (2010) proposed a distributed model to perform class-

association rules detection for shared-nothing framework. �e solution of the proposed 

model is one of the fastest known sequential algorithms (FP-growth) which is extended 

to produce classification rules in a parallel setting. By using the proposed system, the 

data replication is avoided on these sites with an option to communicate the required 

information. �ese choices are evaluated by performing experimentations, which per-

mitted us to analyze several important aspects such as accuracy, scalability, speedup, 

memory usage, communication, synchronization, and also the load balancing. Ibrahim 

et  al. (2012) developed a practical cryptographic model to calculate the KNN catego-

rization over the distributed cloud databases. �eir experiments demonstrated similar 

accuracy of the proposed as the naive scheme without security. It is believed that such 

schemes may mitigate the users concerns and accelerate the paces towards the high 

adoption of cloud computing. �e extension of our secure classifier to work in the mali-

cious adversary security model will be reported elsewhere.

Patel et al. (2012) proposed an operative algorithm to protect the secrecy distributed 

over K-Means cluster using Shamir’s secret sharing model. �e proposed approach com-

puted the cluster mean collaboratively and prevented the role of trusted third party. 

Upon comparison, it is observed that the proposed framework is orders of magnitude 

faster as compared to oblivious polynomial evaluation and homomorphic encryp-

tion techniques in terms of computation cost and more reliable for huge databases. It 

is essential to extend the proposed algorithm in vertical partitioning in the presence of 

malicious adversary model. In addition, the results from a realistic distributed emula-

tion are worth looking. Kumbhar and Kharat (2012) analysed and compared different 

techniques used for Privacy Preserving Association Rule Mining (PPARM). �e algo-

rithm based on cryptography techniques, Homomorphic encryption, Secure Scalar 

product and Shamir’s secret sharing technique are employed to satisfy the privacy con-

straints for vertically partitioned dataset. However, for horizontally partitioned dataset 
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the algorithm with the combination of RSA public key cryptosystem and Homomorphic 

encryption scheme are used. Paillier cryptosystem is employed to determine the global 

supports. In practice, while calculating c.count collaboratively, participant may deviate 

from algorithm and lead malicious behaviour. But algorithm is semantically secured and 

prevents collusive behaviour with accurate results.

Nix et al. (2012) implemented two sketching protocols for the scalar (dot) product of 

two vectors which are used as sub-protocols in larger data mining tasks. Results through 

extensive experimentations revealed their high accuracy, low data leakage, and orders of 

magnitude improved efficiency. �e security properties of these approximations under 

a security definition are also analyzed. In contrast to the previous definitions these are 

found to be very efficient approximation protocols. It is worth to explore the use of these 

dot product protocols in other data mining tasks such as support vector machines, neu-

ral networks, and clustering. �e notion of a secure approximation and determination of 

the relaxation extent of the posed restrictions by the security model need to be looked 

at.

Keshavamurthy et al. (2013) demonstrated that GA approach possessed two potential 

advantages than traditional frequent pattern mining algorithm. It is found that in fre-

quent pattern mining, the population is formed only once. Conversely, in GA method 

the population is formed for each generation that maximizes the sample set. However, 

the major drawback of GA approach is connected to the duplication in its sequential 

generations. For privacy preservation data mining over distributed dataset, the key goal 

is to permit computation of collective statistics for complete database with assurance of 

the privacy for confidential data of the contributing databases. Hence, the algorithms for 

privacy preservation needs further improvement based on the trade-offs between recon-

struction accuracy and privacy. On top, the fitness function of GA plays an important 

role and the convergence of search space is directly proportional to the effectiveness of 

fitness function. In other words, superior fitness functions for a given problem leads to 

faster convergence of GA.

K-anonymity based PPDM

For the sake of clarity, it is customary to render two important definition of K-anonymity.

�e first definition tells that: QI being a quasi-identifier for a given table U with 

T (A1 . . .An), fC : U → T , fg : T → U ′, where U ⊆ U
′, a quasi-identifier of T (QT ) is a 

set of attributes {Ai . . .AJ } ⊆ {A1 . . .An}, where ∃pi ∈ U such that fg (fc(pi)[QT ]) = pi 

(Sweeney 2002). �e second definition is stated as follows: a table T satisfies K-ano-

nymity if for every tuple t ∈ T there exist k − 1 other tuples ti1ti2 . . . tk−1 ∈ T  such that 

ti1[C] = ti2[C] = . . . tik−1[C] for all C ∈ QT (Machanavajjhala et al. 2007).

A scalable solution for each repetition can examine at least one generalization for 

each attribute involved in the linking. (Wang et al. 2004) studied the data mining as a 

approach used for data masking called data mining based on privacy protection. �e 

data mining methods are inspected in terms of data generalization concept, where the 

data mining is performed by hiding the original information instead of trends and pat-

terns. After data masking, the common data mining methods are employed without any 

modification. Two key factors, quality and scalability are specifically focused. �e quality 

issue is settled via the trade-off between privacy and information. �e scalability issue 
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is established employing new data architecture while focusing on good generalizations. 

Loukides and Gkoulalas-divanis (2012) proposed a novel technique to anonymize the 

data by satisfying the data publishers’ utilization necessities experiencing low informa-

tion loss. An accurate information loss measure and an effective anonymization algo-

rithm are introduced to minimize the information losses. Experimental investigations on 

click-stream and medical data revealed that that the proposed technique allowed more 

reliable query answers than the state state-of-the-art techniques which are equivalent in 

terms of efficiency. �is work opens up several promising avenues for future research. 

�ese include examining how UAR can be extended to guard against both identity and 

sensitive information disclosure and how to produce anonymized data with guaranteed 

utility in certain data mining tasks, such as classification and association rule mining. 

Friedman et al. (2008) extended the definitions of K-anonymity to prove that the data 

mining model does not violate the K-anonymity of the clients represented in the learn-

ing examples. A tool is provided to determine the amount of anonymity retained during 

data mining. �e proposed approach showed its employment capability to different data 

mining problems including classification, association rule mining and clustering.

�e K-anonymity is further combined with data mining approach to protect the 

respondent’s identity. Ciriani et  al. (2008) highlighted the potential threats to K-ano-

nymity, which are raised via the implementation of mining to collect data and analyses 

of two main techniques to join K- anonymity in data mining. �e different approaches 

employed to detect K-anonymity violations are also described. Subsequently, the elimi-

nation of these approaches in association rule mining and classification mining are 

emphasized. He et  al. (2011) proposed an algorithm based on clustering to produce a 

utility-friendly anonymized version of micro data. �is method is found to outper-

form the non-homogeneous technique where the size of QI-attribute is greater than 3. 

�ey achieved a clustering-based K-anonymity algorithm, which revealed considerable 

improvement in the utility performance when applied to several real datasets. Recently, 

K-anonymous privacy preservation is widely employed. Further modification appeared 

to be increasingly difficult without resolving several issues. Patil and Patankar (2013) 

examined the standard K-anonymity techniques and its applications. Some of the mul-

tidimensional K-anonymous investigation is carried out. Yet, the present are multidi-

mensional data sets based K-anonymity algorithms using nearest neighbour strategy are 

useful to enhancing the quality of anonymity and reducing the information loss.

Lately, K-anonymity became one of the most important topics for privacy preserva-

tion. �is can effectively avoid privacy leaks due to link attacks. Certainly, K-anonymity 

is one of the widely used approach in all fields (Zhu and Chen 2012). Soodejani et  al. 

(2012) employed a version of the chase termed as standard chase, which put some 

restrictions on the dependencies and constrains, such as being positive and conjunctive. 

�is area is prospective for future study in fathering investigations on the applicability 

of other versions of the chase in the method. �e anonymity principle of their method 

reveals some similarities to the L-diversity privacy model. Investigation of other pri-

vacy models such as t-closeness may provide a stronger privacy model for the proposed 

method with extreme usefulness. Karim et al. (2012) proposed a numerical method to 

mine maximal frequent patterns with privacy preserving capability. �is method showed 

an efficient data transformation technique, a novel encoded and compressed lattice 
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structure and MFPM algorithm. �e proposed lattice structure and MFPM algorithm 

reduced both the search space as well as the searching time. �e experimental results 

displayed that the MFPM algorithm outperformed PC_Miner and existing maximal fre-

quent pattern mining algorithms. Besides the lattice structure, it outperformed FP-like 

tree and PC_tree algorithm as well.

Loukides et al. (2012) proposed a rule-based privacy model that allowed data publish-

ers to express fine-grained protection requirements for both identity and sensitive infor-

mation disclosure. Based on this model, they developed two anonymization algorithms. 

�eir first algorithm worked in a top-down fashion, employing an efficient strategy to 

recursively generalize data with low information loss. Conversely, the second algorithm 

used sampling and a mixture of bottom-up and top-down generalized heuristics. �is 

greatly improved the scalability and maintained low information loss. Extensive experi-

mentations show that these algorithms significantly outperformed the state-of-the-art 

in context of recalling data utilization, while keeping good protection and scalability. It 

provides a foundation for some future studies. First, while identity and sensitive infor-

mation disclosure are the main concerns in data publishing, it is worth examining mem-

bership disclosure, in which inferring whether an individual’s record is contained in the 

published data is to be prevented. Second, it is worth to extend the proposed approach 

to anonymize disk-resident data with small memory consumption and I/O overhead.

Vijayarani et  al. (2010b) studied K-anonymity as an interesting approach to protect 

micro data related to public or semi-public sectors from linking attacks. �e possi-

ble threats to K-anonymity approach is described in detail. Particularly, the problems 

related to data and the approaches are identified to combine K-anonymity in data min-

ing. Nergiz et al. (2009) improved and extended the definitions of K-anonymity to mani-

fold relations definitions of K-anonymity expression. It is shown that earlier developed 

techniques either failed to secure privacy or as a whole reduced the data utilization, and 

data protection in a multiple relations setting. A new clustering algorithms is introduced 

to obtain multi-relational anonymity. Experimental results illustrated that the proposed 

technique is an effective approach in terms of utility and efficiency. Support for arbitrary 

schemes with multiple private entities must be considered.

�e problem of secured outsourcing of frequent itemset mining on the multi-cloud 

environments is studied by Tai et al. (2013). Concerning the challenges in big data anal-

ysis, they suggested to partition the data into several parts and outsourced each part 

independently to different cloud based on pseudo-taxonomy, anonymization technique, 

known as KAT. �ey proposed DKNT to ensure the privacy security for each partial data 

outsourced to different clouds. Experimental results demonstrated excellent achieve-

ment in terms of protection and better computation efficiency as compared to those on 

a single machine. Tai et al. (2010) presented K-support anonymity, which provided pro-

tection against a knowledgeable attacker with the exact support information. To achieve 

the K-support anonymity, a pseudo taxonomy tree is introduced with the third party 

mine for the generalized frequent item-sets. �e construction of the pseudo taxonomy 

tree facilitated the hiding of the original items and limited the fake items introduced in 

the encrypted database. �e results showed very good privacy protection with moderate 

storage overhead. K-anonymity is further enhanced and improved by Pan et al. (2012). 

�ey analyzed and compared the developed K-anonymity models and discussed their 
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applications. �e modified K-anonymity models such as the L-diversity, (α, K)-anonym-

ity and (α, L)-diversification K-anonymity overcome the existing limitations related to 

privacy. Few K-anonymous methods are employed in obtaining the main technology.

Based on suppression, Deivanai et al. proposed a new K-anonymity technique called 

‘kactus’ (Deivanai et al. 2011). In the proposed technique, multi-dimensional suppression 

is performed. �e values are suppressed to a certain records based on other attributes 

without using the domain hierarchy trees. �us, this approach identified the attributes 

independent of classification of the data records and suppressed these values to comply 

with K-anonymity. �is approach is implemented on different database to determine its 

accuracy and efficiency and compared with other K-anonymity based techniques. It is 

affirmed that in a multiparty environment, the anonymization can be performed with 

perturbation to preserve privacy. A new definition of K-anonymity model for effective 

privacy protection of personal sequential data is introduced (Monreale et al. 2014). �is 

method transformed the sequential datasets into a K-anonymous form, while preserv-

ing the utility of data with reference to a variety of analytical properties. A series of 

experimentation on different real-life sequential data bases exhibited that the proposed 

approach substantially secured the sequential pattern mining results not only in terms 

of extracted patterns but also the support. Furthermore, the results appeared extremely 

interesting in the case of dense datasets.

Nergiz and Gök (2014) and Nergiz et al. (2013) introduced the hybrid generalizations. 

It not only performed the generalizations, but also involved the mechanism for data 

relocation. In data process, the position of certain cells is changed to some populated 

indistinguishable data cells. �e relocation process helped to generate anonymizations 

of finer granularity and ensured underlying privacy. �e data relocation is a trade-off 

among the utilization and reliability of the data, where the trade-off is controlled by 

the provider parameter. �e results revealed that a small number of relocations could 

enhance the utility as compared to the heuristic metrics and query answering accuracy. 

A Hybrid generalizations mechanism to relocate the data is introduced (Nergiz and Gök 

2014). In data relocation process, data cells are relocated to certain populated small 

groups of tuples which remained distinguishable from each other. Again, the data relo-

cation helped to generate anonymizations of finer granularity which ensured the data 

privacy. It is demonstrated that a small number of relocations could remarkably enhance 

the utility. New hybrid algorithms can be designed for other privacy metric such as 

diversity, (α, k)-anonymity or δ-presence. �is would be crucial in addressing different 

types of adversaries. �ere is also room for improvement of the proposed hybrid algo-

rithms. For example, one can design hybrid algorithms that would theoretically bound to 

the probability of identification against algorithm-aware adversaries.

Zhang et  al. (2013a, 2014a) investigated the issues related to scalability of sub-tree 

anonymization for huge data storage on cloud. �ey developed a hybrid approach along 

with Top-Down Specialization (TDS) and Bottom-Up Generalization (BUG) tech-

niques. In this method, one of the two components is selected automatically by com-

paring K-anonymity parameter with workload balancing point which is defined by the 

clients. Both TDS and BUG are obtained in a scalable way via a series of deliberately 

designed Map Reduce jobs. Based on the contributions herein, it is worth exploring the 

next step on scalable privacy preservation aware analysis and scheduling on large-scale 
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datasets. Later, Zhang et al. (2014b) introduced a two-phase TDS technique based on 

Map Reduce on cloud. In the first phase, the data sets are anonymized and partitioned in 

parallel and intermediate results are generated. In the second phase, these intermediate 

results are aggregated for further anonymization to produce consistent K-anonymous 

datasets. �e Map Reduce on cloud is employed for data anonymization and a group 

of data is designed deliberately to concretely achieve the specific computation in a scal-

able way. �e results from the implementation of this method on real-world datasets 

displayed that the presence of scalability and competence of TDS made the performance 

much better than existing methods. �ey have presented an efficient quasi-identifier 

index based technique to preserve the privacy over incremental datasets on cloud. In 

the proposed technique, QI-groups (QI: quasi-identifier) are listed using domain val-

ues in the current generalization level, which allowed the access only to a small portion 

of records in any database rather than admittance to the whole data base (Zhang et al. 

2013b, c). In addition, Ding et al. 2013) introduced a distributed anonymization protocol 

for privacy-preserving data publishing from multiple data providers in a cloud system. 

�eir method performed a personalized anonymization to satisfy every data provider’s 

requirements and the union formed a global anonymization to be published. �ey also 

presented a new anonymization algorithm using R-tree index structure.

Shortcomings of PPDM methods

Currently, several data mining techniques are available to protect the privacy. Broadly, 

the privacy preserving techniques are classified according to data distribution, data dis-

tortion, data mining algorithms, anonymization, data or rules hiding, and privacy pro-

tection. Table 1 summarizes different techniques applied to secure data mining privacy. 

Intensive research findings over the decades revealed that the existing privacy preserv-

ing data mining search approaches are still suffer from major incompleteness including 

the distributed clients’ data to multi semi honest providers, the overhead of comput-

ing global mining, incremental data privacy issue in cloud computing, integrity of min-

ing result, utility of data, scalability and overhead performance. �us, a strong, efficient, 

and scalable model is essential to surmount these shortcomings. Furthermore, proper 

anonymization of data is needed to protect the privacy of each client prior to publish. 

�e connection between personal data and personal identification should be vanished. 

Table 1 Description of PPDM methods

PPDM methods Description

Data distribution May contain vertically or horizontally partitioned data

Data distortion Contain perturbation, blocking, aggregation or merging, swapping and sampling

Data mining algorithms Encloses classification mining, association rule mining, clustering, and Bayesian net-
works etc

Data or rules hidden Denotes to hide main data or rules of innovative data

K-anonymity Achieve the anonymization

L-diverse Keeps the least group size of K, and maintains the diversity of the sensitive attributes

Taxonomy Tree Attributes the generalization to limit the information leakage

Randomization An un-sophisticated and valuable technique to hide the individual data in PPDM

Privacy protection Protects the privacy, it should adapt data carefully to attain optimum data utility
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Such an anonymization must not only satisfy underlying privacy requirements but also 

safeguard the utility of the data.

Undoubtedly, K-anonymity is an effective method of privacy protection in data min-

ing. However, several demonstrated that the data processed by this method often failed 

to overcome some attacks and are susceptible to internet phishing. Consequently, the 

future privacy preserving data mining based K-anonymity needs an advance data infra-

structure to support the combination of present data functionality. �is would definitely 

fulfil the requirements of different kinds of clients and communities. Although the pre-

sent search algorithms are able to speed up the retrieval process, but they do not scale up 

to large volume of data because of the linear increase of response time with the amount 

of the searched datasets. �e proposed techniques for the searching of distributed large 

data among many cloud providers must possess the ability to preserve privacy, must 

be scalable, efficient, compatible and good for utility as well as integrity. Table 2 enlists 

some relevant studies on privacy preserving data mining as well as their notable merits 

and de-merits. Table 3 outline the categorization of current studies.

Conclusion

An inclusive overview on PPDM techniques based on distortion, associative classifica-

tion, randomization, distribution, and k-anonymization is presented. It is established 

that PPDM is appeared progressively common due to easy sharing of privacy sensitive 

data for analysis. �e notable advantages and obvious disadvantages of current studies 

are emphasized. Presently, Big Data are often shared across sectors such as health, mili-

tary and others, and transverses across Business-to-Businesses, Entities-to-Entities and 

Government-to-Government. �us, the preservation of privacy against disclosure and 

attacks are of critical concern. Several big organizations and governments worldwide 

being totally dependent on information communications via internet expressed grave 

concerns over privacy issues. Consequently, the rapid development of IT faced new 

challenges to PPDM. Data mining possesses being the capability to extract and mine 

vast sea of interesting patterns or knowledge from a huge amount of data requires abso-

lute security. �e main idea of PPDM is to incorporate the traditional data mining tech-

niques in transforming the data to mask sensitive information. �e major challenge is to 

efficiently transform the data and recover its mining outcome from the transformed one. 

Furthermore, the incompleteness of previous studies indicated forced us to engage in an 

extensive inspection of the problems of distributed and published data for sharing and 

mining. Consequently, the overhead for global mining computing, preserving privacy of 

growing data, the integrity of mining result, the utility of data, the scalability and over-

head performance in the context of PPDM are examined. �ere is an urgent necessity to 

develop a strong, efficient, and scalable model to surmount these issues. In this regard, 

we identified the gaps and weaknesses of existing literatures and analyzed them for fur-

ther significant enhancements, more robust privacy protection, and preservation. �is 

exhaustive and informative review article is hoped to serve as taxonomy for navigating 

and comprehending the research advancements towards PPDM.
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