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Abstract: In the last few decades, the concrete industry has been massively expanded with the
adoption of various kinds of binding materials. As a substitute to cement and in an effort to relieve
ecofriendly difficulties linked with cement creation, the utilization of industrial waste as cementitious
material can sharply reduce the amount of trash disposed of in lakes and landfills. With respect to the
mechanical properties, durability and thermal behavior, ground-granulated blast-furnace slag (GGBS)
delineates a rational way to develop sustainable cement and concrete. Apart from environmental
benefits, the replacement of cement by GGBS illustrates an adequate way to mitigate the economic
impact. Although many researchers concentrate on utilizing GGBS in concrete production, knowledge
is scattered, and additional research is needed to better understand relationships among a wide
spectrum of key questions and to more accurately determine these preliminary findings. This work
aims to shed some light on the scientific literature focusing on the use and effectiveness of GGBS as an
alternative to cement. First and foremost, basic information on GGBS manufacturing and its physical,
chemical and hydraulic activity and heat of hydration are thoroughly discussed. In a following step,
fresh concrete properties, such as flowability and mechanical strength, are examined. Furthermore,
the durability of concrete, such as density, permeability, acid resistance, carbonation depth and dry
shrinkage, are also reviewed and interpreted. It can be deduced that the chemical structure of GGBS
is parallel to that of cement, as it shows the creditability of being partially integrated and overall
suggests an alternative to Ordinary Portland Cement (OPC). On the basis of such adjustments, the
mechanical strength of concrete with GGBS has shown an increase, to a certain degree; however, the
flowability of concrete has been reduced. In addition, the durability of concrete containing GGBS
cement is shown to be superior. The optimum percentage of GGBS is an essential aspect of better
performance. Previous studies have suggested different optimum percentages of GGBS varying from
10 to 20%, depending on the source of GGBS, concrete mix design and particle size of GGBS. Finally,
the review also presents some basic process improvement tips for future generations to use GGBS
in concrete.
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1. Introduction

Building manufacturing has played a significant part in the urbanization and industri-
alization that has occurred in recent decades. Approximately 5–10% of global employment
is provided by the construction industry, which also accounts for 5–15% of national GDP [1].
About 40% of overall energy use and 30% of total natural resource depletion are attributed
to the building industry. Furthermore, these construction industries are responsible for
40% of carbon dioxide emissions and around 30% of garbage output. Approximately
7–9% of global carbon dioxide emissions are attributed to the manufacturing process of
this hydraulic cement [2]. Worldwide, the carbon dioxide released from cement factories
now accounts for more than 5% of worldwide carbon dioxide emissions [3]. Cementation
materials may be used to reduce carbon dioxide emissions by substituting OPC with other
binding materials [4–6]. A variety of byproducts from the industry may be utilized in
multicomponent binder materials for a variety of purposes [7]. Diverse studies have been
performed on building concrete using supplemental components to decrease the price and
scarcity of standard materials [8]. Concrete is the very often utilized man-made construc-
tion resource in the building business, and hydraulic cement is a vital component of this
material. Worldwide, around 4 billion tons of hydraulic cement are manufactured annually,
equating to over 30 billion tons of concrete produced in 2015 [9]. The World Cement
Association Conference shows the global cement production rate in Figure 1 [10]. From
1990 to 2030, it can be noted that the demand for cement is growing steadily. A growing
demand for cement in contemporary buildings and infrastructure, particularly in emerg-
ing countries, such as China, Russia and Japan, has led to considerable manufacturing
growth [11]. Because of the assumption of prospective demand for growing infrastructure,
cement production has created the ability to produce 59.5 million tons of cement annually.
Within just 10 years, the price of cement has risen by about 150% [12]. As a result, it is
critical to employ supplemental materials in place of cement wherever possible.
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Figure 1. Global OPC manufacture 2018 and predicted 2030 [10].

During the last three decades, the construction sector has implemented a variety of
steps to limit the release of harmful gases connected with cement manufacture, particularly
in the United Kingdom. Alternative approaches include using organic gas as a gasoline sub-
stitute for coal for calcination, using chemicals to absorb carbon dioxide, developing a more
efficient grinding process for clinker and incorporating sustainable cement manufacturing.
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Implementing cementitious materials, on the other hand, may be a practical strategy for
significantly reducing greenhouse gas emissions. Manufacturing wastes, such as GGBS,
silica fume, metakaolin and fly ash, are used as a substitute for OPC and can potentially cut
greenhouse gas emissions by a significant amount. Table 1 shows the chemical composition
of different cementitious materials (GGBS, silica fume, metakaolin and fly ash) as in past
literature on the topic. According to ASTM [13], pozzolanic materials may be formed by
the accumulation of chemicals, such as silica, calcium, alumina, magnesia and iron, to a
concentration of more than 70%. Silica, calcium, alumina, magnesia and iron are among
the elements that have accumulated in GGBS at a concentration greater than 70%. As a
result, GGBS silica fume, metakaolin and fly ash have the potential to be used (pozzolanic
material) that may be utilized as an OPC substitute in concrete.

Table 1. Chemical Compositions of Different Cementitious Materials.

Chemical Fly Ash Silica Fume Metakaolin GGBS

SiO2 54.22 34.32 54 37.5
Al2O3 31.18 15.57 43 6.4
Fe2O3 2.63 0.58 1.2 0.51
MgO 0.47 6.89 0.4 8.6
CaO 1.24 37.52 0.4 34.6

Na2O 0.49 0.31 0.3 0.38
K2O 1.34 0.66 0.3 -

Reference [14] [15] [16] [17]

Considering that these wastes (GGBS, silica fume, metakaolin and fly ash) have bind-
ing properties, they have gained popularity among researchers as prospective candidates
for being incorporated into cement blends to minimize the carbon footprint left behind in
the environment. Many other kinds of industrial waste may be applied as well as binding
material, including waste marble, foundry sand, fly ash, slag and rubber [18–24]. Most
of these pozzolanic materials are the result of waste from the manufacturing procedure.
Blast-furnace slag and its derivative GGBS are examples of industrial byproducts that
are primarily utilized as supplemental cementitious products in cement and concrete pro-
duction. Its self-hydration feature, in addition to its pozzolanic action, distinguishes it
from other compounds, which might be due to the presence of 30–40% calcium oxide,
which could explain its color. The significance of GGBS resides in the fact that it is a more
environmentally friendly option for concrete material. Because GGBS is a byproduct, it
must be disposed of appropriately. This waste material may thus be used to minimize the
depletion of traditional concrete components, such as OPC, and fine and coarse aggregates,
by mixing them into the concrete mix. Furthermore, several investigations have shown that
the substitution of GGBS for concrete does not cause a reduction in the concrete capacity.

2. Environmental Assessment

Carbon dioxide emissions are caused by carbonate oxidizing in the cement clinker
manufacturing process, which is the primary component of cement and the most significant
source of noncombustion carbon dioxide emissions from industrial production, accounting
for approximately 4.8% of total global emissions in 2013. The carbon dioxide emissions from
fuel combustion associated with cement manufacturing are roughly the same; cement man-
ufacturing accounts for approximately 9.5% of worldwide carbon dioxide emissions [25].
Energy savings, reduced greenhouse gas emissions and decreased pure raw resources
are only a few benefits associated with the use of slag cement [26]. It is also implied that
the use of GGBS will result in a significant reduction in carbon dioxide emissions per ton
of cementitious materials and the consumption of byproducts of industrial production
processes [27].

The average global emission factor for producing a ton of cement, which includes
transporting the cement to ready-mixed concrete facilities, was 0.91 t CO2-e/ton. However,
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this value falls to 0.143 t CO2-e/ton for GGBS [28]. High temperatures are required to
burn natural raw materials and impart particular features to the clinker. The manufacture
of cement emits carbon dioxide. Carbon dioxide is created primarily from three sources:
(1) the decarburization of limestone in the furnace, which produces about 525 kg of carbon
dioxide per ton of clinker; (2) the fuel combustion in the furnace produces approximately
335 kg carbon dioxide per ton of cement; (3) electrical energy usage produces about 50 kg
of carbon dioxide per ton of cement. GGBS is produced as a byproduct from another
manufacturing process, and its utilization is an example of industrial ecology. It may be
used as a coarse aggregate or as a mineral additive in concrete where it can replace up to
80% of the cement and reduce carbon dioxide emissions per ton of concrete by as much as
60% or 70%. GGBS is often used in concrete to replace 35–65% of the Portland cement. The
substitution of 50% GGBS with Portland cement in concrete might reduce about 0.5 tons of
carbon dioxide being released into the atmosphere. A study was conducted to calculate
the carbon dioxide emissions associated with the production and placement of concrete
as well as the emissions associated with coarse and fine aggregate, cement, fly ash, GGBS,
admixtures, concrete batching, transportation and placement processes. According to the
findings of that research, replacing 40% of GGBS with Portland cement in 25 or 32 MPa
concrete outputs results in a 22% reduction in carbon dioxide emissions [29]. It is predicted
that the globe generated 260–330 million tons of GGBS and 150–220 million tons of steel
slag last year [30].

3. Ground-Granulated Blast-Furnace Slag (GGBS)

GGBS is a principal byproduct produced by steel and iron productions. The furnace is
typically run at a temperature of 1500 degrees Celsius. The blast furnace is supplied with
a carefully regulated combination of limestone, iron ore and coke. When limestone, iron
ore and coke are melted together in a blast furnace, iron and slag are created in the molten
state. When the slag from the blast furnace is molten, it is swiftly cooled with strong water
jets, which transform it into GGBS, a fine, granular and glassy substance. Figure 2 depicts
the GGBS manufacturing process.
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Figure 2. Manufacturing Process of GGBS.

According to research, the worldwide output of GGBS is about 530 million tonnes,
with just 65% of it being used by the building sector [31]. GGBS is a byproduct of the iron
manufacture process in the blast furnace. It mostly consists of silicate and aluminosilicate of
molten calcium that had to be taken from the blast furnace regularly, according to the man-
ufacturer. GGBS has a large quantity of amorphous calcium, silica and alumina, making it
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an excellent binder for cement concrete manufacture [32].GGBS is a cement substitute ex-
tensively employed in various civil engineering tasks, including concrete manufacture [33].
GGBS is a byproduct of steel production commonly used as a cementitious material as
it improves the strength and reduces penetrability by increasing the boundary with the
aggregate. In addition to providing financial and environmental advantages in power and
supply reductions, employing GGBS as a binding ingredient in concrete manufacturing
may also result in significant cost savings [34]. For more than a century, GGBS was the
primary supplemental cementing material used in the construction industry. Cementitious
and pozzolanic characteristics may be found in GGBS material. Various research has been
performed on the impact of GGBS on the performance of various kinds of concrete and
mortars [35–39]. The substitution of OPC decreases the discharge of harmful gases and the
use of superfluous electricity [40]. In addition to its cost-effectiveness and being ecofriendly,
its strength and durability characteristics are equivalent to those of cement.

Scholars have devised an attractive aim for GGBS-based geopolymer concrete, which
may be utilized as an alternate binding material to OPC in manufacturing concrete [41].
GGBS particle size variation did not cause a substantial change in its chemical composition
or particle shape. However, the study also demonstrated that the change in water require-
ment increased rapidly as GGBS particle size varied [42]. High strength concrete (HSC) was
subjected to tests to determine its compressive capacity, penetrability and opposition to
chloride ion infiltration. The result shows that when the ground nano slag (NS) replacement
percentage was 10%, the strength and durability aspects of HSC were excellent. A lower
fraction (5%) of NS is also not evenly distributed and is insufficient to provide greater
strength. In the presence of a high proportion (15%) of NS, the ultrafine particle is increased,
as the inappropriate filling of pores results in increased concrete performance [43]. The
compressive tensile capacity, elasticity, chloride ion penetration and resistivity were investi-
gated experimentally. After three days of curing, it was discovered that concrete mixed
with UFS had higher early compressive strength, lower permeability and better durability
than conventional concrete [44].

Although a lot of researchers concentrate on GGBS to utilize in concrete production,
knowledge is scattered, and a compressive review is required. This work evaluates the
literature on the use and effectiveness of GGBS as an alternative to cement. First and
foremost, basic information on GGBS manufacture, as well as its physical, chemical and
hydraulic activity and heat of hydration are discussed. Then, fresh concrete properties,
such as flowability and mechanical strength, are discussed. Furthermore, the durability
of concrete, such as density, permeability, acid resistance, carbonation depth and dry
shrinkage are also discussed.

4. Physical Properties of GGBS

The physical properties of industrial wastes, including specific gravity, absorption,
grain size, fineness modulus, moisture content, bulk density specific surface and unit
weight, support establishing their applicability and capability to apply in concrete. Table 2
shows the physical properties of GGBS as per past studies.

Table 2. Physical Properties of GGBS.

Reference [45] [46] [47] [48] [49] [50] [51]

Specific gravity 2.54 2.82 2.56 2.9 2.85 2.75 2.85

Absorption (%) - - 1.2 - - - -

Fineness modulus (cm2/g) 2.76 5000 - - 4000 - -

Bulk density (kg/m3) 1668 - 1394 1200 - 1165 1200

Specific surface area, cm2/g - - - 4250–4700 - - -

Unit weight (kg/m3) - - - 1555 - - -
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The specific gravity of GGBS ranges from 2.5 to 2.9, approximately equal to the specific
gravity of cement. The absorption capacity of GGBS was reported at 1.2%, which adversely
affects the flowability of concrete. GGBS has a grain size range of 1.18 mm to 0.10 mm,
with 62% of the material falling between these two sizes [52]. The bulk density of GGBS
ranges from 1200 to 1670 kg/m3, roughly equal to that of cement at 1440 kg/m3. The
surface area of GGBS ranges from 4250 to 4700 cm2/g, which is considerably more than
the surface area of cement at 3310 cm2/g. The larger surface area of GGBS needs more
mortar to cover it, leading to less paste being accessible for lubrication, which ultimately
decreases the flowability of concrete. However, other research reported different physical
properties of GBBS. The different properties of GGBS may be due to the various location
sources of GGBS.

In addition, a scanning electron microscope (SEM) of GGBS is shown in Figure 3. SEM
is one of the microscopic methods used to investigate the surface morphology of GGBS.
Additionally, it was seen that the fragments were angular in form and that the surface of the
GGBS was rough. The angular form and surface roughness enhanced the internal friction
between concrete materials, which in turn had a harmful influence on the flowability.
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5. Chemical Composition

The arrangement of blast furnace slag changes depending on the ore, fluxing stone
and contaminations in the coke supply in the blast furnace. GGBS is typically composed of
silica, calcium, aluminum, magnesium and oxygen, with silica accounting for more than
95% of the total composition. Table 3 lists various typical chemical compositions of GGBS
utilized in concrete. When it comes to the relationship between basicity and hydraulic
activity in GGBS, the more basic the GGBS, the better the hydraulic activity of the GGBS
in the existence of alkaline activators. Maintaining steady basicity improves the alumina
content, which enhances the strength, and a shortage in calcium can be compensated for
by increasing the quantity of alumina used in the formulation of magnesia oxide. The
impact of magnesia oxide as a calcium oxide replacement seems to be affected by both the
basicity of the GGBS and the amount of magnesia oxide present in it. Up to roughly 8–10%
variations in magnesia oxide concentration may have only a little influence on strength
growth. However, more than 10% magnesia oxide may have a detrimental effect on strength
development [53]. However, as indicated in Table 3, the majority of researchers observed
that MgO concentrations in GGBS are less than 10%. According to ASTM [13], pozzolanic
materials may be formed by the accumulation of chemicals, such as silica, calcium, alumina,
magnesia and iron to a concentration of more than 70%. Silica, calcium, alumina, magnesia
and iron are among the elements that have accumulated in GGBS to a concentration greater
than 70%. As a result, GGBS is a credible pozzolanic material that may be utilized as an
OPC substitute in concrete.
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Table 3. Chemical Compounds of GGBS.

Authors Topcu et al. [54] Yazıcı et al. [55] Majhi et al. [46] Patra et al. [47] Ramakrishnan et al. [49]

SiO2 39.41 39.66 34 35.6 91
Al2O3 11.63 12.94 14 11.74 -
Fe2O3 3.35 1.58 4 0.8 -
MgO 5.52 6.94 7 10.7 7.73
CaO 36.56 34.20 23 41.7 -

Na2O 0.32 0.20 - - 0.12
K2O 1.21 1.44 - - -

6. Hydraulic Activity of Slag

The chemical composition of slag is essential for its hydraulic activity. Slags may be
classed based on their basicity index, which is determined by their chemical composition.
The ratio of calcium to siliceous oxide must be more than one to be effective [56]. When it
comes to the relationship between basicity and hydraulic activity in slag, the more basic
the slag, the higher the hydraulic activity of the slag in the existence of alkaline activators.
Holding the basicity steady, raising the alumina trioxide concentration, which enhances the
strength, and a shortfall in calcium oxide may be compensated for by increasing the quantity
of alumina used in the formulation of magnesia oxide. The impact of magnesium oxide as
a calcium oxide replacement seems to be controlled by the basicity of the slag as well as the
magnesium oxide concentration of the slag. Up to roughly 8–10% variations in magnesia
oxide concentration may have only a little influence on strength growth. However, more
than 10% magnesium oxide may negatively affect strength development [53]. Furthermore,
the hydraulic activity increases with rising calcium, aluminum and magnesium oxide
levels and is reduced with improving silica dioxide content in the water. The mass ratio
of calcium and magnesium oxide is required to exceed 1.0 following TS EN 197-1 and the
British Standards Institute (British Standards). This percentage ensures greater alkalinity,
not including slag that could be hydraulically inactive [53]. Figure 4 depicts the chemistry
of GGBS and the hydration phases that have been produced [57].
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The primary hydration product of GGBS in the presence of cement and water is
C–S–H, which the researchers acknowledge and are in agreement on. Since the initial
hydration of GGBS occurs substantially more sluggishily than in cement, it is necessary
to add an activator, such as Portland cement, alkalis or lime, to speed up the hydration
process. In most cases, the hydration of slag cement with cement is dependent on the break
and dissolution of the vitreous slag structure caused by the extrication of OH ions from
the vitreous slag structure caused by the hydration of the cement. It is generated by the
effect of sodium and potassium alkalis with calcium hydroxide when slag cement hydrates,
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producing additional CSH. In addition, when slag cement is combined with water, a little
and immediate reaction occurs, which positively frees calcium and aluminum ions into the
solution, according to one study. It is impossible to proceed with the reaction until more
alkali or calcium hydroxide or sulphate is introduced into the mixture [58]. During typical
temperature conditions, the hydration of slag cement blended with Portland cement occurs
in the form of a two-phase reaction. Most of the reaction occurs with alkali hydroxide in the
beginning and throughout the early hydration, whereas the subsequent reaction is mostly
with calcium hydroxide [26].

Slags must be given mechanical and thermal treatments in order to activate them and
enhance their hydraulic capabilities [59]. Additionally, there are different approaches to
achieving the same results such as adding nano- or microparticles or additional cementing
ingredients such as silica fume [60]. Furthermore, only the early-age lime–slag reaction and
compressive strength improve when the hydration temperature is increased to 100 ◦C (up
to 1 day). However, the long-term hydration reaction rates of slags are not significantly
affected by a reaction at 100 ◦C. As a result, it seems that diffusional processes control the
response rate. At 100 ◦C, calcium aluminum oxide hydroxide hydrate (C4AH13) was not
found [61].

Chemical activation is a fairly easy procedure that may be used to accelerate hydration
processes and boost mechanical strengths, particularly in young materials. It doesn’t need
any additional energy or equipment. Because the composition of different forms of slags
varies based on raw materials and industrial process, the best chemical activator may vary
from one type of slag to another. When the slag is being ground or later when it has been
dissolved in water, chemical activators may be added to the mixture [62].

7. Heat of Hydration

A substantial temperature differential and thermally induced stress cracking are
caused by the interior cement of a mass concrete structure’s incapacity to promptly release
its hydration heat [63]. In order to lessen the danger of cracking in large concrete construc-
tions, high percentages of mineral admixtures are employed to reduce the hydration heat
of cement and the adiabatic temperature increase in the concrete [64].

The results of the adiabatic calorimeter experiments performed on the GGBS are
shown in Figure 5. The results contain the information taken for the first 100 t20 h of
assessment, and heat amounts are indicated in Joules per maturity second per kilogram of
the cement. Detailed information on the maximum heat rates (qmax) as calculated from
the data given in Figure 3 is included in Table 4. Figure 5 depicts the ultimate hydration
heat percentage falls when the amount of GGBS is enhanced. According to similar research,
the pozzolanic reaction continues gradually and is associated with the hydration of cement,
which ultimately causes a decline in the heat, especially in the early days of hydration [11].

When utilized as a mineral ingredient, slag may significantly reduce the heat required
for cement to hydrate and the adiabatic temperature rise of concrete [65]. The large slag
particles, however, are lacking in many cementitious properties, and their interfaces with
calcium silicate hydrate gels are potential failure points [66]. Furthermore, the presence of a
lot of slag tends to give the hardened paste a coarser pore structure [67], which reduces the
strength and longevity of the concrete [68]. In some studies, it has been demonstrated that
using a composite mineral admixture known as ground-granulated blast-furnace slag-steel
slag composite binder can increase the fluidity of fresh concrete, lengthen the cement’s
setting time, improve the pore structure of hardened paste and create concrete with a
satisfactory compressive strength [69]. It is important to remember that the composite
binder has a bigger effect on lowering cement hydration heat and adiabatic temperature
rise in concrete than fly ash [70].

Table 4 demonstrates that increasing the fraction of GGBS to 60% results in a minor
reduction in the time necessary to attain this highest hydration rate. The decrease in the
time to peak heat amount becomes more substantial when the fraction of GGBS is raised
from 60% to 80% of the total heat rate.
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Table 4. Peak Heat Characteristics of GGBS [71].

Mix Composition Time to
qmax (t20 h)

qmax
(W/kg)

to 100% CEM I
(W/kg)

100-OPC 17.6 2.80 2.80
20-GGBS 15.3 2.39 2.99
40-GGBS 15.7 1.81 3.02
60-GGBS 14.2 1.30 3.25
80-GGBS 10.7 0.73 3.65

According to Table 4, the stabilized peak heat rates of blended concrete are more
significant than the stabilized peak heat rates for the plain OPC concrete. GGBS hydration
contributes to heat formation at initial ages, indicating that the concrete is generating heat
due to its hydration. Experimental data from Wu et al. [72] reveal that the GGBS concretes
responded similarly.

8. Workability

The flowability of concrete with GGBS is presented in Figure 6. It should be men-
tioned that the slump value improved when GGBS was used instead of Portland cement.
More cement paste resources are accessible to minimize internal friction among concrete
components due to micro filling spaces within the concrete aggregate, resulting in more
flowable concrete [73]. A researcher also claims that the increased slump is due to better
GGBS particle dispersion [74]. A study concluded that the inclusion of slag (30–50%)
increased the workability of concrete mixes; although a higher slag concentration led to
larger improvements [75]. Higher slag fineness had no discernible impact on workability,
and the authors of [76] found that the workability of mortar decreased as GGBS surface
area increased.

According to research, an enhancement in the substitution ratio of OPC by GGBS leads
to considerable improvements in the flowability of the ultra-high performance concrete
(UHPC) mix. It may be extrapolated that the enhancement in flow is significant up to a
40% substitution ratio of GGBS and that the improvement in flowability is not considered
beyond a 40% substitution ratio of GGBS [1]. In contrast, the flowability of concrete mixes
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reduces as the quantity of GGBS is enhanced. This decrease in the flowability of concrete
might be ascribed to increased water absorption. In addition, the findings of the slump test
show that the workability of the concrete decreases as GGBS concentration increases. This
could be a result of the GGBS’s increased water absorption capacity when compared to
natural fine aggregate. Therefore, when using more than 40% GGBS in concrete, the use of
superplasticizers is advised to produce the necessary slump value. Furthermore, the harsh
surface texture and increased water absorption of GGBS are two of the most important
factors that influence the flowability of concrete [47].
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Figure 6. Slump Flow [77].

Similarly, the SEM of GGBS shown in Figure 3 shows a greater surface area and a
rough surface for the GGBS material. To cover the increased surface area of GGBS with
cement paste, more cement paste was necessary, causing less cement paste to be accessible
for lubrication, resulting in decreased flowability. Plasticizers are necessary to apply to meet
the water requirement while also improving flowability. The slump value of concrete with
varying amounts of GGBS is displayed in Table 5 below and is based on previous research.

Table 5. The slump of concrete made with GGBS as per past research.

Author (GGBS) Replacement Ratio Slump (mm)

Erdogon et al. [78] 0%, 15% and 30% 260, 270 and 260

Majhi et al. [46] 0%, 25%, 50% and 100% 70, 75, 85 and 95

Majhi et al. [79] GGBS (kg)
0 and 234 70 and 80

Rakesh et al. [47] 0%, 20%, 40% and 60% 100, 80, 60 and 40

Suda et al. [80] 0 g, 97.2 g, 129.6 g and 162 g 111, 119, 113 and 105

Vediyappan et al. [81] GGBS (kg/m3)
364.5, 324, 284, 243 and 0

147, 122, 146, 165 and 173

Soni et al. [82] 0%, 30%, 40% and 50% 100, 85, 110 and 130

Nath et al. [83] GGBS (kg/m3)
0, 73, 146 and 219

250, 230, 235 and 205
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9. Mechanical Properties
9.1. Compressive Strength (CPS)

The CPS of concrete with varied replacement ratios of GGBS is shown in Figure 7. At
all curing ages, it can be noticed that CPS enhanced with GGBS up to a 20% replacement
fell progressively, reaching its maximum strength at 20% of GGBS substitution. Strength
declined significantly after 20% replacement of GGBS with an 80% substitution of GGBS,
showing significantly lower CPS than concrete that had been substituted with GGBS with a
20% substitution [1]. According to another study, the CPS of concrete increased up to 20%
when substituted with GGBS but the further addition of GGBS dropped owing to a lack
of flowability [73]. The pozzolanic interaction of silica dioxide in GGBS with the calcium
hydrate of cement caused the development of additional binding compounds, such as
CSH, which was responsible for the favorable influence on CPS [3,19]. With the addition
of the extra binder formed by the GGBS reaction with accessible lime, concrete is able to
continue to develop strength as time passes. However, at higher dosages (greater than 20%
by weight of cement), strength decreases as a result of the dilution effect, which causes the
alkali–silica reaction as a result of a larger quantity of unreactive silica being available due
to the higher percentage of GGBS being utilized in concrete [4].

Additionally, GGBS fills in the spaces in the aggregate resulting in denser concrete,
which increases the CPS of concrete [73]. However, at larger doses of GGBS (more than
20%), a drop in CPS was found owing to deficient flowability, which enhanced compaction
efforts resulting in more pores in the concrete, ultimately lowering the CPS of the concrete.
According to research [84], the strength advantage of concrete containing 20–60% GGBS
did not appear until 28 days of curing, at which point comparable or greater long-term
strength was attained as compared to conventional concrete. A study [76] reported that
the strength of mortar containing GGBS is related to both the particle size distribution and
surface area of GGBS. The early strength of the mortar rose according to the quantity of
fine GGBS particles even if GGBS had the same surface area. The strength of the mortars
over time increased with the amount of GGBS particles present.

Furthermore, since the pozzolanic reaction occurs slowly, the CPS of concrete con-
taining GGBS also depends on curing days. According to the research findings, the CPS
of the concrete using GGBS as fine aggregate is comparable to that of the reference con-
crete at early ages. However, owing to the reactivity of slag, the higher the amount of
slag replaced by sand, the greater the CPS of the concrete is likely to be at 365 days [85].
Based on previous research, the CPS of concrete with varying amounts of GGBS is shown
in Table 6 below.
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Table 6. Compressive strength of concrete made with GGBS as per past research.

Author (GGBS) Replacement Ratio Compression Strength (MPa)

Erdogon et al. [78] 0%, 15% and 30% 35, 45 and 40

Arash et al. [86] 0%, 20%, 40% and 60% 45, 45, 48 and 38

Topçu et al. [54] 0%, 25% and 50%

28 days
35, 49 and 43

90 days
37, 53 and 44

Ganesh et al. [1] GGBS (kg/m3)
0, 192, 384, 576 and 768

115.67, 129.90, 117.98, 109.81 and 101.16

Majhi et al. [46] 0%, 25%, 50% and 100% 40, 32, 35 and 15

Majhi et al. [79] GGBS (kg)
0 and 234 35 and 30

Rakesh et al. [47] 0%, 20%, 40% and 60% 36.42, 39.1, 41.0 and 43.6

Suda et al. [80] 0 g, 97.2 g,129.6 g and 162 g 36.50, 40.32, 42.95 and 39.30

Siddique et al. [48]

0%
20%
40%
60%
80%

7 days
43.4, 35.6, 42.5, 35.2 and 35

28 days
54.3, 55.4, 63.6, 58.4 and 56

Ramakrishnan et al. [49]
(C + GP + GGBS)%

50 + 40 + 10, 50 + 30 + 20, 50 + 20 + 30, 50 + 10 + 40
and 100 + 0 + 0

20.45, 18.16, 26.14, 31.26 and 29.05

Raafidiani et al. [87] 0%, 40%, 50% and 60%

14 days
26.06, 22.99, 25.25 and 22.40

28 days
26.50, 23.03, 26.65 and 22.02

Ramani et al. [88] GGBS (kg/m3)
394, 355, 315 and 276

7 days
66.5, 67.6, 46.32 and 20.48

28 days
69.28, 70.72, 51.46 and 24.52

Vignesh et al. [45] FLYASH + GGBS
100 + 0, 90 + 10, 80 + 20, 70 + 30, 60 + 40 and 0 + 0 16.30, 21.11, 34.32, 42.48, 45.55 and 36.84

Vediyappan et al. [81] GGBS (kg/m3)
364.5, 324, 284, 243 and 0

45.51, 54.64, 62.39, 58.78 and 58.14

Makhdoom et al. [89] 0%, 25%, 50% and 75% 10.73, 5.88, 3.96 and 3.4

Nazari et al. [90] 0%, 15%, 30%, 45%
and 60% 31.5, 35.4, 38.9, 43.7 and 40.6

Nath et al. [83] GGBS (kg/m3)
0, 73, 146 and 219

10, 25, 35 and 40

(RCA) = Recycled coarse aggregate. (GGBS) = Ground-granulated blast-furnace slag. (CM) = Control mix.

The compressive strength (CPS) age relationship is displayed in Figure 8 in which
28 days CPS was selected as the reference strength from which another dose of GGBS is
compared at various days of curing. CPS (7 days) of concrete with a 20% substitution of
GGBS is only 9% less than the reference concrete (28 days control concrete CPS), while CPS
(28 days) with a 20% substitution of GGBS is only 5% more than the reference concrete. The
same dose of GGBS (20%) shows a CPS of 17% and 21% more than the reference concrete
at 56 and 90 days curing. It can be noted that GGBS does not improve CPS up to 28 days
considerably. However, dramatically improved CPS was indicated at 56 and 90 days of
curing. The considerable improvement in CPS at 56 and 90 days is due to the pozzolanic
reaction of GGBS as it continues gradually as assessed by the hydration of OPC. Similarly,
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studies reported that pozzolanic reaction continues gradually as compared to the hydration
of OPC [91–93].
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9.2. Split Tensile Strength (STS)

The direct tensile strength of concrete is not often tested because of the production of
secondary stresses caused by sample holding mechanisms, which must be considered. As
a result, there are many indirect ways of determining the STS. The STS of concrete with
varied replacement ratios of GGBS is shown in Figure 9.
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Figure 9. Tensile Strength (STS) [1].

The STS of concrete increased with a GGBS replacement up to 20% and then fell
progressively with the maximum STS at 20% of GGBS substitution at all ages of curing,
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similar to the CPS. However, the STS reduced significantly beyond a 20% replacement of
GGBS, and even after an 80% substitution of GGBS, the STS is much lower when compared
to concrete without the substitution of GGBS (control concrete) [1]. Research also found that
the STS of concrete increased with up to a 20% substitution of GGBS, but the STS reduced
owing to a lack of flowability after the further addition of GGBS, i. e., beyond 20% [73].
A possible explanation for the improvement in STS might be traced to the pozzolanic
activity of GGBS, which helps to minimize the presence of holes and enhance the interface
properties. According to another study, the STS findings of high-volume GGBS at 56 and
90 days demonstrate that the primary stage strength of the concrete does not exhibit any
substantial enhancement when associated with the later age results at 56 and 90 days. One
possible explanation is that GGBS does not respond readily when exposed to conventional
water curing conditions at an initial stage. However, curing at a high temperature improved
STS considerably [1].

In contrast, when the amount of GGBS was increased by over 20%, the STS fell due
to the dilution impact, which led to an alkali–silica reaction. When a higher dosage of
GGBS is used, unreactive silicon dioxide is found to be readily accessible, which reacts with
alkali, resulting in the alkali–silica reaction (ASR) [73]. The ASR exerts stress on concrete
to expand, which eventually cracks the concrete structure. Research also discovered that
the STS falls as the rate of GGBS replacements increases, and there is no difference in the
STS up to a 10% substitution of GGBS. In the case of a replacement with GGBS up to 30%,
the STS is reduced by 12% [94]. Based on previous publications, the STS of concrete with
fluctuating proportions of GGBS is shown in Table 7 below.

Table 7. Split Tensile strength of concrete made with GGBS as per past research.

Author (GGBS) Replacement Ratio Split Tensile Strength (MPa)

Topçu et al. [54] 0%, 25% and 50%

28 days
3.3, 3.5 and 3.3

90 days
3.7, 4.2 and 3.3

Ganesh et al. [1] GGBS (kg/m3)
0, 192, 384, 576 and 768

19.48, 20.37, 19.24, 17.71 and 14.96

Majhi et al. [46] 0%, 25%, 50% and 100% 3.1, 3.2, 3 and 2.9

Rakesh et al. [47] 0%, 20%, 40% and 60% 2.9, 3, 3.3 and 3.5

Suda et al. [80] 0 g, 97.2 g, 129.6 g and 162 g 3.27, 3.52, 3.77 and 3.44

Ramakrishnan et al. [49]

(C + GP + GGBS)%
50 + 40 + 10, 50 + 30 + 20,
50 + 20 + 30, 50 + 10 + 40

and 100 + 0 + 0

2.14, 1.58, 1.84, 2.31 and 2.03

Ramaniet al. [88] GGBS (kg/m3)
394, 355, 315 and 276

7 days
6.43, 6.69, 3.94 and 0.89

28 days
6.74, 6.92, 4.26 and 1.12

Vignesh et al. [45] FLYASH + GGBS
100 + 0, 90 + 10, 80 + 20, 70 + 30, 60 + 40 and 0 + 0 1.92, 3.15, 3.91, 4.37, 5.94 and 4.20

Vediyappan et al. [81] GGBS (kg/m3)
364.5, 324, 284, 243 and 0

3.055, 4.108, 4.621, 3.983 and 4.063

Soni et al. [82] 0%, 30%, 40% and 50% 4.20, 4.33, 4.67 and 4.47

Nazari et al. [90] 0%, 15%, 30%, 45% and 60% 1.6, 1.9, 1.9, 2.1 and 2.0

Figure 10 shows the correlation between CPS and STS with varying percentages of
GGBS. It is well known that CPS and STS are correlated with each other; i.e., the STS of
concrete is 9 to 10% of CPS [95]. Therefore, a strong correlation between CPS and STS
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occurs with an R2 value greater than 0.90. The following expression has been established
based on various GGBS percentages.

fsp = 0.224 × fc0.90, (1)

where fsp = STS and fc = CPS.
However, codes suggested various equations to calculate STS from CPS, which are listed

below. ACI-318.11 [96] Equation (2), Eurocode [97] Equation (3) and JSCE-07 [98] Equation (4).
Table 8 shows the predicted STS from CPS based on different proposed equations.

fsp = 0.53×
√

fc (2)

fsp = 0.3×
√

fc (3)

fsp = 0.44×
√

fc (4)
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Table 8. Experimental and Calculated STS.

Experimental
CPS (MPa)

Experimental
STS (MPa) Equation (1) ACI-318.11

[96]
Eurocode

[97]
JSCE-07

[98]

100 15 14.13 5.3 3 4.4
105 17 14.76 5.43 3.07 4.50
90 14 12.85 5.02 2.84 4.17
80 13 11.56 4.74 2.68 3.93
60 12 8.92 4.10 2.32 3.40

115 19 16.02 5.68 3.21 4.71
120 20 16.65 5.80 3.28 4.81
117 19 16.27 5.73 3.24 4.75
109 17 15.27 5.53 3.13 4.59
100 15 14.13 5.3 3 4.4
122 20 16.90 5.85 3.31 4.85
135 23 18.51 6.15 3.48 5.11
130 22 17.89 6.04 3.42 5.01
110 17 15.39 5.55 3.14 4.61
100 15 14.13 5.3 3 4.4
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Table 8. Cont.

Experimental
CPS (MPa)

Experimental
STS (MPa) Equation (1) ACI-318.11

[96]
Eurocode

[97]
JSCE-07

[98]

130 20 17.89 6.04 3.42 5.01
140 23 19.13 6.27 3.54 5.20
135 22.5 18.51 6.15 3.48 5.11
110 17 15.39 5.55 3.14 4.61
100 15 14.13 5.3 3 4.4

Figure 11 shows the correlation among predicted STS from Equation (1), ACI-318.11 [96]
Equation (2), Eurocode [97] Equation (3) and JSCE-07 [98] Equation (4). It can be observed
that the STS calculated from Equation (2) gives results closer to experimental split
tensile strength. However, the findings obtained from various codes, i.e., ACI-318.11 [96]
Equation (2), Eurocode [97] Equation (3) and JSCE-07 [98] Equation (4) are much lower than
the actual experimental results of split tensile strength. It might be because ACI-318.11 [96]
Equation (2), Eurocode [97] Equation (3) and JSCE-07 [98] Equation (4) are proposed
for conventional concrete, while Equation (2) is developed for concrete with different
percentages of GBBS. Furthermore, the STS mainly depends on cement paste strength.
During tensile load, the aggregate tries to elongate while cement paste holds them. With
the substitution of GGBS, the binding properties of cement paste improved paste due to
the pozzolanic reaction, which forms secondary cementitious compounds, such as calcium
silicate hydrate gel (CSH). A study also claimed that mineral admixture improved tensile
capacity more effectively than compressive strength [99]. Therefore, this study suggests
that Equation (2) could be used to calculate the STS from the CPS of concrete, particularly
concrete with different doses of GGBS.
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9.3. Flexure Strength (FS)

The FS of concrete with GBBS and metakaolin (MK) replacement is shown in Figure 12.
Flexure strength was enhanced when the proportion of GGBS and MK was increased.
The pozzolanic interaction of silica in GGBS with calcium hydrate in cement results in
the formation of a supplemental cementitious gel, i.e., calcium silicate hydrate (CSH) [73],



Sustainability 2022, 14, 8783 17 of 27

which has a beneficial influence on FS. According to previous work, FS is mainly affected by
the strength of the binder. When subjected to tensile tension, aggregates attempt to migrate
apart. The resistance is increased because of the extra binder formed by the GGBS [99]. In
contrast, when the amount of GGBS was increased by over 20%, the FS dropped because
of the dilution effect, which led to an alkali–silica reaction. When a greater dosage of
GGBS is used, unreactive silica is found to be readily accessible, which reacts with alkali
resulting in the alkali–silica reaction [73]. Furthermore, according to the findings of one
study, the FS of concrete mixes increases as the amount of GGBS in the mix increases. The
FS of concrete at a water to binder ratio of 0.45 is 4.216 MPa for a control mix that does
not include GGBS. In addition, the FS is increased to 4.367 MPa, 4.47 MPa and 4.61 MPa,
which is 3.58 percent higher, 6.02 percent higher and 9.34 percent higher than the control
mix when GBS is replaced at 20%, 40% and 60%. The pozzolanic activity of GGBS in the
concrete is strengthened by the neutralizing of calcium hydroxide crystals. As a result,
the FS of the concrete is increased [47]. Research also discovered that when GGBS was
substituted for 10%, FS increases by 10% compared to the control mix [94]. According to
previous research, the FS of concrete with various percentages of GGBS is shown in Table 9.
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Table 9. Flexure Strength of Concrete with GGBS as per past research.

Author (GGBS) Replacement Ratio Flexure Strength (MPa)

Erdogon et al. [78] 0%, 15% and 30% 4, 6 and 8

Majhi et al. [46] 0%, 25%, 50% and 100% 5, 4.9, 4.8 and 4.8

Rakesh et al. [47] 0%, 20%, 40% and 60% 4.2, 4.3, 4.5 and 4.6

Suda et al. [80] 0 g, 97.2 g, 129.6 g and 162 g 4.74, 5.14, 5.56 and 5

Ramakrishnan et al. [49]

(C + GP + GGBS)%
50 + 40 + 10, 50 + 30 + 20,
50 + 20 + 30, 50 + 10 + 40

and 100 + 0 + 0

21.07
-
-

21.42
-
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Table 9. Cont.

Author (GGBS) Replacement Ratio Flexure Strength (MPa)

Ramani et al. [88] GGBS (kg/m3)
394, 355, 315 and 276

7 days
5.75, 6.26, 3.57 and 1.05

28 days
6.06, 6.98, 4.12 and 1.27

Vignesh et al. [45] FLYASH + GGBS
100 + 0, 90 + 10, 80 + 20, 70 + 30, 60 + 40 and 0 + 0 2.40, 3.58, 4.16, 4.68, 5.97 and 4.45

Vediyappan et al. [81] GGBS (kg/m3)
364.5, 324, 284, 243 and 0

3.296, 3.913, 4.217, 4.103 and 4.109

Nazari et al. [90] 0%, 15%, 30%, 45% and 60% 4.2, 4.6, 4.9, 5.4 and 5.1

10. Durability
10.1. Density

Density is an important parameter that detects the quality of concrete, particularly
its durability of concrete. Denser concrete has stronger strength and fewer voids and
less porosity than less dense concrete. As the number of spaces in concrete decreases,
the material becomes less permeable to water and soluble components, which causes a
reduction in water absorption, and the durability of concrete will be improved. Water
contains a harmful chemical that causes the degradation of concrete. Figure 13 demonstrates
concrete density at 28 days with GBBS and metakaolin (MK) substitution. It can be noted
that the density of concrete is reduced with the substation of GGBS. The decrease in
concrete density caused by the addition of GGBS and MK is because the specific gravity of
cement is larger than the particular gravity of metakaolin and GGBS combined [100]. A
study suggests that the concrete mix incorporating GGBS could be helpful in lightweight
construction owing to the lower density of GBS [47].
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Figure 13. Density of Concrete [100].

In contrast, the research described that concrete density increased with GGBS. The
increase in density with GGBS is due to the micro filling effects of GGBS, which fills
the voids between concrete ingredients, leading to a more compact mass that ultimately
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increases the concrete density [73]. Although the density is one of the most critical factors
that define the characteristic of concrete, few researchers consider density in their research,
and more studies are recommended in this regard.

10.2. Rapid Chloride Ion Penetration (RCPT)

The RCPT test was performed to measure the material’s resistance to chloride ions pen-
etrating the sample. The depth to which chloride ions from the surrounding environment
permeate into the concrete is called chloride penetration. RCC structures can corrode as a
result of chloride penetration. Therefore, chloride permeability is an essential component
that influences the durability of the concrete. The capacity to keep the concrete’s perme-
ability at the lowest possible levels is one of the most essential criteria for the long-term
durability of concrete structures that are sensitive to reinforcing corrosion. The measured
chloride ion penetration value of ultra-high performance concrete with a large amount of
GGBS is shown in Figure 14. For G-0, G-20, G-40, G-60 and G-80, the average charge passed
is 139, 101, 75, 76 and 82 Coulombs, with the average charge passing being 139, 101, 75, 76
and 82 Coulombs. In this study, it was discovered that increasing the replacement amount
of GGBS results in a decrease in chloride penetration. According to ASTM C1202 [101],
the mixtures G-0 and G-20 have a permeability class of extremely low, which means a
low rate of chloride penetration. Forms G-40, G-60 and G-80 blend. On the other hand,
chloride penetration is almost nonexistent. According to the findings, increasing the dose of
GGBS in the UHPC mix leads to increased resistance to chloride penetration of the mixture.
The chloride resistivity of UHPC increases due to the physical densification of the pore
structure caused by the action of GGBS replacement. Additionally, according to one study,
concrete incorporating glassy ground-granulated blast-furnace slag has enhanced resistance
to chloride penetration when compared to conventional concrete [102]. According to the
findings [103], calcium sulfate had a different impact on chloride binding and the chemistry
of the pore solution than sodium sulfate. As a straightforward replacement for OPC, the
slag cement had higher chloride-binding capacities. However, at the same sulfate content,
the slag cement did not exhibit the anticipated higher binding capacities, indicating that
the difference in sulphate content between the two cements may be the primary factor
influencing their divergent chloride-binding behavior.
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10.3. Permeability

The permeability of concrete impacts the durability of concrete because it regulates
the pace at which moisture may include an aggressive chemical penetration. Concrete
with a lower permeability is more resistant to cracking. The permeability of concrete with
GBBS and metakaolin (MK) substitutions is shown in Figure 15. It can be noted that the
permeability of concrete decreased with the GGBS substation. In concrete, after 28 days,
the maximum permeability was determined to be 19.5 mm at 0% of GGBS, while the lowest
permeability was calculated to be 9 mm with 10% GGBS and 10% MK.

Furthermore, the permeability of concrete is an important characteristic of durable
concrete, and concrete with a reduced water penetration depth shows significant resistance
to chemical assaults [104]. The decrease in permeability of concrete with GGBS is due to
the pozzolanic reaction with secondary cementitious materials (CSH), which improved the
binding property of mortar, leading to lower permeability. Furthermore, the micro filling
effect of GGBS, which fills the voids in aggregate, leads to a more compact mass, ultimately
decreasing the concrete’s permeability. The combined pozzolanic reaction and micro filling
voids positively impact the concrete’s permeability. However, one study suggests that
a higher dose of GGBS (beyond 20%) results in more voids in concrete due to a lack of
workability [73]. More voids tend to cause an increase in the permeability of concrete.
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10.4. Chloride Attack

The long-term durability of concrete, chloride attack is the most severe aspect that
must be considered. Chloride attack is responsible for about 40% of the failures of concrete
buildings. Because of the presence of oxygen and water, a chloride attack corrodes the
steel, significantly lowering the structural strength of the structure. Corrosion occurs when
chloride ions come into contact with steel and passive materials in the surrounding area,
resulting in a chemical reaction that produces hydrochloric acid. The hydrochloric acid
eats the steel reinforcement, resulting in cracking, spalling and finally the collapse of the
concrete structure [105]. Figure 16 shows the residual CPS of concrete exposed to a chloride
attack with and without GBBS and metakaolin (MK) substitution. It can be noticed that the
residual CPS of concrete subjected to a chloride attack increases when the replacement ratio
of GGBS was increased. Improvement in residual CPS of concrete exposed to a chloride
attack is due to the pozzolanic reaction of GGBS, which increased the cement paste’s
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binding properties, resulting in a denser mass and decreased chloride penetration into
the concrete. This ultimately reduces the degradation of concrete when a chloride attacks
occurs. Additionally, the micro filling of spaces in the concrete aggregate of GGBS results
in denser concrete, reducing chloride penetration into the concrete.

Consequently, the residual CPS of concrete subjected to a chloride attack increases.
According to the research findings, concrete mixed with groundnut shell ash has more
resistance to a chloride attack than control mix concrete [106]. Although the chloride
attack test is one of the most critical factors related to the corrosion of reinforcement,
few researchers consider the chloride attack test in their research, and more studies are
recommended in this regard.
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10.5. Dry Shrinkage

Dry shrinkage is an essential feature of cementitious composites that significantly
impacts their long-term durability. Dry shrinkage occurs due to the loss of capillary
water from the concrete mixture resulting in contraction, and cracks development inside
the concrete structure. The dry shrinkage of concrete with and without the GBBS and
metakaolin (MK) replacement is shown in Figure 17.

The drying shrinkage of concrete decreased as the proportion of GGBS in the concrete
increased. There is reduced cement content in cement pastes, which decreases the drying
shrinkage of cement pastes [100]. In addition, the research found that the mineral additive
lowered the heat of hydration, preventing the quick evaporation of water from the concrete
surface, which caused the formation of dry shrinkage cracks [107]. The pozzolanic reaction
produces CSH, which results in compact (denser) concrete, which may help reduce dry
shrinkage. It has also been observed that fly ash may significantly minimize drying
shrinkage in concrete by plugging micropores in the concrete and hence increasing the
internal compactness of the concrete mix [19]. The dry shrinkage is mainly due to the
change of volume mortar, while coarse aggregate prevents the change of cement paste.
The combined pozzolanic reaction and micro filling of mineral admixture improved the
cement paste’s binding properties and density, ultimately decreasing the concrete’s dry
shrinkage [99].
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11. Conclusions

In this review, newly published articles on the use and efficiency of GGBS on the
characteristics of concrete are examined. There was a thorough discussion of the manu-
facturing method, physical and chemical composition of GGBS and hydration reaction of
GGBS, as well as the influence of GGBS use on the fresh-, mechanical-, permeability- and
durability-associated qualities. This paper aimed to create awareness of the usage of GGBS
in terms of possible environmental consequences and technical advantages for sustainable
building. The following are some general benefits of using GGBS in concrete:

• Physical assets of GGBS, such as specific gravity and bulk density of concrete, are
approximately equal to the cement. However, the surface area of GGBS is larger than
cement. Furthermore, the SEM of GGBS shows the angular and rough surface texture
of GGBS particles.

• The chemical composition of GGBS shows that it can be used as a cement replacement
up to a certain extent.

• The heat of hydration decreased with the substitution of GGBS as the pozzolanic
reaction proceeds slowly as compared to the hydration of cement.

• The workability of concrete is reduced by replacing OPC with GGBS due to the larger
surface area and rough surface texture of GGBS particles. Therefore, plasticizer was
recommended particularly for the higher dose of GGBS.

• Mechanical performance of concrete, such as compressive strength, split tensile
strength and flexure, improved with GGBS due to the pozzolanic reaction and mi-
cro filling voids. However, a higher dose caused a decrease in the mechanical and
durability of concrete due to lack of workability.

• Increased durability performance, such as dry shrinkage, permeability, chloride pene-
tration and acid attack, was observed with GGBS. The combined micro filling and the
pozzolanic reaction of GGBS results in more durable concrete.

• The optimum dose is important for better mechanical and durability aspects of con-
crete. Different researchers reported different values of optimum quantity of GGBS
due to varying sources of GGBS. However, most researchers reported a 20% optimum
dose of GGBS.
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• Environmental assessments show the reduction of carbon dioxide emissions and the
conservation of natural resources have a significant impact on environmental protection.
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