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ABSTRACT | Wind turbines play an increasingly important role

in renewable power generation. To ensure the efficient produc-

tion and financial viability of wind power, it is crucial to main-

tain wind turbines’ reliability and availability (uptime) through

advanced real-time condition monitoring technologies. Given

their plurality and evolution, this article provides an updated

comprehensive review of the state-of-the-art condition moni-

toring technologies used for fault diagnosis and lifetime prog-

nosis in wind turbines. Specifically, this article presents the
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major fault and failure modes observed in wind turbines along

with their root causes, and thoroughly reviews the techniques

and strategies available for wind turbine condition monitoring

from signal-based to model-based perspectives. In total, more

than 390 references, mostly selected from recent journal arti-

cles, theses, and reports in the open literature, are compiled to

assess as exhaustively as possible the past, current, and future

research and development trends in this substantial and active

investigation area.

KEYWORDS | Condition monitoring; fault detection and diagno-

sis (FDD); lifetime prognosis (LTP); wind farm; wind turbine.

I. I N T R O D U C T I O N
While wind power production keeps rising worldwide,
wind turbines are playing an increasingly major role in
the present and future of renewable power generation. Yet,
in the current wind production landscape, two trends seem
to jeopardize the fulfillment of this global role. On the
one hand, a significant share of the existing wind turbines
has already reached its 20-year estimated lifetime, which
requires additional maintenance services; on the other
hand, new wind turbine technology is evolving toward
larger wind turbines in remote offshore locations, which
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poses new accessibility issues for inspection and mainte-
nance. Consequently, greater attention has recently been
paid to the soaring operation and maintenance (O&M)
costs of wind turbines (both onshore and offshore), which
must be addressed for wind energy to remain financially
viable [1]–[3]. From a technical point of view, wind tur-
bines are complex aeroelectromechanical systems that are
becoming larger and more flexible in design and increas-
ingly digitalized and automated in operation. Unlike con-
ventional power plants, they are often installed in remote
locations and, thus, constantly undergo harsh weather
conditions and largely variable aerodynamic, gravitational,
centrifugal, and gyroscopic loads. Taken together, these
elements induce a high frequency of faults and failures
in wind turbines. In addition, access for maintenance is
often troublesome and costly due not only to the large
dimension of wind turbines but also their safety regu-
lations, which restricts maintenance service to daytime
hours, a relatively low air humidity, temperatures above
10 ◦C, and wind speeds below 8–12 m/s [4]. Such issues
are exacerbated in offshore wind farms due to the harsh
marine environment, which causes higher rates of failures
in wind turbine components and additional maintenance
complexities, whether in terms of difficult accessibility,
higher logistic costs, or lower skilled manpower [5], [6].
As a result of poor equipment reliability and impaired wind
turbine availability for power generation (unscheduled
downtime/stoppages), O&M costs are quickly rising, now
representing an increasingly significant part of the total
wind energy generation cost [3], [7]–[9]. Currently, the
O&M costs account for approximately 10%–30% of the
total energy generation cost of an onshore wind farm after
it has become operational [10]. In comparison, although
offshore wind farms can generate wind energy more effi-
ciently, their O&M costs can surge up to 25%–50% of
the total energy generation cost, which is a considerable
increase [5], [11]. Lowering the ever-soaring O&M costs
in wind energy production requires improving the critical
aspects of wind turbine reliability and availability (uptime)
using appropriate condition monitoring solutions.

A. Wind Turbine Condition Monitoring

Wind turbine condition monitoring involves the process
of monitoring (and analyzing) the operating parameter(s)
of condition in a wind turbine system or its components,
aiming at identifying any abnormal change(s) in the condi-
tion or specific events that can indicate developing fault(s)
in the system. Using the monitored change(s) in the
parameter(s), the fault diagnosis (detection, isolation, and
identification) and lifetime prognosis (LTP) (remaining
useful life (RUL) estimation) can be accomplished before
a failure or a critical malfunction occurs in the wind tur-
bine. This allows a very cost-effective and optimal type of
preventive maintenance (before a failure), which is often
referred to as “condition-based maintenance” instead of
resorting to costly time-based maintenance (fixed service
intervals).

Currently, wind turbine condition monitoring can be
performed either offline or online (in real time). Off-
line condition monitoring involves periodic inspections in
which a wind turbine needs to be shut down and/or
requires the attention of an operator. This condition
monitoring method suffers from important shortcomings.
It is, indeed, an expensive monitoring method since it
requires the wind turbine to stop working, which results
in energy production loss, not to mention the additional
costs incurred during off-line inspections. Moreover, off-
line condition monitoring obviously falls short of detect-
ing and reporting the faults or damages that happen
between the inspection intervals. The mentioned short-
comings become increasingly serious, especially in offshore
wind farms for which the inspection intervals are longer
than those of onshore wind farms [12], [13]. Therefore,
real-time (online) condition monitoring techniques are
rapidly evolving to address the issues that come with off-
line techniques. Indeed, real-time condition monitoring
continuously provides a deeper insight into the real-time
health status of a wind turbine or its main components,
while it is in service. It relies on appropriate sensors or
data acquisition systems to obtain continuous raw mea-
surements (e.g., vibration, strain, temperature, voltage,
and current) from wind turbine components and may
even incorporate onboard models and/or signal processing
functionalities for enhanced data reduction and analysis.
Thanks to the wide variety of sensors and data acquisi-
tion systems available for wind turbine components, real-
time condition monitoring is highly customizable. Factors
such as the wind farm’s environment (onshore/offshore,
cold/hot, humid/dry, and so on), the size and design speci-
fications of its wind turbines, the types, and characteristics
of target components to be monitored, together with the
capabilities, limitations, and costs of available real-time
monitoring technologies, should all be considered when
choosing a real-time condition monitoring system (CMS).

Given the significance, plurality, and evolution of real-
time condition monitoring for wind turbines, this arti-
cle introduces and discusses the details of well-known
technologies and solutions in this area and provides an
up-to-date comprehensive review of the available litera-
ture, covering both technical aspects of fault diagnosis and
LTP in wind turbines.

B. Bibliographical Status of Literature and
Existing Reviews/Surveys

Wind turbine condition monitoring, including both
aspects of fault diagnosis and prognosis, has become an
active research area over the last two decades. Fig. 1 shows
the number and trend of published articles in this area
from 2000 to 2020. It should be noted that this information
is extracted from the Web of Science (WOS), which only
includes a part of the available literature in this area.
Therefore, the number of the entire publications on wind
turbine condition monitoring, including articles, confer-
ence proceedings, reports, press releases, and so on, is,
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Fig. 1. Number and trend of published articles on wind turbine condition monitoring indexed in the WOS since 2000 (as of the beginning of

2021). Source: WOS.

indeed, much higher than shown in the graphic in Fig. 1.
Having said that, the reliable information extracted from
the WOS and reflected in this graphic clearly indicates an
overall rising trend for research articles on wind turbine
condition monitoring by the end of 2020.

Given the rapid growth of research activities in this area,
several literature reviews or survey papers have already
been published on the different aspects of condition mon-
itoring in wind turbines. For instance, Table 1 provides
a chronological list of the existing review/survey journal
publications in this area. Many of the reviews/surveys
listed in the table are excellent in some facets and include
very useful details. However, according to the indicated
focus category and the brief description of each publication
listed in Table 1, the following conclusions can be drawn
regarding the existing reviews/surveys.

1) Some of them are relatively old, going back to 2006,
which obviously obliterates the great advancement of
wind turbine condition monitoring technology ever
since (see Fig. 1).

2) Some are mainly focused on the monitoring of a
particular wind turbine component, such as blade or
gearbox, while a more comprehensive review/survey
would provide broader knowledge of the appropriate-
ness of technology, including its capabilities, limita-
tions, and cost for monitoring different components
at the same time.

3) Most of these reviews/surveys focus either only on the
diagnosis or on the prognosis of wind turbines, not
both together, which would enable a broader, more
comprehensive perspective in the literature.

4) Those that discuss both aspects of diagnosis and
prognosis in wind turbines are still limited in their
attempts to offer a meaningful and comprehensive
review of every available technique or solution, espe-
cially when it comes to prognosis.

5) The condition monitoring techniques reviewed are
often restricted to those using either the signal-based

(data-driven) approaches or mathematical model-
based approaches but not both approaches in a
broader perspective, nor using the hybrid method-
ologies that emerged out of the combination of the
mentioned approaches.

6) The wind turbine nondestructive condition monitor-
ing technologies (such as machine vision, ultrasound,
and thermography) are often ignored, or, if reviewed,
there is a tendency to only focus on a specific wind
turbine component, such as blades, while providing
little context about which component a technology
is suited for, and with scarce details on capabilities,
limitations, and costs.

In addition, as it came to the attention of the authors
while reviewing the literature, the cited references in
some of the existing reviews/surveys in this area are not
always necessarily related to the problem of condition
monitoring in wind turbines. For instance, some of the
techniques or results reported for the condition monitoring
of bearings or generators in engineering applications other
than wind turbines were mistakenly cited and classified
among the techniques specifically developed for wind tur-
bines. This is not necessarily correct or reasonable since
the problem of condition monitoring in wind turbines
involves its own particular aspects and challenges that
differ from those found in other engineering applications
since they originate from the specific operating conditions
and load variations of a wind turbine. Having said that,
another problem with the references of some of the exist-
ing reviews/surveys is that, despite the new results and
publications constantly emerging in this active research
area, some recent reviews/surveys keep citing the same old
or even obsolete references invocated in former reviews
or surveys for years. This shortcoming has been carefully
avoided in this review paper by citing the most important
and relevant research papers with particular attention
given to the recently published results, that is, in the last
ten years.
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Table 1 Available Reviews/Surveys on Condition Monitoring of Wind Turbines
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Table 1 (Continued.) Available Reviews/Surveys on Condition Monitoring of Wind Turbines

The shortcomings and loopholes found in the existing
literature reviews, along with the constant advancement
of wind turbine condition monitoring technology that has
inspired a considerable amount of new publications in
this area, all together motivate the authors to present an
updated and more comprehensive literature review in this
article.

C. Overview of the Present Comprehensive
Review

This article aims at providing an up-to-date compre-
hensive literature review on real-time condition monitor-
ing of wind turbines, spanning both fault diagnosis and
prognosis aspects while exploring signal- and model-based
approaches as well. Furthermore, the common fault and
failure modes along with their root causes, traced to
different wind turbine components, are discussed and
categorized based on their severity; likewise, the updated
results of recent reliability studies on both onshore and off-
shore wind turbines are carefully organized and presented.
Compared with the existing literature reviews/surveys,
the main features and contributions of this review paper
specifically include the following.

1) A simple, straightforward language along with many
informative and easy-to-understand figures, schemat-
ics, and tables is used to provide a systematic, com-
prehensive literature review in a way that is both
appropriate and accessible to students, researchers,

and any other practitioners, whether from academia
or industry.

2) Both aspects of fault detection and diagnosis (FDD)
and LTP are considered and reviewed for a deeper
insight into the conditions of wind turbine compo-
nents and subsystems.

3) All critical components of wind turbines are consid-
ered, and the advantages, disadvantages, limitations,
challenges, costs, and trends of each condition moni-
toring technique or technology are carefully reviewed
and explicitly discussed.

4) Given the in-depth literature in this field, and since
a considerable share of studies has been published in
the past ten years (see Fig. 1), the main focus is placed
on the most recent journal publications, namely,
those produced approximately between 2010 and
2021, unless the citation of some other references or
recourses is utterly relevant to the area reviewed.

5) The most important, relevant, and up-to-date
research results are carefully selected and cited to
avoid the invocation of the same old references that
used to be mentioned repeatedly in some of the
existing reviews or surveys, disregarding the constant
emergence of new results and publications in this
active research area. That being said, this review
paper explores various well-known and impactful
papers that have significantly contributed to the
development of this area since the 1990s.
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Fig. 2. Trend of the global cumulative installed wind power capacity 2000–2020. Source: The World Wind Energy Association (WWEA),

March 2021.

6) A larger number of references are analyzed in order
to achieve a more comprehensive literature review
spanning an extended number of available techniques
and technologies that include the SCADA-based tech-
niques, 12 different varieties of dedicated condition-
specific-based techniques (e.g., oil quality, vibration,
and acoustic emission), mathematical model-based
techniques, and the hybrid techniques as the combi-
nation of other techniques.

7) Throughout the review, the cited references are care-
fully selected and categorized with a special attention
given to their true contents rather than the simple
reformulation of their abstracts.

8) The cited references categorized in each table are
sorted according to their publication dates to bet-
ter represent the evolutive trend of a technology or
approach over time and with respect to the monitored
components.

The remainder of this article is organized into six
different sections. The cutting edge of wind energy
and wind turbines, with an emphasis on monitoring
and control subsystems in wind turbines, is briefly dis-
cussed in Section II. The faults and failure modes, along
with their root causes in different wind turbine com-
ponents, are detailed and categorized in Section III.
Wind turbine condition monitoring and condition-based
maintenance techniques are described in Section IV.
Hardware signal-based condition monitoring, including
SCADA-based techniques and dedicated condition-specific-
based techniques, is reviewed in Section V. Mathemat-
ical model-based condition monitoring is reviewed in
Section VI. Finally, the summary, concluding remarks, and
future trends are outlined in Section VII.

II. S TAT E O F T H E A R T O F W I N D
T U R B I N E S
A. Wind Energy and Wind Turbines

In recent years, the demand for renewable/green energy
has significantly increased. Among the different types of
renewable energies, wind energy is the cleanest, a factor

that contributes to making it the world’s fastest-growing
renewable energy source. Presenting the global cumula-
tive installed wind power capacity from 2000 to 2020,
Fig. 2 shows that, globally, the cumulative installed wind
power capacity reached nearly 744 GW in 2020, which
amounts to about 7% of the global electricity demand
[50]. Following that trend, the mentioned wind power
contribution is expected to increase up to 25%–30% by
2050 according to the Global Wind Energy Council [51].

As their names indicate, wind turbines harness the
power of the wind. They do so by converting the wind’s
kinetic energy into mechanical energy, which is, in turn,
converted into electricity using a generator. From a design
viewpoint, wind turbines are classified into two different
types: the vertical axis and the horizontal axis (see Fig. 3).
Vertical axis wind turbines [see Fig. 3(a)] have a set of
rotor blades that spin around a vertical axis, while other
major components are located at the base of the wind
turbine, which facilitates maintenance services. However,
compared with horizontal axis wind turbines, they are
known to be less efficient and are associated with higher
O&M costs. This is partly due to the low rotor height that
cannot harness greater wind speeds often found at higher
levels, the less efficient rotor design that prevents the
blades on the vertical axis rotor from receiving incoming
wind at the same time, and more wind turbulence and
structure vibrations that altogether cause higher compo-
nent wear-down. On the contrary, with three rotor blades
and presenting numerous advantages, such as access to
the stronger wind (thanks to their tall towers), higher
efficiency (since the blades always move perpendicularly
to the wind), and receiving power through the whole
rotation, the horizontal axis wind turbine [see Fig. 3(b)]
has gradually dominated the commercial market of wind
energy [52]. Given that, in Section II-B provides more
details about the components and subsystems of this com-
mon type of wind turbine.

B. Wind Turbine Components and Subsystems
A cross-sectional view of a typical three-bladed

horizontal-axis wind turbine is shown in Fig. 4. The figure
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Fig. 3. Wind turbine designs: (a) vertical axis and (b) horizontal axis.

depicts the most important wind turbine components
and briefly describes their functionalities. Although absent
from this figure, a large and strong foundation always
finds itself under the wind turbine tower to withstand all
the forces from the wind and hold the turbine upright.
Section III provides detailed information about the signifi-
cance, failure rates, and general reliability aspects of these
wind turbine components. To further reinforce background
knowledge of modern wind turbine systems, Fig. 5 shows
the basic configuration of a wind turbine with its mechan-
ical, electrical, and monitoring and control subsystems
that are appropriately integrated for electricity generation
in a controlled and reliable manner. Table 2 presents
a more detailed list of major components under each
category of mechanical, electrical, and monitoring and
control subsystems. Note that some of the components in
this list can be optional depending on the wind turbine’s
drivetrain design. As shown in Fig. 6, different alternative
designs and arrangements for the drivetrains of wind

turbines exist. As seen in this figure, depending on the type
of the generator used and the design specifications of the
turbine, the drivetrain can either be direct-drive (without
gearbox) or geared-drive (with gearbox). The common
alternative current (ac) generators are also categorized
under two types of synchronous generators (which can be
conventional or multipolar) and asynchronous (induction)
generators with different rotor types, as also shown in
Fig. 6. One should also mention that new designs can be
expected as wind turbine technologies keep developing.
Readers seeking further details on generators and power
electronics for wind turbines are referred to [53] and
references therein.

C. Monitoring and Control: Critical Subsystems
With Intertwined Functions

As they continuously ensure the safe and efficient oper-
ation of a wind turbine as a whole system, the monitoring
and control equipment, among other subsystems, are of

Fig. 4. Cross-sectional view of a typical three-bladed horizontal-axis wind turbine.
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Table 2Wind Turbine Major Components

critical importance. They can be considered under each
individual wind turbine and an entire wind farm (group of
wind turbines) level. Fig. 7 illustrates this important clas-
sification of monitoring and control functionalities in wind
turbines and wind farms. From a larger perspective, wind
turbine condition monitoring, when conducted in real
time, not only can enable condition-based maintenance
(discussed in Section IV) but also the emerging concepts
of “condition-based control” and “fault-tolerant control”
to safely increase wind farm availability. This ultimately
results in a health management scheme, as outlined in
Fig. 8. One can see that the information obtained from
real-time condition monitoring is used in a high-level
supervisory control system, which accordingly determines
if it is safe and reasonable for wind turbines to continue
producing power in the event of faults and before the
essential condition-based maintenance. In addition, wind
turbines’ operational uncertainties can be alleviated using
condition-based and fault-tolerant control algorithms at
the levels of any individual wind turbine or the entire
wind farm. More precisely, condition-based control keeps
track of the real-time condition of wind turbine compo-
nents and adapts the control actions to modify the loading
of components depending on their health condition and,

thus, to delay/avoid failure. Fault-tolerant control, on the
other hand, aims at accommodating the effects of noncrit-
ical faults in wind turbines by reconfiguring the control
algorithms to avoid unnecessary shutdowns and missed
production. When supported by a reliable and effective
CMS, condition-based and fault-tolerant control mecha-
nisms lower the probability of wind turbine unexpected
maintenance and help enjoy improved supply certainty
(availability). Let us note that such benefits come on top
of the benefits from condition-based maintenance itself
[54], [55]. Accounting for these benefits altogether leads
to significant revenue improvements over the lifetime of a
wind farm, especially if located in less accessible offshore
regions.

III. F A U L T A N D F A I L U R E M O D E S I N
W I N D T U R B I N E S
Wind turbines constantly undergo a wide range of chang-

ing loads and operating conditions, which results in their
components experiencing considerably high failure rates.
The most common root causes of the fault and failure
modes in wind turbines are shown in Fig. 9.

Unexpected faults may occur in any wind turbine
components, such as sensors, actuators, rotor blades,

Fig. 5. Basic configuration of energy conversion in a typical wind turbine.
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Fig. 6. Drivetrain arrangements and common generator types.

generators, gearboxes, electric systems, and electronic con-
trol units, to name but a few. Fig. 10 shows the most impor-
tant wind turbine faults and component failures according
to their severity. The more damaging the ramification, the
higher the level of severity assigned to the fault/failure
effects. The most severe faults/failures can lead to the
complete shutdown of the turbine. As for the severe and
less severe faults, they usually partially affect the ability of
a wind turbine to produce its nominal power, but urgent
repairs may still be required. Notice that the low level of
severity considered for sensor faults relates to the physical
redundancy applied when installing sensors, which aims
at facilitating the detection and accommodation of sensor

Fig. 7. Monitoring and control of wind turbines.

fault effects. However, these sensor faults may become
critical if their effects are not handled in a timely manner,
which is before going through feedback loops into the
wind turbine’s control system. Indeed, a fault might not
be severe in the first place, but its effects might quickly
propagate in the wind turbine and lead to the catastrophic
failure of its rotor, drivetrain, or power generation systems.
Fig. 11 illustrates this process by showing how various
components’ fault effects can propagate through the wind
turbine subsystems.

Several independent studies on the reliability of wind
turbines (mostly onshore) are already available in the
literature (for instance, see [3], [9], and [56]). Also,
relatively solid reviews, such as those in [7], [8], and [57],
bring together and compare data from a selection of major
studies in the literature. Table 3 presents the main results
and conclusions extracted and compiled from these studies
for both onshore and offshore wind turbines. Accord-
ing to reliability studies, as wind turbines are becoming
larger, more flexible, and located further from shore, their
O&M costs rapidly rise unless their reliability is improved
through effective condition monitoring solutions.

IV. W I N D T U R B I N E C O N D I T I O N
M O N I T O R I N G A N D
C O N D I T I O N - B A S E D M A I N T E N A N C E
It is quite important to detect, diagnose, and prognose
any types of abnormalities and faults as early as possible
before they propagate to major damage or severe failure.
As shown in Fig. 12, the advanced techniques for FDD
and LTP, included in a CMS, enable a very cost-effective
type of preventive maintenance (before a failure), which
is often referred to as “condition-based maintenance.”
When a fault occurs, depending on its type and location,
it takes a certain time to develop before it can interrupt
or stop the operation of the wind turbine. To be effective,
CMS must take into account that time span. For instance,
some faults occur within a very short timeframe, in the
order of seconds, to grow from inception to failure (e.g.,
generator earth fault), whereas others may take up to
months before causing a failure (e.g., fatigue and fracture).
Thus, the former may provide sufficient time for detection
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Fig. 8. Schematic representation of an integrated health management scheme for wind turbines.

but probably not for complete diagnosis, prognosis, and
maintenance action, while the latter provides enough time
not only for detection but also for effective diagnosis,
prognosis, and successful maintenance action. The time
period from fault detection to maintenance action is usu-
ally referred to as the “prognostic horizon.” It is important
to accomplish the FDD and LTP as effectively and auto-
matically as possible to alleviate manpower and enable
efficient condition-based maintenance. Fig. 13 exhibits
the general maintenance objectives and a refined classi-
fication of the existing maintenance strategies, including
condition-based maintenance. Compared with other main-
tenance strategies, condition-based maintenance reduces
the number of maintenance visits and ensures that the

overall maintenance is necessary and truly worthwhile.
As a result, O&M costs decline in terms of labor, materials,
and machine downtimes.

As aforementioned and shown in Fig. 13, CMS plays
a key role in implementing condition-based mainte-
nance. In recent years, efforts to develop efficient and
cost-effective CMS for wind turbines have increased
significantly. Several commercial systems for wind turbine
monitoring, most of them developed based on existing
techniques from other rotating machine industries, are
already available on the market (for instance, see [23]
and [58]). Also, many innovative projects and techniques
have been introduced and are being explored in both
academia (for instance, see [59] and [60]) and industry
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Fig. 9. Common root causes of faults and failures in wind turbines.

(for instance, see [61] and [62]). In general, the monitor-
ing techniques for wind turbines can be divided into two
categories: 1) offline and 2) online (in real time). On the
one hand, off-line techniques involve periodic inspections
during which the machine needs to be shut down, and/or
the attention of an operator is necessary. Although these
techniques are suitable for the design and certification
process of new wind turbines, they often require the
attention of an operator and are unable to determine
the real-time condition of a working wind turbine [12].
On the other hand, real-time condition monitoring based
on online techniques is becoming increasingly important,
especially for offshore wind farms where the inspection
intervals are longer than those in onshore wind farms

[13]. These online techniques continuously provide the
real-time monitoring of a machine during its operation.
They can automatically report continuous raw measure-
ments and may even incorporate onboard models and/or
signal processing functionalities for enhanced data reduc-
tion and analysis. Although there is no unified catego-
rization of online techniques in the literature, they can
generally be further categorized as: 1) hardware signal-
based techniques; 2) mathematical model-based techniques;
and 3) hybrid techniques that refer to any combinations
or integrations of both hardware signal- and mathematical
model-based techniques together.

Hardware signal-based techniques refer to any tech-
niques utilizing the output signals from hardware sensors

Fig. 10. Major faults and component failures in wind turbines.
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Fig. 11. Propagation of the fault/failure effects in wind turbine systems.

in a wind turbine. These signals can come from either
a “standard” supervisory control and data acquisition
(SCADA) system or any “standalone condition-specific”

sensing and data acquisition systems adopted to monitor
the status of a specific condition variable (e.g., oil quality,
vibration, and acoustic emission) using oil quality sensors,
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Table 3 Main Results and Conclusions of Reliability Studies on Wind Turbine Components

strain sensors, thermal sensors, infrared sensing devices,
acoustic emission sensors, and so on. Therefore, signal-
based techniques can be further categorized as: 1) SCADA-
and 2) condition-specific-based techniques.

Mathematical model-based techniques employ the
“mathematical models” of a wind turbine or its major com-
ponents without requiring the high-resolution condition-
specific signals used in signal-based techniques. Indeed,
model-based techniques mainly require the mathematical

models of the process and the input–output (I-O) informa-
tion commonly available from a wind turbine and mainly
related to the wind turbine’s control system.

Conceived from the reviewed literature, Fig. 14 shows
the important milestones in the evolution of the men-
tioned wind turbine condition monitoring techniques
since 1990. In addition, Table 4 classifies a detailed list
of fault and failure modes associated with wind tur-
bine components and their relevant condition monitoring

Fig. 12. Condition monitoring to enable condition-based maintenance.
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Fig. 13. Maintenance objectives and strategies.

techniques. As observed in the table, although SCADA- and
model-based techniques are potentially (or rather ideally)
applicable to most wind turbine components, some other
techniques, especially the condition-specific-based ones,
can only be used for certain wind turbine components.
Sections V and VI are devoted to the comprehensive review
of each technique, individually.

V. H A R D W A R E S I G N A L - B A S E D
C O N D I T I O N M O N I T O R I N G
As its name suggests, signal-based condition monitoring
usually involves measurement signals and signal process-
ing methods under a data-driven approach designed to
obtain useful FDD and/or LTP information from a large
amount of observed data. Data-driven approaches typically

Fig. 14. Evolution and milestones of wind turbine condition monitoring techniques.
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Table 4 Fault and Failure Modes of Components and Condition Monitoring Techniques

rely on the time domain, the frequency domain, or the time–
frequency domain data analyses to extract the fault-related
features in the signals (observed data) and enable FDD

or LTP without using a physics-based (or an explicit I-O)
model. It is worth noting that, although a physics-based
model is not used here, data-driven approaches may still
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Fig. 15. Signal-based condition monitoring steps.

use some sort of data-based models (in terms of mathemat-
ical functions/relations), which work only for a particular
system under monitoring.

The major steps typically involved in the signal-based
condition monitoring process and data-driven approaches
are shown in Fig. 15. As seen in this figure, a set of (raw)
signals is first obtained from either a standard SCADA
system (i.e., the SCADA signals in Fig. 15) or other
standalone condition-specific sensing and data acquisition
systems (i.e., the condition-specific signals in Fig. 15).
Typically, for data acquisition, the signals need to be
simultaneously collected from several sensors installed at
different locations and various wind turbine components.
The collected signals are then preprocessed using appropri-
ate methods for signal conditioning. Signals from multiple
sensors and different sources are integrated (sensor fusion),
and their features necessary to relate the process signals
to the system conditions are generated. In most cases,
data analysis using signal feature extraction/selection is
needed to extract more useful (informative) features and
reduce the dimensionality of data that are highly sensitive
to the system’s conditions (see Fig. 15). Often, choosing
an optimal method for “feature extraction” is a challenging
task that depends on the problem and classifier design. The
main objective is to achieve independent and discrimina-
tive features. In general, the methods can be categorized
into time, frequency, and time–frequency domains.

1) In time domain (time-domain analysis), the meth-
ods deal with extracting signal features directly from

the time-domain representation of signals. These
time-domain methods usually involve time-domain
indices, such as peak level, variance, root mean
squared (rms) value, shock pulse counting, kurtosis,
crest factor, envelope analysis, time series averaging,
and many more.

2) In the frequency domain (frequency-domain analy-
sis), the methods focus on extracting signal features
from the frequency-domain representation of signals,
which is obtained from the Fourier analysis or fast
Fourier transforms (FFTs). These frequency-domain
methods usually involve frequency-domain indices,
such as mean frequency, rms frequency, root variance
frequency, spectral skewness, spectral kurtosis, spec-
tral entropy, the Shannon entropy, and many more.

3) In the time–frequency domain (and the analysis of the
same name), the methods deal with extracting signal
features from the time–frequency domain represen-
tation of signals obtained from the mapping of 1-D
time-domain signals to a 2-D function of time and
frequency. The said mapping can be achieved using
some common techniques, such as the short-time
Fourier transform (STFT), the wavelet transform, and
the Wigner–Ville distribution.

It should be noted that, due to their inherent dynamic
nature, and particularly under the time-varying operating
conditions, most of the signals encountered in engineering
applications are nonstationary and vary over time. The
time- or frequency-domain analysis alone is not ideal
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to deal with those nonstationary signals because they
cannot reveal the important features in both time and
frequency domains simultaneously. To overcome this prob-
lem, the joint time–frequency analysis is an effective solu-
tion, which has been used as the main feature extraction
method in wind turbine CMS [44]. A detailed review of
time–frequency analysis methods for signal feature extrac-
tion is presented in [90].

Beside feature extraction, another useful approach for
feature dimensionality reduction (reduction of the number
of features) is referred to as “feature selection.” Unlike fea-
ture extraction that involves the transformation of features
into a higher dimensional space, feature selection works
by sorting out a subset of the existing features to remove
those that are not relevant or that are redundant. Feature
selection techniques are divided into three categories.

1) Filters that work by ranking the features according
to some characteristics of the data, such as distance,
correlation, information gain, and fisher score. The
filter techniques are computationally efficient since
they are independent of the classifier performance
[91]. However, this results in a feature subset, which
is not tuned to a specific type of classifier and usually
gives lower prediction performance.

2) Wrappers that work by searching for a useful subset of
the features according to a learning algorithm, which
involves the classifier itself as part of the evaluation
function. Compared to the filters, the wrapper tech-
niques tend to perform better in selecting features.
However, these techniques are computationally inten-
sive, especially as the feature space grows [92].

3) Embedded techniques that are introduced to bridge the
gap between the filter and wrapper techniques. They
work by embedding feature selection with classifier
construction to attain the benefits of wrappers (as
they involve the interaction with the classification
model) and filters (as they are computationally effi-
cient) [93].

A comprehensive review of feature selection techniques
in each of the abovementioned categories is presented
in [94].

In continuation of the steps shown in Fig. 15, the
signal features obtained from the process of data analy-
sis are accordingly considered by the concluding process
of condition classification/regression. In this process, the
classification-based and/or regression-based data-driven
approaches are used to predict a categorical variable (clas-
sification) or a numeric variable (regression), respectively.
More precisely, a classification-based data-driven algo-
rithm leads to a mapping (called classifier) from some
input space (the space of feature values) to a discrete
output in the form of class labels, while a regression-based
data-driven algorithm results in a mapping (called regres-
sor) from some input space to a continuous output in the
form of real numbers. Indeed, the data-driven algorithm
utilizes an adequate set of data to understand (learn) and

evaluate the mapping relations between the input and
output spaces. The set of data is representative of various
operating conditions and is typically split into training
(usually, about 65% of the data) and testing (usually, about
35% of the data) sets [44]. After parameter adjustment
and learning from the training set, the performance of the
resulting mapping relations should be evaluated using the
testing set. In the case of classification, the performance is
typically evaluated according to several measures, such as
accuracy, sensitivity, specificity, and F1-measure. However,
the evaluation measures for regression are different and
may include measures, such as the mean absolute error,
rms error, and r-squared. When a classifier or regressor is
accurately trained and evaluated, it can be eventually used
in the FDD or LTP process.

As seen in Fig. 15, for classification or regression
purposes, there is a whole variety of algorithms in data-
driven approaches that are generally included under two
main categories: 1) artificial intelligence (AI) algorithms
(e.g., artificial neural networks (ANNs), fuzzy logic, and
expert systems) and 2) statistical algorithms (e.g., least-
squares regression, relevance/support vector machine, and
the stochastic processes, such as the gamma process, the
Wiener process, and the hidden Markov model). Among
these algorithms, the AI ones based on different types of
ANNs have been widely used for both classification and
regression in different fields and applications. Compre-
hensive reviews on various data-driven algorithms with
general application to FDD and LTP can be found in [95]
and [96], respectively.

Fig. 16 shows a typical schematic of a signal-
based condition monitoring scheme but from a machine
learning perspective. Indeed, a signal-based condi-
tion monitoring scheme can be designed using either
a machine-learning-based approach (also known as a
knowledge-based approach) or a simple nonmachine-
learning-based approach. The nonmachine-learning-based
approach only relies on a plant’s measured outputs whose
signal patterns under healthy conditions are “a priori.”
Since the faults are reflected in the measured signals
whose features are extracted, the fault diagnosis is sim-
ply carried out by checking the consistency between the
known healthy signal pattern and the real-time signal
pattern/feature of the plant, which is extracted from
real-time monitored data by signal processing methods.
However, the machine-learning-based approach deals with
more complicated cases where a large amount of historical
data (rather than a priori signal patterns) is available.
In those cases, various AI algorithms are applied to the
available historical data to extract patterns and the under-
lying knowledge of the plant (which implicitly represents
the dependence of the plant’s I-O variables). Finally, a
diagnosis decision is made by checking the consistency
between the obtained underlying knowledge base and the
real-time signal pattern of the plant, which is extracted
from real-time monitored data. It is important to note
that the mentioned design approaches for signal-based
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Fig. 16. Typical schematic of a signal-based condition monitoring scheme.

condition monitoring can be appropriately applied for both
FDD and LTP purposes according to similar principles
but with different objectives and considerations. Indeed,
to estimate the RUL under signal-based condition mon-
itoring, LTP typically depends on the availability of the
historical data, which captures the patterns of measured
signals or extracted features from the equipment degrada-
tion process from incipient fault stage to failure. In other
words, when a specific fault has occurred, the degradation
trend of data can be classified under that specific fault,
and the prognosis knowledge base can be trained to check
the fault behavior patterns (as opposed to normal behavior
patterns in FDD) and to estimate the RUL of a degrading
plant or its components.

It is worth emphasizing that the schematic shown in
Fig. 16 is for illustration purposes only. Depending on the
specific requirements and circumstances of the problem
addressed, the shown schematic may vary in some parts or
steps (e.g., pattern recognition methods may act directly
on the raw data without signal preprocessing and/or fea-
ture extraction).

With respect to the type of signals used in the
signal-based condition monitoring of wind turbines,
Sections V-A and V-B review the SCADA-based techniques
and condition-specific-based techniques, respectively.

A. SCADA-Based Techniques

All large utility-scale wind turbines use a SCADA system,
mainly for monitoring the overall performance of wind
turbines and their major components. A standard SCADA
system provides an important source of information at
both wind turbine and wind farm levels. This informa-
tion includes operational and availability data (typically
recorded at 10-min intervals), as well as instantaneous
alarms data (whenever alarms or warning messages are
generated). Although the exact information (and data
configuration) obtainable from the SCADA system depends
on the supplier, a list of signals typically recorded by
such a system is given in Table 5 [23], [33], [79]. Note
that several additional parameters, such as vibrations, oil
pressure levels, and filter status, can also be recorded
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Table 5 Typical SCADA Signals for Wind Turbines

by some up-to-date SCADA systems. However, in order
to reduce the transmitted data bandwidth from a wind
farm, the recorded data are generally 10-min averages of
1-Hz sampled values, while other forms, such as minimum,
maximum, or standard deviation of live values recorded in
a 10-min period, are also possible [97].

Despite the basic idea of using the SCADA system,
rigorous analysis of SCADA data can potentially result
in an efficient understanding of wind turbine’s health
condition. Indeed, using appropriate algorithms, the basic
idea of “overall performance monitoring” by the SCADA
system can be matured into efficient condition monitoring
schemes with FDD and LTP capabilities for both rotating
and nonrotating subassemblies of wind turbines. More
precisely, “performance” is described in connection with
the underlying process physics of a system—in this case,
a wind turbine and its components. As wind turbine
components deteriorate over time, the efficiency with
which wind kinetic energy is converted to useful electrical
energy decreases, and the performance of the wind turbine
degrades. Therefore, the performance degradation can be
a sign or symptom of many diverse problems in the wind
turbine and its components, ranging from aerodynamic
degradation of rotor blades (due to erosion, dirt, or ice
buildup on blades) to any other component malfunctions
due to faults, damages, or wear and tear.

Since condition monitoring of wind turbines using
SCADA data is a potentially low-cost solution, requiring
no additional sensors, several SCADA-based performance
monitoring systems are already researched and developed
in both academia and industry (for instance, see [19],
[21], [33], and references therein). From a design view-
point, a suitable performance parameter is first computed
according to the measured SCADA signals [84]. This could
be any performance-representative parameter or fault indi-
cator chosen from raw sensor signals (or their features),

sensor signals corrected for environmental conditions,
component efficiencies or aerodynamic parameters, and
so on. Then, using different methods, one or more such
parameters are carefully considered to assess a wind tur-
bine’s condition and determine whether the wind turbine
is behaving within its normal bounds. Several methods
can be used for this purpose. Indeed, one of the first
steps in the evolution of condition monitoring with SCADA
data was based on simple trending methods, for instance,
using regression lines in scatter diagrams of temperature
versus power or 3-D visualizations, including the ambient
temperature. Past studies involved such trending methods
trying to detect faults or early signs of degradation (i.e.,
the evolution of damage) (e.g., see [98]–[100]). However,
the main challenge lies in how to accurately interpret
“trends” of SCADA parameters given the variability of
the operating conditions of modern wind turbines, as a
change in the value of a SCADA parameter is not neces-
sarily evidence of a fault. Most studies have shown that
automated online monitoring based on trending methods
will most likely fall short of required accuracy since the
problem is highly case-specific and usually requires an
off-line visual interpretation of the trends. Such a prob-
lem can be very difficult to tackle, especially when deal-
ing with monitoring a large farm of wind turbines that
operate under very different conditions. To address this
shortcoming of trending methods and as another step
in the evolution of condition monitoring with SCADA
data, clustering algorithms are introduced to automate
the classification of “normal/healthy” and “faulty” obser-
vations (for instance, see [101]–[103]). Yet, according
to the reviewed literature and compared with trending
methods, the overall idea of clustering the observations
does not exhibit a clear or noticeable advantage since
the interpretation of results for condition monitoring is
again difficult [33]. In addition, extensive historical fault
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data are required for training purposes—the data of faulty
operation, which ideally include the full range of fault
dynamics. However, it is not necessarily feasible to access
such fault data in practice. To avoid such problems, more
advanced methods, such as normal behavior modeling or
damage modeling, are proposed in the literature. In normal
behavior modeling methods, models of normal behavior,
empirically “trained” on historical data (under normal
conditions), are used to generate an error or residual
signals with respect to the measured performance parame-
ters. Accordingly, any serious deviations of the residuals
(from the vicinity of zero) indicate the occurrence of faults
or failures in a wind turbine component. For instance,
SCADA data can be used to model and monitor the wind
turbine “power curve” that relates the power output to
the wind speed, thus giving an important measure of
power generation performance by the wind turbine (e.g.,
see [104]–[107]). In addition, there are several other
examples based on modeling approaches but for moni-
toring other wind turbine operational parameters (e.g.,
see [108]–[111]). From a design viewpoint, the normal
model can be created based on either the Full Signal
ReConstruction (FSRC) concept, for which only the signals
other than those of a target parameter are used to predict
the target, or AutoRegressive with eXogenous (ARX) input
modeling, for which past values of the target are used as
well. According to the reviewed literature, models created
using polynomial equations, ANNs, adaptive neurofuzzy
inference systems (ANFISs), or nonlinear state estimation
techniques (NSETs) have demonstrated more satisfactory
condition monitoring results [33]. However, there is no
solid study comparing these modeling techniques in terms
of their true value for the provided modeling accuracy
in return for the imposed computational burden. This
could help conclude which technique has superior perfor-
mance over others for normal behavior modeling purposes.
In addition, the majority of studies in this area are focused
on modeling the normal behavior of “single-target” vari-
ables of interest. As a result, a growing number of models
are developed to describe the normal behaviors of wind
turbines’ specific components (e.g., a normal model for the
temperature behavior of the main bearing, a second model
for the generated active power, and so on). In practice,
one needs to both keep track of and maintain all of these
models and to update them and/or their related threshold
values when required, as the normal behavior may change
over time due to sensor recalibrations, part replacements,
software updates, and so on. Therefore, each additional
normal behavior model further increases the burden for
wind farm operators. To address this issue, multitarget
normal behavior modeling approaches (such as the one
recently proposed in [112]) can be considered. Such
approaches enable, at once, simultaneous SCADA-based
monitoring of multiple state variables using a single (mul-
titarget) normal model. In contrast to the normal behavior
modeling approach that presents a “black-box” solution
with little or no insight into the physical processes that

drive faults and failures, the damage modeling approach
focuses on developing a damage model based on a physical
understanding of one particular failure mode of interest.
Thus, the latter approach can potentially better represent
damage development and provide more accurate results.
However, the development of reliable and sufficiently
accurate damage models for all failure modes of a wind
turbine will be very demanding. This is especially due to
the lack of knowledge needed on the sufficiently large
numbers of failures, which themselves can vary depending
on the type, manufacturer, or location of wind turbines.
Table 6 presents an updated summary of the literature pro-
duced on the so-called SCADA-based condition monitoring
techniques.

In summary, motivated by the lower costs offered by
the system not requiring additional hardware investment,
a large number of studies in the literature have been
devoted to SCADA-based condition monitoring in wind
turbines. However, since not initially designed for condi-
tion monitoring purposes, the provided monitoring perfor-
mance by SCADA-based CMS is limited, mainly due to the
following concerns and shortcomings.

1) Although SCADA data provide relatively extensive
information that can be useful to identify abnor-
mal wind turbines in a wind farm, the data usually
do not include all the necessary information for a
full (detailed) condition monitoring of wind turbine
subsystems and components.

2) The distribution of SCADA data is generally imbal-
anced, and the anomalous data mining is usually
insufficient. This means that the amount of normal
data is typically much higher than that of abnormal
data, which might result in poor condition monitoring
performance, since the data-driven models tend to be
biased toward the majority class (i.e., normal data).

3) The sampling frequency of SCADA data is much
slower than those required for some condition moni-
toring techniques.

4) Data quality is usually a concern. For instance,
10-min logs of SCADA data are commonly affected by
problems such as “missing values,” “NULL entries,” or
“zeros,” “plausibility limits exceeded,” “statistical out-
liers,” “large blocks of identical values consecutively,”
“incorrect data format,” and so on. Accordingly, any
necessary corrections made to the data, such as those
using linear or exponential interpolation, extreme val-
ues to limit value, or even removing the problematic
channels of data, can decrease the required level of
accuracy.

5) Given the variability in the operating conditions of
modern wind turbines, rapid fluctuations of environ-
mental conditions (wind speed/direction, air density,
turbulence, and so on), and the low sampling fre-
quency of typical SCADA systems, it is difficult to
detect, diagnose and prognose incipient faults in a
timely manner.
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Table 6 Summary of Existing Literature on SCADA-Based Wind Turbine Condition Monitoring
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Table 6 (Continued.) Summary of Existing Literature on SCADA-Based Wind Turbine Condition Monitoring

Because of the abovementioned limitations, SCADA-
based condition monitoring cannot currently replace a
“professional” CMS, which is especially designed for condi-
tion monitoring purposes in wind turbines. As discussed in
Section V-B, such a system employs additional hardware in
the form of different standalone condition-specific sensing
devices that are purposely dedicated to precisely monitor-
specific condition variables, such as oil quality, vibration,
and acoustic emission. Compared with SCADA systems, the
measured signals are more precise and sampled at higher
frequencies, which provide richer information, enabling
greater insights into the wind turbine health condition.
However, this comes with a higher cost, which depends on
measurement accuracy, sampling frequency, system func-
tionality, and application environment.

B. Condition-Specific-Based Techniques

According to the additional hardware used in a profes-
sional CMS, a wide range of condition-specific signals is
available for analysis. Table 7 provides a list of those sig-
nals and their related information, including the features
of monitoring hardware, possible condition monitoring
capabilities, and relevant components monitored in a wind
turbine.

With respect to the condition-specific signals listed
in Table 7, the following paragraphs briefly review the

available literature for detection principles, development
methods, pros and cons, and challenges and limitations of
each technique.

1) Vibration: Many wind turbine components after
being affected by faults or defects produce a new vibra-
tion behavior, which can be monitored using the signals
obtained from vibration sensors. Thus, any abnormal vari-
ations in the measured vibration signals can indicate faults
in a monitored component. For instance, in the case of
moderate to high-speed bearings, each and every time a
roller element passes over a defect, an impulse of vibration
is generated, which can act as a fault indicator [29]. Also,
the vibration signal’s amplitude can indicate the fault’s
severity [28]. Indeed, appropriate signal processing meth-
ods can identify the fault frequencies and, accordingly, the
location and type of fault [137].

Given the significance of vibration monitoring, most of
the commercially available CMSs mainly rely on this type
of monitoring using vibration sensors, often installed on
the surfaces of rotor blades, and the casings of internal
components, such as generator, gearbox, main shaft, and
bearings. Depending on the frequency range and operating
conditions of the monitored components, various types of
vibration sensors are available, including: 1) displacement
sensors in the low-frequency range; 2) velocity sensors in
the middle-frequency range; 3) accelerometers in the
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Table 7 Comparison of Condition-Specific Signals for Professional CMS in Wind Turbines

high-frequency range; and 4) spectral emitted
energy (SEE) sensors in very high frequencies (acoustic
vibrations). Among them, accelerometers cover the widest
working frequency range from 1 to 30 kHz, which makes
them the most popular vibration sensors in the condition
monitoring of wind turbines. In addition to the mentioned
sensors, ground-based radar (GBR) is also used as a
vibration-based noncontact remote sensor for structural
condition monitoring of in-field wind turbine blades [138].

As listed in Table 7, the vibration signal-based technique
is appropriate for monitoring the health condition of rotor
blades, generator, gearbox, bearings, and other selected
wind turbine components, such as a tower. Table 8 sum-
marizes the advantages and disadvantages of this technol-
ogy and provides a list of selected references categorized
based upon the name of components being monitored by
vibration in wind turbines. The main challenges of this
technology relate to the complications that come with the
components’ different frequency ranges and the distinction
of the acquired vibration signals generated by the faults
from those caused by the environmental and operating
conditions.

2) Strain: A wind turbine structure is made of mate-
rials that deform under applied loads. These structural
deformations can be characterized by a dimensionless
quantity known as strain. The measured strain signals can

be effectively used to monitor structural health conditions
against faults in the form of structural defects (e.g., blade
icing and mass unbalance) or damages. Strain sensors
are often mounted on the surface or embedded in the
layers of a structure. Generally, there are two popular
types of sensors for strain measurement: 1) traditional
electrical sensors and 2) relatively modern optical fiber
sensors. The electrical sensors include several types involv-
ing capacitance, inductance, semiconductor, or resistance.
Among them, the resistance strain gauge is the most pop-
ular with a well-established mature technology. However,
strain gauges can suffer from several issues, such as easy
degradation and failure over long-term operations, and
vulnerability to lightning strikes, electromagnetic interfer-
ence, and variations in temperature, which necessitates
careful compensations in the results [17], [46]. As mod-
ern alternatives based on fiber optics technology, optical
fiber sensors are being developed [164]. Specifically, the
so-called fiber Bragg gratings (FBGs) have become popular
for offering high sensitivity through a direct physical cor-
relation between wavelength and strain. They have long-
term durability under hostile operating conditions and
use nonelectrically conducting transmission lines, which
ensures lightning safety and neutrality against electro-
magnetic interference [17], [165]. Having said that, FBG
sensors are still expensive although efforts are made to
make their application more cost-effective [15].
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Table 8 Vibration Signal-Based Condition Monitoring Technology

As listed in Table 7, the strain signal-based technique
is mainly appropriate for monitoring the health condi-
tion of wind turbine structures, including rotor blades,

towers, and foundations. Table 9 summarizes the advan-
tages and disadvantages of this technology and provides
a list of selected references, which individually address
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Table 9 Strain Signal-Based Condition Monitoring Technology

the monitoring of a specific component by strain in wind
turbines. The main challenges of this technology relate to
the need for a large number of sensors (as each sensor can

measure at one local point) and enough initial knowledge
of critical points and high-strain areas for effective sensor
placement.
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Table 10 Torque Signal-Based Condition Monitoring Technology

3) Torque: Torque (also known as moment or moment
of force) is the tendency of a force to cause an object to
rotate around an axis or other point. It is a vector quantity
with both a direction and a magnitude. The faults and
defects in mechanical components usually leave signatures
in measured torque signals. Thus, it is possible to detect
and diagnose these faults and defects by monitoring the
torque signals obtained from wind turbine components.
For instance, malfunctions such as rotor imbalance and
aerodynamic asymmetries can be diagnosed by analyzing
the torque experienced by a wind turbine’s tower [70].
Likewise, gear defects, especially for the low-speed gear in
a gearbox, can be diagnosed using the envelope spectrum
of the torque measurements in the gearbox [83].

A torque sensor is indeed a transducer that converts
a torsional mechanical force into an electrical signal.
Generally, there are two major types of torque sensors
that can be installed on the components being monitored,
such as rotor blades, gearbox, generator, and tower. The
mentioned sensors include rotary torque sensors for mea-
surement of rotational torque (when there is an axle or
pivot to be turned around) and reaction torque sensors
for measurement of bending moment (when there is an
element to be bent). In the case of a generator, the torque
can be also estimated based on the generator speed and
electrical outputs without using torque transducers.

As listed in Table 7, the torque signal-based technique
is available for monitoring the health condition of wind
turbine components, including rotor, generator, drivetrain
(gearbox, shaft, and so on), and tower. Table 10 summa-
rizes the advantages and disadvantages of this technology
and provides a list of selected references categorized based

on the name of components being torque-monitored in
wind turbines. This technology usually requires more com-
plicated signal processing algorithms because of torque
signal modulation problems with dominant components
related to the load. Having said that, the main challenges
still relate to the high cost and installation complexities of
torque transducers, especially for new wind turbines with
more compact designs.

4) Shock Pulse: Shock pulse monitoring, referred to as
shock pulse method (SPM) technology, was first introduced
in 1969 to determine the condition of rolling element
bearings or any piece of machinery with continuous metal-
to-metal contact, which gives off shock pulse signals [192].
In simple terms, at the instantaneous moment of mechan-
ical impact between two masses, the molecular contact
happens, and a compression (shock) wave/pulse develops
in each mass. In a bearing (whether new or old), the
mechanical impacts happen during the rotation of the
bearing and due to its natural surface roughness or sur-
face defects/damages. These mechanical impacts generate
shock pulses in the interface between the loaded roller
element and the race way, which, in turn, results in the
bearing acting as a “shock pulse generator.” The magnitude
of shock pulses depends on the bearing’s surface condition
(i.e., roughness, stress, damages, and oil film thickness)
and its peripheral velocity (i.e., rotational speed, size, and
so on). These shock pulses have an ultrasonic frequency
band and typically occur around a center frequency of
32 kHz [29].

In SPM, shock pulses are measured using specially
designed piezoelectric accelerometers equipped with filters
for reducing the influence of environmental factors, such
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as background vibration and noise. Such accelerometers
are tuned mechanically and electrically to a resonant fre-
quency of 32 kHz [192]. The measured shock pulses are
typically recorded per second, and two amplitude levels
are extracted: 1) the decibel carpet value of 200 shock
pulses per second and 2) the peak value of incoming
shock pulse under 2 s. The decibel carpet value provides
an indication of the lubrication condition, and the peak
value provides the extent of bearing damage. Indeed, the
measured shock pulse amplitudes are subtracted from the
expected shock values in a healthy bearing at a similar
speed. Accordingly, an indication of the bearing health
condition is obtained. Typically, there are three condition
regions/scales, namely, “Green” for good condition, “Yel-
low” for warning, and “Red” for damaged condition. This
provides the operator with the status information of the
machine and the zone it belongs to.

As listed in Table 7, the shock pulse signal-based tech-
nique is mainly applied for the condition monitoring of
wind turbine bearings used in the gearbox, yaw system,
or blades. Unlike other alternative techniques, such as
vibration analysis, SPM can uniquely analyze and display
the state of bearing lubrication and bearing mechani-
cal condition without needing baseline data development
for trending [192], [193]. Also, this technology can iso-
late (locate) the faults/damages since the damaged bear-
ings generate shock pulses with a pattern that corresponds
to the frequency of the balls passing over the damaged
part. Table 11 summarizes the advantages and disadvan-
tages of SPM as referenced in a selected list of studies
focusing on its implementation in wind turbines. Although
the commercial SPM instrument is typically hand-held and
simple to use in real time, the presence of semiskilled
personnel for holding the device and pressing the sensor
to the bearing cover with the probe is necessary. There-
fore, the fleet-level implementation of this technology
might become complicated and expensive compared with

vibration monitoring. Finally, as a result of the technology’s
proprietary nature, the published literature on this subject,
especially for wind turbines, is scarce, and there is almost
no evidence of prognosis capabilities for SPM [29].

5) Acoustic Emission: Acoustic emission is a transient
impulse caused by a rapid release of strain energy in
the form of transient elastic waves within a solid mate-
rial when it undergoes stress/strain conditions through
mechanical or thermal loadings. According to this phe-
nomenon, any alterations in a structure excite acoustic
emission signals, which may be monitored by appropriate
sensors. Indeed, the information about the occurrence and
propagation of surface or subsurface structure damages
can be extracted using the signals’ waveform characteris-
tics, such as acoustic energy, rise time, duration, amplitude,
kurtosis, and rms values [17], [46], [198], [199].

Basically, acoustic emission monitoring is very similar to
vibration monitoring in terms of the nature of the collected
data, which, for both, originates from the alterations in
a material structure. Indeed, the former employs acoustic
sensors to “listens” to the material alterations using sound
level meters, while the latter associates such alterations
to the material vibrations measured using the vibration
sensors [1], [30]. In contrast to the vibration sensors
that are rigidly mounted to the monitored components,
the acoustic sensors are flexibly attached to the compo-
nents using a viscous couplant (i.e., a coupling medium,
such as silicone grease or adhesive) and a mechanical
clamp offering a constant coupling pressure [30], [200].
To widely monitor the whole structure and identify the
location of a damage or fault, multiple acoustic emis-
sion sensors (i.e., sensor arrays) are required. The fre-
quency of acoustic emission signals typically lies between
100 kHz and 1 MHz recorded by a wide range of sen-
sor types, such as piezoelectric, resonant, or wideband
transducers [200], [201].
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As listed in Table 7, the acoustic emission signal-based
technique is mainly applied for the condition monitor-
ing of wind turbine components, including rotor blades,

generator, drivetrain (gearbox, bearings, and so on), and
tower. Table 12 summarizes the advantages and disadvan-
tages of acoustic emission monitoring and provides a list
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of selected references categorized according to the names
of the components being monitored in wind turbines.
Compared with vibration monitoring, acoustic emission
technology works with signals of much higher frequencies
that can provide more effective monitoring performance,
especially for incipient structure defects, damages, or faults
at an early stage. Yet, such high sampling frequencies can
complicate the required signal processing and increase its
computational cost. In addition, this technology usually
relies on the installation of a large number of sensors,
including dedicated data acquisition devices (for signal
sensing, processing, and transfer), which increases con-
dition monitoring costs and causes additional reliability
issues due to the use of supplementary sensors. Finally,
it is also challenging to correctly distinguish signals from
acoustic emissions and noisy background environments,
not to mention the other factors, such as temperature,
lubrication, and loading, which are found to have a signifi-
cant influence on the acoustic emissions [28], [29], [198].

6) Temperature: By definition, the temperature is the
degree or intensity of heat present in a material or object.
It is especially expressed using a comparative scale and
indicated by a sensor. A variety of different sensors, such
as optical pyrometers, resistant thermometers, and thermo-
couples, are available for temperature measurement [15],
[30]. Among them, thermocouples are widely used in wind
turbines given their very low cost and good reliability [21].

During the normal operation of a wind turbine, each
component’s temperature must remain within its allowable
range. An abnormal temperature can possibly indicate

faults due to problems such as equipment degradation, low
lubrication oil or inefficient lubricant properties (excessive
frictions), generator winding short circuits, and shafts over
speed. Therefore, measurement and monitoring of tem-
peratures in a wind turbine are among the most common
techniques, which can provide useful information on the
machine’s health condition. For this technique, measure-
ment of temperatures in each individual component and
subcomponent (e.g., bearings and shafts) is essential since
it enables better diagnosis performance based on larger
information available. Also, it should be noticed that the
changes in component temperatures can be correlated
with variations in surroundings temperature (e.g., nacelle
temperature) or the wind turbine’s normal operating con-
ditions, including rotational speed and loads [21], [30].

As listed in Table 7, the temperature signal-based
technique is mainly used in the condition monitoring
of wind turbine components, including generator, con-
verter, drivetrain (gearbox, bearings, and so on), nacelle,
and transformer. Table 13 summarizes the advantages
and disadvantages of this technology and provides a
list of selected references categorized according to the
name of the components being monitored by tempera-
ture in wind turbines. In addition to concerns related to
the measurement accuracy of a component’s temperature
(due to environmental and operational effects), the main
challenge of this technology lies in the fact that “tem-
perature” (containing fault-related information) develops
slowly and sometimes too late compared with other
condition-specific signals. As a result, to enable early and
precise detection and diagnosis of faults, the temperature
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signal is rarely used alone but rather often with another
source of information such as vibration signals [15].

7) Oil Debris/Quality Parameters: The lubrication oil
plays an important role in reducing the friction, heat, and
wear between mechanical components that are in contact,
especially those inside the wind turbine’s rotating sub-
systems and components, such as gearboxes, generators,
and bearings. The aims of the oil monitoring and analysis
are twofold: 1) to ensure an appropriate oil quality to
optimize oil changing schedule and prevent equipment
damage caused by poor oil quality and 2) to monitor
and estimate the health condition and wear of the oil-
lubricated equipment. Besides monitoring the oil pressure
and temperature, its samples can be analyzed to assess
the oil debris/quality parameters, such as viscosity, levels
of contaminants (e.g., water content, coolant, and fuel),
and the size, shape, composition, and count of solid par-
ticles (debris). Indeed, an excessive number of particles,
the presence of large particles, or those of a particular
shape can indicate abnormal wear conditions, faults, or an
impending failure [26], [227]–[229]. Therefore, the pre-
cise monitoring and analysis of oil debris/quality parame-
ters can provide very useful information about the health
condition of the wind turbine’s oil-lubricated components
and their potential faults at an early stage [227]–[230].

Although such an analysis is typically performed offline
by taking periodic samples, recent advances in online
oil sensing technology have enabled continuous online
oil analysis tools [231], [232]. For online oil condition
monitoring, there are several sensors available, such as
the oil humidity (water) sensor, sensors for viscosity, par-
ticle concentration, quality and properties, conductivity,
thermometer, and level sensor [35], [227], [233]. Indeed,
the sensors’ applicability depends on the oil type and the
sensor measurement range and accuracy.

As listed in Table 7, the oil-debris/quality signal-based
technique is mainly used for the condition monitoring of
oil-lubricated wind turbine components, including gen-
erator and drivetrain (gearbox, bearings, and so on).
Table 14 summarizes the advantages and disadvantages
of oil debris/quality monitoring and provides a list of
selected references categorized according to the names of
the components being monitored in wind turbines. For this
technology, the well-chosen monitored oil parameters, the
relevant set of sensors, and their accuracy all together play
a vital role in the reliability of detection and diagnosis
results. However, the use of additional oil sensors not only
is intrusive in terms of installations but also increases con-
dition monitoring costs and leads to additional reliability
issues caused by supplementary sensors. In addition, since
the operation of a wind turbine has various impacts on the
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oil condition, it is usually challenging to correctly interpret
the real-time measurements or determine the root causes
of faults or abnormalities.

8) Electrical Effects: Electric current and voltage sig-
nals constitute the electrical effects (signatures) of
the wind turbine generator. On the basis of electro-
mechanical coupling between the generator and other
wind turbine components/structures, several studies
(e.g., Schoen et al. [238], Marzebali et al. [239], and
Douglas et al. [240]) demonstrated that vibrations inside
the mechanical components (shaft, gearbox, bearings, and
so on) appear in the electrical effects of the wind turbine
generator as well. More precisely, these electrical effects
can include stator current, stator voltage, rotor current,
and so on. Having said that, as listed in Table 7, the
electrical effects’ analysis provides a unique and non-
intrusive signal-based technique to monitor wind tur-
bine components and structure since their faults usually
induce vibrations; such fault-induced vibrations appear
in the electrical effects accordingly [241], [242]. For
instance, Kia et al. [243] analytically derived the relation-
ship between the characteristic frequencies of gearbox
faults in vibration and electric current signals. With respect
to the bearing faults in the wind turbine’s gearbox or
generator, Gong and Qiao [244] analyze the amplitude
and phase spectra of electric current signals to diagnose
bearing faults from an early stage. Another work in [245]
studies the effectiveness of this technique in the detection
of wind turbine rotor blade imbalances.

Table 15 summarizes the advantages and disadvantages
of this technology and provides a list of selected refer-
ences categorized based on the name of components being
monitored by electrical effects analysis in wind turbines.
The key advantage of this technology is that it does not
need any additional sensors or costly data acquisition
systems since the current and voltage signals used for
signal analysis can be the same as those used in the
wind turbine’s existing control/protection schemes. This
provides significant benefits in terms of system costs, hard-
ware complexities, implementations, and overall reliability.
Having said that, the real-life application of this technology
in wind turbines is still challenging mainly due to the time-
varying (nonstationary) nature and, thus, a low signal-
to-noise ratio of the electric signals. Therefore, the fault
information (i.e., fault signatures or features) hidden in a
nonstationary signal obtained from the wind turbine can-
not be directly extracted by the classical signal frequency
analysis [28], [35].

9) Machine Vision: Machine vision inspection, also
known as the remote machine vision-based monitoring
approach, detects structure damages and defects externally
visible: surface cracks, scratches, displacements, defor-
mations, deflection, and so on. Obtaining the targeted
object’s information through sequences of 2-D or 3-D
digital images from different locations and perspectives,
this technology relies on principles similar to those of the

stereoscopic view of human biological vision [46], [264].
For instance, two cameras can be located at known dis-
tances to take simultaneous images of the measured object
from different positions. Based on the parallax principle
and the geometrical relationship between the two cameras
with respect to the object, the images can be combined
and processed to obtain a clear sense of depth and surface
geometry information [46], [265].

The machine vision-based technology typically con-
sists of a sensing (measurement) system, including image
acquisition devices (high-resolution digital cameras, lens,
and so on) together with appropriate image processing
and damage identification software/hardware platforms
[266]. Online inspection and monitoring can be accom-
plished using remotely installed ground-based or airborne
high-resolution image acquisition devices having sampling
frequencies over 125 frames per second (i.e., >125 Hz),
which would be much higher than those, for instance,
typically adopted for strain measurement (about 20 Hz)
in the commercial monitoring of wind turbine blades [31],
[267]. Yet, the imaging results can be affected by weather
conditions [31]. In this technology, especially for online
applications, the digital image processing integrated with
the damage identification algorithms plays an important
role in the effective monitoring and detection of struc-
ture faults, defects, or damages [266], [268], [269]. The
overall steps typically include: 1) capturing object images
(either in 2-D or 3-D); 2) obtaining binary (gray scale)
images from the original ones; 3) using edge segmenta-
tion techniques (e.g., threshold and edge detectors) and
binary morphology to distinguish the defect/damage from
the background; 4) extracting important fault indicator
features, such as structure deformation, deflection, dis-
placement, distributed strain, and modal parameters; and
5) analyzing the extracted features to assess the structural
health [46], [266], [269]. Furthermore, the accuracy of
feature extraction highly depends on the quality of image
processing, which may involve a wide variety of techniques
such as image restoration, reconstruction, segmentation,
and recognition. Having said that, it would be yet nec-
essary to comprehensively assess the knowledge behind
the relationship between the extracted features and related
damages [46].

As listed in Table 7, the machine vision signal-based
technique is mainly applied for the condition monitoring of
wind turbine structural components, such as rotor blades,
nacelle, tower, and foundation. Table 16 summarizes the
advantages and disadvantages of machine vision-based
monitoring and provides a list of selected references cate-
gorized according to the names of the components being
monitored in wind turbines. With the fast development
of computer science and optics devices in recent years,
machine vision technology shows a growing potential for
structural health monitoring in the coming years [46],
[266], [270], [271]. Also, through the power of AI and
the latest autonomous system technologies, such as those
using unmanned aerial vehicles (UAVs), new horizons for
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the autonomous machine vision-based monitoring of wind
turbines are opening [4], [268], [271]–[273]. However,
to improve detection accuracy, speed, and online compu-
tational efficiency, further studies need to focus on image
processing algorithms, simultaneous localization and

mapping (SLAM), and machine learning (pattern recogni-
tion) for correct damage recognition.

10) Ultrasound: Ultrasound, also known as ultrasonic
scanning/testing, is a nondestructive inspection technique
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that relies on the propagation and reflection of ultra-
sonic waves within a material. Indeed, the amplitude
attenuation and phase shift of the ultrasonic waves
are affected differently depending on the differences of
the material or any inner material discontinuities [43],
[46], [283]. Therefore, structure faults cause different
reflection, attenuation, resonance, and transmission pat-
terns, whose analysis through signal processing algorithms
enables effective detection and diagnosis of surface or
subsurface material defects and damages.

Owing to its efficiency and reliability, ultrasonic scan-
ning is one of the most common nondestructive inspection
techniques used in the wind energy industry for the struc-
tural monitoring of wind turbine components [15], [46].
In general, the scanning mechanism can be based on the
capture and quantification of either the reflected waves

(known as the pulse-echo mechanism) or the transmitted
waves (known as the through-transmission mechanism).
Although each of these mechanisms is used in certain
applications, the pulse-echo mechanism is usually more
useful as it only requires one-sided access to the compo-
nent being monitored.

As for the monitoring process, an ultrasound transducer
(or probe connected to a diagnostic machine) is passed
over the target component being monitored. A thin film
of coupling materials (usually a liquid such as oil and
grease) is typically used to remove the air gap between
the ultrasound transducer and the component monitored.
This facilitates the efficient transmission of ultrasonic
energy from the transducer into the component. Ultra-
sound transducers are available in a variety of config-
urations depending on the application. To optimize the
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monitoring capability, it is important to select a proper
type of transducer that suits the application requirements
and has the required frequency, bandwidth, and focusing
properties. In contrast to contact transducers, noncontact
transducers (such as air-coupled transducers (ACTs), elec-
tromagnetic acoustic transducers (EMATs), and lasers) are
especially suited to implement continuous remote mon-
itoring of structures that are inaccessible or located in
hostile environments [284]. This enables the noncontact
automated ultrasonic scanning during which ambient air is
the only acoustic coupling medium and the wind turbine is
in operation. For instance, Park et al. [285], [286] employ
the noncontact laser ultrasonic scanning in the structure
monitoring of wind turbine blades.

As listed in Table 7, the ultrasonic signal-based tech-
nique is mainly applied for the condition monitoring of
wind turbine structures: rotor blades, nacelle, drivetrain,
and tower. In addition to the detection and diagnosis
of material defects and damages, ultrasonic scanning is
shown to be an effective tool to detect, locate, and
characterize the icing on the rotor blades as well [43].
Table 17 summarizes the advantages and disadvantages of
this technology as referenced in a selected list of studies
focusing on its implementation in wind turbines. With
respect to its main challenges and technological limita-
tions, the ultrasonic scanning of some complex geometries
may be challenging, and initial preparation and equipment
calibrations are required especially for contact ultrasonic
scanning. Also, more sophisticated signal processing tech-
niques are usually needed to isolate signals from noise par-
ticularly in noncontact ultrasonic scanning using EMATs.

11) Thermography: Thermography, also known as ther-
mal imaging, is a nondestructive inspection technique that
uses a special camera (infrared-based camera) to pro-
duce thermal images, known as thermograms, showing
patterns of heat (temperature) on the surface of objects
[300]. It can be effectively used to detect (near-surface)
“thermal transients” at a target material. These thermal
transients may indicate faults due to different defects or
problems, such as structural defects or damages, poor
wiring or electrical connections, unbalanced loads, deteri-
orated insulation, or other potential problems in energized
electrical components. More precisely, the faults can be
detected, located, and characterized by the analysis of
disturbances generated in the local thermal properties
(e.g., temperature, thermal capacity, conduction, diffusion,
and interface thermal resistance) of a structure or an object
[300]. Another monitoring approach relies on the fact that
any mechanical phenomenon is accompanied by correlated
thermal effects (i.e., thermomechanical coupling), which
can be reversible (linked to the strain (and stress) states of
structure) or irreversible (linked to the occurrence of dam-
ages). Therefore, mapping the thermal state of a structure
can also be a tool to detect abnormalities in the mechanical
behavior of that structure [300].

As listed in Table 7, the thermographic signal-based
technique is mainly applied for the condition monitoring of
wind turbine components: generator, drivetrain (gearbox,
bearings, and so on), tower, and especially rotor blades.
In addition, thermography is shown to be an effective
technique to detect and locate the accumulation of ice on a
blade surface while distinguishing the types and conditions
of icing on the blades [43], [301]. Table 18 summarizes
the advantages and disadvantages of thermographic mon-
itoring and provides a list of selected references classified
according to the names of components being monitored
by thermography in wind turbines. For this technology,
“image processing” plays a vital role in the accuracy of
detection and diagnosis results. However, it often encoun-
ters issues such as motion blurs of moving target objects
(e.g., rotor blades when in service) and environmental
conditions (e.g., wind speed, ambient temperature, air
humidity, reflections, dirt, and prolusion) [302]. Other
challenges relate to the nature of this technology, essen-
tially sensitive to near-surface thermal transients (unable
to detect or identify deep defects within a material). Also,
it is difficult to detect thermal signals generated by incipi-
ent defects; the inspection speed is slow and still needs to
be improved [303].

12) Radiography: Radiography, also known as X-ray
imaging, is a nondestructive inspection technique that uses
an X-ray scanner system to produce radiographic images
(X-rays) of the interior structure of objects. This reveals
structural variations of the materials, which are caused
by changes in material properties, internal delamination,
or cracks [15], [312], [313]. Indeed, X-ray transmission
data provide quantitative information about those struc-
tural variations and enable effective detection and diagno-
sis of structure faults (i.e., surface or subsurface material
defects and damages) in wind turbine components [69],
[312]. Although there are some overlaps, the combined
application of X-ray and ultrasound is proven to provide
complementary capabilities, allowing the detection and
diagnosis of a wider range of damages in wind turbine
blades (e.g., cracks in adhesive joints, delamination, and
laminate failure) [69].

Real-time radiographic inspection is a practical,
accurate, and effective technique not only to detect and
locate damage (especially laminate damage) but also
to determine the size of the damage [69]. In contrast
to film radiography, real-time radiography (also called
digital radiography) employs a planer array of digi-
tal radiation-sensitive sensors (instead of a traditional
radiation-sensitive film) and allows immediate image pre-
view and availability [314]. Therefore, the radiographic
images (X-ray data) can be quickly displayed, processed,
and stored in digital format on a computer. Such a digital
technology enables more advanced and flexible algorithms
for image processing, real-time analysis, and storage.
Recently, portable radiography equipment has been stud-
ied for wind turbines [315], [316]. When placed on a robot
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platform, equipped with robotic arms, the X-ray system can
climb wind turbine towers to deploy the X-ray inspection
and scan a large area of structure automatedly [61], [317].

As listed in Table 7, the radiographic signal-based tech-
nique is mainly applied for the condition monitoring of
wind turbine structures: rotor blades, nacelle, and tower.
It is worth mentioning that, in addition to X-ray, Gamma-
ray, as another radioactive source, can also be applied
in the radiography of a wind turbine’s structure [318].
Table 19 summarizes the advantages and disadvantages of
this technology as referenced in a selected list of studies,
focusing on its implementation in wind turbines. In addi-
tion to health safety concerns, this technology presents
certain challenges and limitations, mainly regarding pos-
sible technical complications and equipment-related costs.

These shortcomings make difficult the development of
a complete, commercially viable system composed of an
automated platform able to scan a large-scale wind turbine
structure.

In summary, the signal-based condition monitoring
when applied in wind turbines, using the reviewed
standalone condition-specific sensing and data acquisi-
tion technologies, can provide highly precise and spe-
cialized condition monitoring capabilities that are usually
much beyond those of the SCADA-based techniques.
However, this requires additional hardware investment,
which increases condition monitoring costs, not to men-
tion the measurement reliability concerns and common
complications of equipment calibration, installation, or
implementation. In addition, it is worth noting that
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the full signal-based condition monitoring of a wind
turbine, including all its components, would require a
well-selected combination of several condition-specific
monitoring equipment and technologies rather than only

one. From a cost-benefit viewpoint, using standalone
condition-specific monitoring equipment in onshore wind
turbines can be justified if the costs associated with the
equipment replacement, labor, and lost production are

Table 19 Radiogeraphic Signal-Based Condition Monitoring Technology
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fully considered, especially if generator and gearbox fail-
ures are prevented. In the case of offshore wind tur-
bines, using such condition monitoring equipment can
be justified if the abovementioned costs plus the site
access/logistic costs are considered, especially if large
subassembly failures (e.g., rotor, foundation, gearbox, and
generator failures) are prevented. Having said that, the
ultimate investment justification in professional condition-
specific monitoring systems highly depends on their prac-
tical capability in detecting incipient defects, damages,
or faults at an early stage to avoid full subassembly replace-
ments, which is the costliest aspect of failures.

VI. M AT H E M AT I C A L M O D E L - B A S E D
C O N D I T I O N M O N I T O R I N G

Compared with signal-based techniques, model-based
techniques require the “mathematical models” of a wind
turbine or its major components. For this, one does not
need to use high-resolution condition-specific signals, such
as those used in signal-based techniques. Indeed, model-
based techniques mainly require mathematical models of
the process and the I-O information, commonly avail-
able from a wind turbine and mostly associated with the
wind turbine’s control system. The required mathematical
models are typically developed either as the so-called
“nominal models” to describe the fault-free process for
FDD purposes or as “degradation models” to describe the
degraded process for LTP purposes. As summarized in
Fig. 17, both nominal and degradation models can be
mathematically obtained using either the so-called “the-
oretical/physical modeling” or “experimental modeling”
approaches. In the theoretical modeling approach, the
process model is derived on the basis of mathematically
formulated physical principles or laws of nature. However,
in the experimental modeling, the model is identified
from the process measurements using system identification
techniques in a way that the process I-O relationship is
expressed in a mathematical model [322]. Depending on
the problem to address, one can choose between either of
these modeling approaches.

Once the best-suited modeling approach is selected, dif-
ferent design approaches, as listed in Fig. 17, can be used
to develop a model-based condition monitoring frame-
work. The most important model-based design approaches
for FDD and LTP are briefly reviewed in the following.

A. Model-Based FDD Design

Model-based FDD schemes are commonly designed
using the so-called residual-based, fault estimation, or set-
membership approaches.

1) Residual-Based Approach: Residual (or symptom
signal) is a fault indicator computed in real time as
a deviation between measurements and outputs of the
mathematical model. Most often, a model-based FDD
scheme is developed based on residual generation to sim-
ply monitor the level (or trend) of the residual signal

through the so-called residual evaluation and to act when
the signal reaches a prescribed threshold value [322].
The residual evaluation is carried out by different meth-
ods, such as fixed or adaptive threshold testing on
instantaneous or moving average values of the residu-
als, statistical methods (e.g., generalized likelihood ratio
tests), and fuzzy logic approaches. Indeed, the residual
is designed to be small (“ideally” zero if no noise and
model uncertainty are involved) under fault-free (nor-
mal) conditions and to deviate significantly from zero
when a fault occurs. The residual-based approach is
relatively simple to implement although, when design-
ing the residual generation, the main challenge is to
address the process noise and modeling uncertainty, not
to mention achieving the necessary disturbance decou-
pling (i.e., to ensure that the residual is not affected by
unknown inputs other than faults) [322]–[324]. The most
frequently used residual-based methods include parity
equations, state estimation methods (observers in deter-
ministic problem formulation framework and Kalman fil-
ters in stochastic/random process problem formulation
framework), parameter estimation methods (e.g., least-
squares or recursive least-squares and regression analysis),
joint state-parameter estimation methods (e.g., a two-stage
Kalman filter and an extended Kalman filter), and I-O rep-
resentations (also known as “data-driven model-based”)
using neural network models, fuzzy models, neurofuzzy
models, and so on. Most of the abovementioned methods
are well established and extensively cited and explained in
several reference books (e.g., see [322], [325], and [326]).
In wind turbines, the residual-based FDD approach using
the already mentioned methods has been largely studied.
Table 20 presents an updated summary of the literature on
the model-based FDD techniques, including the residual-
based approach in wind turbines.

2) Fault Estimation Approach: In most cases, it is either
difficult or inadequate to use residuals alone to determine
the magnitude of faults. The fault estimation approach
involves the online estimation of faults and is usually
more challenging than the residual generation approach.
Such an estimation approach not only can detect fault sig-
nals but can also effectively estimate their magnitudes to
provide accurate fault information to active fault-tolerant
control systems [327]. Fault estimation can be achieved
using a variety of observers (e.g., an adaptive observer
[328], a sliding mode observer [329], an unknown input
observer [330], and an extended state observer [331]) or
Kalman filters (e.g., a zonotopic Kalman filter [332], a two-
stage exogenous Kalman filter [333], and a three-stage
Kalman filter [334]). When appropriately designed for a
particular fault scenario, a bank of observers or Kalman
filters can be used to isolate the faults from each other in
different components. For instance, the application of fault
estimation in wind turbine diagnosis and fault-tolerant
control has been recently studied using an adaptive sliding
mode observer [335], the Takagi–Sugeno sliding mode
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Fig. 17. Classification of mathematical process models in model-based techniques.

observer [336], and an extended state observer [337].
More references are also provided in Table 20. For further
details on fault estimation methods, interested readers are
referred to [327] and [338].

3) Set-Membership Approach: This approach, also known
as the “error-bounded approach,” relies on the assumption
under which the noise, disturbance, and uncertainty in
the model’s parameters are unknown but bounded with a

priori known bounds [339]. Accordingly, a set of mathe-
matical models is generated for the system, in either state
space or parameter space, with no need for a threshold
design. If the measured sequence of system inputs and
outputs available at every time instant is not consistent
with any of the members of this set, a fault will be detected.
Once the fault has been detected, the feasible state or
parameter set can be reset to a set that contains all pos-
sible values even in a faulty condition. This enables fault
isolation through the identification of the faulty feasible
set. Also, fault estimation can be achieved by comparing
the feasible set before and after the detection of the fault
using the distance between the centers of these sets [339].
It is worth noting that the set-membership approach to
design FDD produces no positive false alarms if the bounds
applied on the uncertainties, noises, and disturbances are
realistic. However, this approach usually suffers from its

inherent conservatism due to the propagation of uncer-
tainties and the overapproximations required in the set
computations [339], [340]. As listed in Table 20, the appli-
cation of the set-membership approach in wind turbine
diagnosis has been recently studied in [340]–[343]. For
further details on the set-membership approach, interested
readers are referred to [339].

B. Model-Based LTP Design

If the degradation model originates from the black-box
modeling methods, such as neural networks, the obtained
LTP is commonly classified under the data-driven LTP,
as explained in Section V. However, when a degradation
model other than black-box models becomes available,
the measured monitoring data can be used to identify (or
calibrate) model parameters. Once these model parame-
ters are identified, it is possible to predict how faults or
damages will grow in the future and thus obtain the RUL.
In reality, however, the degradation model is not perfect,
as the data used for model identification are always cor-
rupted by measurement errors, noises, and variabilities;
future loading or operating conditions are uncertain. These
significant sources of uncertainty contribute to the ultimate
uncertainty in estimated model parameters and, thus, the
RUL prediction. Therefore, the key issue in model-based
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Table 20 Examples of Existing Literature on Model-Based FDD of Wind Turbines

LTP is to find ways to improve the accuracy of the degra-
dation model while incorporating uncertainty in the future
[366], [367]. To address this issue, parameter estimation
algorithms based on the so-called Bayesian approach are
often used for the real-time estimation of the degradation
model parameters. A major advantage of the Bayesian
approach over other parameter estimation methods, such
as the least-squares method and the maximum likelihood
estimation method, is its capability to estimate the uncer-
tainty structures of the identified model parameters [366].
Such uncertainty structures depend on those of the prior
information and likelihood functions. Indeed, the Bayesian
approach employs the Bayesian statistics and measurement
data to probabilistically identify unknown parameters of
the degradation model and reduce their uncertainty in
real time. Therefore, most model-based LTP schemes have
their foundation in Bayesian statistics. Among Bayesian-
based algorithms, the overall Bayesian method [368] and
filtering-based techniques, such as a Kalman filter [369],
an extended/unscented Kalman filter [370], [371], and
especially the particle filter [372], are more commonly
known. In the overall Bayesian method, the model’s
unknown parameters are estimated in the form of a pos-
terior probability distribution, which is proportional to the

likelihood of observed data multiplied by the prior proba-
bility distribution [368]. When applied, this method’s main
challenge is to appropriately choose the right options for
the sampling process (e.g., the initial values of unknown
parameters and the width of proposal distribution in the
Markov chain Monte Carlo method) [366].

As for filtering-based techniques, they rely on a recursive
Bayesian update process, under which model parameters
are updated recursively by accepting one new measure-
ment data at a time. The performance of the Kalman filter
and its modern extensions highly depends on the initial
condition and variance of model parameters, as well as the
type of nonlinearity and errors in linearization. However,
the particle filter is much more flexible and easier to design
with no restrictions on the type of system (nonlinearity)
or noise. Indeed, it employs particles (samples) to repre-
sent the prior and posterior probability density function
(pdf) of model parameters. More precisely, when a new
measurement becomes available, the posterior pdf at the
previous time step is used as the prior pdf at the current
time step. Accordingly, the parameters are updated by
multiplying the prior pdf with the likelihood from the new
measurement. Thus, particle filtering is also referred to as
the “sequential Monte Carlo method,” known to be the
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Table 21 Examples of Existing Literature on Model-Based LTP of Wind Turbines

most popular method in model-based prognosis. Having
said that, the computational cost and especially the so-
called “particle depletion” phenomenon (i.e., accumulated
sampling error during the updating process) have been
major problems when using particle filtering [366], [372].

Compared with data-driven prognosis methods, model-
based LTP has several advantages. First, model-based
methods enable long-term prediction. Indeed, when the
parameters of the degradation model are properly iden-
tified, the RUL can be well-predicted by propagating the
model until degradation reaches a prescribed threshold.
Second, the model-based methods mainly rely on the
physics-based model and require a relatively small amount
of data for the parameter estimation. However, the chal-
lenging issues to address include the adequacy of the
degradation model, the accuracy and efficiency of para-
meter estimation, and the quality of required degradation
data [366], [367].

In wind turbines, the application of model-based LTP is
relatively recent and limited. This is mainly due to the par-
ticularly challenging aspects of prognosis in wind turbines.
To name a few, the high nonlinearity and strong coupling
of wind turbine components and their operation under the
wide range of changing loads and operating conditions,
along with the highly uncertain and variable onshore
or especially offshore environmental conditions, are the
most challenging problems to tackle. Table 21 presents an
updated summary of the literature on model-based LTP
techniques in wind turbines.

C. Model-Based Condition Monitoring Framework
A complete condition monitoring framework involves

all aspects of data acquisition, FDD, and LTP to provide
the overall health assessment of a plant such as a wind
turbine. For instance, Fig. 18 shows a typical schematic of
a complete model-based condition monitoring framework,
including the data acquisition and both model-based FDD
and LTP schemes via the commonly used residual-based
and Bayesian approaches, respectively. Under a mathemat-
ical model-based framework, data acquisition is achieved
by collecting measurement data usually from the sensors
of a wind turbine SCADA system (especially the sensors
associated with the wind turbine’s control system) and

by processing them to obtain useful features for FDD.
The model-based FDD is developed using an appropriate
design approach (e.g., residual-based and fault estimation-
based) to detect, isolate, and identify early symptoms of
any fault or anomaly in the wind turbine components.
According to the FDD information, the severity or size
of a detected fault is usually quantified in the form of a
normalized degrading health index (or health measure) for
LTP purposes. Using such a health index, the model-based
LTP is achieved based on the modeling of the degradation
process in any wind turbine components while considering
an appropriate Bayesian method to address the inherent
large degree of uncertainty associated with the long-term
predictions of a component RUL. As shown in Fig. 18,
in addition to the FDD information, the LTP may also use
some upcoming information expected about changes in the
system’s operating conditions in terms of variations in the
environmental conditions, usage patterns, loadings, and
so on.

In summary, the most important advantage of math-
ematical model-based condition monitoring is its low
development and running costs since there is no need
for any additional hardware components. In many cases,
the measurement data used to control the process also
suffice for the model-based FDD and/or LTP algorithms,
meaning that no additional sensors must be installed.
Also, the model-based algorithms can be finally imple-
mented via software on a process control microcomputer
[322], [325], [366]. Another advantage of the mathe-
matical model-based approach compared with its signal-
based counterpart is that the FDD/LTP information under
a mathematical model-based scheme can be more useful
for real-time control reconfiguration and fault-tolerant
control purposes [322], [384]. This enables the timely
accommodation/compensation of faults in such a way
that they do not lead to wind turbine failures. Having
said that, it is worth noting the particular challenges and
limitations of the design and widespread adoption of math-
ematical model-based condition monitoring schemes. The
high nonlinearity of wind turbine components—especially
the aerodynamic subsystems—together with the stochastic
wind fluctuations and turbulences, measurement noises,
and external disturbances under harsh environmental
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Fig. 18. Typical schematic of mathematical model-based techniques.

conditions all make the model-based condition monitoring
of wind turbines very difficult in practice. It is, indeed,
challenging to derive robust and accurate models that can
be used for FDD or LTP purposes. Given this main limi-
tation of model-based approaches, various combinations
of hardware signal-based and mathematical model-based
techniques can also be considered. Such combinations are
sometimes referred to as “hybrid” techniques, crossing the
boundary between model- and signal-based techniques,
in the hope of integrating both techniques’ advantages to
overcome the challenges and limitations of each technique
alone. For instance, from a design architecture viewpoint,
the knowledge of a system’s physical behavior can be uti-
lized to determine a mathematical model (e.g., determin-
ing the order of exponential or polynomial functions) in a
data-driven framework. Also, it is possible to use a system’s
data-driven model along with a physics-based fault model
or vice versa. It is worth mentioning that, when possible,
the information used in hardware signal-based techniques
can be added to the information about control signals and
the wind turbine model to enable more optimized and
comprehensive monitoring capabilities. This helps improve
not only the reliability and performance of the CMS but
also the feasibility of fault-tolerant control designs in
wind turbines. Finally, a number of examples of hybrid

techniques for wind turbine FDD and LTP are reported
in [75], [385]–[388] and [76], [77], [389], respectively.

VII. S U M M A R Y, C O N C L U S I O N , A N D
F U T U R E T R E N D S
Due to their complex integrated nature and wide range
of changing loads and operating conditions, onshore and
especially offshore wind turbines are prone to compo-
nent faults and premature failures that jeopardize their
reliability and availability (uptime) for efficient energy
production [3], [9], [57]. In order to detect, diagnose,
and prognose any type of abnormalities or faults in wind
turbines’ components before they can propagate and cause
major damage or severe failure, it is crucial to effectively
monitor wind turbines’ conditions in real time. Motivated
by the significance of this issue and the ever-increasing role
of wind turbines in the modern world’s power grid, wind
turbine condition monitoring has been at the forefront of
both academia and industry over the past two decades.
Considering the great diversity of approaches and tech-
niques developed in wind turbine condition monitoring
and the large number of results disseminated in this active
research area as of 2020, this article aims at provid-
ing an up-to-date, comprehensive review of the available
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literature with particular attention paid to the results
reported in the last decade.

This article summarized the major fault and failure
modes observed in wind turbines and comprehensively
reviewed the available techniques and strategies for wind
turbine condition monitoring from signal- to model-based
perspectives. Both aspects of condition monitoring, that is,
fault diagnosis and prognosis, were considered, and the
respective functionalities, capabilities, advantages, flaws,
and challenges/limitations of each available technique
were carefully outlined and explored, especially in view
of wind turbine condition monitoring issue. According to
the reviewed literature, the following holds.

1) Signal-based condition monitoring: This mainly
involves measurement signals and signal processing
methods under a data-driven approach designed to
obtain useful FDD and/or LTP information from a
large amount of observed data. Depending upon the
measurement signals available from a wind turbine,
this article categorized and reviewed the techniques
for signal-based condition monitoring under the
terms of “SCADA-based” and “condition-specific-
based” techniques that rely on the signals coming
from the SCADA and standalone condition-specific
data acquisition systems, respectively. This article
reviewed several SCADA-based techniques, such as
trending, clustering, and data-driven normal/damage
behavior modeling. In addition, this article outlined
and reviewed a wide range of condition-specific
techniques using vibration, strain, torque,
shock pulse, acoustic emission, temperature, oil
debris/quality parameters, electrical effects, machine
vision, ultrasound, thermography, and radiography
according to the additional hardware used in a
professional CMS.

2) Model-based condition monitoring: This employs the
mathematical models of a wind turbine or its
major components without requiring high-resolution,
condition-specific signals, such as those used in
signal-based techniques. Indeed, the model-based
techniques mainly rely on the processing of math-
ematical models and the I-O information that can
be easily retrieved from a wind turbine as they are
mostly associated with its control system. This article
outlined the commonly used design approaches for
both model-based FDD and LTP in wind turbines.
Regarding the model-based FDD design, the so-called
residual-based, fault estimation, and set-membership
approaches were described and reviewed. Further-
more, this article examined the specific application
of the Bayesian approach to the real-time estima-
tion of the degradation model parameters in the
model-based LTP design for wind turbines.

In addition, any combination of both signal- and
model-based techniques was categorized under hybrid
techniques, leveraging the monitoring performance by

integrating together the advantages of both signal- and
model-based techniques to overcome the challenges and
limitations of each technique alone.

Drawing on the reviewed literature, the following chal-
lenges and shortcomings call for additional research and
development in the future:

• Data acquisition: This is the first, thus essential, the
step of any condition monitoring scheme. In wind
turbines, a wide range of sensors and devices are used
to measure the wind turbine’s environmental, opera-
tional, and performance parameters. Optimal selec-
tion, placement, and implementation of these sensors
and devices play an important role in the overall mon-
itoring performance, and in both capital and O&M
costs. Improper sensor selection or placement can
easily degrade the monitoring performance. Likewise,
inaccurate calibration or implementation/installation
of sensors may cause measurement errors, serious
reliability concerns, or even equipment failures. When
designing any CMS, the sensor reliability issue and
the possibility of sensor failures must be consid-
ered. When possible and appropriate, depending on
the type of measurement, efficient utilization and
management of redundancy (in hardware, software,
or even communication networks) can be contem-
plated. In addition, the application of smart sensor
technology along with the Internet of Things (IoT)
can offer significant advantages for remote real-time
data acquisition and transmission throughout large
wind farms.

• Data analysis: To enable meaningful and effective
condition monitoring, especially when based on data-
driven approaches, it is important to collect and ana-
lyze a sufficiently large and representative (complete)
amount of observed data. With an average lifes-
pan of twenty years, systems such as wind turbines
presumably offer huge amounts of easily collectable
data, which makes the adoption of data-driven mon-
itoring approaches all the more appealing. Having
said that, beyond the challenges commonly posed by
big datasets and the extraction of useful features,
the quality and completeness of such data usually
represent the major points of concern, particularly
when originating from SCADA systems. These con-
cerns become even more significant in new wind tur-
bines, operating most often normally at the beginning
of their operational life. In that case, the available
historical databases are usually limited (incomplete)
and do not cover the entire range of fault-related
features useful for designing FDD and especially LTP
solutions since the recorded data only characterize
the wind turbine’s normal operation without any
information about other operating modes (i.e., faults
and failures). When possible, using appropriate phys-
ical models, referred to as “digital twins,” to generate
the database that covers the system’s useful features
in normal and faulty operations can be considered a
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potential solution to tackle this issue [390]. In addi-
tion, the emerging paradigm of data-centric AI, where
giant databases simply do not exist, could be part of
the solution [391].

• Signal-based condition monitoring: SCADA-based tech-
niques are useful to identify abnormal turbines within
a wind farm through the overall monitoring and
tracking of key environmental, operational, and per-
formance parameters but are usually limited when
performing a full detailed) condition monitoring of
a single wind turbine’s subsystems and components.
Given this shortcoming and the diversity of fail-
ure modes in wind turbine components, an integra-
tion approach starting with a digest of SCADA data
and accordingly fusing several dedicated condition-
specific-based techniques considering their capabili-
ties, advantages, and disadvantages is recommended.
With an ever-increasing number of offshore wind
turbines and their inevitable accessibility limitations
in harsh offshore conditions, it is crucial to embrace
the power of AI and advanced machine learning
capabilities (e.g., deep learning). Along with the lat-
est advancements in robotics, UAVs or drones, and
other autonomous system technologies, they remotely
enable autonomous data collection, and fleet-wide
condition monitoring and asset management using
effective and fully autonomous condition-specific-
based techniques, such as machine vision, thermog-
raphy, and radiology, to name only a few.

• Model-based condition monitoring: Model-based tech-
niques do not require any additional hardware com-
ponents and can provide very cost-effective solutions
for wind turbine condition monitoring. However, the
diagnosis and prognosis performance obtained by
model-based techniques is strongly tied to the accu-
racy, thoroughness, and robustness of their math-
ematical models, which are used to describe the
nominal or degradation behaviors of a wind turbine
or its major components. Since a wind turbine is
an integrated complex system built with highly non-
linear components working under stochastic wind
fluctuations and turbulences, external disturbances,
measurement noises, and harsh environmental con-
ditions, it is often challenging or even impossible to
identify system dynamics across the entire wind tur-
bine’s operation regime. This makes the wind turbine
modeling problem a serious challenge. Depending on
the problem tackled, advanced modeling approaches,
such as those using integrated multiple linear models
or those based on hybrid modeling approaches (merg-
ing white and black-box modeling), can be considered
as potential solutions to cover all possible system
operating ranges. This does not mean that new mod-
eling methods are no longer needed. In fact, recent
studies have explored the design of model-based FDD
with regard to nonlinear dynamic systems. However,
it should be noted that most nonlinear designs are

quite complicated and can only be applied to a very
limited class of nonlinearities while relying on highly
strict assumptions about the system nonlinearity to be
implemented.

• Hybrid approaches: Given the limitations of signal-
and model-based approaches, their various “hybrid”
combinations can also be considered, crossing the
boundary between the signal- and model-based
approaches in the hope of integrating the advantages
of both approaches together and overcoming the chal-
lenges posed by each approach alone. By establish-
ing a promising framework to leverage the merits
of different condition monitoring techniques, hybrid
approaches can be more appealing to the industry in
the short run while providing both companies and
researchers with valuable practical experience in the
long run when it comes to the real-life evolution of
fully model-based solutions for wind turbine condi-
tion monitoring.

• Monitoring system architecture: A barrier to a
hybrid application of different condition monitoring
approaches under a truly integrated system is the
common architecture, where available CMSs are seg-
regated from each other. This phenomenon is mainly
due to a dissociation between the original manufac-
turers of wind turbine components and those of their
monitoring equipment. For instance, SCADA-based
signals and alarms are both generated from within the
industrial control system network of wind turbines,
supplied by turbine manufacturers, whereas profes-
sional CMSs are purchased separately and installed on
wind turbines independently of their control system.
Therefore, it is physically difficult to integrate the
SCADA-based and professional CMS signals, in spite
of their different bandwidths. Having said that, some
wind turbine control system manufacturers have been
expanding SCADA and professional CMS signal facil-
ities within their products, where fault monitoring
algorithms and alarm handlers can operate based
upon both SCADA-based and professional CMS sig-
nals data. As such, more flexible system architecture
and integrated condition monitoring opportunities
can be achieved.

• Multiparameter monitoring: An important aspect of
condition monitoring that concerns wind farm oper-
ators is the reliability of the monitoring equip-
ment/technique and the quality of its generated
FDD/LTP information. The former can be addressed
by experience and the appropriate selection of sens-
ing and data acquisition systems, whereas the latter
depends on the accuracy and the way the condi-
tion data (information) are presented to the out-
side world. It is obvious that, when a number of
monitoring signals from different sources (e.g., both
vibration and oil debris/quality for gearbox bear-
ings) present confirmatory fault information, this is
useful and builds confidence among operators and
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O&M crew. Any type of condition monitoring sensor
signal (e.g., vibration, strain, and temperature) has
a probability of detecting and identifying faults in
a wind turbine component. Indeed, the probability
of accurate FDD/LTP depends in part on the sensor
location and in part on the reliability and accuracy
of the sensor. According to the reviewed literature,
relying on more than one monitoring sensor (e.g.,
multiple sensors in different locations and of different
types) or multiparameter monitoring often improves
the chances of successful detection and diagnosis of
incipient damages or faults at an early stage. How-
ever, this can result in a data overload (as commonly
seen in the wind industry), not to mention that its
benefits may diminish if more than a sufficient (opti-
mum) number of sensors are used. For instance,
although two sensors may improve the probability of
accurate FDD/LTP results, increasing, say, from six
to seven sensors provides a much smaller improve-
ment. Therefore, wind farm operators are advised to
reduce the number of sensors (when possible) but to
increase their quality and reliability. Overall, it can
be reasonable to explore higher integration of the
interpretation of monitoring signals among different
systems (e.g., between SCADA-based and professional
CMSs, such as in [392]) with the objective of enabling
accurate and early fault detections and enhancing the
prognostic horizon.

• Prognosis: This will be an important function of future
CMSs. Compared to wind turbine diagnosis, the stud-
ies on prognosis are still in their infancy. This is mainly
due to the challenging nature of prognosis problems
in the view of the high complexity, nonlinearity, and
uncertainty of wind turbine systems, not to mention
the technical challenges to obtain the useful historical
data (especially up-to-failure data) needed to identify
the degradation progress. This research area certainly
deserves further attention and requires more research
efforts since prognosis presents a huge potential for
enabling more effective condition-based maintenance
and the reduction of O&M costs in both onshore and
offshore wind farms.

• Evolving new technologies and offshore wind: Wind
turbine technology is rapidly evolving to reduce
weight, control loads, and improve energy pro-
duction. With the increasing tendency toward
larger and more flexible wind turbines in offshore
installations, the O&M costs will quickly increase
unless reliability and availability are improved
through the remote real-time condition monitoring
and health management of wind turbines. Indeed,
the harsh offshore conditions may impose unknown
complexities and new challenges for the condition
monitoring of wind turbines, especially in terms of
accessibility and logistics. Therefore, adapting and
tailoring wind turbines’ condition monitoring solu-
tions to specific offshore conditions need to be

researched in an exclusive and extensive manner.
Having said that, recent advances in wind farm digi-
talization, wireless communications, supercomputing
technology, and sophisticated atmospheric measure-
ment capabilities and large real-time streams of data
(big data) collected from turbine-based systems (both
the turbines and meteorological measurement equip-
ment) provide excellent opportunities to significantly
improve wind turbine condition monitoring and con-
trol as never before.

• Farm-level condition monitoring: Depending on the
type of fault and failure modes, condition monitoring
strategies can be carried out either at the levels of an
individual wind turbine or an entire wind farm. How-
ever, thanks to the multiple measurements offered by
the different wind turbines found in a wind farm and
the simultaneous and collective consideration of those
measurements in the condition monitoring process,
some faults may be diagnosed more easily at the wind
farm level (e.g., the rotor aerodynamic malfunctions
or faults related to icing or debris built up on the rotor
blades). An example of this approach is presented in
[360] although there is much more room for future
research in this area.

• Cybersecurity: Wind farms’ cybersecurity is becoming
increasingly important. While wind farm digitaliza-
tion can offer various benefits, it can also make wind
farms more vulnerable to “cyberthreats,” which con-
stitutes a new dimension of health risks associated
with wind farms operation, the others being brought
by physical faults or damages. As a matter of fact,
cyberthreats in the form of cyberintrusions or cyber-
attacks on wind energy systems have been already
reported in recent years. For instance, a cyberattack in
March 2019 exploited a vulnerability within a firewall
and resulted in a denial-of-service (DoS) condition
and, consequently, the disruption of communications
between a control center and wind and solar gener-
ation sites for a large wind owner/operator in Utah,
USA [393]. Given the expansional role of digitaliza-
tion of wind farms empowered by wireless communi-
cations that come with inherent cybervulnerabilities,
such examples of cyberattacks will probably continue
to increase in sophistication and number, resulting in
severe cascading failures impacting not only the cyber
and physical components and operations of a wind
farm, but also the reliability of the entire power grid.
It is worth noting that, although faults and cyber-
attacks originate from different sources, they both
might have similar signatures that ultimately lead to
the system’s failure. Consequently, it is essential to
consider appropriate technologies exclusively devel-
oped for the detection, identification, and mitigation
of cyberattacks, especially in order to differentiate
cyberattack- and noncyber-related/operational inci-
dents in wind energy systems. This helps to correctly
identify the type of incident and its root cause(s),
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which is necessary to achieve effective and reliable
condition monitoring, control, and health manage-
ment of wind turbines. Additional considerations,
requirements, and guidelines regarding the cyberse-
curity aspects of wind turbines and wind farms can
be found in a recently published roadmap for wind
cybersecurity in [394].

• Condition monitoring and system protections: Wind
turbine system’s protections are necessary to ensure
safety and system integrity in the event of serious
uncontrollable fault effects or emergencies. How-
ever, a very conservative application of system pro-
tections may shut down a wind turbine too early,
even before it is necessary and justified by the
condition-based maintenance enabled by the condi-
tion monitoring process. Such early shutdowns of
wind turbines by system protections may poten-
tially restrict the benefits obtained from condition
monitoring and condition-based maintenance. To fur-
ther explain, an effective and reliable condition mon-
itoring scheme can detect, diagnose, and prognose
incipient signs of degradation or faults before they
propagate to major damage or severe condition where
system protections are inevitable. In other words,
wind turbine condition monitoring information pro-
vides wind farm operators with enough time span
to plan condition-based maintenance actions (see
Fig. 12) and even enables control adaptation and
reconfiguration mechanisms (see Fig. 8) to safely
increase wind farm availability. As a result, wind
turbine condition monitoring can enhance confidence
among operators to possibly further fine-tune the
tolerance for activation of some protections and,
thus, lower the probability of unnecessary wind tur-
bine shutdowns to help enjoy improved production
(availability).

• Health management: Finally, it is worth mentioning
that the complete and autonomous health manage-
ment of wind turbines can be fully realized through a
smart and integrated design of condition monitoring,
control, and intelligent decision-making strategies

under a unified framework (see Fig. 8). Currently, the
FDD and/or LTP information obtained from CMSs is
mainly used for wind turbine general health assess-
ment and possible maintenance recommendations
after being analyzed and interpreted by expert assis-
tance. Yet, the exploitation of real-time condition
monitoring information when a fault happens in a
wind turbine component still shows great poten-
tial to enable appropriate control reconfiguration
under active fault-tolerant (or self-healing) control
strategies [42], [323], [356], [357], [360], [361],
[395]–[397]. This offers an inexpensive technology
that enables large wind farm operators to monitor and
extend their wind turbines’ operations (availability)
by accommodating fault effects before they propa-
gate to failures, which improves reliability, produc-
tivity, and planning for condition-based maintenance.
Although some studies have already initiated the
exploration of the abovementioned potential to some
extent, the research on wind turbine fault-tolerant
control, particularly the robust integrated design of
model-based FDD/LTP and control reconfiguration,
is yet scarce and open. In addition, the research areas
dealing with intelligent strategies for data interpre-
tation, cautioning, and automated decision-making
(e.g., using expert systems), which aim at deliver-
ing meaningful condition-based maintenance, are yet
open to further explorations. �
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