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Asymmetric Multicore Processors

 Asymmetric Performance
 Common ISA 

Fast Core:
• High Frequency
• Superscalar
• OOO execution
• Large area 
requirements
• High power

Slow Cores:
• Lower frequency
• Single-Issue
• In order pipelines
• Reduced area
• Low power



Efficiency Specialization:
Exploiting ILP diversity
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Sensitive to CPU 
performance:
• Use complex pipelines 
efficiently
• Few pipeline stalls

Insensitive to CPU performance:
• High LLC miss-rate
• A lot of mispredicted branches
• Frequent pipeline stalls

SPEC CPU
2006

Speedup
Factor
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TLP Specialization: 
Exploiting TLP Diversity

CMPs  cores per chip 

Good performance for 
scalable parallel applications

Not so “good” for sequential and non-
scalable parallel applications

get need

AMPs: offer the best of both worlds for multi-application workloads

Abundant “low-
power” cores for 

running parallel code

Cores with high single-
thread performance for:
•ST apps.
•Accelerate seq. sections 
of parallel applications

Detection by OS: Runnable thread count



Unleashing the Potential of 
AMP systems

 Efficiency Specialization: ST apps.
 TLP Specialization: ST and MT apps
 Previous asymmetry-aware schedulers 

employed one type of specialization only
 Our goal is to design the comprehensive 

scheduling support to cater to TLP and ILP 
diversity
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Direct SF measurement

Monitor Instructions per second 
(IPSslow) of the current core type

T

Migrate to FC
to obtain IPSfast

Assign to cores

phase 
change

 First evaluation of IPC-Driven done on a simulator
 We implemented it in a real OS and evaluated on real HW
 Two problems:

 Inaccurate IPC ratios
• Phase change may happen during measurement

 Refreshing threads create load imbalance
• Contention on scarce FCs

The IPC-Driven algorithm

Update SF
Refresh

SF



Estimating Speedup Factors

 Our scheduling policy relies on estimating SF on the 
current core type
+ Cross-core migrations not required
- SF Model designed specifically for the asymmetric

system in question  more complex
 We provide SF estimation model for cores differing in 

frequencies
 Estimate completion time for K instructions
 CT= Computation_Time + Stall Time

 Stall time estimated from Last-Level-Cache miss rates 
(off-core requests)



Do Well-Balanced Parallel 
Applications benefit from using 
FCs?
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Both fast and 
slow cores

 Keeping FCs 
Busy

Slow cores only

Average SF Average SF



Utility Factor (TLP+ILP)
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• Compact metric (ILP+TLP)

• For ST apps  UF=SF

• Foundation for CAMP 
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Goals of CAMP

 CAMP: A Comprehensive scheduler for Asymmetric 
Multicore Processors

 Design goals:
 Efficiency Specialization + TLP Specialization 
 Accelerate sequential parts of parallel applications 

• Boost SEQUENTIAL_PART threads without monopolizing FCs
 Fair-Share scarce FC among threads that benefit the most 

in the workload (HIGH_UTILITY threads)
 Low runtime overhead 

• Light-weight mechanism to filter out short program phases and 
reduce migrations

 Topology-aware design
• Avoid cross-LLC migrations when thread-to-core mapping 

need readjusting



Utility Factor and Classes

 The runnable thread count of
the application (process)

 LLC miss rate to estimate SF

 UF of a thread determines its Utility Class
 LOW_UTILITY
 MEDIUM_UTILITY
 HIGH_UTILITY       
 SEQUENTIAL_PART

 Threads’ UFs guide scheduling decisions, so the OS needs to 
monitor:

UF
Priority to

Run on FCsUpper
Lower



Utility Factor and Classes
LOW_UTILITY MEDIUM_UTILITY HIGH_UTILITY

SF=UF

A pair of thresholds (upper and lower) 
determines the boundaries between utility 
classes
 For ST apps UF ranges from 23% to 100% 
When MT apps are present, UFs as low as 0%

CAMP adjusts thresholds dynamically
based on the workload  
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Schedulers and Workload 
types

 CAMP vs. other schedulers:
 Speedup Factor Driven (SFD) Efficiency Specialization only
 Parallelism-Aware Scheduler (PA)  TLP Specialization only
 Asymmetry-aware Round Robin Scheduler (RR) Fair-shares 

FCs
 All schedulers implemented in OpenSolaris
 We report gmean speedup over RR (per application and 

workload)
 Workloads (SPEC CPU 2006, OMP 2001, Minebench, ...) 

 ST applications  Efficiency Specialization
 Wide variety of SFs
 Assess Accuracy SF model (comparison with “Best Static”)

 2 workload sets (ST and MT)  TLP specialization
 Wide range of apps: sequential portion and SF 
 10 Application pairs
 More than two apps. 
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Experimental setup

1FC-12SC (AMD) 4FC-12SC (AMD)

2FC-2SC (AMD) 2FC-2SC (Intel)

chip

Inactive cores

FC

SC

ST applications

MT and ST applications

Property Description

Hardware 
Platforms

•AMD Opteron system 
(NUMA) with 4 quad-
core “Barcelona” chips 
(16 cores) 
• Intel Xeon system 
(UMA) with 2 “quad-
core” chips (8 cores)

DVFS 
Settings

AMD FCs @ 2.3 GHz 
SCs  @ 1.15 GHz 

Intel  FCs @ 3.0 GHz 
SCs  @ 2.0 GHz 



Singlethreaded applications: 
Efficiency Specialization

CAMP and SFD perform similarly since 
UF=SF for ST apps.

 CAMP performs within 1% range of Best 
Static in the absence of phase changes but 
outperforms it when they are present

On the Intel platform, SFD and CAMP 
behave better due to the higher accuracy of 
the SF model

 PA behaves like RR since it is unaware
of the efficiency of individual threads

AMD 2FC-2SC

Intel 2FC-2SC



ST and MT applications (set #1): 
TLP Specialization

1FC-12SC

CAMP and PA performed comparably in most cases, because they both 
considered TLP while SFD fails to deliver significant performance gains

 CAMP “properly” schedules memory-intensive sequential parts on SCs

Does Information on TLP+ILP bring further improvements?



ST and MT applications (set #2): 
TLP Specialization

 CAMP delivers greater performance gains over PA (up to 13%) for  
workloads that exhibit a wider diversity in memory-intensity

4FC-12SC



Overall results

 PA fails to deliver efficiency specialization (no speedup)
 SFD is unable to deliver performance comparable to CAMP for  

workloads that include multi-threaded applications 

2FC-2SC 1FC-12SC
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Conclusions

 CAMP accomplishes an efficient use of an AMP system for a wide 
variety of workloads
 SFD does not cater to TLP diversity
 PA does not take advantage of the ILP diversity of workloads

 Key elements for the success of CAMP 
 The Utility Factor (UF) is a compact metric to account for 

TLP+ILP of applications
 Light-weight technique for discovering which threads utilize fast 

cores most efficiently
• Obtaining SF for a thread does not require running it on each core 

type
 Short program phases are filtered out to avoid premature 

migrations 
 Considering the speedup factor in addition to TLP brings higher 

performance improvements (up to 13%)
 Evident for multi-application workloads exhibiting a wider variety 

of memory intensity



Future Work

 Designing a methodology to find performance metrics to define 
SF esimation models for highly-asymmetric systems: 
 Profound microarchitectural differences
 Different cache hierarchy/size
 Not requiring cross-core migrations for obtaining SF

 Cache-aware version of CAMP
 Light-weight policy that complements to asymmetry-aware 

scheduling
 Assess the impact of cross-core migrations aimed to keep fast 

cores busy
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Questions?
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