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O Asymmetric Multicore Processors

o Asymmetric Performance
o Common ISA
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Efficiency Specialization: 2%
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TLP Specialization:
Exploiting TLP Diversity

CMPs > cores per chip T Not so “good” for sequential and non-

scalable parallel applications
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AMPs: offer the best of both worlds for multi-application workloads

Abundant “low- - - -
power” cores for - - -
running paraIIeI code - - -

Detection by OS: Runnable thread count

Cores with high single-
thread performance for:
eST apps.

e Accelerate seq. sections
of parallel applications




Unleashing the Potential of
AMP systems

o Efficiency Specialization: ST apps.
TLP Specialization: ST and MT apps

o Previous asymmetry-aware schedulers
employed one type of specialization only

=» Our goal Is to design the comprehensive
scheduling support to cater to TLP and ILP

diversity
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o Direct SF measurement

Monitor Instructions per second Migrate to FC Update SF
(IPS,.,) Of the current core type  phase to obtain IPS,,, Refresh
i change SF
] Assign to cores

o First evaluation of IPC-Driven done on a simulator
o Weimplemented it in a real OS and evaluated on real HW
o Two problems:
Inaccurate IPC ratios
Phase change may happen during measurement

Refreshing threads create load imbalance
Contention on scarce FCs
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Estimating Speedup Factors

o Ourscheduling policy relies on estimating SF on the
current core type

Cross-core migrations not required

- SF Model designed specifically for the asymmetric
system in question =» more complex

o We provide SF estimation model for cores differing in
frequencies

Estimate completion time for K instructions
CT= Computation Time + Stall Time

o Stall time estimated from Last-Level-Cache miss rates
(off-core requests)



Do Well-Balanced Parallel
e Applications benefit from using w
FCs?

Both fast and
slow cores
=> Keeping FCs
Busy

Slow cores only
Average SF WUpWiSE_m
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e Compact metric (ILP+TLP)
e For ST apps = UF=SF
* Foundation for CAMP
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Goals of CAMP e

o CAMP: A Comprehensive scheduler for Asymmetric
Multicore Processors

o Design goals:
Efficiency Specialization + TLP Specialization
Accelerate sequential parts of parallel applications
Boost SEQUENTIAL_PART threads without monopolizing FCs

Fair-Share scarce FC among threads that benefit the most
in the workload (HIGH_UTILITY threads)

Low runtime overhead

Light-weight mechanism to filter out short program phases and
reduce migrations

Topology-aware design

Avoid cross-LLC migrations when thread-to-core mapping
need readjusting
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Utility Factor and Classes

o Threads’ UFs guide scheduling decisions, so the OS needs to

monitor:
The runnable thread count of
the application (process)
LLC miss rate to estimate SF

Ufactory=

SFT;

(max(l, N””e“d“-@i é D))"

o UF of a thread determines its Utility Class

LOW_UTILITY

MEDIUM_UTILITY “ Lower
HIGH_UTILITY Upper

SEQUENTIAL_PART

IUF

Priority to
Run on FCs



Utiliry Factor
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=> A pair of thresholds (upper and lower)
determines the boundaries between utility
classes

=>» For ST apps UF ranges from 23% to 100%

=» When MT apps are present, UFs as low as 0%

CAMP adjusts thresholds dynamically
based on the workload
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Schedulers and Workload
types

CAMP vs. other schedulers:
Speedup Factor Driven (SFD) =» Efficiency Specialization only
Parallelism-Aware Scheduler (PA) = TLP Specialization only

Asymmetry-aware Round Robin Scheduler (RR) = Fair-shares
FCs

All schedulers implemented in OpenSolaris

We report gmean speedup over RR (per application and
workload)

Workloads (SPEC CPU 2006, OMP 2001, Minebench, ...)

o ST applications =>» Efficiency Specialization

o Wide variety of SFs

o Assess Accuracy SF model (comparison with “Best Static”)
o 2workload sets (ST and MT) = TLP specialization

o Wide range of apps: sequential portion and SF

o 10 Application pairs

o More than two apps.



Experimental setup
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gmean speedup over RR (%)

gmean speedup over RR (%)

Singlethreaded applications:
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=>» On the Intel platform, SFD and CAMP
behave better due to the higher accuracy of
the SF model
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ST and MT applications (set #1): o E
TLP Specialization
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= CAMP and PA performed comparably in most cases, because they both
considered TLP while SFD fails to deliver significant performance gains

= CAMP “properly” schedules memory-intensive sequential parts on SCs

Does Information on TLP+ILP bring further improvements?
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= CAMP delivers greater performance gains over PA (up to 13%) for
workloads that exhibit a wider diversity in memory-intensity

semphy B
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Overall results
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=» PA fails to deliver efficiency specialization (no speedup)
= SFD is unable to deliver performance comparable to CAMP for
workloads that include multi-threaded applications
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Conclusions

CAMP accomplishes an efficient use of an AMP system for a wide
variety of workloads

SFD does not cater to TLP diversity
PA does not take advantage of the ILP diversity of workloads
Key elements for the success of CAMP

The Utility Factor (UF) is a compact metric to account for
TLP+ILP of applications

Light-weight technique for discovering which threads utilize fast
cores most efficiently
Obtaining SF for a thread does not require running it on each core
type
Short program phases are filtered out to avoid premature
migrations

Considering the speedup factor in addition to TLP brings higher
performance improvements (up to 13%)

Evident for multi-application workloads exhibiting a wider variety
of memory intensity



Future Work

o Designing a methodology to find performance metrics to define
SF esimation models for highly-asymmetric systems:

Profound microarchitectural differences
Different cache hierarchy/size
=>» Not requiring cross-core migrations for obtaining SF
o Cache-aware version of CAMP

Light-weight policy that complements to asymmetry-aware
scheduling

Assess the impact of cross-core migrations aimed to keep fast
cores busy



Questions?
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