
A Comprehensive Strategy for Contention Management in
Software Transactional Memory ∗

Michael F. Spear† Luke Dalessandro† Virendra J. Marathe‡ Michael L. Scott†
†Department of Computer Science ‡Sun Microsystems Labs

University of Rochester
{spear, luked, scott}@cs.rochester.edu virendra.marathe@sun.com

Abstract
In Software Transactional Memory (STM), contention manage-
ment refers to the mechanisms used to ensure forward progress—
to avoid livelock and starvation, and to promote throughput and
fairness. Unfortunately, most past approaches to contention man-
agement were designed for obstruction-free STM frameworks,
and impose significant constant-time overheads. Priority-based ap-
proaches in particular typically require that reads be visible to all
transactions, an expensive property that is not easy to support in
most STM systems.

In this paper we present a comprehensive strategy for contention
management via fair resolution of conflicts in an STM with invis-
ible reads. Our strategy depends on (1) lazy acquisition of owner-
ship, (2) extendable timestamps, and (3) an efficient way to capture
both priority and conflicts. We introduce two mechanisms—one us-
ing Bloom filters, the other using visible read bits—that implement
point (3). These mechanisms unify the notions of conflict resolu-
tion, inevitability, and transaction retry. They are orthogonal to the
rest of the contention management strategy, and could be used in
a wide variety of hardware and software TM systems. Experimen-
tal evaluation demonstrates that the overhead of the mechanisms is
low, particularly when conflicts are rare, and that our strategy as
a whole provides good throughput and fairness, including livelock
and starvation freedom, even for challenging workloads.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.3
[Programming Languages]: Language Constructs and Features—
Concurrent Programming Structures

General Terms Algorithms, Design, Performance

Keywords Software Transactional Memory, Contention Manage-
ment, Priority, Inevitability, Condition Synchronization

∗ This work was supported in part by NSF grants CNS-0615139, CCF-
0702505, and CSR-0720796; and by financial support from Intel and Mi-
crosoft.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

1. Introduction
Software Transactional Memory algorithms typically achieve atom-
icity and isolation by acquiring written locations, either at en-
counter time (“eager acquire”) or at commit time (“lazy acquire”).
The choice between these strategies can have a profound impact on
latency and throughput, with eager systems vulnerable to livelock,
and lazy systems suffering from higher latency on reads.

Traditionally, ensuring throughput has been the focus of Con-
tention Management [8,16]. Originally proposed as an out-of-band
mechanism to avoid livelock in obstruction-free STM [10], con-
tention management has grown into an eclectic set of heuristic poli-
cies, few of which are optimal in any provable sense, and many of
which are specific to particular TM systems. The more sophisti-
cated policies (e.g., those of Scherer and Scott. [16]) require extra
bookkeeping on every memory access within a transaction.

No consensus has yet emerged on which form(s) of contention
management might be best, or even on how to choose. In a broad
sense, certain basic choices in STM design (e.g., use lazy ac-
quire) might be considered contention management. Certainly ad-
mission control (e.g., serialize with a global lock if livelock is sus-
pected) is a form of contention management. Most work, however,
has focused on the narrower problem of conflict resolution, which
chooses, when transactions conflict, which will continue and which
will wait or abort. Popular current policies for conflict resolution
include the following.

• Passive – In TL2 [4] and tinySTM [6], transactions self-abort
if they detect a conflict with a concurrent writer. This policy
ensures good throughput in workloads with a regular access
pattern.

• Polite – In the original DSTM [10], a transaction that discov-
ers a conflict defers to its competitor using bounded random-
ized exponential backoff. This allows many conflicts to resolve
themselves without aborts. (If the backoff limit is exceeded, a
waiting transaction aborts it competitor.)

• Karma – In an attempt to favor the transaction in which the
most work has been invested, Scherer and Scott track the num-
ber of transactional objects accessed by each in-flight transac-
tion (across all attempts), and give priority to the one with the
larger count [16].

• Greedy – By using visible reads (similar to reader/writer locks),
and favoring transactions with an earlier start time, Guerraoui
et al. are able, provably, to avoid both livelock and starvation,
at the cost of high latency on every read even in contention-free
workloads [8].

Though all these existing policies are effective in many situa-
tions, we are not aware of any that achieves the dual goals of (1) low

141

overhead for low-contention workloads and (2) good throughput
and fairness under high contention. We claim to do so in the cur-
rent paper. We also accommodate user-defined priorities, some-
thing that matters a great deal in application domains like soft
real time [7], but that is usually not achieved in existing TM sys-
tems. Even recent single-CAS STM systems, which are provably
livelock-free, address starvation using mechanisms that block low-
priority transactions, even in the absence of conflicts [14, 22].

In this paper, we introduce a comprehensive contention manage-
ment strategy for STM. Our strategy has three main components:
(1) lazy (commit-time) acquisition of written locations; (2) extend-
able timestamp-based conflict detection, in the style of Riegel et
al. [15]; and (3) an efficient and accurate means of capturing both
priority and conflicts. We introduce two mechanisms—one using
Bloom filters, the other using visible read bits—that implement
component (3). These mechanisms unify the notions of conflict
resolution, inevitability, and transaction retry. They force lower-
priority transactions to defer to higher priority transactions only in
the presence of actual conflicts. They are orthogonal to the rest of
the contention management strategy, and could be used in a wide
variety of hardware and software TM systems.

Experimental evaluation demonstrates that (a) the use of a care-
fully designed lazy STM does not sacrifice performance relative to
an eager design; (b) choosing lazy STM is itself an effective con-
tention management strategy, eliminating livelock in practice; and
(c) the mechanisms we propose to enable priority scheduling effec-
tively eliminate starvation, at reasonable cost, even for challenging
workloads.

We describe our baseline STM system in Section 2, focusing in
particular on the advantages of lazy acquire. We note that careful
data structure design can minimize the cost of the instrumentation
necessary for a transaction to read its own writes. As in TL2 [4]
and tinySTM [6], we perform fast validation of read set consis-
tency using per-transaction and per-object timestamps. When fast
validation fails, we apply tinySTM’s timestamp extension mecha-
nism to avoid aborts whenever possible. We suggest that the poor
performance of lazy acquire reported in previous papers may be
due primarily to the use of an STM system without timestamp ex-
tension. We describe our use of priority in Section 3, and two can-
didate implementations in Section 4. Performance results appear in
Section 5; conclusions are in Section 6.

2. Baseline Lazy System
High-performance STM implementations must provide both low
single-thread latency and good scalability. The first of these goals
tends to require low constant overhead on each read or write, while
the second focuses on avoiding unnecessary aborts and block-
ing/waiting. The principal mechanism upon which debate focuses
is the manner in which writes are performed. Throughout this sec-
tion, we refer to those mechanisms that acquire exclusive owner-
ship of to-be-written locations upon first access as “eager”, and
those that wait until commit time to acquire ownership as “lazy”.
We refer to the corresponding decision to perform writes in-place
and use undo logs as “undo”, with “redo” describing systems that
buffer speculative writes until commit time.

Our base STM uses lazy acquire, a table of ownership records
(1M in our current implementation), extendable timestamps [15],
and a hashtable-indexed write set. Prior work has argued that lazy
systems are fundamentally slower than eager systems. In this sec-
tion we demonstrate that two main performance arguments against
laziness can be mitigated by careful STM design, and argue that
lazy STM has a natural tendency to avoid pathologies that degrade
throughput.

Our experiments only consider eager acquire with undo logs;
results should extend naturally to eager systems with redo. We also

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 4 8 12 16 20 24 28 32

T
ra

ns
ac

tio
ns

/S
ec

on
d

Threads

Eager
Lazy-Vector
Lazy-Hash

Figure 1. Workload with large write sets, modeled as a linked
list with 8-bit keys, 95% lookups, and 5% overwrites. The list is
pre-populated to store all elements in the range 0–255. Overwrite
transactions modify every node in a randomly selected list prefix.
Adding a hash table for fast write set lookups eliminates the perfor-
mance gap between eager and lazy acquisition.

ignore differences in transactional semantics. In particular, weakly
atomic eager/undo systems appear to be incompatible with the Java
Memory Model prohibition on out of thin air reads [12], but are
considered here due to their performance. Additionally, while our
baseline system is compatible with Moore and Grossman’s type-
based semantics [13], the separation-based semantics of Abadi et
al. [1], and our own selective strict serializability [21], it does not
use TL2-style timestamps, and thus does not implicitly support
racy publication [12] or programs that exhibit only violation free-
dom [1].

All experiments in the remainder of this paper were conducted
on an 8-core (32-thread), 1.0 GHz Sun T1000 (Niagara) chip mul-
tiprocessor running Solaris 10. All benchmarks and STM runtime
libraries were written in C++ and compiled with g++ version 4.1.1
using –O3 optimizations. Data points are the average of five 5-
second trials, unless we explicitly state otherwise.

2.1 Write Set Lookup Latency
In previous lazy STMs, the cost of write-set lookups has been high
in large transactions. Felber et al. identify lookups as a significant
source of latency [6], and show that even in TL2, where a small
Bloom filter is used to avoid searching the write set on every read,
large write sets quickly saturate the filter and introduce noticeable
overhead. We argue that this overhead is not fundamental to lazy
STM. Most lazy STMs use a linear buffer (a vector) to represent
the write set, so after W writes by a transaction, each of R subse-
quent reads must perform an O(W) lookup in the set, resulting in
O(RW) aggregate overhead. We address this overhead by using a
hash table to map addresses to indexes in the linear write log, much
as in JudoSTM [14]. The hash table keeps versioned buckets which
enable O(1) reset, and resolves collisions with linear probing. We
rehash whenever the table reaches a 33% load, but do not shrink
the table on reset (transaction commit or abort).

Figure 1 contrasts this write set with an implementation using
a linear buffer (vector) and 32-bit filter. In the benchmark, trans-
actions access a sorted linked list holding 256 elements. 95% of
transactions are read-only. The remainder are “overwrite” transac-
tions, which write to every node in a randomly selected list prefix.
Simply replacing the vector with a hash table raises performance of
the lazy STM to the same level as an eager system with undo logs.

142

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 4 8 12 16 20 24 28 32

K
ilo

-T
ra

ns
ac

tio
ns

/S
ec

on
d

Threads

Eager-Extendable
Lazy-Pessimistic
Lazy-Extendable

Figure 2. Linked List with 8-bit keys, and an 80/10/10 lookup, in-
sert, remove ratio (no overwrites). The list is pre-populated to store
half of the elements in the range 0–255. TL2-style timestamps (pes-
simistic) scale noticeably worse than the “extendable” timestamps
of Riegel et al. With extendable timestamps, eager and lazy acquire
are almost indistinguishable.

In traditional microbenchmarks with small transactions (red-
black trees, lists, hash tables), we observed less than 2% overhead
when using a hash table instead of a vector to represent the write
set. The break even point is dependent on the test platform, the
total number of writes, and the distribution of reads and writes.
In a RandomGraph benchmark [11], where each batch of 2 writes
follows a batch of 256 reads on average, the vector can be up to
12% faster on our single-issue Niagara box, but up to 5% slower
on a 4-way Intel Core 2. All lazy STM implementations described
in the remainder of this paper use a hash-based write set.

2.2 Timestamps and Wasted Work
It has also been argued that lazy STM can scale worse than eager
STM due to wasted work [5, 6]. Suppose that transaction A writes
location L and then concurrent transaction B reads L before A
reaches its commit point. If A commits, all instructions issued by
B after its access to L constitute wasted work. (Of course, if B
reads L before A’s speculative write, and A commits first, all of
B’s work will be wasted in either eager or lazy STM.)

What is not as often recognized is that in a system with any
significant number of conflicts, there is a good chance that if B
aborts eagerly when it discovers its conflict with A, all the work
it has done so far will have been wasted if A subsequently fails to
commit. Conversely, if B forces A to abort, then all of A’s work
will have been wasted if B ultimately aborts. Eager STM typically
does not permit the possibility that B could commit before A in
this situation, but may allow B to spin in the hopes that A will
commit first. In the general case, deadlock avoidance requires that
eager STM must abort either A or B when a conflict is detected,
even though neither A nor B is guaranteed to succeed.

Evaluation of this fundamental tradeoff (past versus future
wasted work) appears to have been clouded by the fact that many
comparisons between eager and lazy STM have used TL2 [4] as
the lazy representative. While TL2-style timestamps result in low
latency, they are inherently pessimistic and reduce scalability by
aborting on some easily resolvable conflicts.

With TL2-style timestamps, a transaction T samples the current
time C from a global clock at begin time. If it ever encounters a
location whose most recent update occurred after C, T aborts and
restarts. In contrast, with the extendable timestamps of Riegel et

 0

 2

 4

 6

 8

 10

 12

 14

 0 4 8 12 16 20 24 28 32

K
ilo

-T
ra

ns
ac

tio
ns

/S
ec

on
d

Threads

Eager-Passive
Lazy-Passive
Lazy-Patient
Eager-Polite

Figure 3. RandomGraph benchmark. The blocking “Passive”
strategy avoids livelock. Polite, and other nonblocking strategies,
fail to prevent livelock for eager STM with invisible reads.

al. [15], T re-samples the global clock as C′, and then checks that
all of its past reads remain valid. If any check fails, the transaction
aborts. Otherwise the transaction’s execution is equivalent to one
in which all work so far was performed at time C′, so the transac-
tion sets its start time to C′ and continues. Extendable timestamp
implementations may require a handful of additional instructions
on every read, resulting in a slightly lower single-thread perfor-
mance than TL2. In a multithreaded execution, a transaction with
extendable timestamps may, in a pathological schedule, be forced
to validate on each of r reads. In TL2, the same transaction would
abort and restart r times.

Figure 2 compares a TL2-like algorithm to eager and lazy al-
ternatives that use extendable timestamps. All threads repeatedly
attempt to transactionally insert or remove 8-bit keys in a pre-
populated, sorted linked list. All runtimes are implemented in a
single C++ framework that isolates the differences in locking strat-
egy and timestamp management. In recent work by the tinySTM
group, Felber et al. [6] report similar experiments without the lazy-
extendable curve. They suggest that laziness alone (or more specifi-
cally, failure to detect conflicts early) is hindering scalability. How-
ever, when we combine lazy acquire with extendable timestamps,
scalability is on par with eager acquire.

2.3 Preventing Aborts
Both TL2 and tinySTM advocate a “Passive” contention manage-
ment strategy, in which transactions abort when they encounter a
lock. The combination of extendable timestamps and lazy acquire,
however, suggests a refined strategy (herein called “Patient”, as in
“willing to wait its turn”) that reduces the incidence of self-abort.

Assuming a lazy STM, a Patient transaction that encounters a
lock simply waits (yielding the CPU if there are more active threads
than cores). If this lock is the first instance of conflict between
the two transactions, then, assuming extandable timestamps, the
waiting transaction can simply revalidate and continue once the
lock holder commits. Since the waiting transaction is invisible,
its wait cannot block any other concurrent transactions. Moreover
aborting the lock holder would not make much sense either: the
lock holder must release the lock before the waiting transaction can
proceed, and since the lock holder is already in its commit protocol,
and about to finish up, aborting it is not likely to make it release the
lock much sooner.

When a transaction reaches its commit point, it attempts to
acquire all locks, and aborts if any of them cannot be acquired. This

143

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 4 8 12 16 20 24 28 32

T
ra

ns
ac

tio
ns

/S
ec

on
d

Threads

Eager-Passive
Lazy-Passive
Lazy-Patient

(a) Total Throughput

 0

 5

 10

 15

 20

 25

 30

Lazy-PatientLazy-PassiveEager-Passive

P
er

ce
nt

 o
f T

ot
al

 C
om

m
its

(b) Per-thread Commit Rate at 16 threads

Figure 4. Pathological microbenchmark. All threads transactionally access a 1024-element doubly-linked list, reading every entry and
modifying 8 entries. There are no write-write conflicts, but with half of the threads forward-traversing and half the threads traversing in
reverse, eager acquire is prone to livelock. Note that in the graph at right, eager-passive threads are getting relatively fair slices of an almost
nonexistent pie.

strategy minimizes the window in which a transaction’s completion
can cause blocking in concurrent active transactions. It is also most
compatible with the use of operating system scheduler hooks to
prevent preemption when locks are held: there is a good chance
a transaction will be able to complete its commit protocol during
the scheduler’s “grace period”; executing a sizeable chunk of the
transaction is much less likely.

In the related context of hardware TM, Bobba [3] describes
three main “performance pathologies” for lazy systems: A long-
running transaction may starve in the face of many small writers
who commit (“StarvingElder”); the commit protocol may serial-
ize transaction completion (“SerialCommit”); or, when conflicts are
high, transactions may convoy at their restart point (“RestartCon-
voy”) [3]. Of these three problems, SerialCommit does not apply to
our STM, since it does not use a single commit token (note, how-
ever, that some variants of RingSTM [22] and JudoSTM [14] do
suffer from this problem). Bobba suggests that a small amount of
backoff on abort appears sufficient to resolve RestartConvoy. Our
priority mechanism (Section 3) will resolve StarvingElder, and all
starvation.

2.4 Approaching Livelock Freedom
Unlike the hardware TM in Bobba’s study, our design uses invisible
reads and can admit livelock. While our mechanisms for preventing
starvation will naturally prevent livelock (by ensuring that someone
commits), we observe that, in practice, lazy STM avoids livelock
as well. The intuition is that, by design, a transaction holds locks
only for a brief period of time. Livelock occurs when lock-holding
transactions cause each other to abort. Most aborts occur when
a still-active transaction A discovers that some other transaction
B has modified a location that A has already read or written.
Generally this means that B has made progress. There are three
potential exceptions.

The first case arises when B is part-way through its commit
protocol, but has not yet committed. A’s abort will prove unneces-
sary if B subsequently fails to commit. But since B is already in
its commit protocol, it must abort for a different reason than A. So
this scenario alone cannot lead to livelock.

The second case arises when transactions have multiple write-
write conflicts, and are all in the lock-acquisition phase of the com-
mit protocol. If locks are acquired in sorted order, one of the trans-
actions is guaranteed to acquire all of its locks and progress to vali-
dation, while the others will abort. Sorting takes time, however, and
most implementations do not bother. As described previously, our
STM releases all locks and aborts when a held lock is encountered
during acquisition. This admits the possibility that two committing
transactions will abort because of each other. If this repeats, live-
lock is possible. Given the narrow width of the commit protocol,
however, and natural fluctuations in system timing, repeating mu-
tual aborts would seem exceedingly unlikely. Should they become
an issue, they could easily be addressed (as by Bobba et al.) with
randomized abort-time back-off.

The third case arises when transactions have symmetric read-
write conflicts, and are in the validation phase of the commit proto-
col (after acquiring locks). Transaction A, for example, may have
read location L and written location M , while transaction B has
written L and read M . During validation, transaction A detects
its read-write conflict first, but before it can unlock its locations,
transaction B detects its read-write conflict and also aborts. This
multiple-abort scenario can also occur when one of the read-write
conflicts is promoted to a write-write conflict, as when B writes
both L and M .

The odds of this third case are also very low. Our system uses a
global commit counter [18], allowing a transaction to notice when
no one has committed during its execution, and to commit itself
without performing validation, so this livelock condition will never
be seen in two-transaction situations because only one transaction
will be validating at any point in time (triggered by the other’s op-
timized commit). In a more-than-two-transaction context the likeli-
hood that multiple transactions (1) have symmetric read-write con-
flicts, (2) repeatedly validate at exactly the same time, and (3) fail
to release locks and abort quickly enough to avoid mutual aborts,
would seem to be vanishingly small, and can be further avoided
with randomized abort-time back-off. In repeated experiments, we
have been unable to devise any workload, no matter how contrived,
that will livelock a lazy STM with extendable timestamps even
without the backoff.

144

 0

 10

 20

 30

 40

 50

 60

 0 4 8 12 16 20 24 28 32

K
ilo

-T
ra

ns
ac

tio
ns

/S
ec

on
d

Threads

Eager-Passive
Lazy-Passive
Lazy-Patient

(a) Total Throughput

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 4 8 12 16 20 24 28 32

T
ot

al
 A

bo
rt

s

Threads

Eager-Passive
Lazy-Passive
Lazy-Patient

(b) Abort Rate

Figure 5. Forest microbenchmark. The forest contains one low-contention tree (80% lookups, 20-bit keys), three medium-contention trees
(50/50 insert/delete ratio, 8-bit keys), and one high-contention tree (50/50 insert/delete ratio, 4-bit keys). Each transaction performs eight tree
operations.

For eager STM, we have found that the Passive contention man-
agement policy (self-abort on conflict) is adequate when the mem-
ory access pattern is fairly regular. In Figure 3, for example, all
transactions start at the head of a list and progress forward. Unfor-
tunately, once the access pattern becomes irregular (for example,
when transactions can start at either end of a doubly linked list),
eager STM is prone to livelock (Figure 4(a)).

A potentially more troubling example appears in Figure 5. Here
each transaction performs 8 tree operations in a forest of 5 trees.
Tree operations can occur in any order, and different trees have dif-
ferent key ranges and lookup ratios. Measurements of a single-tree
workload show that eager STM with Passive contention manage-
ment performs well for any single tree configuration and for mul-
tiple trees under low thread counts, but suffers dramatically with
larger counts. In effect, for this benchmark, eager STM fails to
provide the “performance composability” that one would hope to
achieve in any STM system.

3. Defining Priority
The STM of Section 2 provides good throughput and generally
avoids livelock. However, it can experience starvation, as shown
in Figure 4(b). The experiment runs for a fixed time interval, and
all transactions conflict. While the lazy runtimes maintain good
throughput, they do so without any concern for fairness. Instead
of providing an even 6.25% of the total commits, some threads
perform much more than their fair share (up to 25%) while other
threads perform as little as 1%. The apparent fairness of the eager
runtime is an implementation artifact: the entire benchmark is live-
locked, each thread is guaranteed to commit once, and there are
only 20 total commits for the 5-second, 16-thread execution.

In this section we describe the requirements for a user-level
priority mechanism, and then show how that mechanism can be
augmented to transparently prevent starvation and provide fairness,
while also unifying other transaction scheduling constructs, namely
retry-based condition synchronization and inevitability.

3.1 Fairness
There is no agreed-upon definition of fairness for concurrent work-
loads. Certainly it is not desirable for transactions to starve; how-

ever, only the programmer can determine which transactions are
relatively more important than others. Thus we use programmer-
specified priority as the principal mechanism for selecting a fair
schedule for transactions. All transactions have zero priority un-
less explicitly marked otherwise. If the programmer assigns trans-
action H higher priority than transaction L, then the runtime should
ensure that L’s writes do not prevent H from committing, most
likely by preventing L from committing. However, we agree with
Gottschlich and Connors [7] that if L and H do not conflict, then
L should not be prevented from committing when H is active.
The requirement that L can commit so long as it does not con-
flict with H is a departure from most previous work on starvation
avoidance. Previous proposals either promoted H to an inevitable
state [14, 19, 24], in which it cannot abort, or else serialized trans-
action commit [22]. Serialization can avoid starvation entirely, but
it does so at the expense of any write concurrency in systems with
invisible readers: once a starving transaction is identified and given
priority, other transactions, even if they are nonconflicting, cannot
commit unless they are read-only; allowing writers to commit could
otherwise introduce conflicts with the priority transaction’s reads.

If L and H have the same priority, we do not require the runtime
to provide any guarantees about the order in which the transactions
commit. More importantly, if a workload admits an infinite set
of transactions K of equal priority, our default model of priority
does not guarantee that every K ∈ K will eventually commit;
some may starve if there are continuous conflicts with concurrent,
same-priority transactions who succeed. In other words, we do not
guarantee fairness among equal priority transactions. This choice is
made for the sake of practicality; we do not contend that it provides
ideal semantics. To avoid starvation, we will actively manipulate
priorities.

The main challenge to priority-based conflict resolution is the
lack of read visibility [7,8]. In order to prevent a low priority write
from interfering with a high priority read, the low priority transac-
tion must somehow be aware of the read. This property is not typ-
ically provided in STM, due to the overhead (cache ping-ponging
in particular) of visible reader lists. However, since our baseline
STM provides good throughput without user-defined priority, we
need only provide read visibility for transactions with nonzero pri-
ority. When no such transactions exist, the runtime should incur

145

only a small constant overhead at commit time. Only when transac-
tions with nonzero priority are in-flight should additional overheads
apply.

In a lazy STM, priority-related overhead occurs at only three
points. First, a priority transaction must make its reads visible in
some fashion, incurring constant overhead on each of R reads. Sec-
ond, when there exist any priority transactions, committing writ-
ers must ensure that their commit would not invalidate concurrent
higher-priority reads. In a lazy STM, this test is performed after
acquiring all locks, and for a transaction with W writes, should in-
troduce no more than O(WP) overhead, where P is the number
of higher-priority transactions. If priority conflicts are detected, the
committer can either release all locks and wait, or else abort. The
latter option is simpler, and aborting in this situation meshes well
with a Karma-like mechanism to avoid starvation by automatically
elevating priority after consecutive aborts. Third, when an in-flight
priority transaction H detects a conflict with a lower-priority lock
holder L, it must wait for the lock holder to release the lock. If
L acquired all locks before H’s first access to the location, L can
commit, at which point H will reload the lock covering the con-
flicting location, and extend its timestamp. If L acquired all locks
after H’s first access to the location, then L will detect H’s access
and abort. In either case, the delay for H should be minimal.

3.2 Supporting Inevitability
A program might require transactions to perform I/O or other
irreversible operations. The underlying mechanism for these must-
be-inevitable transactions requires that (1) at most one transaction
is inevitable at any time, and (2) no concurrent transaction may
cause an inevitable transaction to abort [20]. When inevitability
is used to call un-instrumented, precompiled binaries, or to make
system calls, it may also require that (3) all writes are performed
in-place [19, 20, 24], which usually also requires encounter-time
(eager) locking for the inevitable transaction only. The first two
of these conditions are easily expressed in our priority framework,
and suffice for systems without precompiled libraries: we need only
require that the highest priority level can be assigned to no more
than one active transaction. Support for encounter-time locking and
in-place update by the inevitable transaction, if needed, must be
provided by the STM runtime. As long as the runtime and priority
manager agree that a transaction is inevitable, this requirement is
straightforward to implement using existing techniques.

3.3 Integrating Retry
Typically, programmers perform transaction condition synchro-
nization via a retry mechanism. With retry, an in-flight transaction
determines, through reads of shared memory, that a precondition
for its execution does not hold. At this point, the transaction re-
quests that the runtime abort it, and not reschedule it until some
location in its read set is modified by another transaction [9, 23].
In our priority framework, these transactions are assigned negative
priority once they call retry. Once negative priority is assigned, a
transaction makes all of its reads visible, double-checks its read
set validity, and then waits for notification that one of its reads
has been invalidated. Upon wakeup, negative priority is discarded.
Since we use lazy acquire, when these transactions are restarted
they will not hold locks before reaching their commit point, which
prevents retryers from blocking concurrent transactions that might
actually satisfy the condition on which transactions are waiting (a
useful property since retry admits spurious wakeups). Furthermore,
since retryers have negative priority, no concurrent transaction is
required to negotiate when writing to locations they have read.

3.4 Automatic Priority Elevation
When there are no user-specified priorities, transactions default to
a mode in which no priority overhead is incurred. However, as
noted in Section 2.4, this mode admits the possibility of livelock (in
theory) or starvation (in practice). Likewise, at any priority level,
some transaction may starve while others commit, as discussed in
Section 3.1. Given an implementation of priority, however, a simple
Karma-like mechanism suffices to break starvation. Inasmuch as
livelock is the condition of all transactions starving, our Karma
mechanism also addresses livelock.

Starvation detection is quite simple: a transaction need only
count its consecutive aborts, and use that value as its Karma. We
propose two possible mappings of Karma to priority. With a static
mapping, for some user-specified constant X we define priority
as bKarma/Xc, that is, for every X consecutive aborts, a trans-
action’s priority increases by 1. With load-sensitive mapping, for
some constant X and transaction count T , a transaction’s prior-
ity is bKarma/(XT)c. This mapping captures the intuition that a
transaction that takes X times as long as the next longest-running
transaction could expect in the worst case to observe aborts pro-
portional to both the amount of concurrency and the difference in
transaction length. An abort rate above this level can then be con-
sidered unfair (or possibly starvation). To compose Karma-based
priority elevation with user-requested priority, we simply raise a
transaction to the sum of its Karma priority and its requested prior-
ity. Once a transaction succeeds, its Karma is discarded.

While even the composition of Karma, priority, and randomized
exponential backoff on abort do not lead to a provably livelock-
free or provably starvation-free system, we expect in practice to
avoid both pathologies. Furthermore, combining exponential back-
off with priority-based starvation avoidance should resolve all of
the “pathologies” identified for lazy hardware TM by Bobba et
al. [3].

4. Implementation
In this section we present two independent mechanisms to imple-
ment priority. Both mechanisms use the same interface, presented
in Listing 1, to interact with the STM runtime library. Below we
briefly discuss how priority is supported via this interface. For sim-
plicity, we consider only those situations where inevitability or pri-
ority is assigned before any transactional work is performed. Ex-
tending this interface to support dynamic changes to priority (to
include inevitability) is straightforward [19].

Our mechanisms require that transactions with nonzero priority
make their reads visible to concurrent transactions. We use Bloom
filters and RSTM-style visible reader bits [11], respectively, to pro-
vide this visibility. In both cases, the mechanism for read visibility
is implemented within the priority manager, and completely trans-
parent to the underlying STM. In particular, in contrast to RSTM,
the visible reader bits are not part of the usual per-location meta-
data, and need not even be allocated at the same granularity. We
leave as future work the various ways in which the priority manager
might be specialized to an STM implementation, such as by pass-
ing RingSTM’s Bloom filters to the preCommit, postCommit, and
preRetry methods [22], or by using tinySTM ownership record
addresses as parameters to preOpen and preRetry.

Prioritizing Reads The requestPrio() method attempts to
raise a transaction’s priority by first reserving a visible read handle,
and then associating that handle with the requested priority. Ev-
ery subsequent read must then be preceded by a preOpen() call.
When a transaction with nonzero priority calls preOpen(), the
priority manager makes the caller a visible reader of the location.
The STM is responsible for blocking after this call if the location
is locked, and extending timestamps accordingly once the location

146

Listing 1 Interface between priority manager and STM library
void onBegin() sets priority based on karma
bool tryInevitable() request MAX PRIO
void requestPrio(level) attempt to raise priority
void preOpen(addr) mark priority on address
void onAbort() backoff or yield, increase karma,

and then unmark priority
bool preCommit(wset) return false if there exists a higher

priority txn with a conflicting read
void onCommit() clear karma, unmark priority
void preRetry(rset) mark priority on read set
void postRetry() wait for notification, then unmark

priority
void postCommit(wset) wake any retryer whose rset over-

laps wset

is released. When write-read ordering is required by the proces-
sor memory model, it is provided within the call. Unlike previous
work, this approach incurs no overhead in the common case. In
contrast, Scherer and Scott’s policies [16] require statistics gather-
ing on every access. The Greedy policy [8] requires every read to
be visible, even for transactions with no priority, in workloads that
do not exhibit fairness pathologies.

Prioritizing Writes Since most writes follow reads to the same
address, the STM can call preOpen on every write, as well as every
read. While not strictly necessary, this decision simplifies many
code paths in lazy STMs that use extendable timestamps.

Detecting Priority Conflicts A committing transaction could in-
spect every location after acquiring its lock, to identify all concur-
rent prioritized readers. We prefer, however, to acquire all locks and
then perform a single call to identify conflicts between the commit-
ting writer and concurrent, higher-priority readers. In the common
case, this call finds that there are no priority transactions and does
no further work. When there are priority transactions, deferring de-
tection of priority transactions until after all locks are held either
enables us to work with a single summary of the write set (in the
Bloom filter mechanism) or filter multiple potential conflicts (in the
visible reader bit mechanism), saving substantial work.

Inevitability Inevitability support is provided through a custom
implementation of the requestPrio() method, which ensures at
most one transaction holds maximum priority at any time.

Retry To retry, the STM first calls preRetry() to make all reads
visible, then validates (to avoid a window in which the only trans-
action that could wake the retryer commits and invalidates the
retryer’s read set). If the validation succeeds, the runtime then
calls postRetry() to force the thread to wait on a semaphore.
As with priority, we maintain a count of the number of retrying
transactions. Once a writer commits and releases its locks, it calls
postCommit() to wake any retryers whose reads it invalidated.
When there are no retryers, this call does no further work. When
retryers exist, the implementation of postCommit closely resem-
bles preCommit, except that it searches for conflicting retryers
rather than conflicting higher-priority transactions.

Karma The onBegin, onAbort, onCommit, and preRetry calls
manipulate a consecutive abort counter, which is used to compute
karma. When karma is used for priority elevation, the requestPrio
method adds karma-based priority to the request, and uses the sum
as the new transaction priority. Once the transaction completes, the
abort counter is reset, which discards any accumulated karma.

4.1 Priority Read Bits
Our first mechanism for priority adapts the visible reader bits em-
ployed in RSTM [11]. The mechanism maintains an active trans-

action table (ATT) with T entries, each corresponding to an active
transaction with nonzero priority. It also maintains L reader records
(rrecs), and uses a hash function to map addresses to rrecs, much
like the mechanism used to map locations to ownership records in
STM. Each rrec is a T -bit array, where each bit corresponds to an
entry in the table of active transactions.

The requestPrio() method succeeds only if the transaction
(call it R) is able to identify an unreserved element I in the ATT
and atomically point that element to itself. If the call succeeds, a
subsequent call to preOpen() first locates the rrec corresponding
to the input address, and then atomically sets the Ith bit of that rrec.
R also adds the rrec to a transaction-local log, so that it can clear
the Ith bit when it ultimately commits or aborts. If R is unable
to reserve an entry in the ATT, it still records its priority, in the
hope that it can run to execution without protecting its reads with
rrec updates. If it cannot, it will attempt to reserve an ATT entry
each time it restarts, until it either reserves an entry or commits. As
we shall see below, by incrementing its priority, the caller enables
itself to avoid incorrect aborts due to conflicts with same- or lower-
priority transactions who successfully reserved ATT entries.

The preCommit() call takes as a parameter the write set whose
corresponding locks were just acquired by the calling transaction.
For each address written, the corresponding rrecs are unioned into
a single summary rrec. For W writes, this introduces O(WT)
overhead. After the summary rrec is built, each bit is tested; if
any bit i is nonzero, and the ith element of the ATT represents a
transaction with higher priority than the caller, then preCommit()
returns false and the caller aborts. This step takes at most O(T)
time. Aborting lets the caller defer to the higher priority transaction
while simultaneously incrementing karma, to avoid starvation.

The wakeup phase of our retry mechanism works almost iden-
tically, though conflict tests are performed only after the writing
transaction completes. If both priority and retry transactions exist,
the summary rrec created by preCommit() can be recycled; other-
wise, a new summary must be created. Then, each bit is tested, and
any bit corresponding to an ATT entry with −1 priority is awoken.
Retryers, for their part, simply mark all rrecs corresponding to loca-
tions they have read in preRetry(). As with the requestPrio()
call, if a retryer is unable to reserve an ATT entry, it does not mark
its reads. A subsequent call to postCommit() will not wait on
a semaphore, but rather call usleep() to yield briefly and then
restart.

Our rrecs offer three significant advantages over traditional list-
based visible readers. First, the use of a global table of rrecs avoids
any need for dynamic memory allocation. Second, the rrecs cover-
ing multiple locations can simply be unioned to create a complete
list of potentially conflicting transactions, with no duplicate entries.
List-based implementations typically lack such low-overhead filter-
ing. Third, for large values of T , SIMD instructions can be used on
many architectures to accelerate the creation of the summary rrec.

While we prefer the use of a single ATT with wide (128 bit or
more) rrecs, it is possible to support multiple ATTs, corresponding
to different ranges of priority. ATTs could then be configured with
different rrec counts L and different rrec widths T . A particularly
appealing option is to maintain two ATTs, one for the inevitable
transaction and one all other priority transactions. This design point
eliminates the need for atomic updates to the inevitability rrecs:
since only one transaction can be inevitable, only one transaction
can modify rrecs, and it can do so with a normal store followed by
a write-before-read memory fence. On processors whose memory
fences are cheaper than read-modify-write operations, this option
is particularly appealing.

147

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 4 8 12 16 20 24 28 32

T
ra

ns
ac

tio
ns

/S
ec

on
d

Threads

Base
Bloom

Bloom/no WBR
VisRead

(a) Total Throughput

 0

 5

 10

 15

 20

 25

 30

 35

VisReadBloom/no WBRBloomBase

P
er

ce
nt

 o
f T

ot
al

 C
om

m
its

(b) Per-thread Commit Rate at 16 threads

Figure 6. The cost of priority-based starvation freedom in a pathological microbenchmark. Transactions write every entry of a 256-element
doubly-linked list, traversing in forward or reverse order. Transactions increment priority on 16 consecutive aborts.

4.2 Priority Read Filters
Our second mechanism for priority uses Bloom filters [2] to make
reads visible. Unlike priority read bits, this mechanism has no
fixed memory footprint. Instead, it maintains a list of transactions
with nonzero priority. Each list entry consists of a reference to
the corresponding transaction, and a Bloom filter representing the
addresses passed by that transaction to preOpen().

The requestPrio() method is far simpler with this implemen-
tation: it simply appends an entry to the list (or, if list entries are
never removed, activates the disabled list entry corresponding to
the calling transaction). Calls to preOpen() mark the bits in the
filter corresponding to the address being read by the priority trans-
action, and then perform a write-before-read memory fence.

At commit time, transactions scan the global list for entries cor-
responding to higher-priority transactions. For each entry, the trans-
action must check if any address in its write set is stored in the
filter. When filters are configured with a single hash function, this
operation can be heavily optimized. The preCommit() function
first constructs a filter representing the caller’s entire write set. It
then intersects this filter with the filter corresponding to any higher-
priority active transaction’s reads. If an intersection is nonzero,
the calling transaction aborts. This optimization results in O(W)
overhead to construct the committer filter, and then with N con-
current transactions, at most O(N×sizeof(filter)) overhead
to perform the intersections. With multiple hash functions, there
is O(WN) overhead to detect conflicts with concurrent priority
transactions. Throughout our analysis, we treat the cost of filter in-
tersection and clearing as constants; with SIMD instructions these
constants can be kept relatively low, allowing larger filters which
decrease the false conflict rate and lower susceptibility to the “birth-
day paradox” [25].

Again, retry wakeup works in the same manner as preCommit(),
though conflict tests are performed after the writer commits. The
write-set filter constructed to detect conflicts with priority read-
ers can be reused to identify which retryers to wake. Furthermore,
preRetry() does not require write-before-read ordering after ev-
ery filter update, only after the last update.

It is possible to vary the filter size and set of hash functions
for different priority levels, and to maintain multiple lists storing
filters of different priority ranges. However, these refinements risk

introducing more overhead to maintain the lists of transactions with
nonzero priority. As presented above, our mechanism is simple,
amenable to SIMD optimization (both for clearing and for inter-
section), and requires only one pass through a transaction’s write
set for all retry and priority conflict detection.

Relaxing Memory Fence Requirements For all priority levels
below the maximum (inevitable) level, we assume it is acceptable
for conflicts to occasionally be won by lower priority writers. Given
this relaxation, we can eliminate the write-before-read memory
ordering for insertions into the filter for priority (but noninevitable)
transactions. With this optimization, the read filter updates may fail
to propagate to a concurrent, lower-priority writer, in which case
the higher priority transaction must abort and restart. In practice,
we expect such aborts to be rare. In the subsequent evaluation, we
refer to results using this optimization as “no WBR”.

5. Evaluation
In previous sections, we demonstrated that lazy STM can avoid
aborts, avoid livelock, and provide good throughput, especially
in situations where eager STM experiences pathological behavior.
These results did not, however, require our priority mechanism;
they only required a carefully engineered lazy STM. We now turn
our attention to the effectiveness of our policies in avoiding starva-
tion. All results were collected on the Niagara platform described
in Section 2.

5.1 Breaking Write-Write Starvation
In Figure 6, we consider a doubly-linked-list microbenchmark.
Half of the threads use transactions to forward-traverse the list; the
remainder perform reverse traversal. Every transaction attempts to
increment a counter in each node of the list.

Naturally, the benchmark does not scale, and as threads are
added, we expect contention for global variables to cause some
degradation. However, in the “Base” bars of Figure 6(b), we see
that threads commit in highly unequal proportion. In some runs,
a single thread may perform 30% of total commits, while other
threads do not commit even one transaction during the 5-second
experiment.

In the Bloom, Bloom / no WBR, and VisRead curves, transac-
tions use a priority-based contention manager with karma to break

148

 0

 50

 100

 150

 200

 250

 300

 0 4 8 12 16 20 24 28 32

K
ilo

-T
ra

ns
ac

tio
ns

/S
ec

on
d

Threads

Ideal
Privatize

Privatize+Bloom
Privatize+VisRead

Priority: Bloom
Priority: VisRead
Inevitable: Bloom

Inevitable: VisRead

Figure 7. Extensible Hashing. Each transaction performs 8 ran-
dom puts into an extensible hash table. Rehashing can be performed
inevitably, with priority, or via privatization (locking). Ideal uses a
large table that never requires rehashing for this workload.

starvation. For every 16 consecutive aborts, a transaction incre-
ments its priority. As these mechanisms introduce additional la-
tency (particularly on the single-issue cores of our test platform),
resorting to priority degrades throughput (Figure 6(a)) up to 50%.
However, karma also increases fairness. While individual threads
may commit up to twice as often as each other, no thread has less
than 4% of the total commits (the expected average is 6.25%). In
contrast, without priority some threads do not commit at all. Vis-
ible reads appear particularly fair, though this observation may be
tainted by their lower throughput and the fact that commit rates
are a snapshot for a single 16-thread execution. Some of this lost
throughput can be restored by changing the karma parameters, us-
ing a load-sensitive mapping of aborts to karma, or adding random-
ized exponential backoff on abort.

We also note that avoiding memory fences accelerates priority
transactions, thereby raising throughput, without decreasing fair-
ness. Writes propagate quickly enough that the relaxed ordering is
unlikely to result in false conflicts. At the same time, fences are rel-
atively inexpensive on the Niagara processor, and the single-issue
pipeline means that the computational part of the Bloom filter up-
date is on the critical path of every read. As a result, the latency
reduction of elided fences is minimal. On a SunFire 880, where
fences are still fairly inexpensive, excess issue width allows us to
soak up much of the rest of the update cost, and eliding the fence
reduces the cost of instrumentation by 15–25%.

5.2 Read-Write Starvation
To evaluate read-write starvation, we consider a new microbench-
mark, based on an extensible hash table. The table is created by
a factory, which registers each constructed table in a private list.
The factory also runs a management thread, which polls every con-
structed table, and rehashes whenever a table exceeds some thresh-
old (in our experiments, rehashing occurs when some bucket con-
tains more than 4 elements). On every put operation, transactions
estimate the depth of the bucket into which the put is performed. If
the depth exceeds some boundary, the put operation also updates a
flag indicating that the table requires rehashing.

The management thread checks the flag of every table, in a
single transaction. If no table’s flag is set, the thread uses retry
to sleep until some flag is set, indicating that some table requires
rehashing. Whenever a set flag is encountered, the management
thread immediately exits the polling transaction, rehashes the table,

resets the flag, and then starts a new polling transaction to test all
flags. Using retry in this manner ensures that the rehash thread does
not consume CPU resources when it is not actively rehashing. In
our experiments, retry is infrequent enough that we cannot measure
the difference between visible read bits and Bloom filters.

We consider three approaches to rehashing. First, with in-
evitability, the rehash thread can avoid the latency of write buffer-
ing or undo logging, as it is given infinite priority and guaranteed
that it will not abort. Second, with high but not infinite priority,
these guarantees are not provided, but the rehash thread still is un-
likely to starve. Neither inevitability nor priority forbids concurrent
read access. Thirdly, we consider rehashing via privatization [12].
This idiom effectively locks the table, reads it nontransactionally
during rehashing, and then unlocks it with a “publishing” transac-
tion. Concurrent puts that encounter the lock use retry to avoid
unnecessary waiting.

In Figure 7, we consider a workload where each transaction
performs 8 puts into the hash table, and put transactions run with
fixed priority 0. The ideal curve uses a table that is initially very
large, and which does not require rehashing. All other curves use
an initial table with 8 buckets. Each test performs a total of 64K
transactions, divided among the active threads. The degradations
at 8 and 16 threads reflect the fact that the Niagara processor
has 32 thread contexts, but only 8 cores; analogous though less
pronounced effects can be seen in Figure 6 at 8 and 16 threads.

If the rehash thread also runs with priority 0, it starves (not
shown), and the benchmark takes more than 30 seconds to com-
plete. Worse yet, the benchmark then fails to scale at all, as most
transactions conflict on at least one bucket. With any rehash mech-
anism that does not starve, we see strong scaling.

From a semantic perspective, priority is clearly the preferred
approach to this problem. Privatization (locking) decreases concur-
rency by forbidding all access to the table during rehashing. De-
pending on the mechanism used [20], inevitability may jeopardize
concurrency in other ways. Suppose the benchmark also included
a thread that used transactions to perform I/O. Since inevitability
is restricted to one transaction at a time, the arbitrary decision to
use it for rehashing (as a performance optimization) would prevent
a concurrent transaction from using it where semantically required.
Additionally, if a high-priority request to write to the table arises
during rehashing, we would really like the rehash to be abortable.
Furthermore, inevitability may preclude composing the rehashing
code within another transaction [17, 24].

Fortunately, priority also offers competitive performance, match-
ing the throughput of inevitability and performing better than two
of the three privatization options. Visible reads appear to perform
slightly worse than Bloom filter-based priority. This may, however,
be an artifact of filter and read bit configuration. We maintain an
array of 1M 128-bit visible reader bits, but use only 1024-bit fil-
ters. Thus if higher-priority execution represented a larger fraction
of total execution, our filters would cause more false conflicts than
the read bits. Increasing the filter size to improve scalability would
also reduce performance, especially without SIMD instructions.

The variation among privatization options relates directly to
the implementation of retry. The default “Privatize” curve as-
sumes no retry support, and instructs retryers to call usleep(50)
(50µs is the shortest observable yield interval supported by the
OS). The “Privatize+Bloom” and “Privatize+VisRead” curves im-
plement retry as negative priority using Bloom filters and rrecs,
respectively. As in Figure 6, the lower overhead of the Bloom filter
mechanism gives it an advantage relative to the visible reader im-
plementation. The advantage is exaggerated since all retryers wait
on the same location, resulting in cache thrashing as they atomi-
cally update the same rrec in order to become retryers, and then to
release their retry status.

149

6. Conclusions
In this paper, we proposed a comprehensive strategy for contention
management in software transactional memory, based on (1) lazy
acquire, (2) extendable timestamps, and (3) an orthogonal mecha-
nism to capture the read sets of transactions with non-default pri-
ority. We presented two different implementations of the priority
mechanism, one based on Bloom filters, the other on visible read
bits. These implementations allow us to unify priority, retry-based
condition synchronization, and inevitability under a single mecha-
nism orthogonal to the underlying STM.

Our strategy stands in sharp contrast to early work on contention
management [8, 16]. That work focused on eager acquire, where
livelock is a serious problem. It was also evaluated on systems
whose comparatively high total overhead tended to mask the in-
cremental cost of “hooks” for contention management. Our work
focuses on lazy acquire in a highly optimized runtime. We argue
that extendable timestamps make lazy acquire competitive with ea-
ger acquire for “well behaved” applications. Further, for “poorly
behaved” applications, the narrow commit window of lazy acquire
allows it to dramatically outperform eager acquire, effectively elim-
inating livelock as a practical concern. In this context, an extremely
simple “Patient” policy for contention management (wait until the
lock holder gets out of the way) minimizes unnecessary aborts.
Starvation and priority can then be handled safely with a separate
mechanism.

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of

Transactional Memory and Automatic Mutual Exclusion. In Conf.
Record of the 35th ACM Symp. on Principles of Programming
Languages, San Francisco, CA, Jan. 2008.

[2] B. H. Bloom. Space/Time Trade-Off in Hash Coding with Allowable
Errors. Comm. of the ACM, 13(7):422-426, July 1970.

[3] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood. Performance Pathologies in Hardware Transactional
Memory. In Proc. of the 34th Intl. Symp. on Computer Architecture,
San Diego, CA, June 2007.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In
Proc. of the 20th Intl. Symp. on Distributed Computing, Stockholm,
Sweden, Sept. 2006.

[5] A. Dragojević, R. Guerraoui, and M. Kapałka. Dividing Transactional
Memories by Zero. In Proc. of the 3rd ACM SIGPLAN Workshop on
Transactional Computing, Salt Lake City, UT, Feb. 2008.

[6] P. Felber, T. Riegel, and C. Fetzer. Dynamic Performance Tuning of
Word-Based Software Transactional Memory. In Proc. of the 13th
ACM Symp. on Principles and Practice of Parallel Programming,
Salt Lake City, UT, Feb. 2008.

[7] J. Gottschlich and D. A. Connors. Extending Contention Managers
for User-Defined Priority-Based Transactions. In Workshop on
Exploiting Parallelism with Transactional Memory and other
Hardware Assisted Methods (EPHAM), Boston, MA, Apr. 2008.
In conjunction with CGO.

[8] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of
Transactional Contention Managers. In Proc. of the 24th ACM Symp.
on Principles of Distributed Computing, Las Vegas, NV, Aug. 2005.

[9] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
Memory Transactions. In Proc. of the 10th ACM Symp. on Principles
and Practice of Parallel Programming, Chicago, IL, June 2005.

[10] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
Transactional Memory for Dynamic-sized Data Structures. In Proc.
of the 22nd ACM Symp. on Principles of Distributed Computing,
Boston, MA, July 2003.

[11] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. Scherer III, and M. L. Scott. Lowering the Overhead of
Software Transactional Memory. In Proc. of the 1st ACM SIGPLAN
Workshop on Transactional Computing, Ottawa, ON, Canada, June
2006. Expanded version available as TR 893, Dept. of Computer
Science, Univ. of Rochester, Mar. 2006.

[12] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics
for Java STM. In Proc. of the 20th Annual ACM Symp. on Parallelism
in Algorithms and Architectures, Munich, Germany, June 2008.

[13] K. F. Moore and D. Grossman. High-Level Small-Step Operational
Semantics for Transactions. In Conf. Record of the 35th ACM Symp.
on Principles of Programming Languages, San Francisco, CA, Jan.
2008.

[14] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A Dynamic
Binary-Rewriting Approach to Software Transactional Memory. In
Proc. of the 16th Intl. Conf. on Parallel Architectures and Compilation
Techniques, Brasov, Romania, Sept. 2007.

[15] T. Riegel, C. Fetzer, and P. Felber. Time-based Transactional Memory
with Scalable Time Bases. In Proc. of the 19th Annual ACM Symp.
on Parallelism in Algorithms and Architectures, San Diego, CA, June
2007.

[16] W. N. Scherer III and M. L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. In Proc. of the 24th
ACM Symp. on Principles of Distributed Computing, Las Vegas, NV,
July 2005.

[17] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. Transactions
with Isolation and Cooperation. In Proc. of the 22nd OOPSLA,
Montréal, PQ, Canada, Oct. 2007.

[18] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L. Scott. Conflict
Detection and Validation Strategies for Software Transactional
Memory. In Proc. of the 20th Intl. Symp. on Distributed Computing,
Stockholm, Sweden, Sept. 2006.

[19] M. F. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and
M. L. Scott. Implementing and Exploiting Inevitability in Software
Transactional Memory. In Proc. of the 2008 Intl. Conf. on Parallel
Processing, Portland, OR, Sept. 2008.

[20] M. F. Spear, M. M. Michael, and M. L. Scott. Inevitability
Mechanisms for Software Transactional Memory. In Proc. of the
3rd ACM SIGPLAN Workshop on Transactional Computing, Salt
Lake City, UT, Feb. 2008.

[21] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott. Ordering-
Based Semantics for Software Transactional Memory. In Proc. of the
12th Intl. Conf. on Principles of Distributed Systems, Luxor, Egypt,
Dec. 2008.

[22] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: Scalable
Transactions with a Single Atomic Instruction. In Proc. of the 20th
Annual ACM Symp. on Parallelism in Algorithms and Architectures,
Munich, Germany, June 2008.

[23] M. F. Spear, A. Sveikauskas, and M. L. Scott. Transactional Memory
Retry Mechanisms (Brief Announcement). In Proc. of the 27th ACM
Symp. on Principles of Distributed Computing, Toronto, ON, Canada,
Aug. 2008. Extended version available as TR 935, Dept. of Computer
Science, Univ. of Rochester, July 2008.

[24] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable Transactions
and Their Applications. In Proc. of the 20th Annual ACM Symp. on
Parallelism in Algorithms and Architectures, Munich, Germany, June
2008.

[25] C. Zilles and R. Rajwar. Transactional Memory and the Birthday
Paradox (Brief Announcement). In Proc. of the 19th Annual ACM
Symp. on Parallelism in Algorithms and Architectures, San Diego,
CA, June 2007.

150

