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A comprehensive SARS-CoV-2–human 
protein–protein interactome reveals 
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Studying viral–host protein–protein interactions can facilitate the discovery 
of therapies for viral infection. We use high-throughput yeast two-hybrid 
experiments and mass spectrometry to generate a comprehensive 
SARS-CoV-2–human protein–protein interactome network consisting of 739 
high-confidence binary and co-complex interactions, validating 218 known 
SARS-CoV-2 host factors and revealing 361 novel ones. Our results show the 
highest overlap of interaction partners between published datasets and of 
genes differentially expressed in samples from COVID-19 patients. We identify 
an interaction between the viral protein ORF3a and the human transcription 
factor ZNF579, illustrating a direct viral impact on host transcription. We 
perform network-based screens of >2,900 FDA-approved or investigational 
drugs and identify 23 with significant network proximity to SARS-CoV-2 host 
factors. One of these drugs, carvedilol, shows clinical benefits for COVID-19 
patients in an electronic health records analysis and antiviral properties in a 
human lung cell line infected with SARS-CoV-2. Our study demonstrates the 
value of network systems biology to understand human–virus interactions 
and provides hits for further research on COVID-19 therapeutics.

The severity of the global COVID-19 pandemic caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need 
to fill in the gaps in our understanding of the interplay between this 
virus and its hosts. Once inside a cell, viruses interact with intracellular 
proteins to hijack host mechanisms that facilitate viral replication and 
evasion of an immune response1. Studying viral–host protein–protein 
interactions (PPIs) is therefore crucial for understanding the mecha-
nisms of the viral infection and the host response and to develop new 

strategies for disease treatment and prevention2–5. Interaction networks 
are especially important as proteins generally act not in isolation but 
in concert with their neighborhood of interacting partners. Such inter-
actomes can thus reveal biological pathways and processes impacted 
by the viral proteome, allowing for the discovery of novel drug targets.

Here we leverage high-throughput yeast two-hybrid (Y2H) and 
tandem mass tag affinity purification followed by mass spectrometry 
(TMT-AP–MS) to generate a binary and co-complex SARS-CoV-2–human 
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extensive use of the line in SARS-CoV and SARS-CoV-2 infection stud-
ies26,27, supported by known in vivo replication of SARS-CoV-2 in gastro-
intestinal cells28,29 and desirable cell culture characteristics including 
robust transfectability and rapid propagation. All Strep-, Myc-, or 
FLAG-tagged SARS-CoV-2 baits and their corresponding empty vector 
controls were transfected in biological duplicates, followed by subse-
quent affinity purification, TMT labeling and synchronous precursor 
selection (SPS) MS3-based quantification. We filtered for interactions 
that met stringent fold change (FC) and P value cutoffs (Methods). In 
all, we report a total of 472 high-confidence co-complex SARS-CoV-2–
human PPIs via AP–MS, 440 of which were unique to this assay in this 
study (Supplementary Table 1). Altogether, our orthogonal approaches 
generated a network composed of 739 interactions among 28 viral and 
579 host proteins (Supplementary Table 1).

We visualized the SARS-CoV-2–human protein–protein inter-
actome through a network shown in Fig. 1b. The colors of the edges 
between the viral proteins (represented as diamond nodes) and the 
host proteins (represented as circle nodes) indicate the methods that 
detected the interaction. Host proteins that interact with a single viral 
protein are shown in boxes connected to their interacting partner. 
Several human proteins interact with multiple SARS-CoV-2 proteins, 
such as ACTN4, ITGB1BP2, TRIM27 and ACTN1, while the majority of 
human proteins (469, 81%) interact with only one SARS-CoV-2 protein 
(Supplementary Fig. 1a). Among the viral proteins, N, ORF7b and ORF9b 
achieved the highest network degrees, whereas E, NSP7 and NSP1 have 
the lowest network degrees (Supplementary Fig. 1b). In terms of the 
shared interacting partners, overall, the viral proteins showed low 
overlap (Supplementary Fig. 1c), consistent with a previously published 
SARS-CoV-2 interactome network2,3. We examined the overlap of host 
factors for Y2H and AP–MS separately and found overall low overlap 
of host factors as well (Supplementary Fig. 1d,e).

For the entire interactome, functional enrichment analysis revealed 
significantly overrepresented biological processes (Supplementary Fig. 
2a and Supplementary Table 2), including protein translation, transcrip-
tion and neutrophil-mediated immunity (highlighted with yellow back-
ground in Fig. 1b). Semantic analysis shows major biological process 
categories such as ‘ribosome biogenesis,’ ‘rRNA metabolic process,’ and 
‘viral gene expression’ (Supplementary Fig. 2b). Pathway enrichment 
analysis show top enriched pathways such as ‘protein processing in 
the endoplasmic reticulum,’ ‘tight junction,’ ‘glycolysis,’ ‘ribosome,’ 
and ‘protein export’ (Supplementary Fig. 2c and Supplementary Table 
2). For individual SARS-CoV-2 proteins, many pathways and biological 
processes are shared in these viral proteins (Supplementary Fig. 3). For 
example, NSP12, NSP13 and NSP16 share biological processes such as 
‘regulation of cellular component movement,’ ‘negative regulation of 
cell morphogenesis involved in differentiation’ and ‘negative regulation 
of substrate adhesion-dependent cell spreading’ (Supplementary Fig. 
3a); ORF7a, ORF7b, ORF8 and NSP4 share the pathway ‘protein process-
ing in endoplasmic reticulum’ (Supplementary Fig. 3b).

Given the surge of COVID-19-related studies since 2020, we 
repeated the enrichment analyses using gene set libraries generated 
before and after the start of the pandemic to evaluate whether bias 
was introduced to the gene sets. By comparing Gene Ontology (GO) 
biological process 2018 versus GO biological process 2021 and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) human pathway 2021 
versus KEGG human pathway 2019, we found that our enrichment 
analyses were not biased by the addition of the COVID-19 research. In 
both comparisons, we found that terms such as ‘ribosome biogenesis’, 
‘rRNA processing’ and ‘rRNA metabolic process’ and pathways such as 
‘Ribosome’ were significantly enriched in the gene set libraries both 
before and after the pandemic, with similar odds ratio and combined 
score (Supplementary Fig. 3c).

Overall, our interactome is comprised of abundant information 
that can be utilized for the identification of COVID-19-relevant patho-
biology and host-targeting therapies. We also developed an interactive 

protein–protein interactome network, which we propose to be a more 
complete resource for exploration of the viral–host interactome (Fig. 
1a). We adopted this approach for several reasons. To date, Y2H and 
AP–MS are the only two methods available for mapping protein–pro-
tein interactome networks on a proteomic scale6,7. Pioneering studies 
on the earliest SARS-CoV-2–human interactomes utilized label-free 
AP–MS as their sole method for interaction mapping2–5. While both 
Y2H and AP–MS alone produce high-quality interactome datasets, 
they fundamentally capture different yet complementary aspects of 
the full network; specifically, Y2H interactions often represent key 
connections between different protein complexes and pathways8. 
Thus, Y2H and AP–MS together can provide a more comprehensive 
view of the topological and biological properties of the interactome8. 
Moreover, labeled (for example, TMT-based) AP–MS has been shown 
to provide more precise, accurate and reproducible quantification of 
proteins compared to label-free AP–MS-based approaches, which is an 
important criterion when trying to identify true protein interactions 
and generate high-quality interactome networks9–19.

Here we used both Y2H and quantitative TMT-AP–MS to generate 
a total of 739 high-confidence interactions among 579 human proteins 
and 28 SARS-CoV-2 proteins. Our interactome had an unprecedented 
scale and coverage compared with existing ones. Using our interac-
tome, we identified important pathways such as protein translation, 
mRNA splicing, Golgi transportation, neutrophil-mediated immunity 
and glucose metabolism. Moreover, we prioritized host-targeting 
therapies by searching U.S. FDA-approved and investigational drugs for 
their potential anti-SARS-CoV-2 effect using state-of-the-art network 
proximity methods. Using two large independent COVID-19 patient 
databases, we found that usage of one of the top candidates, carvedilol, 
was associated with a lowered risk (17–20%) of a positive COVID-19 test. 
Experimental validation shows that carvedilol inhibits SARS-CoV-2 
infection with a half-maximal effective concentration (EC50) of 4.1 µM. 
Altogether, these results suggest that our comprehensive SARS-CoV-2–
human protein interactome offers substantial opportunities for under-
standing the pathobiological process of SARS-CoV-2 in human and 
identifying host-targeting therapies for COVID-19.

Results
A comprehensive SARS-CoV-2–human protein–protein 
interactome
To generate a binary SARS-CoV-2–human protein–protein interactome, 
we systematically tested all pairwise combinations of 28 SARS-CoV-2 
proteins (GenBank accession MN908947) against ~16,000 human 
proteins (hORFeome V8.1)20 using high-throughput Y2H screens8,21–24 
(Fig. 1a). We treated each protein as both a bait and a prey, yielding 
over 896,000 (28 × ~16,000 × 2) total tested pair combinations. Before 
screening, all autoactivating DNA-binding domain (DB) ORF clones 
were removed from further tests (see Methods). To increase experi-
mental throughput, viral ORF activating domain (AD) and DB clones 
were mated against pools of 24 human ORF DB or AD clones, respec-
tively. Following auxotrophic selection, AD–DB pairs were identified 
via PLATE-seq24 to generate a list of candidate interactions (Meth-
ods). Interaction candidates were then subsequently re-tested using 
Y2H to ascertain high reproducibility. In all, we report a total of 299 
high-quality binary SARS-CoV-2–human PPIs via our high-throughput 
Y2H screen, 267 of which were unique to this assay in this study (Sup-
plementary Table 1).

To complement our binary SARS-CoV-2–human protein–protein 
interactome, we independently expressed each of the 28 SARS-CoV-2 
proteins in the human intestinal epithelial cell line Caco-2 (HTB-37; 
ATCC) to identify viral–host co-complex interactions using TMT-AP–
MS proteomics (Fig. 1a). We used Caco-2 as our cell line model owing 
to its endogenous expression of angiotensin-converting enzyme 2 
(ACE2) and transmembrane serine protease 2 (TMPRSS2) required 
for SARS-CoV-2 cell entry and S protein priming, respectively25, the 
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Fig. 1 | SARS-CoV-2–human protein interactome. a, Pipelines using Y2H 
and AP–MS for detecting SARS-CoV-2–human protein–protein interactions. 
b, Edges between viral proteins (diamonds) and human proteins (circles) 
represent protein–protein interactions. Edge colors indicate the methods 
used to detect the protein–protein interaction. Several biological processes 

that are significantly enriched in these human proteins (Supplementary 
Fig. 2 and Supplementary Table 2) are highlighted with yellow background. 
Human proteins that interact with only one SARS-CoV-2 protein are shown in 
the box connected to that specific protein. The interactome can be found in 
Supplementary Table 1.
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visualization tool for our interactome which can be accessed from 
https://github.com/ChengF-Lab/COVID-19_PPI.

Coverage and quality of our interactome
To ensure the authenticity when applying our interactome for down-
stream studies, we first evaluated the quality through several means. 
We examined three previously published SARS-CoV-2–human protein–
protein interactome networks2,4,5. All three of these interactomes were 
generated using AP–MS-based methods alone. Overall, we found that 
the host factors of these interactomes significantly overlap (Fisher’s 
exact test, false discovery rate (FDR) < 0.05) (Fig. 2a, Extended Data 
Fig. 1a and Supplementary Table 3), although each interactome still 
identified a large number of unique factors. This could be explained 
by differences in the cell line models used (Gordon et al.3 and Li et al.4 
used HEK293T/17; Stukalov et al.5 used A549) as well as distinct com-
putational and/or experimental methodologies implemented in their 
respective studies. Nonetheless, we found that our interactome had the 
highest overlap of interaction partners among published SARS-CoV-2–
human protein–protein interactome networks (Fig. 2a, Extended Data 
Fig. 1a and Supplementary Table 3), suggesting that our interactome 
had a high level of coverage. We also found that Y2H confirmed many 
interactions and resulted in identifying slightly more overlapping host 
factors with previous studies (Fig. 2a), confirming the complementary 
nature of our Y2H assay, which was performed in a highly sensitive 
screen outside of human cells. Overall, AP–MS achieved significantly 
more overlapping viral–human protein–protein interactions across 
studies when known human pathways and complexes are taken into 
consideration (Extended Data Fig. 1b).

In comparison to the published SARS-CoV-2–human protein–pro-
tein interactome networks2,4,5, our interactome validated 218 (38%) 
human host factors previously reported, including ALG5, G3BP1, 
CLCC1, VPS39, SIGMAR1, G3BP2 and RAP1GDS1, which are identified in 
all four interactomes (Fig. 2a). Our interactome offers 361 (62%) newly 
discovered human host factors which in total interact with SARS-CoV-2 
proteins in 493 interactions. For S protein, which plays a key role in 
the entry of SARS-CoV-2 into host cells30, we identified 24 interacting 
partners. Among these interacting partners of S protein, we found 
that CORO1C31 and STON232, which are known to be present in the cell 
membrane, suggesting potential cell entry of SARS-CoV-2 through 
these human proteins in addition to known mechanisms.

We next performed more comparisons between these published 
interactomes and our own. First, we found that our interactome was 
enriched in several disease-relevant pathways and biological processes 
that were not enriched in previous interactomes, for example, ‘Corona-
virus disease,’ ‘ribosome biogenesis,’ and ‘rRNA metabolic process’33–36 
(Supplementary Table 2). Next, we examined whether these datasets 
contained interaction partners that coincided with genes that had 
expression changes in response to SARS-CoV-2 infection. To this end, 
we performed differential expression analysis for several bulk and 
single-cell RNA sequencing (RNA-seq) datasets from COVID-19 models 
or patients (Methods). For the single-cell dataset37, for which we com-
pared the gene expression in SARS-CoV-2+ and SARS-CoV-2− cells, we 
found that our interactome showed significant overlap (Fisher’s exact 
test, FDR < 0.05) with the differentially expressed genes (DEGs) in more 
cell types than that of other interactomes (Extended Data Fig. 1c and 
Supplementary Table 3). Using four bulk RNA-seq/proteomics datasets 
that contained samples such as upper airway and bronchial epithelial 
cells38–41, we found that our interactome had a comparable number of 
significant overlaps to other datasets and showed the highest overall 
Jaccard index and overlap coefficient with the bulk RNA-seq datasets 
(Extended Data Fig. 1d and Supplementary Table 3). These results 
suggest that our interactome is highly enriched in genes differentially 
expressed in response to SARS-CoV-2 infection.

We next inspected the evolutionary features of the SARS-CoV-2 
human host factors (Extended Data Fig. 1e,f and Supplementary Table 4).  

Previous studies have shown that virus host factors have more con-
served dN/dS rates compared to non-virus host factors42,43. Our 
SARS-CoV-2–human interactome showed more purifying selection 
(quantified by lower non-synonymous versus synonymous substitu-
tion rate ratio (dN/dS ratio)), as well as a lower evolutionary rate ratio, 
compared to the random background from the human protein inter-
actome. These bioinformatics observations further indicated high 
evolutionary conservation of host factors of SARS-CoV-2 identified 
by our Y2H and TMT-AP–MS proteomics platforms, consistent with 
previous studies44,45.

Gene expression patterns in disease-related tissues capture impor-
tant information for revealing the pathogenesis of the disease and iden-
tifying potential treatments46–48. We therefore examined the expression 
of the human host factors in different tissues (Supplementary Fig. 4a,b 
and Supplementary Table 5) using the GTEx data49. By normalizing the 
expression of each gene across different tissues (tissue specificity; 
Methods), we found that lung ranked the 7th out of 33 tissues in terms 
of the number of host factors with positive tissue specificity (Supple-
mentary Fig. 4a), suggesting that lung is one of the tissues where these 
host factors have high expression50.

Altogether, these results show the high quality of the SARS-CoV-2–
human interactome identified in this study and strongly encouraged 
us to further look into the pathobiology of COVID-19 and potential 
treatment using our interactome.

Our interactome identifies potential COVID-19 pathobiology
ORF3a is a SARS-CoV-2 accessory protein that has been reported to 
induce apoptosis in HEK293T cells51 and to suppress the innate immune 
response52–54 via unclear molecular mechanisms. Our interactome 
revealed that ORF3a physically interacts with ZNF579 (Fig. 1b), a previ-
ously uncharacterized human protein likely to be a transcription factor. 
We were able to validate this interaction using co-immunoprecipitation 
(co-IP) western blotting (Fig. 2b). Furthermore, we found that the 
level of ZNF579 protein is decreased after overexpression of ORF3a in 
HEK293T cells (Fig. 2c). As a result, we hypothesized that the presence 
of ORF3a in cells might trigger changes in the transcriptional state of 
human genes that are normally regulated by ZNF579. Using ENCODE 
chromatin immunoprecipitation–sequencing (ChIP–seq) data55,56, 
we found that there is a significant enrichment of genes known to be 
dysregulated in SARS-CoV-2 infection among targets bound by ZNF579 
(Extended Data Fig. 2a,b). These overlapped genes participate in several 
disease-relevant pathways such as ‘ribosome’33–36, ‘coronavirus disease’ 
and various infection-related pathways in several COVID-19 relevant cell 
types (Extended Data Fig. 2c). Specifically, ZNF579 is bound strongly 
to the promoter of HSPA6 (Fig. 2d). Using quantitative PCR (qPCR), we 
found that overexpression of ORF3a in HEK293T cells causes massive 
induction of HSPA6 (Fig. 2e). These results indicate that the multifunc-
tional SARS-CoV-2 accessory protein ORF3a can induce expression of 
HSPA6, presumably by disrupting ZNF579, which is likely to normally 
exert repressive activity at the HSPA6 promoter. This represents an 
additional previously unknown activity of this multifunctional viral 
accessory protein.

Notably, the oligosaccharyltransferase (OST) complex subunits 
STT3A/B, RPN1/2 and DDOST57 were all shown to be present in our 
Y2H and AP–MS interactome datasets, which we further validated 
using co-IP (Fig. 2f). The OST complex catalyzes the N-glycosylation 
of nascent polypeptides in the endoplasmic reticulum58. Glycopro-
teins are critical for normal cell–cell interactions, RNA replication and 
pathogenesis59–61. Interestingly, OST inhibition has been shown to have 
activity against Dengue virus, Zika virus, West Nile virus, yellow fever 
viruses and HSV162–64 by affecting the viral replication. The OST complex 
was also found to be crucial for innate immune responses triggered by 
lipopolysaccharide65. Additionally, we also found Sec61 (Fig. 2g), which 
is a major component of the ER translocon that facilitates the entry 
of nascent polypeptides into the ER lumen for protein processing66. 
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Fig. 2 | Characteristics of the interactome and validation of novel SARS-
CoV-2–human interactions. a, UpSet plot showing the overlap of SARS-CoV-2–
human protein–protein interactions from four studies (Supplementary Table 3). 
Each bar shows the interactions shared by only the marked studies at the bottom. 
Composition of each bar in terms of the source of the interactions are indicated 
by different colors. b, Co-IP confirming ORF3a–ZNF579 interaction in HEK293T 
cells following transfection with ORF3a–FLAG or empty vector. The experiment 
was repeated independently three times with similar results. c, Western blot 
showing levels of ZNF579 along with GAPDH as a loading control in HEK293T 
cells following transfection with ORF3a–FLAG or empty vector. Experiment was 
repeated independently three times with similar results. d, ChIP–seq for ZNF579 
in MCF7 cells from the ENCODE consortium at the HSPA6 locus. Signal is log2FC 
over input. e, Expression of HSPA6 after transfection with ORF3a–FLAG or empty 

vector (E.V.). Two transfection replicates were probed with two primer pairs 
to HSPA6 at three different template dilutions in technical triplicate (18 total 
reactions for each condition). Expression is normalized to GAPDH and then to 
the empty vector average using the ΔΔCt method. Box plots display the median 
as the center line, the 1st and 3rd quartiles as hinges and 1.5× interquartile range 
as whiskers. Significance was assessed using the two-tailed Mann Whitney U test. 
f,g Co-IP confirming ORF7b–STT3A and ORF7b–Sec61 interactions in HEK293T 
cells following transfection with ORF7b–FLAG or empty vector and STT3A–MYC 
or Sec61–V5, respectively. Each experiment was repeated independently three 
times with similar results. h, Co-IP confirming N-histone H1.4 interaction in 
HEK293T cells following transfection with N or empty vector and histone H1.4. 
Experiment was repeated independently three times with similar results.
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Evidence suggests that Sec61 may participate in the replication of sev-
eral viruses like Ebola virus, Influenza virus, HIV and Dengue virus66–68.  
Thus, we hypothesize that OST and Sec61 may also participate in 
SARS-COV-2 replication and/or the host immune response, offering 
potential targets for host-targeting therapy development.

The SARS-CoV-2 nucleocapsid (N) protein binds to the viral RNA 
genome and is multifunctional in viral RNA transcription, replication 
and genome condensation69–71. N protein is conserved and stable with 
~90% amino acid homology to the SARS-COV N protein72. From our 
dataset, we confirmed known interactions, including the stress granule 
core protein G3BP1/2 also found in three other interactome datasets. 
In addition to these known interactions, we identified an interaction 
between histone H1.4 and N protein. To validate this histone H1.4 and N 
protein interaction, we overexpressed both N protein and histone H1.4 
to perform co-IP, confirming their interaction (Fig. 2h). Histone H1, also 
known as linker histone, mainly functions in chromatin condensation 
and transcriptional repression73,74. Accumulating evidence suggests 
that linker histone is essential in the pathogenesis of several diseases, 
particularly for viral infection74. There is also evidence that histone 
H1 could influence IFN and inhibit influenza replication75, in addition 
to playing a role in the regulation of viral gene expression76. Thus, we 
hypothesize that this viral–host interaction could also be involved in 
mediation viral replication and/or gene expression.

Discovery of host-targeting therapies for COVID-19
Using our newly discovered SARS-CoV-2–human protein–protein 
interactome network, we performed network-based drug screening 
for more than 2,900 FDA-approved or investigational drugs77 (Fig. 3a 
and Supplementary Table 6). We obtained a list of 189 FDA-approved 
drugs with significantly closer network proximities to the SARS-CoV-2 
host factors, among which 44 had clinical trials for SARS-CoV-2 (Sup-
plementary Table 7). To refine this list, we obtained the antiviral profiles 
of the top 189 drugs from NCATS (https://opendata.ncats.nih.gov/
covid19/assays, National Center for Advancing Translational Sciences) 
and evaluated each drug for their desired antiviral properties (Meth-
ods). From this, we obtained a curated list of 23 drugs with significant 
network proximities to the SARS-CoV-2 host factors as well as desired 
anti-SARS-CoV-2 activities in at least two NCATS assays (Fig. 3b, Sup-
plementary Fig. 5, Supplementary Table 8).

Overall, these top drugs fall into several major categories, includ-
ing anti-infective (amodiaquine, azithromycin, tetracycline, adefovir 
dipivoxil, tipranavir), anti-inflammatory (apremilast, mefenamic acid, 
balsalazide, fenoprofen), antihypertensive (carvedilol, hydrochlo-
rothiazide, nilvadipine) and antineoplastic (toremifene, decitabine, 
venetoclax). Among these drugs, apremilast, toremifene, decitabine, 
amodiaquine, azithromycin are currently being or have been tested in 
clinical trials for SARS-CoV-2. These top 23 drugs offer candidate treat-
ments for SARS-CoV-2 infections across diverse mechanism-of-actions 
identified from our human–SARS-CoV-2 interactome. For example, 
balsalazide, toremifene, tetracycline, venetoclax, tipranavir and brimo-
nidine may inhibit viral replication by inhibiting papain-like protease 
3CL (Supplementary Fig. 5 and Supplementary Table 8). Other drugs, 
such as carvedilol and hydrochlorothiazide, may directly inhibit viral 
entry by disrupting the spike–ACE2 PPI (Supplementary Fig. 5 and 
Supplementary Table 8). We also found some literature evidence that 
may provide mechanistic insights for these drugs against SARS-CoV-2 
(Fig. 3b). For example, apremilast is a phosphodiesterase 4D (PDE4D) 
inhibitor78, which interacts with PDE4DIP79, a direct target of NSP13. 
Amitriptyline activates SIGMAR180, while NSP6 interact with SIGMAR1 
to inhibit host autophagosome formation to facility coronavirus rep-
lication81. SIGMAR1 also interact with MOV10 (an RNA helicase, also a 
host factor targeted by the N protein), which exhibits antiviral activity 
against RNA viruses82.

To test whether our interactome identified drugs that could not be 
predicted by previously published datasets, we compared the screening 

results using different interactomes and their combinations. We found 
that 16 drugs identified by our interactome could not be predicted by 
any of the other three interactomes or their combinations (Extended 
Data Fig. 3a). Of the top 23 drugs with desired anti-SARS-CoV-2 profiles, 
6 were among the 16 drugs that can only be identified by our interac-
tome (Extended Data Fig. 3a). We also found that among the seven 
drugs identified by combining all four interactomes that could not 
be identified by any interactome individually, three drugs (Extended 
Data Fig. 3b) were found to have desired anti-SARS-CoV-2 profiles 
(Supplementary Fig. 6).

Among the top 23 drug candidates, toremifene achieved signifi-
cantly closer network proximity (Z = −2.19, FDR = 0.037) and has a 
desired anti-SARS-CoV-2 profile. Previous studies show that toremifene 
blocks various viral infections efficiently, including SARS-CoV-283 
(half-maximal inhibitory concentration (IC50) = 3.58 µM), SARS-CoV-184 
(EC50 = 11.97 µM), MERS-CoV85 (EC50 = 12.9 µM) and Ebola virus86 
(IC50 = ~1 µM). Indeed, NCATS data show that toremifene is active across 
four assays: spike–ACE2 protein–protein interaction (half-maximal 
activity concentration (AC50) = 11.92 µM), SARS-CoV pseudotyped 
particle entry (AC50 = 15.85 µM), MERS-CoV pseudotyped particle entry 
(AC50 = 31.62 µM) and 3CL enzymatic activity (AC50 = 5.01 µM) (Sup-
plementary Fig. 5). Mechanistically, a previous study showed that 
toremifene may inhibit SARS-CoV-2 cell entry by blocking the S and 
NSP14 proteins87. These comprehensive validations show potential 
implications of SARS-CoV-2 interactome-predicted drugs (for example, 
toremifene) offer candidates to be tested further in COVID-19 patients.

Validation of interactome-predicted drugs
Further, we used subject matter expertize to select candidate drugs for 
patient-level data validation and experimental validation on the basis of 
a combination of factors: (1) strength of the interactome network-based 
prediction associations (a stronger network proximity score in Sup-
plementary Table 7); (2) novelty of predicted drugs; (3) availability of 
sufficient patient data for meaningful evaluation (exclusion of infre-
quently used medications); and (4) ideal pharmacokinetics properties 
in the lung of interactome-predicted drugs. Applying these criteria 
resulted in two top candidate drugs, carvedilol (Z = −2.195, FDR = 0.03) 
and hydrochlorothiazide (Z = −2.428, FDR = 0.005), which are originally 
approved for treatment of hypertension.

To identify the drug–outcome relationships of these drugs, we 
used a state-of-the-art active user-design approach47,88, which is based 
on large-scale electronic health record (EHR) data. Using the Northwest-
ern Medicine Enterprise Data Warehouse (NMEDW) COVID-19 dataset 
(481,526 total patients, 66,541 COVID-19 positive cases, Table 1), we found 
that both carvedilol (odds ratio = 0.8, 95% confidence interval 0.68–0.94, 
P = 0.008) and hydrochlorothiazide (odds ratio = 0.62, 95% confidence 
interval 0.47–0.82, P < 0.001) were associated with a significantly lowered 
risk of positive COVID-19 test after confounding adjustment (age, sex, 
race and comorbidities) using a propensity-score matching approach47,88 
(Fig. 4a,b and Supplementary Table 9). The effect of carvedilol was con-
sistent for different race and sex subgroups (Fig. 4a and Supplementary 
Table 9). To validate these observations, we used a second EHR database 
from the Cleveland Clinic COVID-19 registry as an external validation set 
(168,712 total individuals, 83,340 SARS-CoV-2 positive cases; Supplemen-
tary Table 10). We found that carvedilol had a sufficient number of usage 
cases for the drug–outcome evaluation. By comparing individuals with 
and without carvedilol usages (propensity-score-matched by age, sex, 
race and/or comorbidities), we found that carvedilol usage was associ-
ated with a 17% (odds ratio = 0.83, 95% confidence interval 0.78–0.88, 
P < 0.001) significantly lowered risk of COVID-19 positive test (Fig. 4c). 
This protective effect was also consistent when we examined subgroups 
from the registry in terms of race and sex (Fig. 4c).

We found that carvedilol not only showed favorable results in 
the EHR-based validation, but also has a promising antiviral profile 
from NCATS, showing high potencies for multiple desired activities 
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(Supplementary Fig. 5). The NCATS profile of carvedilol is comparable 
to that of remdesivir, whose profile was deemed highly desirable89. We 
then investigated the anti-SARS-CoV-2 activity of carvedilol experi-
mentally. We treated A549-ACE2 cells with 0.3–20 µM of carvedilol for 
2 h followed by infection with SARS-CoV-2 at a multiplicity of infection 
of 0.5 and incubation for 2 days. Carvedilol showed a low cell toxic-
ity (Fig. 4d). Cells were subsequently fixed and immunostained to 
detect for S protein, which was used as a marker for infection. We found 

that carvedilol inhibited SARS-CoV-2 infection with an EC50 value of 
4.1 µM (Fig. 4d), mechanistically supporting our SARS-CoV-2–human 
interactome-based prediction and EHR-based findings. Lastly, we 
conducted drug–target network analysis of the targets of carvedilol 
and SARS-CoV-2 host factors (Extended Data Fig. 4 and Supplemen-
tary Table 11). We found that carvedilol could potentially affect the 
SARS-CoV-2 host factors (that is, VCAM1 and KCNH2) through PPIs with 
its targets (Extended Data Fig. 6).
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Fig. 3 | Discovery of interactome-based host-targeting therapies for 
COVID-19. a, Work flow of drug repurposing for COVID-19 using our interactome. 
We ranked the drugs by their proximity to the SARS-CoV-2 host factors 
(Supplementary Table 7), filtered the top drugs by their NCATS anti-SARS-CoV-2 

profiles (Supplementary Table 8) and finally analyzed their drug–outcome 
relationship using EHR data (Table 1 and Supplementary Table 9,10). b, The top 23 
drugs can target the SARS-CoV-2 host factors directly or through protein–protein 
interactions with their targets.
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Discussion
In this study, we used high-throughput Y2H and quantitative TMT-AP–
MS to generate a binary and co-complex SARS-CoV-2–human protein–
protein interactome network, expanding the known map produced 
solely by label-free AP–MS2–5. This interactome validated 218 previously 
published SARS-CoV-2 host factors and revealed 361 novel ones. In 
comparison with previous interactomes2–5, this interactome has higher 
overlaps among the interactomes and differentially expressed genes 
captured by bulk and single-cell RNA-seq of SARS-CoV-2 infection. 
The host factors we identified, particularly those altered in response 
to SARS-CoV-2 infection, will contribute to understanding the disease 
pathobiology of COVID-19 and prioritizing potential drug targets.

Among the novel interacting partners for S protein, we identified 
several human proteins that may play important roles in SARS-CoV-2 
infection. CORO1C31 and STON232 are expressed on the cell membrane. 
CORO1C is highly expressed in lung (Supplementary Table 5). STON2 is 
ubiquitously expressed and involved in endocytic machinery32. It is pos-
sible that SARS-CoV-2 can enter host cells through binding of S protein 

not only to ACE2, NRP190,91 and BSG92, but also other (unknown) factors 
such as CORO1C and STON2. We also noticed two proteins, EPPK193 and 
SPECC1L94, that both express on the cell junctions. It has been suggested 
that SARS-CoV-2 could spread through cell-to-cell transmission95. These 
cell junction proteins that can be targeted by SARS-CoV-2 S protein may 
facilitate its cell-to-cell transmission.

We identified a previously uncharacterized human transcrip-
tion factor, ZNF579, that interacts with SARS-CoV-2 accessory protein 
ORF3a, and report that this interaction leads to the de-repression of 
HSPA6. Notably, HSPA6 is significantly upregulated after SARS-CoV-2 
infection in cell culture models38, indicating that the disruption of 
ZNF579 by ORF3a may be relevant in the context of infection. HSPA6 is 
a HSP70 family molecular chaperone, which are known to be involved 
in the entry, replication, assembly and release of various viral patho-
gens96. We speculate that SARS-CoV-2 has evolved this activity to ensure 
sufficient levels of molecular chaperones are available to assist with 
the production of viral proteins in cells.

Next, using this newly discovered SARS-CoV-2–human protein–
protein interactome, we studied drug repurposing and identified 
23 candidate drugs with desired anti-SARS-CoV-2 profiles. In this 
study, we used undirected human protein interactome network and 
degree preserved node shuffling technique. We also tested different 
variations of the proximity analysis and found that using directed 
human protein interactome network and using degree preserved 
link shuffling resulted in overall highly consistent Z-scores compared 
to the original results in this study (Extended Data Fig. 5). Although 
some of these drugs can directly target the host factors, most of them 
indirectly affect the host factors through PPIs with their targets (Fig. 
3b). For example, our predicted drug candidates are validated by 
well-established NCATS assays (Supplementary Fig. 5). In addition, 
among the drugs which did not have NCATS assay results, alprazolam 
(Iranian Registry of Clinical Trials: IRCT20211015052773N1), l-citrulline 
(ClinicalTrials.gov IDs: NCT04404426 and NCT04570384), nadroparin 
(European Union Clinical Trials Register: EUCTR2020-001709-21-FR, 
EUCTR2020-001739-28-BE, EUCTR2020-005884-29-IT), vortioxe-
tine (ClinicalTrials.gov ID: NCT05047952) and myrrh (Clinical Tri-
als Registry—India: CTRI/2020/07/026669, CTRI/2020/12/029575, 
CTRI/2021/01/030825, Australian New Zealand Clinical Trials Registry: 
ACTRN12622000215729) are in clinical trials for COVID-19. Neverthe-
less, future experimental and clinical studies for our novel predicted 
drug candidates are warranted.

Further, we have identified carvedilol and hydrochlorothiazide 
as potential host-targeting treatments for COVID-19 supported by 
multiple lines of evidence (strong network proximities to SARS-CoV-2 
host factors, significantly reduced SARS-CoV-2 positive test risks 
in patients using these drugs on the basis of large-scale EHR data 
and experimental validation of anti-SARS-CoV-2 activity). As drug 
repurposing focuses on drugs that are already in existing patient 
databases, we are able to test hypotheses using EHR data as we88,97 and 
other teams98,99 demonstrated. The unique strengths of EHRs include 
their provision of large patient populations useful for detecting small 
differences and the availability of a large number of patient factors 
recorded without risk of recall bias, allowing for high-dimensional 
covariate adjustment to minimize confounding47,98,100. Our findings 
are consistent with previous reports that hydrochlorothiazide98 and 
carvedilol99 have potential beneficial effects for COVID-19 patients. 
Another beta-blocker metoprolol (Z = −2.327, FDR = 0.003) was also 
among the top 189 drugs (Supplementary Table 7), which has been 
tested in a small clinical trial with positive effects101. These results 
confirm that the unique integration of SARS-CoV-2–human interac-
tome findings and patient analysis approaches using two large-scale 
EHR databases from two independent health care systems, along with 
in vitro antiviral observations, offer a powerful strategy for discovery 
of COVID-19 therapeutics. This kind of systems biology strategy can 
be applied to future pandemics as well.

Table 1 | Patient Characteristics of NMEDW dataset

All patients SARS-CoV-2 positive 
patients

Carvedilol− Carvedilol+ Carvedilol− Carvedilol+

Total 478,536 2,990 66,289 252

Age 44.67 ± 21.74 67.37 ± 15.08 41.86 ± 21.09 63.52 ± 17.20

Sex, male 202,994 (42.4) 1,674 (56.0) 30,550 (46.1) 146 (57.9)

Race

Black 41,858 (8.7) 725 (24.2) 6,136 (9.3) 73 (29.0)

White 343,549 (71.8) 1,927 (64.4) 46,493 (70.1) 143 (56.7)

Other 60,273 (12.6) 274 (9.2) 9,407 (14.2) 27 (10.7)

Comorbidity

AIDS HIV 1,843 (0.4) 36 (1.2) 248 (0.4) 5 (2.0)

CD 32,555 (6.8) 1,336 (44.7) 3,498 (5.3) 103 (40.9)

CPD 87,868 (18.4) 1,249 (41.8) 12,078 (18.2) 123 (48.8)

CHF 26,973 (5.6) 2,042 (68.3) 3,331 (5.0) 172 (68.3)

Dementia 8,567 (1.8) 358 (12.0) 1,297 (2.0) 42 (16.7)

Diabetes 
with cc

20,670 (4.3) 1,359 (45.5) 3,031 (4.6) 139 (55.2)

Diabetes 
without cc

54,322 (11.4) 1,629 (54.5) 8,301 (12.5) 150 (59.5)

HP 5,380 (1.1) 298 (10.0) 568 (0.9) 27 (10.7)

Malignancy 47,660 (10.0) 805 (26.9) 4,606 (6.9) 67 (26.6)

MST 23,690 (5.0) 413 (13.8) 2,385 (3.6) 36 (14.3)

MLD 29,730 (6.2) 583 (19.5) 3,711 (5.6) 53 (21.0)

MSLD 2,906 (0.6) 119 (4.0) 307 (0.5) 11 (4.4)

MI 7,913 (1.7) 630 (21.1) 1,017 (1.5) 54 (21.4)

PUD 11,785 (2.5) 309 (10.3) 1,289 (1.9) 32 (12.7)

PVD 23,925 (5.0) 1,158 (38.7) 2,626 (4.0) 99 (39.3)

RD 26,068 (5.4) 1,820 (60.9) 3,479 (5.2) 181 (71.8)

RHD 13,887 (2.9) 232 (7.8) 1,607 (2.4) 18 (7.1)

Age is shown as mean ± standard deviation. All other characteristics are shown as number 
of cases (percentage). P values were calculated by two-sided t-test for age and Fisher’s 
exact test for other variables. AIDS HIV, acquired immunodeficiency syndrome and human 
immunodeficiency virus; CD, cerebrovascular disease; CPD, chronic pulmonary disease; 
CHF, congestive heart failure; diabetes with/without cc, diabetes with/without chronic 
complications; HP, hemiplegia or paraplegia; MST, metastatic solid tumor; MLD, mild liver 
disease; MSLD, moderate or severe liver disease; MI, myocardial infarction; PUD, peptic ulcer 
disease; PVD, peripheral vascular disease; RD, renal disease; RHD, rheumatic disease.
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To understand the potential mechanisms of the anti-SARS-CoV-2 
activity of carvedilol, we examined the mechanism-of-action of carve-
dilol using network analysis (Extended Data Fig. 4 and Supplemen-
tary Table 11). Among the 579 unique host factors, 237 (41%) have PPIs 
with carvedilol targets. A large portion of the human proteins in the 
enriched pathways (protein translation (26/37, 70%), mRNA splicing 
(14/21, 67%), glucose metabolism (9/15, 60%) and neutrophil-mediated 
immunity (14/27, 52%)) have PPIs with carvedilol targets, suggesting a 
potential mechanism-of-action in which carvedilol inhibits SARS-CoV-2 
replication through multiple important pathways such as protein 
translation and mRNA splicing. We found several carvedilol targets 
that exhibited closer network distance to the virus host factors and 
COVID-19 pathways, such as GJA1, KCNH2, NDUFC2, VCAM1 and VEGFA 
(Extended Data Fig. 4). For example, VCAM1 plays important roles and 
has elevated levels in COVID-19102,103, and carvedilol can inhibit expres-
sion of VCAM1104. These results offer hypotheses that can be tested 
for the anti-SARS-CoV-2 effect of carvedilol. Yet, future experimental 
validation to decipher the anti-SARS-CoV-2 mechanism-of-action of 
carvedilol is highly warranted as well104.

We acknowledge several limitations. For Y2H, expression in yeast 
cells or translocation into the nuclei may be inefficient for some viral 
or human proteins, which can lead to false negatives. While fragment 
libraries can improve the coverage of Y2H screens, they can also lead to 
self-activating false positives105. For AP–MS, although overexpression 
of bait proteins can lead to false positives, it is not a limitation in the 

context of viral–host interaction studies. Viral proteins are inherently 
exogenous to host cells and expressed at a high level upon natural 
infection. Many of the overexpression promoters used for AP–MS are, 
in fact, viral-derived. Another factor is the reported limitation of ratio 
compression in TMT, which has been alleviated by the development of 
the SPS MS3-based acquisition work flow106,107. Moreover, as confirmed 
by previous studies on direct comparisons between TMT-based and 
label-free quantification108,109, TMT-based quantification has better pre-
cision (that is, consistency of measurements across replicates), while 
label-free quantification has large numbers of missing values, even with 
strategies like match between runs108. Thus, TMT approaches have bet-
ter statistical power to detect abundance changes for more proteins, 
leading to better coverage108,109. The network-based SARS-CoV-2 treat-
ment discovery may be affected by the incompleteness of the human 
protein–protein interactome and drug–target network. Therefore, 
we relied not only on the network discoveries, but also incorporated 
other types of evidence, such as EHR-based validation and experimental 
validation. Our EHR-based validation is retrospective and can only be 
applied to commonly used drugs owing to data availability. Although 
we adjusted for several confounding factors, other unknown factors 
may still have effect on the results of EHR-based validation. Therefore, 
the drugs identified in this study must be validated using randomized 
clinical trials before they can be used in patients with COVID-19. Lastly, 
we focused on the SARS-CoV-2–human protein interactome in this 
study. Combining multiple data resources (such as clustered regularly 
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Fig. 4 | Population-based and experimental validation of interactome-
predicted drugs. a–c, Drug–outcome evaluation using the NMEDW and CCF 
COVID-19 databases. Odds ratio was used to evaluate the carvedilol effect to the 
positive laboratory test result of COVID-19. Statistically significant at P < 0.05 
and odds ratio < 1 indicate that the carvedilol user with lower odds of COVID-19 
positive testing. The central diamond box denotes the odds ratio and the error 

bar denotes the 95% confidence interval. Patients were matched with propensity 
score using age, sex, race and other comorbidities (Table 1) to reduce various 
confounding factors. Statistics derived from cohort details shown in Table 1.  
d, Experimental validation of the anti-SARS-CoV-2 activity of carvedilol showed 
an EC50 value of 4.1 µM and low cell toxicity. CC50, half-maximal cytotoxic 
concentration; SI, selectivity index (SI = CC50/EC50).
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interspaced short palindromic repeats (CRISPR)110, genome-wide asso-
ciation studies111, rare variants112, synthetic-lethality-based genetics 
interactions113 and metabolomics and proteomics114) may help build 
up comprehensive knowledge of COVID-19 using various advanced 
computational (for example, genome-scale metabolic modeling115) 
and multi-omics data integration approaches.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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References
1. Durmus Tekir, S. D. & Ulgen, K. O. Systems biology of pathogen–

host interaction: networks of protein–protein interaction 
within pathogens and pathogen–human interactions in the 
post-genomic era. Biotechnol. J. 8, 85–96 (2013).

2. Gordon, D. E. et al. A SARS-CoV-2 protein interaction  
map reveals targets for drug repurposing. Nature 583,  
459–468 (2020).

3. Gordon, D. E. et al. Comparative host–coronavirus protein 
interaction networks reveal pan-viral disease mechanisms. 
Science 370, eabe9403 (2020).

4. Li, J. et al. Virus–host interactome and proteomic survey reveal 
potential virulence factors influencing SARS-CoV-2 pathogenesis. 
Med. 2, 99–112 (2021).

5. Stukalov, A. et al. Multilevel proteomics reveals host 
perturbations by SARS-CoV-2 and SARS-CoV. Nature 594, 
246–252 (2021).

6. Rajagopala, S. V. Mapping the protein–protein interactome 
networks using yeast two-hybrid screens. Adv. Exp. Med. Biol. 
883, 187–214 (2015).

7. Causier, B. Studying the interactome with the yeast two-hybrid 
system and mass spectrometry. Mass Spectrom. Rev. 23,  
350–367 (2004).

8. Yu, H. et al. High-quality binary protein interaction  
map of the yeast interactome network. Science 322,  
104–110 (2008).

9. Murphy, J. P. et al. Multiplexed relative quantitation with 
isobaric tagging mass spectrometry reveals class I major 
histocompatibility complex ligand dynamics in response to 
doxorubicin. Anal. Chem. 91, 5106–5115 (2019).

10. Santin, Y. G. Uncovering the in vivo proxisome using 
proximity-tagging methods. Bioessays 41, e1900131 (2019).

11. Berggard, T., Linse, S. & James, P. Methods for the detection  
and analysis of protein–protein interactions. Proteomics 7, 
2833–2842 (2007).

12. ten Have, S., Boulon, S., Ahmad, Y. & Lamond, A. I. Mass 
spectrometry-based immuno-precipitation proteomics—the 
user’s guide. Proteomics 11, 1153–1159 (2011).

13. Zhang, G., Annan, R. S., Carr, S. A. & Neubert, T. A. Overview of 
peptide and protein analysis by mass spectrometry. Curr. Protoc. 
Protein Sci. 62, 16.1.1–16.1.30 (2010).

14. Gingras, A. C. & Raught, B. Beyond hairballs: the use of 
quantitative mass spectrometry data to understand protein–
protein interactions. FEBS Lett. 586, 2723–2731 (2012).

15. Asara, J. M., Christofk, H. R., Freimark, L. M. & Cantley, L. C. A 
label-free quantification method by MS/MS TIC compared to 
SILAC and spectral counting in a proteomics screen. Proteomics 
8, 994–999 (2008).

16. Collier, T. S. et al. Direct comparison of stable isotope labeling by 
amino acids in cell culture and spectral counting for quantitative 
proteomics. Anal. Chem. 82, 8696–8702 (2010).

17. Megger, D. A. et al. Comparison of label-free and label-based 
strategies for proteome analysis of hepatoma cell lines. Biochim. 
Biophys. Acta 1844, 967–976 (2014).

18. Li, Z. et al. Systematic comparison of label-free, metabolic 
labeling, and isobaric chemical labeling for quantitative 
proteomics on LTQ Orbitrap Velos. J. Proteome Res. 11,  
1582–1590 (2012).

19. Stepath, M. et al. Systematic comparison of label-free, SILAC, and 
TMT techniques to study early adaption toward inhibition of EGFR 
signaling in the colorectal cancer cell line DiFi. J. Proteome Res. 
19, 926–937 (2020).

20. Team, M. G. C. P. et al. The completion of the mammalian gene 
collection (MGC). Genome Res. 19, 2324–2333 (2009).

21. Das, J. et al. Cross-species protein interactome mapping reveals 
species-specific wiring of stress response pathways. Sci. Signal 6, 
ra38 (2013).

22. Vo, T. V. et al. A proteome-wide fission yeast interactome reveals 
network evolution principles from yeasts to human. Cell 164, 
310–323 (2016).

23. Fragoza, R. et al. Extensive disruption of protein interactions by 
genetic variants across the allele frequency spectrum in human 
populations. Nat. Commun. 10, 4141 (2019).

24. Wierbowski, S. D. et al. A massively parallel barcoded sequencing 
pipeline enables generation of the first ORFeome and 
interactome map for rice. Proc. Natl Acad. Sci. USA 117, 11836–
11842 (2020).

25. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and 
TMPRSS2 and is blocked by a clinically proven protease inhibitor. 
Cell 181, 271–280 e8 (2020).

26. Cinatl, J. et al. Treatment of SARS with human interferons. Lancet 
362, 293–294 (2003).

27. Hoehl, S. et al. Evidence of SARS-CoV-2 infection in returning 
travelers from Wuhan, China. N. Engl. J. Med. 382, 1278–1280 
(2020).

28. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut 
enterocytes. Science 369, 50–54 (2020).

29. Xiao, F. et al. Evidence for gastrointestinal infection of 
SARS-CoV-2. Gastroenterology 158, 1831–1833 e3 (2020).

30. Huang, Y., Yang, C., Xu, X. F., Xu, W. & Liu, S. W. Structural and 
functional properties of SARS-CoV-2 spike protein: potential 
antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41, 
1141–1149 (2020).

31. Xavier, C. P. et al. Structural and functional diversity of novel 
coronin 1C (CRN2) isoforms in muscle. J. Mol. Biol. 393, 287–299 
(2009).

32. Martina, J. A., Bonangelino, C. J., Aguilar, R. C. & Bonifacino, J. S. 
Stonin 2: an adaptor-like protein that interacts with components 
of the endocytic machinery. J. Cell Biol. 153, 1111–1120 (2001).

33. Wei, J. & Hui, A. Review of Ribosome Interactions with SARS-CoV-2 
and COVID-19 mRNA Vaccine. Life 12, 57 (2022).

34. Banerjee, A. K. et al. SARS-CoV-2 disrupts splicing, translation, 
and protein trafficking to suppress host defenses. Cell 183, 
1325–1339 e21 (2020).

35. Zou, M. et al. The molecular mechanism of multiple organ 
dysfunction and targeted Intervention of COVID-19 based on 
time-order transcriptomic analysis. Front Immunol. 12, 729776 
(2021).

36. Schmidt, N. et al. The SARS-CoV-2 RNA–protein interactome in 
infected human cells. Nat. Microbiol. 6, 339–353 (2021).

37. Ren, X. et al. COVID-19 immune features revealed by a large-scale 
single-cell transcriptome atlas. Cell 184, 1895–1913 e19 (2021).

38. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 
drives development of COVID-19. Cell 181, 1036–1045 e9 (2020).

39. Bojkova, D. et al. Proteomics of SARS-CoV-2-infected host cells 
reveals therapy targets. Nature 583, 469–472 (2020).

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-022-01474-0


Nature Biotechnology | Volume 41 | January 2023 | 128–139 138

Article https://doi.org/10.1038/s41587-022-01474-0

40. Mick, E. et al. Upper airway gene expression reveals suppressed 
immune responses to SARS-CoV-2 compared with other 
respiratory viruses. Nat. Commun. 11, 5854 (2020).

41. Overmyer, K. A. et al. Large-scale multi-omic analysis of COVID-19 
severity. Cell Syst. 12, 23–40 (2021).

42. Sironi, M., Cagliani, R., Forni, D. & Clerici, M. Evolutionary insights 
into host–pathogen interactions from mammalian sequence data. 
Nat. Rev. Genet. 16, 224–236 (2015).

43. Cheng, F. et al. Systems Biology-Based investigation of cellular 
antiviral drug targets identified by gene-trap insertional 
mutagenesis. PLoS Comput. Biol. 12, e1005074 (2016).

44. Rozenblatt-Rosen, O. et al. Interpreting cancer genomes using 
systematic host network perturbations by tumour virus proteins. 
Nature 487, 491–495 (2012).

45. Zhong, Q. et al. An inter-species protein–protein interaction 
network across vast evolutionary distance. Mol. Syst. Biol. 12,  
865 (2016).

46. Cheng, F. et al. A genome-wide positioning systems network 
algorithm for in silico drug repurposing. Nat. Commun. 10,  
3476 (2019).

47. Cheng, F. et al. Network-based approach to prediction and 
population-based validation of in silico drug repurposing. Nat. 
Commun. 9, 2691 (2018).

48. Luo, Y. et al. A multidimensional precision medicine approach 
identifies an autism subtype characterized by dyslipidemia.  
Nat. Med. 26, 1375–1379 (2020).

49. GTEx Consortium. The genotype–tissue expression (GTEx) 
project. Nat. Genet. 45, 580–585 (2013).

50. Jing, Y. et al. Potential influence of COVID-19/ACE2 on the female 
reproductive system. Mol. Hum. Reprod. 26, 367–373 (2020).

51. Ren, Y. et al. The ORF3a protein of SARS-CoV-2 induces apoptosis 
in cells. Cell Mol. Immunol. 17, 881–883 (2020).

52. Xia, H. et al. Evasion of type I Interferon by SARS-CoV-2. Cell Rep. 
33, 108234 (2020).

53. Rui, Y. et al. Unique and complementary suppression of 
cGAS-STING and RNA sensing-triggered innate immune 
responses by SARS-CoV-2 proteins. Signal Transduct. Target. Ther. 
6, 123 (2021).

54. Wang, R. et al. ORF3a protein of severe acute respiratory 
syndrome coronavirus 2 inhibits interferon-activated janus kinase/
signal transducer and activator of transcription signaling via 
elevating suppressor of cytokine signaling 1. Front Microbiol. 12, 
752597 (2021).

55. Consortium, E. P. An integrated encyclopedia of DNA elements in 
the human genome. Nature 489, 57–74 (2012).

56. Davis, C. A. et al. The encyclopedia of DNA elements (ENCODE): 
data portal update. Nucleic Acids Res. 46, D794–D801 (2018).

57. Mohd Ropidi, M. I., Khazali, A. S., Nor Rashid, N. & Yusof, R. 
Endoplasmic reticulum: a focal point of Zika virus infection.  
J. Biomed. Sci. 27, 27 (2020).

58. Kelleher, D. J. & Gilmore, R. An evolving view of the eukaryotic 
oligosaccharyltransferase. Glycobiology 16, 47R–62R (2006).

59. Ruiz-Canada, C., Kelleher, D. J. & Gilmore, R. Cotranslational and 
posttranslational N-glycosylation of polypeptides by distinct 
mammalian OST isoforms. Cell 136, 272–283 (2009).

60. Lindenbach, B. D. & Rice, C. M. trans-Complementation of yellow 
fever virus NS1 reveals a role in early RNA replication. J. Virol. 71, 
9608–9617 (1997).

61. Beatty, P. R. et al. Dengue virus NS1 triggers endothelial 
permeability and vascular leak that is prevented by NS1 
vaccination. Sci. Transl. Med. 7, 304ra141 (2015).

62. Lu, H., Cherepanova, N. A., Gilmore, R., Contessa, J. N. &  
Lehrman, M. A. Targeting STT3A-oligosaccharyltransferase with 
NGI-1 causes herpes simplex virus 1 dysfunction. FASEB J. 33, 
6801–6812 (2019).

63. Marceau, C. D. et al. Genetic dissection of Flaviviridae host factors 
through genome-scale CRISPR screens. Nature 535, 159–163 
(2016).

64. Puschnik, A. S. et al. A small-molecule oligosaccharyltransferase 
inhibitor with pan-flaviviral activity. Cell Rep. 21, 3032–3039 
(2017).

65. Parnas, O. et al. A genome-wide CRISPR screen in primary immune 
cells to dissect regulatory networks. Cell 162, 675–686 (2015).

66. Linxweiler, M., Schick, B. & Zimmermann, R. Let’s talk about Secs: 
Sec61, Sec62 and Sec63 in signal transduction, oncology and 
personalized medicine. Signal Transduct Target. Ther 2, 17002 
(2017).

67. Heaton, N. S. et al. Targeting viral proteostasis limits influenza 
virus, HIV, and Dengue virus infection. Immunity 44, 46–58 (2016).

68. Iwasa, A. et al. Contribution of Sec61α to the life cycle of Ebola 
virus. J. Infect. Dis. 204, S919–S926 (2011).

69. Cascarina, S. M. & Ross, E. D. A proposed role for the SARS-CoV-2 
nucleocapsid protein in the formation and regulation of 
biomolecular condensates. FASEB J. 34, 9832–9842 (2020).

70. Dutta, N. K., Mazumdar, K. & Gordy, J. T. The nucleocapsid protein 
of SARS-CoV-2: a target for vaccine development. J. Virol. 94, 
e00647–20 (2020).

71. Zeng, W. et al. Biochemical characterization of SARS-CoV-2 
nucleocapsid protein. Biochem. Biophys. Res. Commun. 527, 
618–623 (2020).

72. Grifoni, A. et al. A sequence homology and bioinformatic 
approach can predict candidate targets for immune responses to 
SARS-CoV-2. Cell Host Microbe 27, 671–680 e2 (2020).

73. Buttinelli, M., Panetta, G., Rhodes, D. & Travers, A. The role 
of histone H1 in chromatin condensation and transcriptional 
repression. Genetica 106, 117–124 (1999).

74. Ye, X. et al. Linker histone in diseases. Int. J. Biol. Sci. 13, 1008–
1018 (2017).

75. Liu, X. et al. HIST1H1C regulates interferon-β and inhibits influenza 
virus replication by interacting with IRF3. Front. Immunol. 8, 350 
(2017).

76. Conn, K. L., Hendzel, M. J. & Schang, L. M. Linker histones are 
mobilized during infection with herpes simplex virus type 1.  
J. Virol. 82, 8629–8646 (2008).

77. Zhou, Y. et al. Network-based drug repurposing for novel 
coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 6, 14 (2020).

78. Schafer, P. H. et al. Apremilast is a selective PDE4 inhibitor with 
regulatory effects on innate immunity. Cell Signal 26, 2016–2029 
(2014).

79. Perino, A., Ghigo, A., Scott, J. D. & Hirsch, E. Anchoring proteins as 
regulators of signaling pathways. Circ. Res. 111, 482–492 (2012).

80. Werling, L. L., Keller, A., Frank, J. G. & Nuwayhid, S. J. A 
comparison of the binding profiles of dextromethorphan, 
memantine, fluoxetine and amitriptyline: treatment of involuntary 
emotional expression disorder. Exp. Neurol. 207, 248–257 (2007).

81. Kumar, S. et al. Mammalian hybrid pre-autophagosomal structure 
HyPAS generates autophagosomes. Cell 184, 5950–5969 e22 
(2021).

82. Cuevas, R. A. et al. MOV10 provides antiviral activity against RNA 
viruses by enhancing RIG-I-MAVS-independent IFN induction.  
J. Immunol. 196, 3877–3886 (2016).

83. Jeon, S. et al. Identification of antiviral drug candidates against 
SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents 
Chemother. 64, e00819–e00820 (2020).

84. Dyall, J. et al. Repurposing of clinically developed drugs for 
treatment of Middle East respiratory syndrome coronavirus 
infection. Antimicrob. Agents Chemother. 58, 4885–4893 (2014).

85. Cong, Y. et al. MERS-CoV pathogenesis and antiviral efficacy of 
licensed drugs in human monocyte-derived antigen-presenting 
cells. PLoS ONE 13, e0194868 (2018).

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 41 | January 2023 | 128–139  139

Article https://doi.org/10.1038/s41587-022-01474-0

86. Johansen, L. M. et al. FDA-approved selective estrogen receptor 
modulators inhibit Ebola virus infection. Sci. Transl. Med. 5, 
190ra79 (2013).

87. Martin, W. R. & Cheng, F. Repurposing of FDA-approved 
toremifene to treat COVID-19 by blocking the spike glycoprotein 
and NSP14 of SARS-CoV-2. J. Proteome Res. 19, 4670–4677 (2020).

88. Zhou, Y. et al. A network medicine approach to investigation and 
population-based validation of disease manifestations and drug 
repurposing for COVID-19. PLoS Biol. 18, e3000970 (2020).

89. Kc, G. B. et al. A machine learning platform to estimate 
anti-SARS-CoV-2 activities. Nat. Mach. Intell. 3, 527–535 (2021).

90. Daly, J. L. et al. Neuropilin-1 is a host factor for SARS-CoV-2 
infection. Science 370, 861–865 (2020).

91. Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 
cell entry and infectivity. Science 370, 856–860 (2020).

92. Wang, K. et al. CD147-spike protein is a novel route for 
SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 
5, 283 (2020).

93. Shimada, H. et al. Epiplakin modifies the motility of the HeLa 
cells and accumulates at the outer surfaces of 3-D cell clusters. J. 
Dermatol. 40, 249–258 (2013).

94. Saadi, I. et al. Deficiency of the cytoskeletal protein SPECC1L leads 
to oblique facial clefting. Am. J. Hum. Genet. 89, 44–55 (2011).

95. Zeng, C. et al. SARS-CoV-2 spreads through cell-to-cell 
transmission. Proc. Natl Acad. Sci. USA 119, e2111400119 (2021).

96. Wan, Q., Song, D., Li, H. & He, M. L. Stress proteins: the 
biological functions in virus infection, present and challenges 
for target-based antiviral drug development. Signal Transduct. 
Target. Ther. 5, 125 (2020).

97. Fang, J. et al. Endophenotype-based in silico network medicine 
discovery combined with insurance record data mining identifies 
sildenafil as a candidate drug for Alzheimer’s disease. Nat. Aging 
1, 1175–1188 (2021).

98. Israel, A. et al. Identification of drugs associated with reduced 
severity of COVID-19—a case-control study in a large population. 
Elife 10, e68165 (2021).

99. Skayem, C. & Ayoub, N. Carvedilol and COVID-19: a potential role 
in reducing infectivity and infection severity of SARS-CoV-2. Am. J. 
Med. Sci. 360, 300 (2020).

100. Zhou, Y., Wang, F., Tang, J., Nussinov, R. & Cheng, F. Artificial 
intelligence in COVID-19 drug repurposing. Lancet Digital Health 
2, e667–e676 (2020).

101. Clemente-Moragon, A. et al. Metoprolol in critically ill patients 
with COVID-19. J. Am. Coll. Cardiol. 78, 1001–1011 (2021).

102. Shen, J. et al. The epidemiological and mechanistic 
understanding of the neurological manifestations of COVID-19: 
a comprehensive meta-analysis and a network medicine 
observation. Front. Neurosci. 15, 606926 (2021).

103. Kumar, N. et al. SARS-CoV-2 spike protein S1-mediated 
endothelial injury and pro-inflammatory state Is amplified 

by dihydrotestosterone and prevented by mineralocorticoid 
antagonism. Viruses 13, 2209 (2021).

104. Chen, J. W. et al. Carvedilol inhibits tumor necrosis 
factor-α-induced endothelial transcription factor activation, 
adhesion molecule expression, and adhesiveness to human 
mononuclear cells. Arterioscler. Thromb. Vasc. Biol. 24, 2075–
2081 (2004).

105. Walhout, A. J. & Vidal, M. A genetic strategy to eliminate 
self-activator baits prior to high-throughput yeast two-hybrid 
screens. Genome Res. 9, 1128–1134 (1999).

106. McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, 
and multiplexed detection of differential expression across 
cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).

107. Ting, L., Rad, R., Gygi, S. P. & Haas, W. MS3 eliminates ratio 
distortion in isobaric multiplexed quantitative proteomics. Nat. 
Methods 8, 937–940 (2011).

108. Hogrebe, A. et al. Benchmarking common quantification 
strategies for large-scale phosphoproteomics. Nat. Commun. 9, 
1045 (2018).

109. O’Connell, J. D., Paulo, J. A., O’Brien, J. J. & Gygi, S. P. 
Proteome-wide evaluation of two common protein quantification 
methods. J. Proteome Res. 17, 1934–1942 (2018).

110. Samelson, A. J. et al. BRD2 inhibition blocks SARS-CoV-2 infection 
by reducing transcription of the host cell receptor ACE2. Nat. Cell 
Biol. 24, 24–34 (2022).

111. Roberts, G. H. L. et al. Expanded COVID-19 phenotype definitions 
reveal distinct patterns of genetic association and protective 
effects. Nat. Genet. 54, 374–381 (2022).

112. Mantovani, S. et al. Rare variants in Toll-like receptor 7 results in 
functional impairment and downregulation of cytokine-mediated 
signaling in COVID-19 patients. Genes Immun. 23, 51–56 (2022).

113. Pal, L. R. et al. Synthetic lethality-based prediction of 
anti-SARS-CoV-2 targets. iScience 25, 104311 (2022).

114. Shen, B. et al. Proteomic and metabolomic characterization of 
COVID-19 patient sera. Cell 182, 59–72 e15 (2020).

115. Cheng, K. et al. Genome-scale metabolic modeling reveals 
SARS-CoV-2-induced metabolic changes and antiviral targets. 
Mol. Syst. Biol. 17, e10260 (2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this 
article under a publishing agreement with the author(s) or other 
rightsholder(s); author self-archiving of the accepted manuscript 
version of this article is solely governed by the terms of such 
publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America, 
Inc. 2022

1Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA. 2Weill Institute for Cell and Molecular Biology, Cornell 
University, Ithaca, NY, USA. 3Center for Advanced Proteomics, Cornell University, Ithaca, NY, USA. 4Department of Computational Biology, Cornell 
University, Ithaca, NY, USA. 5Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA. 6Division of Health and Biomedical 
Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL, USA. 7Lerner Research Institute, Cleveland Clinic, Cleveland, 
OH, USA. 8Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA. 9Department of Microbiology, Ricketts 
Laboratory, University of Chicago, Chicago, IL, USA. 10Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA. 11Key Laboratory 
for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 
China. 12Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. 13Department of Molecular 
Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA. 14These authors contributed equally:  
Yadi Zhou, Yuan Liu, Shagun Gupta, Mauricio I. Paramo, Yuan Hou.  e-mail: chengf@ccf.org; haiyuan.yu@cornell.edu

http://www.nature.com/naturebiotechnology
mailto:chengf@ccf.org
mailto:haiyuan.yu@cornell.edu


Nature Biotechnology 

Article https://doi.org/10.1038/s41587-022-01474-0

Methods
SARS-CoV-2 ORF clones
ORF3b (plasmid no. 141384; Addgene), NSP4 (plasmid no. 141369; 
Addgene), NSP12 (plasmid no. 141378; Addgene), NSP13 (plasmid no. 
141379; Addgene) and NSP14 (plasmid no. 141380; Addgene) were a gift 
from N. Krogan, University of California, San Francisco. NSP6 (plasmid 
no. 149309; Addgene) and NSP16 (plasmid no. 141269; Addgene) were 
a gift from F. Roth, University of Toronto, which we cloned into our 
pHAGE-CMV-GAW-3xMyc-IRES-PURO construct using Gateway. E, M, 
N, NSP1, NSP2, NSP3, NSP5, NSP7, NSP8, NSP9, NSP10, NSP15, ORF3a, 
ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c, ORF10 and S, cloned into 
pCAG-FLAG and pcDNA6B-FLAG constructs, were a gift from P.-H. Wang, 
Shandong University. All SARS-CoV-2 ORFs were codon-optimized and 
expressed in either pLVX-EF1alpha-2xStrep-IRES-Puro (plasmid no. 
141395; Addgene), pHAGE-CMV-3xMyc-IRES-PURO, pCAG-FLAG, or 
pcDNA6B-FLAG mammalian expression vectors.

Y2H
Y2H screens were carried out as previously described8,21–24. In brief, viral 
ORFs were cloned into pDEST-AD and pDEST-DB vectors using Gateway 
LR to generate N-terminal ORF fusions. Similarly, human ORFeome 
8.1 (ref. 20) was cloned into pDEST-AD and pDEST-DB vectors. All AD 
and DB expression clones were transformed into Y2H Saccharomyces 
cerevisiae strains MATa Y8800 and MATα Y8930 (genotype: leu2-3, 112 
trp1-901 his3Δ200 ura3-52 gal4Δ gal80Δ GAL2::ADE2 GAL1::HIS3@LYS2 
GAL7::lacZ@MET2 cyh2R), respectively. To screen out autoactivating 
DB-ORFs, all DB-ORF MATα Y8930 transformants were mated pairwise 
against empty pDEST-AD MATa Y8800 transformants and scored for 
growth on SC-Leu-Trp+3AT and SC-Leu-Trp-Ade plates, where DB-ORFs 
that triggered reporter activity were removed from further experi-
ments. To increase screening throughput, 24 human ORF AD or DB 
clones were pooled into single human ORF AD or DB wells, respectively. 
Viral ORF AD and DB clones were then mated pairwise against pools of 
human ORF DB and AD clones, respectively, for the first round of Y2H 
testing (called phenotyping I). Mated transformants were incubated 
overnight at 30 °C before being plated onto SC-Leu-Trp to select for 
mated diploid yeast. After another overnight incubation at 30 °C, 
diploid yeast was plated onto SC-Leu-Trp-His+3AT and SC-Leu-Trp-Ade 
selection plates. After another overnight incubation at 30 °C, plates 
were replica cleaned and incubated again for 3 days at 30 °C for colony 
picking. All yeast colonies picked from phenotyping I were individu-
ally subjected to another round of Y2H testing called phenotyping II. 
Positive colonies from phenotyping II were processed for PLATE-seq 
to identify each AD-X and DB-Y pair. Finally, for every AD-Y and DB-X 
identified by PLATE-seq, we performed pairwise Y2H testing of each 
identified pair to ensure high reproducibility.

PLATE-seq
Each colony was picked into 96-well plates containing 15 µl 2.5 mg ml−1 
Zymolyase (catalog no. E1004; Zymo Research) and incubated for 
45 min at 37 °C followed by 10 min at 95 °C to prepare yeast cell lysate 
used as PLATE-seq DNA template. PLATE-seq was carried out as previ-
ously described24. In brief, plasmid(s) from individual wells of 96-well 
plates were PCR amplified using a plasmid-specific forward primer 
and a reverse primer consisting of a well-position-specific barcode 
and TruSeq 3′ sequencing adapter. Amplicons derived from the same 
96-well plate were pooled and purified using QIAquick PCR Purifica-
tion Kit (catalog no. 28104; Qiagen). Each amplicon pool was subject 
to Tn5 tagmentation to fragment the amplicons and append adapt-
ers consisting of a plate-specific barcode and TruSeq 5′ sequencing 
adapter. Tagmented DNA was purified using QIAquick PCR Purification 
Kit (catalog no. 28104; Qiagen) and pooled across all 96-well plates. 
These pools were then subjected to low-cycle PCR both to extend the 
TruSeq end adapters with sequences compatible for binding to the 
Illumina flow cell and to enrich for only DNA fragments consisting 

of TruSeq adapter sequences on both ends of the plate-specific and 
well-position-specific barcodes. PLATE-seq libraries were paired-end 
sequenced on an Illumina MiSeq.

Affinity purification
Caco-2 (HTB-37; ATCC) cells were cultured in EMEM (catalog no. 
30-2003; ATCC) with 15% fetal bovine serum (FBS) (catalog no. 
30-2020; ATCC) at 37 °C with 5% CO2. All 28 SARS-CoV-2 ORFs were 
codon-optimized and cloned into mammalian expression vectors that 
contained Strep, Myc, or FLAG affinity tags. SARS-CoV-2 ORF plasmids 
and corresponding empty vectors were individually transfected in 
biological duplicates into Caco-2 cells using Lipofectamine 3000 Trans-
fection reagent (catalog no. L3000001; Invitrogen) following manu-
facturer’s instructions. Cells were harvested 72 h after transfection and 
lysed using RIPA lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% 
(v/v) Nonidet P 40 Substitute, 5 mM EDTA, phosphatase inhibitor (cata-
log no. 4906845001; Roche) and protease inhibitor cocktail (catalog 
no. 11873580001; Roche)). Samples were incubated for 30 min at 4 °C 
and then centrifuged at 13,000g for 15 min at 4 °C. Supernatants were 
collected and incubate with either MagStrep ‘type3’ XT beads (catalog 
no. 2-4090-002; IBA Lifesciences), Myc-Trap Agarose (catalog no. 
yta-10; ChromoTek) or Anti-FLAG M2 Affinity Gel (catalog no. A2220; 
Millipore) overnight at 4 °C. Strep-tagged samples were washed with 
10x Buffer W (catalog no. 2-1003-100; IBA Lifesciences) three times at 
4 °C. Myc- and FLAG-tagged samples were washed with RIPA buffer. 
Strep-tagged samples were eluted using 10x Buffer BXT (catalog no. 
2-1042-025; IBA Lifesciences). Myc- and FLAG-tagged samples were 
eluted using IP elution buffer (100 mM Tris-HCl [pH 7.5], 1% (v/v) SDS) 
and incubated for 15 min at 65 °C. Other primary antibodies used in 
this study include c-Myc monoclonal antibody (catalog no. 13-2500; 
Invitrogen) and monoclonal anti-FLAG M2 antibody (catalog no. F3165; 
Sigma-Aldrich).

Proteomic sample preparation
IP eluates were reduced using 200 mM TCEP for 1 h at 55 °C. Samples 
were then alkylated using 375 mM iodoacetamide for 30 min at room 
temperature in the absence of light. Samples were digested using 
Trypsin Gold, mass spectrometry grade (catalog no. V5280; Promega) 
at an enzyme-to-substrate ratio of 1:100 and incubated overnight with 
nutation at 37 °C. Peptide concentrations were measured using Pierce 
Quantitative Colorimetric Peptide Assay (catalog no. 23275; Thermo 
Scientific). Samples were normalized and resuspended using 1 M tri-
ethylammonium bicarbonate for TMT experiments (catalog no. 90114; 
Thermo Scientific). Samples were labeled using TMT10plex Isobaric 
Mass Tagging Kit (catalog no. 90113; Thermo Scientific) or TMTsixplex 
Isobaric Label Reagent Set (catalog no. 90061; Thermo Scientific) at a 
(w/w) label-to-peptide ratio of 10:1 for 1 h at room temperature. Labe-
ling reactions were quenched by the addition of 5% hydroxylamine and 
immediately pooled and dried using a SpeedVac. Labeled peptides 
were enriched and fractionated using Pierce High pH Reversed-Phase 
Peptide Fractionation Kit according to the manufacturer’s protocol 
(catalog no. 84868; Thermo Scientific).

Liquid chromatography–tandem mass spectrometry
Fractions were analyzed using an EASY-nLC 1200 System (catalog no. 
LC140; Thermo Scientific) equipped with an in-house 3 µm C18 resin- 
(Michrom BioResources) packed capillary column (75 µm × 25 cm) cou-
pled to an Orbitrap Fusion Lumos Tribrid Mass Spectrometer (catalog 
no. IQLAAEGAAPFADBMBHQ; Thermo Scientific). The mobile phase 
and elution gradient used for peptide separation were as follows: 0.1% 
formic acid in water as buffer A and 0.1% formic acid in 80% acetonitrile 
as buffer B; 0–5 min, 5%-10% B; 5–65 min, 10–55% B; 66–67 min, 55%-95% 
B; 67–68 min, 2% B; 68–72 min, 95% B; 72–80 min, 5% B; with a flow rate 
set to 200 nl min−1. MS1 precursors were detected at m/z = 375–1500 and 
resolution = 120,000. A CID-MS2-HCD-MS3 method was used for MSn 
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data acquisition. Precursor ions with charge of 2+ to 7+ were selected 
for MS2 analysis at resolution = 30,000, isolation width = 0.4 m/z, 
maximum injection time = 50 ms and CID collision energy at 35%. 6 
SPS precursors were selected for MS3 analysis and ions were frag-
mented using HCD collision energy at 65%. Spectra were recorded using 
Thermo Xcalibur Software v.4.1 (catalog no. OPTON-30965; Thermo 
Scientific) and Tune application v.3.0 (Thermo Scientific). Raw data 
were searched using Proteome Discoverer Software 2.3 (Thermo Scien-
tific) against an UniProtKB human database containing all SARS-COV-2 
proteins. Search parameters specified precursor mass and fragment 
mass tolerance of 15 p.p.m. Peptide-spectrum matches (PSMs) were 
searched with SEQUEST HT and Percolator and filtered at FDR < 1%.

See Supplementary Table 12a for viral bait vector and tag infor-
mation, Supplementary Table 12b,c for TMT10/TMT6 channel label 
information, including bait and control tags; and Supplementary Table 
12d for isotope impurity correction information. Mass spectrometry 
proteomics data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE partner repository with the dataset identifier 
PXD035805.

Downstream proteomic analysis
We applied the MSstatsTMT116 linear-model-based pipeline (optimized 
for our experimental setup and purpose) to identify high-confidence 
viral–host interactions from TMT-AP–MS datasets. In brief, PSMs fil-
tered at 1% FDR were selected for quantification by (1) the number of 
reporter intensity values per fraction, (2) percent isolation interfer-
ence and (3) precursor intensity values to select for one instance of 
a peptide peak. If more than one PSM passed these criteria, then the 
average of the reporter ion intensities per channel of these PSMs were 
taken to represent the quantification of the peptide peak. The reporter 
intensity values of selected PSMs were log transformed, weighed with 
their respective precursor intensities and averaged to obtain protein 
level quantification values. Our pipeline’s novelty lies in its ability 
to retain useful information separated across fractions at the PSM 
level while ensuring no violation of the assumption of independence, 
such that our linear fixed-effects model with conditions (for example, 
sample versus control), as a fixed effect, can be utilized. An improved 
P value calculation was used through empirical Bayes estimation of 
prior variance as implemented using limma package v.3.46.0 (ref. 117) 
in R platform v.4.0.3.

The FC and P values obtained from this linear-model-based 
approach are used to generate volcano plots for each viral bait pro-
tein compared to control. A baseline cutoff was set at a FC of greater 
than 2 and P value of less than 5%, on top of which a hyperbolic curve is 
optimized using the distribution of the log-transformed FCs of all iden-
tified proteins to identify high-confidence interactors. As a result, the 
actual cutoffs used for each AP–MS experiment are often significantly 
more stringent than the baseline values. A PSM cutoff, along with a 
peptide-coverage percent cutoff (that is, the percentage of all possible 
trypsin-digested peptides, accounting for up to two missed cleavages 
that can be found), on the basis of the number of the PSMs of the viral 
protein’s and peptide-coverage percentage, is also implemented before 
the optimization of this hyperbolic curve.

Co-immunoprecipitation
HEK293T (CRL-3216; ATCC) cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) (catalog no. 30-2002; ATCC) supplemented with 
10% FBS (catalog no. 30-2020; ATCC) and incubated at 37 °C with 5% CO2. 
Cells were seeded onto six-well plates and grown until reaching 70–80% 
confluency. SARS-CoV-2 N, ORF3a, ORF7b, histone H1.4 or N + histone 
H1.4, Sec61 or ORF7b + Sec61, STT3A or ORF7b + STT3A and empty vector 
controls were transfected into cells by combining 2 µg of DNA with 10 µl 
of 1 mg ml−1 PEI (catalog no. 23966; Polysciences) and 150 µl Opti-MEM 
(catalog no. 31985062; Gibco). After 24 h incubation, cells were gently 
washed three times with Dulbecco’s PBS (1×) (catalog no. 14040117; 

Gibco), resuspended with 200 µl cell lysis buffer (10 mM Tris-HCl [pH 
8.0], 137 mM NaCl, 1% (v/v) Triton X-100, 10% (v/v) glycerol, 2 mM EDTA 
and protease inhibitor cocktail (catalog no. 11873580001; Roche)) and 
incubated on ice for 30 min. Extracts were then cleared by centrifuga-
tion at 16,000g for 10 min at 4 °C. To perform co-immunoprecipitation 
(co-IP), 100 µl cell lysate was incubated with 5 µl Red Anti-FLAG M2 
Affinity Gel (catalog no. F2426; Millipore) overnight at 4 °C under gentle 
rotation. Bound proteins were then washed three times with cell lysis 
buffer, eluted with 50 µl elution buffer (10 mM Tris-HCl [pH 8.0], 1% (v/v) 
SDS) and incubated for 10 min at 65 °C. Cell lysates and co-IP samples 
were then treated with 6× SDS protein loading buffer (1 M Tris-HCl pH 
6.8, 10% (v/v) SDS, 50% (v/v) glycerol, 0.03% (v/v) bromophenol blue and 
10% (v/v) β-mercaptoethanol), subjected to SDS-PAGE, and transferred 
onto PVDF membranes (catalog no. GE10600023; Amersham). For 
immunoblotting analysis, V5 Tag monoclonal antibody (catalog no. 
R960-25; Invitrogen), c-Myc monoclonal antibody (catalog no. 13-2500; 
Invitrogen), monoclonal anti-FLAG M2 antibody (catalog no. F1804; 
Sigma-Aldrich), or ZNF579 polyclonal antibody (catalog no. A303-275A; 
Bethyl Laboratories) were used at 1:1,000 dilutions.

Quantitative PCR
HEK293T cells were cultured as above, and ORFa–FLAG or empty vector 
were introduced with Lipofectamine 2000 transfection reagent (cata-
log no. 11668030; Invitrogen) according to the manufacturer’s instruc-
tions. Transfection experiments were performed in duplicate. Medium 
was replaced 6 h after transfection, and RNA was harvested using TRIzol 
Reagent (catalog no. 15596018; Invitrogen). Reverse transcription was 
performed with the Maxima First Strand cDNA Synthesis Kit for qPCR with 
reverse transcription (RT–qPCR), with dsDNase (catalog no. K1671; Thermo 
Scientific). qPCR was performed on a LightCycler 480 System using Light-
Cycler FastStart DNA Master SYBR Green I (catalog no. 03003230001; 
Roche Diagnostics). We used two primer sets for HSPA6 (FWD1: CAA-
GGTGCGCGTATGCTAC, REV1: GCTCATTGATGATCCGCAACAC, FWD2: 
CATCGCCTATGGGCTGGAC, REV2: GGAGAGAACCGACACATCGAA), and 
performed three technical replicates of three concentrations of cDNA 
(1:10, 1:100, 1:1,000) for each replicate, and then compared expression 
levels normalized to GAPDH using the ΔΔCp method.

Interactome comparative analysis
We compared our SARS-CoV-2–human interactome to a collection 
of three previously reported interactomes3–5, and compared with 
ours in terms of the overlap (Fisher’s exact test) with the differentially 
expressed genes in SARS-CoV-2 from several SARS-CoV-2 RNA-seq/pro-
teomics datasets. These datasets include: (1) a single-cell dataset that 
contains CD8, epithelial (epi)-ciliated, epi-secretory, epi-squamous, 
macro, mono and natural killer cells from BALF37. We performed 
comparisons of virus+ versus virus− cells for each cell type; (2) bulk 
RNA-seq of human bronchial epithelial cells infected with SARS-CoV-238 
(GSE147507), denoted as SARS2-DEG; (3) proteomic dataset of human 
Caco-2 cells infected with SARS-CoV-239, denoted as SARS2-DEP; (4) bulk 
RNA-seq of upper airway from COVID-19 patients versus non-COVID-19 
patients (GSE156063)40, denoted as DE-NS; (5) bulk RNA-seq of periph-
eral blood mononuclear cell (PBMC) isolated from COVID-19 patients 
versus non-COVID-19 patients (GSE157103)41, denoted as DE-PBMC. For 
differential expression analysis, a cutoff of |log2FC| > 0.5 and FDR < 0.05 
was considered significant. We calculated the Jaccard index (J) and 
overlap coefficient (C)118 for two gene sets A and B as below:

J = |A ∩ B|
|A ∪ B| (1)

C = |A ∩ B|
min (|A| , |B|) (2)
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Functional enrichment analysis
Functional enrichment of our SARS-CoV-2 host factors were analyzed 
using Enrichr119 against the KEGG and GO biological process datasets. 
Pathways a GO terms with FDR < 0.05 were considered significantly 
enriched. GO terms were summarized using Revigo120.

Selective pressure and evolutionary rates
The non-synonymous and synonymous substitution rate ratio (dN/
dS ratio)121 and the evolutionary rate ratio122 of our SARS-CoV-2 host 
factors were evaluated as described in a previous study123. For dN/
dS ratio, dN/dS < 1 was considered purifying selection; dN/dS = 1 was 
considered neutral evolution; and dN/dS > 1 was considered positive 
Darwinian selection. The evolutionary rate ratio >1 was regarded as a 
fast rate and <1 as a slow rate122.

Tissue gene expression specificity
We evaluated the gene expression specificity of the SARS-CoV-2 host 
factors in 33 tissues using the RNA-Seq data from GTEx V8 (ref. 49) 
(https://www.gtexportal.org/home/). The expression specificity of 
gene i in tissue t was defined as

zit =
Eit − Ei

σi
(3)

where Ei was the mean and σi was the standard deviation of the expres-
sion of gene i across all considered tissues, and Eit was the mean expres-
sion of gene i in tissue t.

Construction of human protein–protein interactome and 
drug–target network
The human protein–protein interactome and the drug–target network 
were used to screen for drugs against the SARS-CoV-2 host factors. 
The human protein–protein interactome, composed of 17,706 protein 
nodes and 351,444 unique PPI edges was constructed in our previous 
studies46,47,124,125. In brief, several types of high-quality PPI evidence gath-
ered from public databases and datasets were considered, including: 
binary PPIs identified by high-throughput yeast two-hybrid in three 
datasets47,126,127; low- or high-throughput experimentally discovered 
kinase–substrate interactions from KinomeNetworkX128, Phospho-
Networks129, Human Protein Resource Database130, DbPTM 3.0 (ref. 131), 
Phospho.ELM132 and PhosphositePlus133; signaling networks identified 
using low-throughput experiments in SignaLink2.0 (ref. 134); protein 
complexes revealed by robust affinity purification-mass spectrom-
etry in BioPlex v.2.016135; and curated PPIs from Instruct136, IntAct137, 
BioGRID138, MINT139, PINA140 and InnateDB141 that were identified by 
yeast two-hybrid studies, affinity purification-mass spectrometry, 
protein three-dimensional structures, or low-throughput experi-
ments. For comparison, we also built a directed version of the human 
protein interactome using the PPI direction information (including 
kinase–substrate and signaling networks) from PhosphositePlus133 
and SignaLink2.0 (ref. 134).

The drug–target network was constructed using several data 
sources as described in our recent studies46,47,124: DrugBank database 
(v.4.3)142, BindingDB143, ChEMBL (v.20)144, Therapeutic Target Data-
base145, PharmGKB database146 and IUPHAR/BPS Guide to PHARMA-
COLOGY147. Binding affinities Ki, Kd, IC50 or EC50 ≤ 10 µM were used as 
cutoff for the drug–target interactions. All networks were visualized 
using Cytoscape 3.8.0148. Clinical trial information was retrieved 
from the International Clinical Trials Registry Platform (assessed in 
May 2022).

Network proximity-based drug and drug combination 
screening
The ‘closest’ network proximity measure was used to screen for 2,938 
FDA-approved or investigational drugs. The ‘closest’ distance dAB for 

two gene/protein sets A (for example, drug targets) and B (for example, 
SARS-CoV-2 host factors) was calculated as:

⟨dAB⟩ =
1

‖A‖ + ‖B‖ (∑a∈A
minb∈Bd (a,b) + ∑

b∈B
mina∈Ad (a,b)) (4)

where d(a, b) is the shortest path length of a and b in the human pro-
tein–protein interactome. Network proximity dAB was further nor-
malized to obtain a Z-score using a permutation test with randomly 
selected proteins from the interactome with similar degree distri-
butions to A and B (degree preserved node shuffling). Permutation 
tests were repeated 1,000 times. We prioritized drugs by Z < −2 and 
FDR < 0.05. For comparison, we also conducted degree preserved link 
shuffling using the double edge swap method to swap the links ten 
times the size of the human protein interactome times. For individual 
drug–target level network proximity to the disease modules, we used 
the ‘shortest’ measure that measures the average shortest distances 
of a target to the disease proteins (host factors):

⟨dAB⟩ =
∑a∈A,b∈B d (a,b)

‖A‖ × ‖B‖ (5)

The antiviral profiles of the prioritized drugs were retrieved from 
NCATS (https://opendata.ncats.nih.gov/covid19/assays). NCATS con-
tains experimental high-throughput screening results for drugs from 
a series of screenings (some accompanied by counter screens) to 
evaluate their anti-SARS-CoV-2 potential. We included the following 
screening results: SARS-CoV-2 cytopathic effect and its counter screen 
SARS-CoV-2 cytopathic effect (host tox counter)/cytotoxicity; human 
fibroblast toxicity; spike–ACE2 protein–protein interaction (AlphaL-
ISA) and its counter screen spike–ACE2 protein–protein interaction 
(TruHit Counter); ACE2 enzymatic activity; SARS-CoV pseudotyped 
particle entry (CoV-PPE) and its counter screen SARS-CoV pseudotyped 
particle entry counter screen (CoV-PPE_cs); MERS-CoV pseudotyped 
particle entry (MERS-PPE) and its counter screen MERS-CoV pseudo-
typed particle entry counter screen (MERS-PPE_cs); and 3CL enzymatic 
activity. on the basis of the NCATS SARS-CoV-2 data, we further selected 
a list of top drugs from the network proximity-based prioritization that 
show ideal activities in at least two of these screenings.

COVID-19 patient data observations
Two independent datasets revealed corroborating evidence for the 
drug carvedilol, which was identified by our interactome prioritiza-
tion framework. The first dataset (discovery dataset) was from the 
NMEDW. We first identified 512,198 patients who had SARS-CoV-2 
reverse transcription-polymerase chain reaction (RT–qPCR) test 
results recorded in NMEDW. Patients with a positive RT–qPCR test 
were considered COVID-19 positive, where the earliest time of the 
test was recorded as the effective time. Patients that did not have any 
positive or presumptive positive RT–qPCR tests and the latest PCR 
test was negative (excluding pending and undetermined results) were 
considered COVID-19 negative, where the latest time of the test was 
recorded as the effective time. By these metrics, 29,224 patients with 
pending or undetermined results were removed, yielding 482,974 
patients of interest. We excluded patients without age or sex infor-
mation yielding a cohort of 481,526 patients, 66,541 of which were 
COVID-19 positive. We then extracted the carvedilol (and other drugs) 
administration information for all patients in the final cohort. If a 
patient had a carvedilol administration record with an administration 
date in the 6-month time window leading to the effective RT–qPCR 
result date and an administered dose > 0, the patient was considered 
carvedilol+. We also extracted comorbidity information of the cohort 
for propensity-score matching, for which we used the Charlson comor-
bidity index. All comorbidities and corresponding patient numbers 
are listed in Table 1.

http://www.nature.com/naturebiotechnology
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The second dataset (external validation dataset) was an institu-
tional review board-approved COVID-19 registry dataset that included 
168,712 individuals tested for SARS-CoV-2 infection (83,340 of which 
were positive cases) from March 8th to May 26th 2021, at the Cleveland 
Clinic in Ohio and Florida, United States (Supplementary Table 10). 
Pooled oropharyngeal and nasopharyngeal swab specimens were 
used to test for SARS-CoV-2 by RT–qPCR assay in the Cleveland Clinic 
Pathology and Laboratory Medicine Institute. All SARS-CoV-2 testing 
followed the guidelines established by the Centers for Disease Control 
and Prevention of United States. The dataset included baseline demo-
graphic information, medications and COVID-19 test results. We used 
REDCap149 electronic data capture tools to extract the patient data from 
the electronic health records (EPIC Systems), and the data were manu-
ally checked by a professional team trained on uniform sources for the 
study variables. A carvedilol exposure group (carvedilol+) included 
patients that were actively taking carvedilol at the time of SARS-CoV-2 
testing. Positive laboratory test results for COVID-19 were used as the 
primary outcome. Propensity score was used to match age, sex and race 
to reduce various confounding factors. Odds ratio was used to evaluate 
the carvedilol benefit to primary outcome. All analyses were conducted 
by MatchIt package v.4.0.0 in the R v.4.1.0 platform.

Anti-SARS-CoV-2 activity assay for carvedilol
A549 (CCL-185; ATCC) cells exogenously expressing ACE2 (A549-ACE2) 
were a gift from B. R. Tenoever, Icahn School of Medicine at Mount 
Sinai. A549-ACE2 cells were cultured in DMEM (catalog no. 11965092; 
ThermoFisher) with 10% FBS (catalog no. 100–106; GeminiBio) and 
used for SARS-CoV-2 infection. SARS-CoV-2 virus (nCoV/Washing-
ton/1/2020) was provided by the Biocontainment Laboratory Univer-
sity of Texas Medical Branch Galveston National Laboratory, Texas, 
United States. Vero E6 (CRL-1586; ATCC) cells were used to propagate 
and titer SARS-CoV-2. SARS-CoV-2 infections were performed under 
biosafety level 3 conditions at the Biocontainment Laboratory Univer-
sity of Chicago Howard T. Ricketts Laboratory, Illinois, United States. 
A549-ACE2 cells cultured in DMEM with 2% FBS were treated with carve-
dilol for 2 h at the indicated concentrations. Cells were infected with a 
multiplicity of infection of 0.5 in medium containing the appropriate 
concentration of drug. Forty-eight hours after infection, cells were 
fixed with 10% formalin (catalog no. 305–510; Fisherbrand), blocked 
and probed with mouse anti-SARS-CoV-2-spike antibody (catalog no. 
GTX632604; GeneTex) diluted 1:1,000 for 4 h, rinsed and probed with 
anti-mouse-HRP (catalog no. MP7401; Vector Labratories) for 1 h, 
washed and then developed with DAB substrate (catalog no. 34065; 
ThermoScientifc) for 10 min. Spike positive cells (n > 40) were quanti-
fied by light microscopy as blinded samples. A sigmoid fit was used to 
extract EC50 values using MATLAB (2020b).

To measure the effect of carvedilol on cell viability, cells were 
treated with various concentrations of carvedilol diluted in DMEM 
with 2% FBS for 48 h. The drug solution was then removed and cells 
were fixed with 10% formalin solution. The cells were stained with 
Crystal Violet 0.25% for 30 min. The plate was spun dried in a tabletop 
centrifuge and absorbance of each well was measured using a TECAN 
Infinite 200 Pro at 595 nm. The percent survival was calculated relative 
to cells treated with dimethyl sulfoxide.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
GTEx v849 data was downloaded from https://gtexportal.org/home/. 
ENCODE ZNF579 ChIP–seq is available under accession no. ENCS-
R018MQH55,56. RNA-seq of human bronchial epithelial cells infected 
with SARS-CoV-2 is available from the Gene Expression Omnibus 
(GEO) under accession no. GSE147507. RNA-seq of upper airway 

from COVID-19 patients versus non-COVID-19 patients is available 
from GEO under accession no. GSE156063. RNA-seq of peripheral 
blood mononuclear cells isolated from COVID-19 patients versus 
non-COVID-19 patients is available from GEO under accession no. 
GSE157103. Mass spectrometry proteomics data have been deposited 
to the ProteomeXchange Consortium via the PRIDE partner reposi-
tory with the dataset identifier PXD035805. Human protein–protein 
interactome and drug–target network are available at https://github.
com/ChengF-Lab/COVID-19_Map. An interactive version of Fig. 1b is 
available at https://github.com/ChengF-Lab/COVID-19_PPI. Unaltered 
scans used to generate Fig. 2b,c,f–h are available in the Source Data 
file. All other data are available in the supplementary tables. Source 
data are provided with this paper.

Code availability
The network proximity framework can be found in https://github.com/
ChengF-Lab/COVID-19_Map.
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Extended Data Fig. 1 | Characteristics of the interactome. (a) Overlap of the 
host factors among the four interactomes compared in this study. Heatmaps 
show the Jaccard indexes (green) and overlap coefficients (purple) of the host 
factors against other gene sets. Dots indicate FDR < 0.05 by Fisher’s exact test. 
In the box plots, boxes range from lower to upper quartiles, center lines indicate 
medians, whiskers show 1.5 × interquartile ranges and crosses show mean values. 
(b) The overlap of the interactions in our interactome with the other three 
interactomes by considering the protein complexes and pathways. If two host 
factors interacting with the same viral protein are known to interact with each 
other in the literature, we consider the two viral-host interactions as overlapping. 

(c) Overlap of the host factors with the differentially expressed genes in 
SARS-CoV-2+ vs. SARS-CoV-2− cells in seven cell types from COVID-19 patient 
samples. Epi - epithelial. (d) Overlap of the host factors with the differentially 
expressed genes from four bulk RNA-seq/proteomics datasets. (e, f) Biological 
characteristics of the SARS-CoV-2 host factors. The host factors have lower 
non-synonymous to synonymous substitutions (dN/dS) ratios (e) and lower 
evolutionary ratios (f) compared to random background (gray, mean ± standard 
deviation of 100 repeats using genes randomly selected by degree preserved 
node shuffling). Genes were sorted in ascending order in terms of dN/dS ratio or 
evolutionary ratio.
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Extended Data Fig. 2 | ZNF579 targets significantly overlap with the 
differentially expressed genes in SARS-CoV-2 infected patient samples. (a) 
Enriched KEGG pathways of genes associated with ZNF579 binding by ChIP-seq 
(ENCODE:ENCSR018MQH). Genes were considered to be bound by ZNF579 if 
a ChIP-seq peak overlapped with the promoter region (-1000 to transcription 
start site). (b) Overlap of ZNF579 targets and differentially expressed genes 
(DEGs) in bronchoalveolar lavage fluid (BALF) SARS-CoV-2+ vs. SARS-CoV-2− 

samples. See Methods for the source of the single-cell dataset. Fisher’s exact 
tests show that the overlaps are significant (FDR < 0.05) for five cell types, 
including CD8, epithelial-ciliated, epithelial-secretory, macrophage and 
monocyte. (c) The enriched pathways of the overlapping ZNF579 targets and 
DEGs in the five cell types. Pathways that are significantly enriched in at least 
two cell types are shown.
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Extended Data Fig. 3 | Comparison of the drug screening results using 
different interactomes and their combinations. (a) 16 drugs identified by our 
interactome cannot be identified by any of the other three interactomes (and the 
interactome combined from them for 13 drugs) compared in this study. 6 of the 

top 23 drugs with desired anti-SARS-CoV-2 profiles are among these drugs. (b) 
Drugs identified by combining all four interactomes that could not be identified 
by any interactome individually. Three drugs (highlighted with a star) were found 
to have desired anti-SARS-CoV-2 profiles.
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Extended Data Fig. 4 | Carvedilol indirectly targets the SARS-CoV-2 host 
factors through protein-protein interactions with its targets. (a) Individual 
target-level network proximities to the SARS-CoV-2 gene sets (all host factors, 
host factors for each viral protein and gene sets by different functions from 

Reactome). Network proximities were computed using the ‘shortest’ method 
(See Methods). (b) Potential mechanisms-of-action of carvedilol by exploring the 
protein-protein interactions of its targets and the SARS-CoV-2 host factors.
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Extended Data Fig. 5 | Comparison of the drug screening results using 
different variations of the network proximity-based screening methods. (a) 
Network proximity-based drug screening using directed human protein-protein 

interactome vs. undirected human protein-protein interactome. (b) Network 
proximity-based drug screening using degree preserved edge shuffling vs. 
degree preserved node shuffling. PCC, Pearson correlation coefficient.

http://www.nature.com/naturebiotechnology
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