A Comprehensive Scheduler
for Asymmetric Multicore
Systems

Juan Carlos Saez*, Manuel Prieto*,
Alexandra Fedorova**, and Sergey Blagodurov**

ArTeCS Group SYNAR Group
, ~ Department of Computer Architecture Computing Science School
[] Complutense University Simon Fraser University
m(. 1; Madrid, Spain Vancouver, BC. Canada

Contents

o Introduction

o Utility of applications

o Design and Implementation

o Evaluation

o Conclusions and Future Work

O Asymmetric Multicore Processors

o Asymmetric Performance
o Common ISA

4 R

F&SL Egeu'enc Slow Cores:
g q y * Lower frequency

» Superscalar « Single-Issue
* OO0 execution ; ipeli
* In order pipelines

e Large area
g * Reduced area
requirements
: e Low power
* High power

_ J _ J

Efficiency Specialization: 2%
Exploiting ILP diversity

2X
1.8x
1.6x
1.4x
1.2x

1x
0.8x
0.6x
0.4x
0.2x

0x

SPEC CPU

Speedup
Factor

2006

Speedup on a 2.3GHz core
vs. a 1.15GHz core

mct
milc
wrf
xalancbmk

bzip2

cactusADM
gcc

GemsFDTD
tonto

soplex I

calculix
dealll
gamess
leslie3d
libquantum
omnetpp
perlbench
povray
sjeng
sphinx3
zeusmp

Sensitive to CPU

Insensitive to CPU performance:

performance: SO :
» Use complex pipelines Allg f _mlss(;_ra ed) i
efficiently ot of mispredicted branches

* Frequent pipeline stalls

* Few pipeline stalls

TLP Specialization:
Exploiting TLP Diversity

CMPs > cores per chip T Not so “good” for sequential and non-

scalable parallel applications
BN BN BN 0N o« F d
B N D B / e

B I D BN BN N N
Good performance for - - - -

scalable parallel applications

sssssssss55¢ I I D

AMPs: offer the best of both worlds for multi-application workloads

Abundant “low- - - -
power” cores for - - -
running paraIIeI code - - -

Detection by OS: Runnable thread count

Cores with high single-
thread performance for:
eST apps.

e Accelerate seq. sections
of parallel applications

Unleashing the Potential of
AMP systems

o Efficiency Specialization: ST apps.
TLP Specialization: ST and MT apps

o Previous asymmetry-aware schedulers
employed one type of specialization only

=» Our goal Is to design the comprehensive
scheduling support to cater to TLP and ILP

diversity

(@)

Contents

o
o Utility of applications

o Design and Implementation

o Evaluation

o Conclusions and Future Work

o Direct SF measurement

Monitor Instructions per second Migrate to FC Update SF
(IPS,.,) Of the current core type phase to obtain IPS,,, Refresh
i change SF
] Assign to cores

o First evaluation of IPC-Driven done on a simulator
o Weimplemented it in a real OS and evaluated on real HW
o Two problems:
Inaccurate IPC ratios
Phase change may happen during measurement

Refreshing threads create load imbalance
Contention on scarce FCs

K

ll. LB

Estimating Speedup Factors

o Ourscheduling policy relies on estimating SF on the
current core type

Cross-core migrations not required

- SF Model designed specifically for the asymmetric
system in question =» more complex

o We provide SF estimation model for cores differing in
frequencies

Estimate completion time for K instructions
CT= Computation Time + Stall Time

o Stall time estimated from Last-Level-Cache miss rates
(off-core requests)

Do Well-Balanced Parallel
e Applications benefit from using w
FCs?

Both fast and
slow cores
=> Keeping FCs
Busy

Slow cores only
Average SF WUpWiSE_m

speeaup (7o)

10% -

Speedupp,= f(SFapp > Ninreadass NFC')

10

speedup (%)

speedup (%)

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20%
10% -

0%

kmeans

=== Observed speedup using all FCs

= Utility Factor

-10% -

1 2 3 4 5
number of threads

wupwise_m

=ig= Observed speedup using all FCs
= Jtility Factor

a4 5
number of threads

Utility Factor (TLP+ILP)

Ufactor y,,=

SF,

Ufactor,,,= L
f o (MAX(L Nr)‘xrea'::!s‘(‘?\‘rFC‘1)))2

SFr;

Ufactorr=

(MAX(I » Nthreads‘(NFC' I))) ?

e Compact metric (ILP+TLP)
e For ST apps = UF=SF
* Foundation for CAMP

11

Contents

o
o

o Design and Implementation

o Evaluation

o Conclusions and Future Work

N {. }/l

12

Goals of CAMP e

o CAMP: A Comprehensive scheduler for Asymmetric
Multicore Processors

o Design goals:
Efficiency Specialization + TLP Specialization
Accelerate sequential parts of parallel applications
Boost SEQUENTIAL_PART threads without monopolizing FCs

Fair-Share scarce FC among threads that benefit the most
in the workload (HIGH_UTILITY threads)

Low runtime overhead

Light-weight mechanism to filter out short program phases and
reduce migrations

Topology-aware design

Avoid cross-LLC migrations when thread-to-core mapping
need readjusting

l____'l‘ 'll

Utility Factor and Classes

o Threads’ UFs guide scheduling decisions, so the OS needs to

monitor:
The runnable thread count of
the application (process)
LLC miss rate to estimate SF

Ufactory=

SFT;

(max(l, N””e“d“-@i é D))"

o UF of a thread determines its Utility Class

LOW_UTILITY

MEDIUM_UTILITY “ Lower
HIGH_UTILITY Upper

SEQUENTIAL_PART

IUF

Priority to
Run on FCs

Utiliry Factor

90% A
80% -
70%
60% -
50% -
40% -
30%
20%
10% -
0%

LOW_UTILITY I MEDIUM_UTILITY I

libguantum

micf

Utility Factor and Classes

mile

gee
astar

sphinx3 —

=
@
o
Q
b1

kmeans

omnetpp

GemsFOTD

xalanchmk

3 4 5

number of threads

bwaves

HIGH_UTILITY

&

P

"\

L 2

L 4

Ibm

L 2

dealll

L J

zeusmp

SF=UF

—

wrf
leslie3d
perlbench
povray
cactusADM
bzip2
tonto
hmmer
h264ref
caleulix
namd
gobmk
gamess
sjeng
gromacs

=> A pair of thresholds (upper and lower)
determines the boundaries between utility
classes

=>» For ST apps UF ranges from 23% to 100%

=» When MT apps are present, UFs as low as 0%

CAMP adjusts thresholds dynamically
based on the workload

Contents

o
o

o

o Evaluation

o Conclusions and Future Work

16

(o)

e

IJ‘) 8

Schedulers and Workload
types

CAMP vs. other schedulers:
Speedup Factor Driven (SFD) =» Efficiency Specialization only
Parallelism-Aware Scheduler (PA) = TLP Specialization only

Asymmetry-aware Round Robin Scheduler (RR) = Fair-shares
FCs

All schedulers implemented in OpenSolaris

We report gmean speedup over RR (per application and
workload)

Workloads (SPEC CPU 2006, OMP 2001, Minebench, ...)

o ST applications =>» Efficiency Specialization

o Wide variety of SFs

o Assess Accuracy SF model (comparison with “Best Static”)
o 2workload sets (ST and MT) = TLP specialization

o Wide range of apps: sequential portion and SF

o 10 Application pairs

o More than two apps.

Experimental setup

Property Description / 2FC-2SC (AMD) 2FC-2SC (Intel) \

Hardware .AMD Opteron system [= """ [e e e e L = = === "
Platf NUMA) with 4 quad- e e =
aorms f:ottje “Bf)a:(\:lglonat’q’uc?]ips :- :-. :- V//A E- //A |
16 o
.(|ntg?>r<e:gn system m 7 Jf ‘_ e = T o = _—_—_-I
(UMA) with 2 “quad- I . I
o wmenes | \ZADVA| '——eemeeant
Intel 3 FCs @ 3.0 GHz K ST applications /
SCs @ 2.0 GHz
4 ™
— 77 T 0 D

Em <« ook, 0 .
i R B L
o !N N NN N

k MT and ST applications /

- -)
h
1] chip

m Inactive cores
o)

18

gmean speedup over RR (%)

gmean speedup over RR (%)

Singlethreaded applications:
Efficiency Specialization

- o | est Sqtic
PA cAmP ik i =» CAMP and SFD perform similarly since

14% - /\
12% | BN UF=SF for ST apps.

10%
8%
6% -
4%
2%
0% -
-29%
-4%
-6%

RN

Static in the absence of phase changes but
‘[q outperforms it when they are present

JH =» CAMP performs within 1% range of Best

4cCl
amli

3CIMI

=>» On the Intel platform, SFD and CAMP
behave better due to the higher accuracy of
the SF model

2C1-2MI_A
2CI-2M1_B
1CI-3MI_A
1CI-3MI_B

10%

|
|

\

8%
6% -

N\

¥ =» PA behaves like RR since it is unaware

- of the efficiency of individual threads

=
e

0% -

-2% -

4Q1

3CI-1MmI
2CI1-2MI_A
2CI-2MI_B
1CI-3MI_A
1CI-3MI_B

ST and MT applications (set #1): o E
TLP Specialization

N SFD HPA [1CAMP
100%

60%
40%

20%

speedup over RR (%)

—
;
!

=

7
7

-

-20%

“

s

E

.

—
mef mﬂ

v

e

—

o

“—

BLAST

Q
=
gamess -:

FFTW

gamess
BLAST
gamess
mcf
BLAST

-40%

STCI-PSMI
STCI-PSCI
STCI-HP
STMI-HP
PSMI-PSCI
PSMI-HP
PSCI-HP

FFTW
STMI-PSMI
STMI-PSCI

FFTW
wupwise_m

wupwise_m
wupwise_m
wupwise_m

= CAMP and PA performed comparably in most cases, because they both
considered TLP while SFD fails to deliver significant performance gains

= CAMP “properly” schedules memory-intensive sequential parts on SCs

Does Information on TLP+ILP bring further improvements?

speedup over RR (%)

60%
50%
40%

30%
20%
10%
0%
-10%

ST and MT applications (set #2)
TLP Specialization

HFA O CcAmP

4FC-12SC

ﬂﬂﬂﬂlﬁﬂ ﬂﬂ s llE JHHHHL l_ﬂﬂﬂﬂh
Ll Ll
M H= o e n_m.z‘*—mg‘-'—x Q_IELUIQD_E“—X = | v X = x
E 8§82 |32 8835 FE|E 83 @=083E 353 ¢ g d
o < 5 T ¢ = & < £ o D |2 E o E o 2 o = a £ &a
o E &8 o 4 L|E 5 v E o ¢ 2|2 g E & o ¢t ol &|E s £ 9
cm‘_-(:\l!:ut)c" B%mmg% v o 2|0 € w v g Tlw e ©
s & g g g |z
z 7 = o = <
, = o
< <

= CAMP delivers greater performance gains over PA (up to 13%) for
workloads that exhibit a wider diversity in memory-intensity

semphy B

gmean speedup over RR (%}

I\/(i E .'l

Overall results

NSFD CCAMP MPA 2Fc-2sC § 1FC-12SC

SINGLE-THREADED WORKLOADS
(2FC-25C)

MULTI-THREADED WORKLOADS
(1FC-125C)

s N A

NN _m®

4M1

3CI1mI
1CI-3MI_A

STCI-PSCI
PSMI-PSCI

2C1-2MI_A
2C1-2ZMI_B
1CI-3M1_B
STCI-PSMI
STMI-PSMI

=» PA fails to deliver efficiency specialization (no speedup)
= SFD is unable to deliver performance comparable to CAMP for
workloads that include multi-threaded applications

ﬁ

Contents

O O O O O

Conclusions and Future Work

23

Conclusions

CAMP accomplishes an efficient use of an AMP system for a wide
variety of workloads

SFD does not cater to TLP diversity
PA does not take advantage of the ILP diversity of workloads
Key elements for the success of CAMP

The Utility Factor (UF) is a compact metric to account for
TLP+ILP of applications

Light-weight technique for discovering which threads utilize fast
cores most efficiently
Obtaining SF for a thread does not require running it on each core
type
Short program phases are filtered out to avoid premature
migrations

Considering the speedup factor in addition to TLP brings higher
performance improvements (up to 13%)

Evident for multi-application workloads exhibiting a wider variety
of memory intensity

Future Work

o Designing a methodology to find performance metrics to define
SF esimation models for highly-asymmetric systems:

Profound microarchitectural differences
Different cache hierarchy/size
=>» Not requiring cross-core migrations for obtaining SF
o Cache-aware version of CAMP

Light-weight policy that complements to asymmetry-aware
scheduling

Assess the impact of cross-core migrations aimed to keep fast
cores busy

Questions?

26

	A Comprehensive Scheduler for Asymmetric Multicore Systems
	Contents
	Asymmetric Multicore Processors	
	Efficiency Specialization: �Exploiting ILP diversity
	TLP Specialization: Exploiting TLP Diversity
	Unleashing the Potential of AMP systems
	Contents
	Direct SF measurement
	Estimating Speedup Factors
	Do Well-Balanced Parallel Applications benefit from using FCs?
	Utility Factor (TLP+ILP)
	Contents
	Goals of CAMP
	Utility Factor and Classes
	Utility Factor and Classes
	Contents
	Schedulers and Workload types
	Experimental setup
	Singlethreaded applications: �Efficiency Specialization
	ST and MT applications (set #1): �TLP Specialization
	ST and MT applications (set #2): �TLP Specialization
	Overall results
	Contents
	Conclusions
	Future Work
	Questions?

