
A Comprehensive Scheduler
for Asymmetric Multicore

Systems

Juan Carlos Saez*, Manuel Prieto*,
Alexandra Fedorova**, and Sergey Blagodurov**
*Complutense University of Madrid
**Simon Fraser University

ArTeCS Group
Department of Computer Architecture

Complutense University
Madrid, Spain

SyNAR Group
Computing Science School

Simon Fraser University
Vancouver, BC. Canada

2

Contents

 Introduction
 Utility of applications
 Design and Implementation
 Evaluation
 Conclusions and Future Work

3

Asymmetric Multicore Processors

 Asymmetric Performance
 Common ISA

Fast Core:
• High Frequency
• Superscalar
• OOO execution
• Large area
requirements
• High power

Slow Cores:
• Lower frequency
• Single-Issue
• In order pipelines
• Reduced area
• Low power

Efficiency Specialization:
Exploiting ILP diversity

0x
0.2x
0.4x
0.6x
0.8x

1x
1.2x
1.4x
1.6x
1.8x

2x
as

ta
r

bw
av

es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II

ga
m

es
s

gc
c

G
em

sF
D

TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er

lb
m

le
sl

ie
3d

lib
qu

an
tu

m

m
cf

m
ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

xa
la

nc
bm

k

ze
us

m
p

S
pe

ed
up

 o
n

a
2.

3G
H

z
co

re

vs
. a

 1
.1

5G
H

z
co

re

Sensitive to CPU
performance:
• Use complex pipelines
efficiently
• Few pipeline stalls

Insensitive to CPU performance:
• High LLC miss-rate
• A lot of mispredicted branches
• Frequent pipeline stalls

SPEC CPU
2006

Speedup
Factor

5

TLP Specialization:
Exploiting TLP Diversity

CMPs  cores per chip 

Good performance for
scalable parallel applications

Not so “good” for sequential and non-
scalable parallel applications

get need

AMPs: offer the best of both worlds for multi-application workloads

Abundant “low-
power” cores for

running parallel code

Cores with high single-
thread performance for:
•ST apps.
•Accelerate seq. sections
of parallel applications

Detection by OS: Runnable thread count

Unleashing the Potential of
AMP systems

 Efficiency Specialization: ST apps.
 TLP Specialization: ST and MT apps
 Previous asymmetry-aware schedulers

employed one type of specialization only
 Our goal is to design the comprehensive

scheduling support to cater to TLP and ILP
diversity

7

Contents

 Introduction
 Utility of applications
 Design and Implementation
 Evaluation
 Conclusions and Future Work

Direct SF measurement

Monitor Instructions per second
(IPSslow) of the current core type

T

Migrate to FC
to obtain IPSfast

Assign to cores

phase
change

 First evaluation of IPC-Driven done on a simulator
 We implemented it in a real OS and evaluated on real HW
 Two problems:

 Inaccurate IPC ratios
• Phase change may happen during measurement

 Refreshing threads create load imbalance
• Contention on scarce FCs

The IPC-Driven algorithm

Update SF
Refresh

SF

Estimating Speedup Factors

 Our scheduling policy relies on estimating SF on the
current core type
+ Cross-core migrations not required
- SF Model designed specifically for the asymmetric

system in question  more complex
 We provide SF estimation model for cores differing in

frequencies
 Estimate completion time for K instructions
 CT= Computation_Time + Stall Time

 Stall time estimated from Last-Level-Cache miss rates
(off-core requests)

Do Well-Balanced Parallel
Applications benefit from using
FCs?

10

Both fast and
slow cores

 Keeping FCs
Busy

Slow cores only

Average SF Average SF

Utility Factor (TLP+ILP)

11

• Compact metric (ILP+TLP)

• For ST apps  UF=SF

• Foundation for CAMP

12

Contents

 Introduction
 Utility of applications
 Design and Implementation
 Evaluation
 Conclusions and Future Work

Goals of CAMP

 CAMP: A Comprehensive scheduler for Asymmetric
Multicore Processors

 Design goals:
 Efficiency Specialization + TLP Specialization
 Accelerate sequential parts of parallel applications

• Boost SEQUENTIAL_PART threads without monopolizing FCs
 Fair-Share scarce FC among threads that benefit the most

in the workload (HIGH_UTILITY threads)
 Low runtime overhead

• Light-weight mechanism to filter out short program phases and
reduce migrations

 Topology-aware design
• Avoid cross-LLC migrations when thread-to-core mapping

need readjusting

Utility Factor and Classes

 The runnable thread count of
the application (process)

 LLC miss rate to estimate SF

 UF of a thread determines its Utility Class
 LOW_UTILITY
 MEDIUM_UTILITY
 HIGH_UTILITY
 SEQUENTIAL_PART

 Threads’ UFs guide scheduling decisions, so the OS needs to
monitor:

UF
Priority to

Run on FCsUpper
Lower

Utility Factor and Classes
LOW_UTILITY MEDIUM_UTILITY HIGH_UTILITY

SF=UF

A pair of thresholds (upper and lower)
determines the boundaries between utility
classes
 For ST apps UF ranges from 23% to 100%
When MT apps are present, UFs as low as 0%

CAMP adjusts thresholds dynamically
based on the workload

16

Contents

 Introduction
 Utility of applications
 Design and Implementation
 Evaluation
 Conclusions and Future Work

Schedulers and Workload
types

 CAMP vs. other schedulers:
 Speedup Factor Driven (SFD) Efficiency Specialization only
 Parallelism-Aware Scheduler (PA)  TLP Specialization only
 Asymmetry-aware Round Robin Scheduler (RR) Fair-shares

FCs
 All schedulers implemented in OpenSolaris
 We report gmean speedup over RR (per application and

workload)
 Workloads (SPEC CPU 2006, OMP 2001, Minebench, ...)

 ST applications  Efficiency Specialization
 Wide variety of SFs
 Assess Accuracy SF model (comparison with “Best Static”)

 2 workload sets (ST and MT)  TLP specialization
 Wide range of apps: sequential portion and SF
 10 Application pairs
 More than two apps.

18

Experimental setup

1FC-12SC (AMD) 4FC-12SC (AMD)

2FC-2SC (AMD) 2FC-2SC (Intel)

chip

Inactive cores

FC

SC

ST applications

MT and ST applications

Property Description

Hardware
Platforms

•AMD Opteron system
(NUMA) with 4 quad-
core “Barcelona” chips
(16 cores)
• Intel Xeon system
(UMA) with 2 “quad-
core” chips (8 cores)

DVFS
Settings

AMD FCs @ 2.3 GHz
SCs @ 1.15 GHz

Intel  FCs @ 3.0 GHz
SCs @ 2.0 GHz

Singlethreaded applications:
Efficiency Specialization

CAMP and SFD perform similarly since
UF=SF for ST apps.

 CAMP performs within 1% range of Best
Static in the absence of phase changes but
outperforms it when they are present

On the Intel platform, SFD and CAMP
behave better due to the higher accuracy of
the SF model

 PA behaves like RR since it is unaware
of the efficiency of individual threads

AMD 2FC-2SC

Intel 2FC-2SC

ST and MT applications (set #1):
TLP Specialization

1FC-12SC

CAMP and PA performed comparably in most cases, because they both
considered TLP while SFD fails to deliver significant performance gains

 CAMP “properly” schedules memory-intensive sequential parts on SCs

Does Information on TLP+ILP bring further improvements?

ST and MT applications (set #2):
TLP Specialization

 CAMP delivers greater performance gains over PA (up to 13%) for
workloads that exhibit a wider diversity in memory-intensity

4FC-12SC

Overall results

 PA fails to deliver efficiency specialization (no speedup)
 SFD is unable to deliver performance comparable to CAMP for

workloads that include multi-threaded applications

2FC-2SC 1FC-12SC

23

Contents

 Introduction
 Utility of applications
 Design and Implementation
 Evaluation
 Conclusions and Future Work

Conclusions

 CAMP accomplishes an efficient use of an AMP system for a wide
variety of workloads
 SFD does not cater to TLP diversity
 PA does not take advantage of the ILP diversity of workloads

 Key elements for the success of CAMP
 The Utility Factor (UF) is a compact metric to account for

TLP+ILP of applications
 Light-weight technique for discovering which threads utilize fast

cores most efficiently
• Obtaining SF for a thread does not require running it on each core

type
 Short program phases are filtered out to avoid premature

migrations
 Considering the speedup factor in addition to TLP brings higher

performance improvements (up to 13%)
 Evident for multi-application workloads exhibiting a wider variety

of memory intensity

Future Work

 Designing a methodology to find performance metrics to define
SF esimation models for highly-asymmetric systems:
 Profound microarchitectural differences
 Different cache hierarchy/size
 Not requiring cross-core migrations for obtaining SF

 Cache-aware version of CAMP
 Light-weight policy that complements to asymmetry-aware

scheduling
 Assess the impact of cross-core migrations aimed to keep fast

cores busy

26

Questions?

	A Comprehensive Scheduler for Asymmetric Multicore Systems
	Contents
	Asymmetric Multicore Processors	
	Efficiency Specialization: �Exploiting ILP diversity
	TLP Specialization: Exploiting TLP Diversity
	Unleashing the Potential of AMP systems
	Contents
	Direct SF measurement
	Estimating Speedup Factors
	Do Well-Balanced Parallel Applications benefit from using FCs?
	Utility Factor (TLP+ILP)
	Contents
	Goals of CAMP
	Utility Factor and Classes
	Utility Factor and Classes
	Contents
	Schedulers and Workload types
	Experimental setup
	Singlethreaded applications: �Efficiency Specialization
	ST and MT applications (set #1): �TLP Specialization
	ST and MT applications (set #2): �TLP Specialization
	Overall results
	Contents
	Conclusions
	Future Work
	Questions?

