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Abstract: This paper serves as a survey and empirical evaluation of the state-of-the-art in activity

recognition methods using accelerometers. The paper is particularly focused on long-term activity

recognition in real-world settings. In these environments, data collection is not a trivial matter; thus,

there are performance trade-offs between prediction accuracy, which is not the sole system objective,

and keeping the maintenance overhead at minimum levels. We examine research that has focused on

the selection of activities, the features that are extracted from the accelerometer data, the segmentation

of the time-series data, the locations of accelerometers, the selection and configuration trade-offs,

the test/retest reliability, and the generalisation performance. Furthermore, we study these questions

from an experimental platform and show, somewhat surprisingly, that many disparate experimental

configurations yield comparable predictive performance on testing data. Our understanding of these

results is that the experimental setup directly and indirectly defines a pathway for context to be

delivered to the classifier, and that, in some settings, certain configurations are more optimal than

alternatives. We conclude by identifying how the main results of this work can be used in practice,

specifically in experimental configurations in challenging experimental conditions.

Keywords: activities of daily living; activity recognition; accelerometers; machine learning; sensors

1. Introduction

In this paper we are concerned with accelerometer-based Activity Recognition (AR). Firstly,

we need to clarify the difference between activity tracking and activity recognition: whereas the former

is only concerned with estimating general levels of activity (e.g., estimating calorie consumption or

monitoring (non-)sedentary behaviour [1]), the latter is attempting to discern the actual activities

occurring. It is the latter of these which will be examined here. Tri-axial accelerometers provide a

low-power and high-fidelity measurement of force along the x, y, and z directions, and thus provide

a view into the movement of the person wearing the device. Although there is significant potential

for accurately predicting activities of daily living with accelerometers, many open problems exist

due to the sheer volume of reasonable configurations available. For example, accelerometers may be

configured with specific sampling rates, sample resolution and accelerometer range, features can be

extracted from windows of any size, and the selection of the ultimate data analysis and classification

pipeline is also non-trivial. All configurations can have an impact on both the battery lifetime and
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the predictive performance of an AR classifier, and so these parameters must be chosen with care.

For instance, the sampling frequency dictates a performance trade-off between prediction accuracy

and energy consumption. Indeed, human movements produce acceleration signals with most of the

energy below 15 Hz, yet lower sampling frequencies may be preferable for long experiments to reduce

the energy consumption.

This study is mostly focused specifically on body-worn accelerometers, although there has been

recent interest in using mobile phone accelerometers for activity recognition [2–5]. AR can benefit

from other on-body sensors, including gyroscopes (that measure angular rotation) and magnetometer

sensors (that measure orientation with respect to the magnetic poles). Since these sensors typically

consume several orders of magnitude more power than accelerometers, we do not consider these here.

Note also that although outside the scope of this study, there is recent research in the area of Activities of

Daily Living (ADL) recognition using other types of sensor, such as Red/Green/Blue-Depth (RGB-D)

sensors [6] or other environmental sensors [7], or the fusion thereof [8].

In this paper we address some of the open questions in the accelerometer-based AR,

and particularly focus both on a comprehensive summary of the field and also an extensive

experimental evaluation of possible configurations. Therefore, the rest of the paper is structured

as follows: We summarise the recent research from the field and identify some open questions in

Section 2. In Section 4 we address some of the open questions from Section 2 and present our main

results with the classification models, feature representations and configurations that were described

in Section 3. Finally, in Section 5 we conclude our main results. We summarise the structure of this

paper in Figure 1 where the six important aspects of human activity recognition are shown: hardware,

activity set, datasets features, classifiers and empirical performance evaluation. For each category

(and subsequent child categories) we provide references to the sections and tables that introduce and

discuss these topics.

Human
Activity

Recognition

Hardware

Sensor
configuration:

Section 2.6
and Table 1

Sensor position:
Sections 2.5

and 2.6

Features:
Sections 2.3

and 2.4

Deterministic:
Sections 3.3.1

and 3.3.3

Learnt:
Sections 3.3.2

to 3.3.4

Classifiers

Sequence
models:

Sections 2.2,
3.5 and 3.6

iid models:
Sections 3.4–3.6

Empirical
analysis:
Sections 2.7,

4 and 5

Datasets:
Sections 2.1

and 2.8
and Table 2

Annotated
activities:
Section 2.1,

Table 1

Figure 1. This figure illustrates the main topics that are covered by this paper and lists the relevant

sections and tables where each concept is discussed and introduced.
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2. Summary of Research Directions and Open Questions

It is natural to consider the use of accelerometers for activity recognition, since it is clear that

certain activities will have clear movement patterns for different parts of the body, whilst the sensors

are relatively low-cost, low-power, and have wide user acceptance [9]. However, there are certain

distinct issues that need to be addressed:

• What activities are we interested in? (Section 2.1)
• Are structured models (that model the sequential nature of the data) required for classification?

(Section 2.2)
• What are the relevant features in the accelerometer data that are useful for prediction? (Section 2.3)
• How is the time series segmented? (Section 2.4)
• What are the optimal locations of accelerometers for the recognition of various activities?

(Section 2.5)
• What are the trade-offs when selecting and configuring the accelerometers (e.g., sampling rate)?

(Section 2.6)
• How robust are the predictions within an individual, and across individuals and sensor

placements? (Section 2.7)

These issues are shared with many other settings where Machine Learning (ML) is applied

to Digital Signal Processing (DSP), and as such this is a fairly mature research area [10,11]. More

details regarding the specific questions we will be answering are given in Section 3. We note

that whilst research has often focused on which ML algorithm performs best for the given dataset,

we will assume instead here that virtually any state-of-the-art ML algorithm (e.g., kernel Support

Vector Machines (SVMs) [12], Decision Trees [13], Bayesian classifiers [14]) can be made to perform

equivalently given the appropriate feature set. Therefore, we employ simpler algorithms in order to

increase our understanding of the problem.

It should be noted that vastly different accuracies are reported depending on the activity examined

(e.g., a range of ≈41% to ≈97% in a study by [15]) and one should be aware that accelerometers may not

be appropriate for some activities. Further to this, the positioning of sensors also plays an important

role, and it is likely that this will be a limiting factor for many applications, since the positioning

of sensors is often largely driven by user acceptance rather than optimality of ADL recognition

performance [9]. It is worth mentioning here, however, that in some settings, such as in the scenario

described in the Sensor Platform for HEalthcare in Residential Environment (SPHERE) project [16–18],

we may not limited to the use of accelerometers alone, and other sensor modalities may be more

appropriate for the activities that are hard to classify using (e.g., wrist-worn) accelerometers.

2.1. Activities

The first work to investigate performance of recognition algorithms with multiple, wire-free

accelerometers on a large set (20) of activities using datasets annotated by the subjects themselves was

by [15].

Another study by [19] examined eight activities: the first six from [15], as well as climbing down

stairs, and sit-ups. [20] examined two activities and various postures. Table 1 shows the activities

that we have identified in the literature while completing this review. Note that some in some sense

encompass others (e.g., “eating lunch” is a subset of “eating”).
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Table 1. Activities found ADL studies using accelerometers.

1. Walking 24. Kneeling 47. Queuing in line
2. Ascending stairs 25. Running 48. Dusting
3. Descending stairs 26. Sitting drinking coffee 49. Ironing
4. Sitting 27. Eating breakfast 50. Vacuuming
5. Standing 28. Eating lunch 51. Brooming
6. Lying down 29. Eating dinner 52. Making the bed
7. Working at computer 30. Sitting talking on phone 53. Mopping
8. Walking and talking 31. Using toilet 54. Window cleaning
9. Standing and talking 32. Walking carrying object 55. Watering plant
10. Sleeping 33. Washing dishes 56. Setting table
11. Eating 34. Picking up canteen food 57. Stretching
12. Personal care 35. Lying using computer 58. Scrubbing
13. Studying 36. Wiping whiteboard 59. Folding laundry
14. Household work 37. Talking at whiteboard 60. Riding elevator
15. Socialising 38. Making fire for barbecue 61. Strength-training
16. Sports 39. Fanning barbecue 62. Riding escalator
17. Hobbies 40. Washing hands 63. Sit-ups
18. Mass media 41. Setting the table 64. Walking left
19. Travelling 42. Watching TV 65. Walking right
20. Cycling 43. Making coffee 66. Jumping
21. Pushing shopping cart 44. Attending presentation 67. Nordic walking
22. Driving car 45. Standing eating 68. Playing soccer
23. Brushing teeth 46. Standing drinking coffee 69. Rope jumping

Since each study defines a different set of activities, and indeed how certain activities are defined,

it makes it somewhat difficult to compare the absolute classification results between studies and hence

evaluate the different methodologies taken by researchers. In a given context, one might be interested

in for example ADL for health-related purposes (c.f. the SPHERE project [16]), which would provide a

specific driver for which activities are selected.

2.2. Structured vs. Unstructured Models

When performing classification on sequential data, it is common to ignore the sequential nature

of the data and instead treat the data as if it were “independently and identically distributed” (iid),

and subsequently use a standard ML algorithm that is designed for iid data. Intuitively, we might

imagine that the strength of the temporal dependence in the sequence will determine how effective

this approximation is, and this will in turn depend on how the data is pre-processed (i.e., is raw

data presented to the classifier, or are features instead computed from the time series?). It has been

shown [21] that under certain conditions structured models (e.g., Hidden Markov Models (HMMs) [22]

or Conditional Random Fields (CRFs) [23]) and unstructured models (e.g., SVMs [12]) can yield

equivalent predictive performance on sequential tasks, whilst unstructured models are also typically

much cheaper to compute.

CRFs have been successfully employed for activity recognition in a smart-home environment [24],

which although using environmental sensors rather than body-worn sensors would appear to have the

same temporal characteristics. An approach based on semi-Markov CRFs that allows for overlapping

activities was introduced by [25], whose results indicated that the proposed approach worked well

even for complicated (higher-level) activities such eating and driving a car. The average precision and

recall were both over 85%, higher than were obtained by using HMMs or Topic Models (TMs).

The theoretical analysis in [21] related the excess risk incurred by unstructured models to the rate

of decay of correlations within the sequence. It would therefore be advisable to perform the a-priori

procedures outlined in [21] to determine whether activity recognition from accelerometer data, using

the various types of feature construction discussed in Section 2.3, is a setting that requires structured

models or not.
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2.3. Survey of Feature Extraction Pipelines

Rather than attempt to classify every single data point (at e.g., 50Hz sampling rate), it makes

sense to compute features of the data that are based on some kind of temporal window. This reduces

the computational burden of the classification algorithms, reduces the effects of noise, and reduces the

temporal dependence of subsequent examples, so that they can be treated as if they were iid. In fact,

such temporal dependence still exists, but this is mostly ignored in the literature—c.f. the discussion in

Section 2.2. There is a trade-off here: the longer the window length, the more these positive benefits

are realised; however if the window length becomes too large, the probability that a given window

contains more than one activity is increased, the delay before a classification output can be generated

is increased, and the number of training examples for the classifier will also be reduced.

In both [15,19], feature extraction based on windows with 50% overlap were used: [15] used

window sizes of 512 samples with 256 samples of overlap at a sampling rate of 76.25 Hz, equating

to a window length of 6.7 s; [19] used window sizes of 256 samples with 128 samples of overlap at a

sampling rate of 50 Hz, equating to a window length of 5.12 s. Typically features are computed in each

of the accelerometer directions independently, although in some cases features that combine the axes

are also used.

Typical features can be split into two types: time domain features such as the mean, standard deviation,

and correlation within the window; frequency domain features that are gathered after computing a Fast

Fourier Transform (FFT) over the window. The frequency domain features include entropy, energy, and

coherence (correlation in the frequency domain). Using a short window length enables near real-time

inference of the user’s current activity and ensures the detection can rapidly adapt to changes.

According to [26], mid-sized time windows (from 5 to 7 s long) perform best from a range of

windows from 1 to 15 s for wrist-placed accelerometers. The results are slightly different for other

accelerometer placements, but the trend of mid-size windows performing best holds [26].

In [27], the authors approach the problem of acceleration-based activity recognition using

strategies that are typical in speech processing, such as Mel Frequency Cepstral Coefficientss (MFCCs)

and Perceptual Linear Predictions (PLPs) coefficients. Their framework extracts a total of 561

time-domain and frequency-domain features. While the proposed approach is interesting, it is worth

mentioning that the MFCC features were directly inspired by deliberately modelling the response of

the human ear to sound. Thus the practical justification of these features for AR is unclear.

Not all features are equally useful in discriminating activities. Feature selection methods such

as filter, wrapper, or embedded selection [28] can be applied to reduce the number of features.

For example, [29] reports on applying Relief-F, a filter-based approach, to select accelerometer features

for activity recognition. Alternatively, methods such as Principal Component Analysis (PCA) are

used to map the original features into a lower dimensional subspace with mutually uncorrelated

components. Reducing the number of features significantly reduces the computational effort of the

classification process [26].

A recent study showed on a variety of datasets that extremely simple histogram-like features [30]

can still achieve good recognition performance. It would be interesting to test these features more

comprehensively against other feature types mentioned above. The statistical features that were extracted

were comprehensive, but many sets of features widely adopted by the community (e.g., [30]) were omitted.

Using only simple features has the appealing property that the computational burden is

extremely low, which brings in the possibility of performing low-power feature extraction on the

sensing device before transmission. This idea was investigated in depth in [31], where the authors

presented a comparative performance evaluation study of a large number of features from acceleration

data computed on embedded hardware platforms. The features were evaluated in the dimensions of

cost and accuracy, and the paper concluded that simple time domain features computed in fixed-point

arithmetic have the best cost/accuracy trade-off. The results showed that computing and transmitting a

few of these time-domain features instead of sending the full acceleration data allows for the reduction

of energy consumption by an order of magnitude, while still achieving acceptable accuracy. Other
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work in this area includes [32] in which low-complexity estimators of complex features are efficiently

produced from carefully architected neural networks.

Recently, [33,34] examined the possibility of learning features automatically. Feature learning

is a well-studied approach for static data (e.g., object recognition in computer vision). In contrast to

heuristic feature design, where domain specific expert knowledge is exploited to manually design

features such as described above, the goal is to automatically discover meaningful representations

of data. This is usually done by optimising an objective function that captures the appropriateness

of the features, such as by energy minimisation or so-called “deep learning” (see [35] for a review)

Building on this [36] developed sparse-coding framework for activity recognition exploits unlabelled

sample data, whilst learning meaningful sparse feature representations. The authors give results

on a benchmark dataset showing that their feature learning approach outperforms state-of-the-art

approaches to analysing ADL, and claim that their approach will generalise well (see Section 2.7 for

further discussion of this).

Finally, an interesting approach using Bayesian non-parametric methods was taken by [37],

in which they employed an Hierarchical Dirichlet Process (HDP) model [38] (a form of TM) to

infer physical activity levels from the raw accelerometer data, and used the extracted mixture

proportions as features to perform the multi-label activity classification. They then showed that

the correlation between inferred physical activity levels to the users’ daily routine was better than

when using FFT-based features. This is similar in nature to an earlier study by [39], who used an

Expectation Maximisation (EM)-based clustering algorithm to generate features for their classifier

which they used to recognise nine sporting activities, and reported a ≈5% improvement over a

standard classification approach.

2.4. Segmentation of Accelerometer Data Streams

Explicit segmentation of the sensor data stream is in itself a non-trivial problem, and approaches

can roughly be partitioned into methods that rely on a sliding window [40], and probabilistic methods

based on HMMs (e.g., [41]). The goal of the segmentation problem is to infer a hidden state at each

time, as well as the parameters describing the emission distribution associated with each hidden state.

Typically in the segmentation problem, self-transition probabilities among states are assumed to be high,

such that the system remains in each state for non-negligible time. More robust parameter-learning

methods involve placing HDP priors over the HMM transition matrix [38].

Typically the approaches taken to activity recognition based on accelerometer data have taken

the approach described earlier of [15,19], extracting small windows of consecutive sensor readings

from the continuous sensor data stream. It has been claimed by [33] that this circumvents the need for

explicit segmentation. On the basis of the discussion in Section 2.2, we would argue that this is only

true if the window length is long enough so that the dynamics of the system (i.e., the rate of decay in

the auto-correlation) are accurately captured, and that rigorous analysis of this is yet to be performed.

2.5. Location of Sensors on the Body

Many positions for the placement of accelerometers have been considered, including: (1) hip (belt);

(2) wrist; (3) upper arm; (4) ankle; (5) thigh; (6) chest/trunk; (7) armpit; (8) trouser pocket; (9) shirt

pocket; (10) necklace.

The results of [15], which considered locations 1–5 of the above, suggested that multiple

accelerometers aided in recognition, since conjunctions between acceleration feature values at different

sites were useful for discriminating many activities. However, they also found that with just two

biaxial accelerometers–thigh and wrist–the recognition performance dropped only slightly.

In another study [42], which considered locations 1, 2, 8, 9, and 10 of the above—placement in

a bag was also considered although this is no longer “body worn”—it was found that any of the

positions were good for detecting walking, standing, sitting and running. Ascending and descending

the stairs was difficult to distinguish from walking in all positions, since the classifier was trained
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for multiple persons. Their general conclusion was that the wrist performed best overall because the

feature set was optimised for the wrist position.

As there are numerous placement locations on the body another questions arises: will activity

recognition benefit from taking into account data from different on-body locations? In [43] a study

was performed to determine if a model trained on the combined on-body locations performed better

than a model that is aware of the location of the sensor. They report that classification models aware of

the on-body location perform better than location independent models indicating that data collected

from other on-body locations may not be beneficial if the sensor location is known or fixed (as in the

case of wrist-worn wearables).

More recently, deep architectures have also been proposed, which build on data from multiple

body-worn sensors [44,45]. Such architectures have the capability of automatically learning

representations from raw sensor data. This is an attractive feature of these architectures since it

removes the necessity of a practitioner to define features. However, since these models can model

arbitrarily complex functions [46] care must be taken to minimise the risk of overfitting. Again we

should stress that the optimal positioning of a sensor will also be driven by user acceptance, as well as

by the resultant classification accuracy. A meta-analysis of user preferences in the design of wearables

indicated that they would like to wear the sensor on the wrist, followed in descending order by the

trunk, belt, ankle and finally the armpit [9].

2.6. Accelerometer Selection and Configuration

Digital accelerometers are configurable, allowing their users to tailor the raw data generation to

the needs of their application. Different configuration options include the number of axes, the range of

the acceleration, the resolution of the analog-to-digital converter (ADC), and the sampling frequency.

Looking into the literature, there appears to be no consensus in the research community on what is

the best choice for these configuration parameters for given types of activities. For instance, in the

literature that is reviewed in this paper, summarised in Table 2, we see the use of both biaxial and

triaxial accelerometers; sensors with a range of acceleration from ±2 g to ±16 g; and sampling

frequencies that range from 1 to 100 Hz. On several occasions, these configuration parameters are

often omitted or provided without justification. Moreover, little interest is shown to the energy

consumption of the acceleration sensors. Whilst energy consumption is not a challenge when data is

collected in controlled environments, it constitutes a major challenge when data is collected in natural

environments, particularly when the duration of the experiment exceeds the battery lifetime of the

sensor, as it can lead to loss of blocks of raw data [47]. However, low power accelerometers consume

several orders of magnitude less power than low power gyroscopes. For example, the SPW-2 wearable

sensor [48] employs the ADXL362 accelerometer and the LSM6DS0 gyroscope; ADXL362 consumes

approximately 8 µW at 50 Hz while LSM6DS0 consumes approximately 2.3 mW at 59.5 Hz.

Digital accelerometers incorporate an ADC. The resolution of the raw samples depends on

the configuration of these parameters. The size of each sample is defined by the bit-resolution n of

the ADC, (n = 8, 12 and 16 bits are typical). The resolution of the measurement also depends on the

maximum acceleration range of the sensor (R) and is derived by 2|R|/2n. Thus, these configuration

parameters control a trade-off between being able to sense high acceleration and the resolution of the

measurements. The sampling frequency, the bit-resolution, along with the number of axes, also control

the amount of data that is produced. Regardless of whether the raw data is transmitted wirelessly to

the infrastructure or stored to a local flash memory, energy consumption scales with the amount of

produced data. Indeed, different configurations of the acceleration sensor can make the battery lifetime

of the wearable sensor last from a few days to few years [48]. Therefore, in cases of long experiments

where battery lifetime is a concern, accelerometers should not use higher resolution and sampling

frequency than necessary.

In [42], the authors investigate whether the high frequency information in the signal is relevant to

the classification problem, and if not what level of down-sampling can be applied without affecting
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classification performance. In particular, the sampling frequency of 50 Hz was down-sampled to lower

frequencies (without a low-pass filter) from 1 to 30 Hz. Accuracy was seen to increase with higher

sampling rates, stabilising between 15–20 Hz, and only improved marginally above this. However,

it should be noted that this was a biaxial rather than triaxial accelerometer, and that a fairly limited

subset of features (no spectral features) were used, so it is difficult to draw a solid conclusion from this

single study. More recent works also demonstrate that simple classification tasks can be effectively

conducted at very low sampling frequency and resolution, increasing the battery lifetime of wearable

sensors by more than an order of magnitude [49]. Khan et al. [50] performed a comprehensive study

on optimising the sampling frequency of accelerometers in the context of human activity recognition.

Their work concludes that the sampling rates that are used in the literature are up to 57% higher than

what is needed, leading to the waste of precious resources.

2.7. Methods to Estimate Generalisation Performance

In [19], trained classification algorithms from data collected in four different settings are assessed

in the following ways:

1. A single subject over different days, mixed together and cross-validated.
2. Multiple subjects over different days, mixed together and cross-validated.
3. A single subject on one day used as training data, and data collected for the same subject on

another day used as testing data.
4. One subject for one day used as training data, and data collected on another subject on another

day used as testing data.

These aim to target test/retest reliability (for single and multiple subjects), within subjects and

between subjects generalisation performance respectively. The authors showed that using Fourier

features as described in Section 2.3 and off-the-shelf classifiers, they were able to achieve near perfect

accuracy (>99%) in settings 1 and 2, ≈90% accuracy in setting 3, and only ≈65% accuracy in setting 4.

These results were corroborated by those of [15], which showed that although some activities

are recognised well with subject-independent training data, others appear to require subject-specific

training data (such as “stretching” and “riding an elevator”—see Section 2.1).

Another issue is that of laboratory versus naturalistic settings. An early study [51] reported an

overall accuracy of 95.8% for data collected in a laboratory setting but recognition rates dropped to

66.7% for data collected in naturalistic settings, which demonstrated that the performance of algorithms

tested only on laboratory data (or data acquired from the experimenters themselves) may suffer when

tested on data collected under less-controlled (i.e., naturalistic) circumstances.

A recent activity recognition challenge [52] introduced a new semi-naturalistic dataset with several

interesting features. Firstly, the data sequences were annotated by several annotators. Interestingly,

this demonstrates the presence of annotation ambiguity on activity recognition datasets both in terms

of the temporal alignment of the labels and the specification of the activities. Indeed, the regions of

highest ambiguity are those with the highest rates of activity transitions. Since the labels themselves

are ambiguous, evaluation of performance also becomes ambiguous in this setting. To overcome these

difficulties, performance evaluation was based on proper measures between probability distributions.

2.8. Publically Available Data-Sets

In Table 2 we provide a summary of some of the most commonly cited publicly available data-sets,

along with their characteristics. Note that we have focused on data-sets for activity recognition based

on body-worn accelerometers–since accelerometer data is now readily available from smart-homes,

there may be many more datasets available that do not focus on ADL, such as those focusing on

lower-level “gestures” or gait analysis. We note that there are vast differences in the quantity of data,

the number of subjects, the accelerometer sampling rates and ranges, and the settings of the recordings.

This makes it especially difficult to compare results from different data-sets.
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Table 2. Publicly available data-sets for activity recognition based on body-worn accelerometers. For activities see Table 1. Data formats: T = Time domain, F =

Frequency domain. Sensor placements: L = Lower arm (wrist), U = Upper arm, W = Waist, C = Chest, B = Back, A = Ankle. N/A = Not applicable, N/K = Not known.

The dataset number (#) is a hyperlink to a download page in the pdf version of this document.

# Reference
Mean
Duration

Data
Formats

# Instances # Attributes Subjects # Activities Activities Type Placement
Sampling
Rate (Hz)

Labels Range
Setting
(Lab/Wild)

Notes

1 [4] 7 min raw, T, F 10,299 561 30 6 1–6
3-axis
(Smartphone)

W 50 Video N/K lab
Samsung
Galaxy S2

2 [53] 41 min raw N/A N/A 15 7 1–3, 5, 7–9
3-axis
(BeaStreamer)

C 52 Self ±4 g wild

3 [54] 13 days raw N/A N/A 17 11 7, 10–19
2-axis
(BodyMedia
Senswear)

U 1 Automatic N/K wild
Labels given
by sensor

4 [55] 7 days T 773,817 12 1 37 1, 9, 12, 13, 20–47
3-axis
(Porcupine)

W, L 2.5 Self ±3 g wild

5 [56] 20 min raw N/A N/A 12 10 33, 48–56
3-axis
(Porcupine)

L 100 Video ±3 g lab

6 [57] 2 h raw N/A N/A 1 3 1–3
3-axis
(Porcupine)

L 100 N/K ±3 g lab
Includes
strap loosening

7 [58] 14 days raw N/A N/A 17 11 7, 10–19
2-axis
(BodyMedia
Senswear)

U 1 Self N/K wild

8 [59] 9 h raw N/A N/A 42 1 10
3-axis
(Porcupine)

L 100
Polysom-
nography

±3 g lab Sleep study

9 [60] 1 day raw N/A N/A 8 1 10
3-axis
(SleepTracker)

L 100 Video N/K lab Sleep study

10 [61] 2 h raw N/A N/A 4 17 1, 4–6 3-axis
U, L, C, W, B
(12 total)

30 N/K lab
4 activities,
13 “gestures”

11 [62] 6 h raw N/A N/A 14 12 1–5, 10, 25, 60, 64–66
3-axis
MotionNode

W 100 Observer ±6 g lab

12 [63] 1 h raw N/A N/A 9 18
1–7, 14, 20, 22, 25,
42, 49, 50, 59, 67–69

3-axis
Colibri

L, C, A 100 Observer ± 16 g, ± 6 g lab
2 different
sensors

13 [52] 10 h raw N/A N/A 10 21
1–7, 14, 20, 22, 25,
42, 49, 50, 59, 67–69

3-axis A 25 Video ±4 g controlled Some missing data

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/Activity+Recognition+from+Single+Chest-Mounted+Accelerometer
http://www.ess.tu-darmstadt.de/mum2013
http://www.ess.tu-darmstadt.de/datasets/ubicomp2012-motifs
http://www.ess.tu-darmstadt.de/datasets/PHealth08-ADL
http://www.ess.tu-darmstadt.de/datasets/aday-longterm
http://www.ess.tu-darmstadt.de/datasets/iswc08-rhythms
http://www.ess.tu-darmstadt.de/ichi2014
http://www.ess.tu-darmstadt.de/datasets/ihi_2012
http://www.opportunity-project.eu/challengedatasetdownload
http://sipi.usc.edu/HAD/
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
https://data.bris.ac.uk/data/dataset/8gccwpx47rav19vk8x4xapcog
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3. Materials and Methods

The previous section outlined several open questions in accelerometer-based activity recognition.

In this section we discuss the methods that we will use to answer these questions. In particular we focus

on assessing the effect of sampling rate, feature extraction, window length and sequential classification

for activity recognition, and the resources, models, and experimental protocol are described below.

3.1. Data-Sets Used in This Work

A list of publicly available datasets for AR based on accelerometers is given in Table 2, with details

regarding the collection of the data, annotations, setting, and hardware. Of these, datasets 1, 11, 12 are

used in this study, with the following to be noted:

HAR This was collected by attaching a smart-phone (with accelerometer and gyroscope) in

a waist-mounted holder, with 30 participants conducting 6 activities in a controlled

laboratory environment. Six activities were annotated in this dataset: walking, walking up

stairs, walking down stairs, sitting, standing and lying down. The acceleration was sampled

at 50 Hz on triaxial accelerometers and gyroscopes. Since gyroscopes can consume several

orders of magnitude more power than accelerometers (c.f. Section 1), we only assess the

accelerometer data in our treatment of this work. More details can be found in [4].
USCHAD This was recorded by 14 subjects (7 male, 7 female) performing 12 activities (walking

forward, walking left, walking right, walking upstairs, walking downstairs, running forward,

jumping, sitting, standing, sleeping, elevator up, elevator down) in a controlled laboratory

environment (with accelerometers and gyroscopes), with ground truth annotation performed

by an observer standing nearby. The accelerometer, gyroscope and magnetometer data were

sampled at 100 Hz, and data from the Microsoft Kinect accompanies this dataset. In our

analysis we do not consider the Microsoft Kinect, magnetometer or gyroscope data, and use

only the accelerometer data. More details can be found in [62].
PAMAP2 This contains data of 18 different physical activities (lying, sitting, standing, walking,

running, cycling, Nordic walking, watching TV, computer work, car driving, ascending stairs,

descending stairs, vacuum cleaning, ironing, folding laundry, house cleaning, playing soccer,

rope jumping) performed by 9 subjects wearing 3 inertial measurement units (over the wrist

on the dominant arm, on the chest, and on the dominant side’s ankle) and a heart rate

monitor. Data were sampled at 100 Hz in this work and we use only the accelerometer data,

although magnetometer and gyroscope data are also available. More details can be found

in [63].

In all the data-sets, sensors were either placed on the waist (W) or lower-arm/wrist (L), and in

some cases additional sensors were placed on other parts of the body. For the purposes of this study,

we are limiting our analysis to the W and L placements, since a meta-analysis of user preferences in

the design of wearables indicated that these were two of the most preferable locations (along with on

the chest/trunk) [9].

All of these data-sets are artificial in the sense that they were collected in controlled laboratory

environments, although varying degrees of effort have been made to make the environment as

naturalistic as possible. There is clearly a trade-off here between ease of data collection (including

ground-truth labelling) and the degree of realism that can be achieved. In order to ensure that

performance is comparable between datasets, we have limited the set of activity labels that we consider

to activities 1–6 in Table 1.

3.2. Calibration of Raw Accelerometer Data

Some datasets provide acceleration readings that are in raw digital format rather than ones

calibrated against gravity. Digital codewords can be converted to gravity units with offset (o)

and scale (s) parameters which specify the 0 g position and the number of bits that represent
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1 g respectively [64]. For an accelerometer with a sensitivity of ±R g with b-bits of precision,

one might expect o = 2b−1 and s = 2b−1

R (i.e., accelerations are evenly distributed over the range of

codewords). However, these are insufficient estimates in general, due to variance in the manufacturing

process, sensitivity towards environmental conditions and other confounding factors [64]. Therefore,

we propose to learn these offset and scale parameters by first noting that the norm of the accelerations

at rest must equal 1 g. We define the offset and scale vectors as o = (ox, oy, oz)⊤ and s = (sx, sy, sz)⊤

respectively. With these a tri-axial digital codeword, d = (dx, dy, dz)⊤, is converted to acceleration with

the following operation a = (d − o)⊘ s, where ⊘ is the element-wise division operator. The norm of

this vector, ‖a‖2, is a scalar which will equal 1 g at rest.

Given a dataset of N digital codewords, {di}N
i=1, we define a squared error loss as

L =
1

2

N

∑
i=1

(
1 − ‖ai‖2

2

)2
(1)

where ‖ai‖2
2 denotes the squared 2-norm of the i-th instance.The gradient of the loss with respect to

the offset and scale vectors can be shown to be

▽oL = −2
N

∑
i=1

(1 − ‖ai‖2
2)(di − o)⊘ s2 (2)

▽sL = −2
N

∑
i=1

(1 − ‖ai‖2
2)(di − o)2 ⊘ s3 (3)

and these may trivially be incorporated with with any state-of-the-art optimisation algorithms to find

the optimal o and s.

We select only the subset of instances for which the accelerometer is at rest to ensure that gravity

is the only factor contributing to recorded acceleration. For example, data within a window will

be selected if the maximum variance of the three axis within this window is below a low threshold.

Many datasets consist of multiple participants and we calibrated digital codewords on a per-participant

basis as it was not clear whether the same accelerometer was consistently used.

3.3. Features Used in This Study

In this sub-section we will describe the types of features that will be used in our

experimental comparison.

3.3.1. Hand-Crafted Features

The purpose of feature extraction is to present a learning algorithm with informative

representations of the data so that induction can be performed effectively. Firstly, the raw acceleration

was separated into ‘body’ and ‘gravity’ streams with the use of low-and high-pass filters. From these

two streams the acceleration and jerk (derivative of body acceleration) on each axis were presented to

the feature extraction algorithm. Statistical measures were extracted (for a full list see [4]) from the

time, frequency and information theoretic domains.

A large number of features were extracted here (321 in total), but, as we incorporate sparse

regularisation, the least informative features will be eliminated, performing feature selection. Often

practitioners will incorporate domain knowledge to specify appropriate features a priori, but we prefer

to investigate those that were deemed most informative by the learning procedure.

Another set of features that we consider in this work are the Empirical Cumulative Distribution

Function (ECDF) features that were introduced in [30]. These features are computed from the empirical

cumulative distribution of all axes. A practitioner specifies the percentiles of interest (e.g., k values

between 0 and 100), and these values are interpolated from the ECDF. This produces k features per axis,

and excellent performance is reported by the authors.
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3.3.2. Sparse Coding and Dictionary Learning

Dictionary Learning, also known as Sparse Coding [65] is a class of unsupervised methods for

learning sets of over-complete bases to represent data in a parsimonious manner. The aim of sparse

coding is to find a set of vectors di, known as a dictionary, such that we can represent an input vector

x ∈ R
n as a linear combination of these vectors:

x =
k

∑
i=1

zidi s.t. k ≫ n. (4)

While there exist efficient techniques to learn a complete set of vectors (i.e., a basis) such as

PCA [66], an over-completeness can achieve a more stable, robust, and compact decomposition than

using a basis [67]. However, with an over-complete basis, the coefficients zi are no longer uniquely

determined by the input vector x. Therefore, in sparse coding, we introduce additional sparsity

constraints to resolve the degeneracy introduced by over-completeness.

Sparsity is defined as having few non-zero components zi or many that are close to zero.

The sparse coding cost function on a set of m input vectors arranged in the columns of the matrix

X ∈ R
n×m as

min
Z,D

‖X − DZ‖2
F + λ

n

∑
i=1

Ω(zi)

s.t. ‖di‖2 ≤ C, ∀i = 1, . . . , k. (5)

where D ∈ R
n×k is the set of basis vectors (dictionary), Z ∈ R

k×n is the set of coefficients for each

example, and Ω(.) is a sparsity inducing regularisation function, and the scaling constant λ determines

the relative importance of good reconstructions and sparsity. The most direct measure of sparsity is

the L0 quasi-norm Ω(zi) = 1(|zi| > 0), but it is non-differentiable and difficult to optimise in general.

A common choice for the sparsity cost Ω(.) is the L1 penalty Ω(zi) = ∑
n
i=1 |zi| (see [68] for a review).

Since it is also possible to make the sparsity penalty arbitrarily small by scaling down zi and scaling di

up by some large constant, ‖d‖2 is constrained to be less than some constant C.

Since the optimisation problem is not jointly convex in Z and D, sparse coding consists of

performing two separate optimisations: (1) over coefficients zi for each training example xi with D

fixed; and (2) over basis vectors D across the whole training set with Z fixed. Using an L1 sparsity

penalty, sub-problem (1) reduces to solving an L1 regularised least squares problem which is convex

in zi which can be solved using standard convex optimisation software such as CVX [69]. With a

differentiable Ω(·) such as the log penalty, conjugate gradient methods can also be used. Sub-problem

(2) reduces to a least squares problem with quadratic constraints which is convex in d, for which again

there are standard methods available. Other approaches to solving this problem include Bayesian

methods wherein the joint uncertainty over the dictionary elements and reconstruction coefficients is

captured [70].

Since the data is decomposed as a linear superposition of the dictionary elements, classifiers

can use the reconstruction coefficients, Z, directly as features [70]. Since sparsity is imposed on the

representation of the data, only a few bases will be ‘active’ for any given instance.

3.3.3. Fixed Dictionaries

It is worth noting that of course the sparse coding problem is a simpler optimisation problem if

the dictionary is fixed rather than learnt. In this case, one can use dictionaries that are based on basis

functions from a specific class, such as the Fourier basis or wavelet bases. Here we briefly introduce

the Fourier basis and Gabor wavelet basis as described in [11].
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Fourier analysis represents any finite continuous energy function f (t) as a sum of sinusoidal

waves exp(iωt),

f (t) =
1

2π

∫ ∞

−∞
f̂ (ω) exp(iωt)dω. (6)

The more regular the function f (t) is, the faster the decay of the amplitude | f̂ (ω)| as ω increases.

If f (t) is defined only over an interval, e.g., [0, 1], the Fourier transform becomes a decomposition into

an orthonormal basis: {exp(i2πmt)}m∈Z of L2[0, 1]. If the signal is uniformly regular, then the Fourier

transform can represent the signal using very few nonzero coefficients. Hence this class of signal is

said to be sparse in the Fourier basis. The wavelet basis was introduced by Haar [71] as an alternative

way of decomposing signals into a set of coefficients on a basis. The Haar wavelet basis defines a

sparse representation of piecewise regular signals, and has therefore received much attention from the

image processing community. An orthonormal basis on L2 can be formed by dilating and translating

these atoms as follows,

{
Ψj,n(t) =

1√
2j

ψ

(
t − 2jn

2j

)}

j,n∈Z2

(7)

The definition of a time-frequency dictionary Ψ = {ψγ}γ∈Γ
is that it is composed of waveforms

of unit norm (‖ψγ‖2 = 1) which have a narrow spread in time (u) and frequency (σ2). Choice of the

dictionary Ψ should, if possible, be based on knowledge of properties of the signal. One of the most

common choices for a general class of real-world signals is the Gabor dictionary, as it can represent

a wide range of smooth signals. Gabor time-frequency atoms are scaled, translated and modulated

Gaussian functions g(t) [72]. Without loss of generality, discrete real Gabor atoms will be considered,

which are given by

gγ,φ(t) =
1

Z
· g

(
t − u

s

)
· cos(ξt + φ) (8)

where Z is a normalisation factor (to ensure that for each atom
∥∥gγ,φ

∥∥ = 1), γn = (sn, un, ξn) denotes

the series of parameters of the functions of the dictionary, and g(t) = exp−πt2
is the Gaussian window.

A sampling pattern is dyadic if the daughter wavelets are generated by dilating the mother

wavelet as in Equation (7) by 2j and translating it by k2j, i.e., s = 2j, u = k2j. Dyadic sampling

is optimal because the space variable is sampled at the Nyquist rate for any given frequency. The

dictionary is then defined as,

Ψj,∆ =
{

ψn = gγ,φ(t)
}

0≤q<∆N2−j ,0≤k<∆2j , (9)

where gγ,φ(t) is the discrete Gabor atom as defined in Equation (8). An example of this sampling

scheme is given in Table 3 for a signal of length 128 and dilation factor ∆ = 2.

Table 3. Example of the dyadic sampling scheme for a signal of length 128 and ∆ = 2.

j 2j 2−j N2−j q k

2 4 1/2 64 0:128 0:8
3 8 1/4 32 0:64 0:16
4 16 1/8 16 0:32 0:32
5 32 1/16 8 0:16 0:64
6 64 1/32 4 0:8 0:128
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3.3.4. Convolutional Sparse Coding

The canonical approach to sparse coding intrinsically assumes independence between

observations during learning. For many natural signals however, sparse coding is applied to “patches”

of the signal, which violates this assumption (e.g., since data will generally not be aligned in phase).

Convolutional Sparse Coding (CSC) explicitly models local interactions through the convolution

operator [73], however the resulting optimisation problem is considerably more complex than

traditional sparse coding. Fast CSC (FCSC) was introduced by [73], who used an optimisation approach

that exploits the separability of convolution bands across the frequency spectrum which resulted in an

efficient dictionary learning algorithm. It was initially designed for two dimensional image patches,

where the convolutions are therefore within the 2-dimensional space of the image, but the approach

can be readily applied to lower or higher dimensional problems.

The objective for convolutional sparse coding is

arg min
d,z

1

2

∥∥∥∥∥x −
K

∑
k=1

dk ⋆ zk

∥∥∥∥∥

2

2

+ β
K

∑
k=1

‖zk‖1

s.t. ‖dk‖2
2 ≤ 1 ∀k = 1, . . . , K, (10)

where dk ∈ R
M is the k-th filter, zk ∈ R

D is the corresponding sparse feature map, and x ∈ R
D−M+1 is

an image.

Recently, there have been attempts to use shift-invariant sparse coding to learn features for

activity recognition [74]. In this work the authors used a shift invariant form of Non-negative Matrix

Factorisation (NMF) [75], which is closely related to CSC, except that the signals are required to be

non-negative. For NMF to work it was necessary to double the signal dimensions with negative copies,

and then for classification the approach was to sum the activations over the temporal dimension of the

frame, yielding the summed activations for each feature as a feature vector that is passed to the classifier

(note that coefficients are non-negative). In this case, the algorithm was applied to raw (normalised)

signals, which is of course dependent on the placement and orientation of the accelerometer.

A related approach was taken by [36], using a sparse-coding framework for human activity

recognition. In this case the authors used a clustering approach to group together sparse codes,

rather than full CSC. In this case, only the magnitude of the accelerometer readings was used, which

worked well for the range of activities they were analysing. The authors make the point that an

advantage of sparse-coding type approaches is the ability to leverage unlabelled data to improve

representation power.

3.3.5. Classification Using Sparse Codes

For all of the sparse coding techniques above, the coefficients that are learnt on each signal become

the features for the classification algorithm, as proposed by [36]. We note that there has been some

work in unifying dictionary learning and classification in a single optimisation framework [76], which

has the potential to learn bases that are simultaneously useful for reconstruction and classification,

we will leave this as a possible avenue for future work.

In theory, dictionaries learnt from the data as in Section 3.3.2 should be more tailored to the signals

present within the data, and hence should be able to represent (and hence reconstruct) the signals with

fewer active components. In addition, smaller dictionaries should be sufficient. Of course there is

nothing in Equation (5) that enforces discriminative power in the coefficients. In our experiments we

will consider only learnt dictionaries since the fixed dictionaries performance was very poor and are

more expensive, and the performance of CSC was unstable.
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3.4. Classification Models Used in This Work

We consider three classifiers in this work: Random Forest (RF), Logistic Regression (LR),

and Multi-layer Perceptron (MLP). Although our datasets are sequential, we sill simplify our notation

in this section and assume the data are iid.

3.4.1. Mathematical Notation

Each observation is a sequence of length Nm and each position of the sequence is a D-vector,

i.e., xm ∈ R
Nm×D. Given a target label space, Y = {1, 2, ..., Y}, consisting of Y values, every sequence

has an associated target vector, ym ∈ YNm . A dataset then consists of M observation-target pairs,

D = {(xm, ym)
M
m=1}. For the m-th observation, its n-th position is selected with xm,n (‘tokens’) and the

corresponding label for this position (‘tags’) is identified by ym,n.

Concretely, taking activity recognition as an example, xm represents the data sequence of

length Nm, whereas xm,n represents the n-th window of the sequence with the associated tag ym,n.

3.4.2. Random Forest

The RF algorithm is a popular and effective method for classification and regression problems.

At a high level, a RF can be viewed as an ensemble of decision trees. The original formulation of

a RF [77] implements each of the trees as a Classification or Regression Tree (CART) [78] and uses

the Gini impurity measure as the splitting criteria. The Gini impurity measures the probability of

an incorrect classification given the class distribution. Thus there is a direct relationship between

the (im)purity of the split and the probability of an incorrect classification making it an effective

splitting criterion. The subset of features each split has available to choose from is randomly selected

(typically
√

n, where n is the number of features) in a process referred to as ‘feature bagging’. Given

a large number of trees in the RF this leads to correlation between any dominating features across

the many trees in the forest. The data available to each tree is a bootstrap sample (with replacement)

which helps avoid overfitting. In order to produce a prediction, each input is passed through all trees

and their predictions aggregated, with the final prediction chosen through a majority vote.

3.4.3. Logistic Regression

LR is a discriminative probabilistic model. In general, given a weight vector w ∈ R
D×K,

LR models the probability distribution as

p(y | x) =
exp{zy}

∑
K
k=1 exp zk

(11)

where z = w · x ∈ R
K. The parameters of this model (w) are optimised to minimise the negative log

likelihood of the labels given the data. Many optimisation techniques can be used here, including

Stochastic Gradient Descent (SGD), Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

algorithms etc. We use L-BFGS in our work. Regularisation is performed on the weight matrix.

3.4.4. Multi-Layer Perceptron

Neural Networks (NNs) are a very popular non-linear classification technique that are based on

cascading several nonlinear functions. These techniques are described in great detail in, e.g., [79], and

here we will discuss the selected architecture of the network.

The architecture of the network (i.e., the number of layers, and number of hidden units per

layer) can be selected to trade off computational complexity and feature accuracy. On highly

resource-constrained devices, for example, the practitioner may target networks with little capacity.

All experiments in this paper involve one hidden layer with 100 hidden units.
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Hence, with activation functions σl , the output of a two-layer NN is compactly written:

f (X) = σ2 (σ1 (Xw1 + b1)w2 + b2) (12)

where σ1 is the activation function of the first layer (rectified unit) and σ2 is the activation function of

the output layer (softmax). The network is optimised by maximum likelihood, and regularisation is

imposed on the weights, w1 and w2, but not the biases.

3.5. Convolutional Neural Networks

Convolutional Neural Networks (CNNs), also referred to as ConvNets, are a widely used

extension of MLPs which have seen great success in computer vision tasks [80]. A key difference

between CNNs and other NNs are the use of convolutions in layers of the network that induces weight

sharing in the network. These convolutional layers learn feature representations with neurons in a layer

arranged into feature maps, of which each neuron has a receptive field connecting it to a small region

of neurons in a previous layer. CNNs also typically have pooling layers for downsampling, usually

performing average or max pooling in order to reduce the spatial resolution of the feature maps. These

layers are usually stacked on top of each other and used in conjunction with dense layers creating a

deep architecture. The architecture of CNNs, which typically refers to the number of layers, the size of

each layer, the choice of activation functions etc, are varied. Further information on the architectures

evaluated in this work are detailed in Section 3.7.

3.6. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) build upon feedforward NNs by allowing recurrent edges,

i.e., edges which span adjacent timesteps in the network. This is useful in problems where data is not

independent in time or space as RNNs can choose to pass specific information across different timesteps.

Perhaps the most widely used RNNs in the practice are Long Short-Term Memory (LSTM) [81]

networks. LSTMs introduced the concept of a memory cell replacing the traditional nodes in hidden

layers, storing state for given periods of time. LSTMs have been shown to successfully learn time

dependencies and perform well in a variety of tasks [82]. The details of the architecture used is detailed

in Section 3.7.

3.6.1. Conditional Random Fields (CRFs)

All models so far have made iid assumptions about the data points. Since activity recognition is

by definition a sequential problem, we investigate the benefits of modelling the sequential nature of

the data with CRFs.

Conditional Random Fields (CRFs) [23,83] constitute a structured classification model of the

distribution of ym conditional on xm. The most common form of CRF is the linear-chain CRF which

are applied to sequential data, e.g., natural language, but more general CRFs can be learnt on trees and

indeed arbitrary structures. In general, the probability distribution over the n-th node is influenced by

the neighbouring nodes with graphical models, and this influence is propagated over the structure

using algorithms based on message passing [84]. In this section, we introduce the CRF, but refer the

reader to other texts (e.g., [21,23,83]) for more detail.

The general equation for estimating the probability of a sequence is given by:

PCRF(ym|xm) =
1

ZCRF

Nm

∏
n=1

exp{λ⊤f(ym,n−1, ym,n, xm, n)} (13)

where Nm denotes the length of the m-th instance and n iterates over the sequence. The model requires

specification of feature functions that are (often binary) functions of the current and previous labels,

and (optionally) the sequence xm.
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We will use the vectors αn, βn, γn, ψn and matrices Ψn during inference in CRFs. Subscripts are

used to denote the position along the sequence, e.g., αn is a vector that pertains to the n-th position of

the sequence, and parentheses are used to specify an element in the vectors, e.g., the y-th value of the

n-th alpha vector is given by αn(y). Matrices are indexed by two positions, and the (i, j)-th element of

Ψn is specified by Ψn(i, j).

In order to reduce the time complexity of inference, we describe a dynamic programming routine

based on belief propagation here. We first calculate localised ‘beliefs’ about the target distributions,

and these are called potentials. The accumulation of local potentials at node n is termed the ‘node

potential’. This |Y|-vector where the y-th position is defined as ψn(y) = exp{∑
J
j=1 λjfj(∅, y, x, n)},

where fj is the j-th feature function. Similarly, the accumulation of local potentials at the n-th edge is

termed the ‘edge potential’. This is a matrix of size |Y| × |Y| where the (u, v)-th element is given by

Ψn(u, v) = exp{∑
J
j=1 λjfj(u, v, x, n)}. Node potentials are depicted as the edges between observation

and targets in Figure 2, while in the same figure, edge potentials are depicted by edges between pairs

of target nodes.

yn

ψn

yn−1

ψn−1

yn+1

ψn+1

. . . . . .

Ψn−1 Ψn

γ
n−1

=

αn−1 ⊙ψn−1

αn−1

αn =

Ψ
⊤
n−1

· γ
n−1

β
n+1

δ n+1 =

βn+1 ⊙ψn+1

β
n
=

Ψn ·δ n−1

Figure 2. In this figure we show how marginal inference is performed over node yn with Conditional

Random Field (CRF) models, where we have related the theoretical foundations of CRFs described

in this section to a graphical representation of a short sequence. Note, the CRF is an undirected

graphical model, and the arrows shown in this image indicate the direction of the passed messages

when performing inference on yn.

Given these potentials, we can apply the forward and backward algorithm on the CRFs chain.

By defining the intermediate variables γn−1 = αn−1 ⊙ ψn−1, and δn+1 = βn+1 ⊙ ψn (where ⊙
denotes the element-wise product between vectors) the forward and backward vectors are recursively

defined as:

αn = Ψ
⊤
n−1γn−1 (14)

βn = Ψnδn+1 (15)

with the base cases α1 = 1 and βN = 1. The un-normalised probability of the n-th position in the

sequence can be calculated with

P̂(Yn) = αn ⊙ ψn ⊙ βn. (16)

Finally, in order to convert this to a probability distribution, values from Equation (16) must be

normalised by computing the ‘partition function’. This is a real number, and may be calculated at

any position n with ZCRF = ∑y′∈Y P̂(Yn = y′). The partition function is a universal normaliser on the

sequence, and its value will be the same when computed at any position in the sequence. With this, we

can now calculate the probability distribution on the n-th position

P(Yn) =
P̂(Yn)

ZCRF
. (17)

In this work, we incorporate the methodology of [85] for our analysis of CRFs where unigram

potentials of the CRF derive from the class-membership probability estimates of a base classifier.

Intuitively, this technique will introduce significant contextual information to the CRF (since the
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decision boundary will not necessarily be linear) but additionally the model can propagate the localised

beliefs along the whole sequence. Empirically, this approach has been reported to not lose predictive

power but learning also converges at a significantly higher rate. This approach has not been used in

activity recognition work previously, to the best of the author’s knowledge.

Another technique that is popular in the activity recognition field for adding sequential

dependence in classifiers involves using the predicted probabilities of the previous time step as

additional features for the current time window. We do not consider this since the CRF described here

offers a more principled approach for propagating belief and uncertainty.

3.7. Empirical Experiments in this Work

As explained in the previous section, three datasets are considered in our experiments: HAR,

USCHAD, and PAMAP2. The primary contributions of this work derive from studying the classification

performance of the LR, RF, and MLP classifiers over several different window length and sampling

rate configurations.

3.7.1. Sensor Configuration Analysis

Our analysis first resamples the data to {5, 10, 20, 30, 40, 50} Hz. We illustrate the effect of

resampling the data in Figure 3. In this figure we observe that the lower sampling rates tend to

‘lose’ the high-frequency aspects of the accelerometer, as expected. Particularly, we highlight the almost

total loss of peaks between 6 and 8 s period with the 5 Hz sampling frequency in Figure 3 on the

x-channel. However, between 4 and 6 s, the integrity of the ‘peaks’ appears to be high, indicating

inconsistent data representations at the different sampling rates. Window lengths of length 1.5 s, 3.0 s,

4.5 s and 6.0 s are considered for feature extraction. Three classes of feature are extracted: statistical [4],

dictionary [70] and ECDF [30] features are extracted. We selected these three since they represent a

diverse set of features that are both pre-specified and learnt from data.
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Figure 3. The raw data (top) at 50 Hz, and resampled 5 Hz (bottom). Notice that the high-frequency

aspects of the accelerometer data are removed with lower sampling frequencies. Samples are marked

with × symbols. The x, y and z axes are depicted in blue, orange and green respectively.

3.7.2. Experimentation with iid Classifiers

For every experiment described here, we perform cross validation for hyper parameter selection.

The data were stratified so that no data from training participants were used in testing (i.e., different

subjects data used in training and testing). We employ 5-fold cross validation on all classifiers over set

of parameters:
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RF: Ensemble size: {10, 20, 40, 80, 160}; Max depth of tree: {2, 4, 6, 8, 10}.
LR: L2 regulariser: {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104}
MLP: L2 regulariser: {10−2, 10−1.5, 10−1, 10−0.5, 100, 10.5, 101, 101.5, 102} Empirically we found values

outside of this range performed very poorly, so we concentrated our search space over a smaller

interval than with LR.

3.7.3. Experimentation with Sequential Classifiers

Additionally, we consider the effect of incorporating structured models [21] in AR. We incorporate

the classification procedure described by [85] in our analysis.

3.7.4. Experimentation with Neural Network Models

We also consider more advanced neural network based models for AR with CNNs and also

investigate the utility of convolutions and recurrency for feature learning and prediction. Two popular

methods of incorporating recurrency in Deep Neural Networks (DNNs) include LSTM [81] and Gated

Recurrent Unit (GRU) [86]. These two techniques achieve state-of-the-art performance on sequence

prediction tasks since they directly parameterise the influence of nearby data points on predicting

the current time point, and the neighbourhood of influence is optimised during the learning phase.

Our experiments use LSTM since they have been shown to perform similarly to other methods

(e.g., GRU) in many settings [87].

The CNN and LSTM models, unlike the feature experiments, take as inputs accelerometer data

directly. Thus, we provide these models with the body and gravity components of the x, y, and z axes

instead of determinisitcally extracted features. In this way our work demonstrates the capability of the

networks to learn representations of the accelerometer data. Note, however, that we focus our analyses

on only one accelerometer configuration (sampling rate of 30 Hz, window length of 3 s) which, as we

will see later, is selected based on the results of the feature experiments. Moreover, this configuration is

chosen since a complete analysis of CNNs and LSTMs over all sensor configurations would necessitate

particular care in specifying the network architectures. Such an analysis is outside the scope of this

paper and will be considered in future work.

For the recurrent experiments, we perform 5-fold parameter selection on the training set over the

following configurations:

• Dropout rate: {0.1, 0.2, 0.5}
• Training epochs: {8, 16, 32, 64, 128, 256}

Both CNN and LSTM models share the same basic architecture and use Rectified Linear Unit

(ReLU) activations in all hidden layers. The architecture for CNN is as follows

• Convolutional layer with 64 units, a kernel size of 9 (i.e., 0.3 s), and dropout (selected in

cross validation)
• Convolutional layer with 32 units, a kernel size of 9, and dropout (selected in cross validation)
• Flattening layer
• Fully connected with 16 units; ReLU activations and dropout
• Output layer with softmax

and for LSTM

• LSTM layer with 64 units and dropout (selected in cross validation)
• LSTM layer with 32 units and dropout (selected in cross validation)
• Flattening layer
• Fully connected with 16 units; ReLU activations and dropout
• Output layer with softmax
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All networks were trained with the Adam optimiser [88] and parameters are tuned to minimise

categorical cross entropy. Additionally, we also investigate the contribution of CRFs on CNN and

LSTM models using the same methodology from the feature experiments. Although CNN and LSTM

models propagate information relating to the state of the neighbouring features, thus they do not

naturally model label sequences. As a concrete example, one can trivially impose constraints on the

set of legal transitions over a sequence with CRFs (e.g., one cannot transition from ‘lying’ to ‘walking’

without an intermediate activity). Such constraints cannot be imposed with vanilla LSTM models,

for example, since beliefs on neighbouring predictions (i.e., the final node) are not propagated over

the sequences. CRFs, on the other hand, can compel such consistency [21] thus motivating the use of

CRFs on the predictions of CNN and LSTM.

4. Results and Discussion

4.1. Validation of Calibration

In Figure 4 we show the difference between the true and estimated offset and scale parameters for

a synthetically generated dataset as function of the number of learning iterations. Convergence

was determined when the norm of the gradient fell below an arbitrary small threshold (10−7),

and we can see that the estimated parameters have converged to their true values within

approximately 400 iterations and that even after one iteration the estimated values were in a good

approximation region.
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Figure 4. Error of estimated calibration parameters as a function of iteration number. Values at zero

indicates perfect estimation.

Convergence errors cannot be shown for the real datasets as the true parameters are not available.

However, visual inspection of the norm of the accelerations show that good approximations are made

(Figure 5 (top)), but that when using the parameters from one recording on another, the norm is offset

from the 1 g position, see Figure 5 (bottom).
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Figure 5. Calibrated accelerometer readings (upper) that were derived from raw (uncalibrated)

accelerometer values (lower). The intervals shaded in red were used to perform calibration.
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4.2. Analysis of Sensor Configurations

Our analysis covers the following contexts: three datasets (HAR, USCHAD, PAMAP2), six classifiers

(LR, MLP, RF; and these three classifiers chained together with CRFs), three classes of feature

representation (statistical, dictionary-learnt, and ECDF), six sampling rates (5 Hz, 10 Hz, 20 Hz,

30 Hz, 40 Hz, and 50 Hz), four window lengths (1.5 s, 3.0 s, 4.5 s and 6 s). In total, this produces

approximately 1 300 results to discuss. We will structure our analysis of these results by first presenting

the analysis for one particular dataset (HAR). We will then discuss inter-and intra-dataset analyses.

4.3. LR Performance on HAR

Figure 6 shows the classification performance of LR on the HAR dataset. This figure illustrates

predictive accuracy over all sampling rates (rows), window lengths (columns), and features (stat

features shown on left, dict features in middle, and ecdf features on the right). The colour of the

subplot illustrates classification performance (0% is shown in blue, and 100% accuracy is shown in

dark red). Since we will use this style of figure throughout this discussion, we adopt the following

convention: f = 5 will indicate the column relating to a sampling rate of 5 Hz, w = 1.5 will relate

to the row associated with a window length of 1.5 s, and w = 3, f = 10 corresponds to the element

associated with a window length of 3 s and a sampling rate of 10 Hz.
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Figure 6. Visualisation of the classification performance on the HAR dataset for stat features (left),

dict features (middle) and ecdf features (right) over varying window lengths (rows) and sampling

rates (columns). Darker red colours indicate better performance.

With the stat features (left column in Figure 6), we observe relatively consistent performance over

all configurations. The performance at w = 1.5, f = 5 is the lowest of all configurations investigated by

approximately 0.1. Intuitively, this performance gap makes sense: with such a low sampling rate many

of the characteristics of the signal are no longer present (c.f. Figure 3), and this is further compounded

by the short window. As the window length and sampling rate grow, we can observe a general trend

of improving classification performance (with the maximal performance at ≈ 0.94). Interestingly,

our results show that this performance can be achieved with the following configurations relatively

low-valued w = 3, f = 20 and w = 4.5, f = 10. This is perhaps somewhat surprising since the data is

significantly under-sampled here.

The dict features produce test performance that is, overall, significantly worse than the stat

features, with maximal performance of ≈ 0.88. We can also observe the general trend of improved

results with increasing window length and sampling rate that we observed with the stat features. It is

surprising that the dict features are not as performant as the stat or ecdf features, particularly since

these features arise from an intuitive basis. We hypothesise that since these features are learnt from

data itself, and since we used a well-known heuristic of specifying the regularisation at 1.2√
m

that this

heuristic is not optimal for this configuration. Additionally, the bases employed are not optimised for

discrimination between classes. However, with six classes of approximately equal counts, a random

classifier would achieve accuracy of ≈0.166, indicating that these features are representing the data

and labels well.



Informatics 2018, 5, 27 22 of 37

Finally, the figure on the right hand side of Figure 6 shows the classification performance of the

ecdf features on the HAR dataset. Here, we observe classification performance that is very similar to

that obtained by the stat features. This is a satisfactory result since the ecdf features are very simple

and fast to extract from the raw data. This figure also demonstrates that classification performance

increases with context (i.e., longer window lengths and higher sampling rates), and once again the

performance seems to ‘saturate’ beyond w = 3, f = 20.

4.4. LR-CRF Performance on HAR

Figure 7 shows the classification performance that is obtained when modelling the sequences

with CRFs and with LR probability estimates as the node potentials. We will identify this pairing

succinctly as ‘LR-CRF’, with corresponding parings with RF and MLP denoted as RF-CRF and

MLP-CRF respectively. In Figure 7a the absolute performance is shown. By comparing the performance

shown on this figure with that shown on Figure 6 (note the colour scale is shared between these two

figures) we can see that in general there is an improvement on classification performance over most

of the configurations. Indeed, introducing the CRF has lifted the minimal classification performance

by ≈9% to over 90%. The difference between the LR-CRF and the basic LR models are depicted in

Figure 7b. In this figure, the red hues indicate that the LR-CRF model was more performant than the

basic LR model, blue colours indicate superior performance by the basic LR model, and white colours

specify that both classifiers perform comparably.
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Figure 7. Classification performance obtained by Logistic Regression-Conditional Random Field

(LR-CRF) on the HAR dataset. (a) LR-CRF classification performance over the three feature categories

considered. (b) Difference between LR-CRF and LR classification performance. Red indicates LR-CRF

outperforms the basic LR model.

This figure shows that in nearly all configurations investigated modelling the structure of the data

improves classification performance. Interestingly, the impact of CRFs on classification accuracy is

most dramatic at low sampling rates and small window lengths. For example, for each of the three

feature sets considered, the largest increase of performance is obtained at w = 1.5, f = 5 with increases

to performance of ≈7–11%. This is an intuitive result since these are the settings with least context, and
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CRFs provide a mechanism for transferring context through chains. The incorporation of structured

classifiers is known to positively impact classification performance in settings such as these [21].

4.5. Overall Impact of CRFs on Predictive Performance

We summarise the improvement in classification performance in the box plots shown in Figure 8,

and we can see here that the highest average improvement is obtained by the dict features where over

70% of configurations receive over 5% improvement in accuracy.

In Figure 9 we visualise the effect over all configurations. Results on HAR are shown on the

top row, Results on PAMAP2 in the middle row, and USCHAD on the bottom row. The first column

presents the results of LR-CRFs, the middle column on MLP-CRFs and the final column on RF-CRFs.
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Figure 8. Improvement in classification accuracy obtained by incorporating structure on the

classification task with Conditional Random Fields (CRFs).

In general with the HAR and PAMAP2 datasets we observe improvements to performance on all

features and all classifiers. The most pronounced average improvement is observed with RF on the

PAMAP2 dataset with a median improvement of approximately 0.18, with a minimal improvement

of 0.1.

Interestingly, the USCHAD, on average, does not benefit from the application of CRFs on the

task, particularly with the RF classifier from which we report a large negative change in accuracy. It is

difficult to explain this aspect of our results. We hypothesise that since the USCHAD dataset is small

that our models are overfitting to the data, despite our extensive cross validation on hyperparameters.

This is, perhaps, one weakness of using probability estimates as features in the CRF namely that the

indicative bias of the CRF is strongly influenced by the beliefs of an independent classifier rather than

being derived solely from the raw features themselves. However, one of the advantages of the model

is that it permits us to trivially learn non-linear sequence models in a principled manner. We must

also recognise the general advantages of using a sequential model on this data, however, as indicated

in Figure 9.

Finally, we illustrate another visualisation of the contributions of the CRFs in Figure 10. Here we

perform aggregation over datasets (Figure 10a) and features (Figure 10b). In effect these figures are the

‘marginal’ distributions over the datasets and features in Figures A1–A3.

Figure 10a shows that incorporating a CRF on the datasets for the HAR and PAMAP2 datasets

results in a net improvement in classification performance over all window and sampling rate

configurations, with more moderate improvements shown on the USCHAD dataset overall. In general,

the dict features make the largest contributions to this figure. There is also a general tendency for

more improvement on the configurations with less context, which is a natural effect of propagating

localised beliefs through the CRF structure. As reported earlier, the USCHAD dataset reports negligible

improvements on average (with approximately 2% improvement on average). In Figure 10b, we can

see that the dict features benefit most from the introduction of sequential context.
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Figure 9. Box plots over changes to performance in accuracy when using Conditional Random Field

(CRF) models to capture sequential dynamics. Results on HAR are shown on the top row, Results on

PAMAP2 in the middle row, and USCHAD on the bottom row. The first column presents the results of

Logistic Regression (LR) CRFs, the middle column on Multi-layer Perceptron (MLP) CRFs and the final

column on Random Forest CRFs.
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Figure 10. Mean aggregated change in performance when aggregated over datasets (a) and features (b).

(a) Mean improvement of Conditional Random Fields (CRFs) aggregated over datasets. (b) Mean

improvement of Conditional Random Fields (CRFs) aggregated over features.

4.6. Comparison between Datasets and Classifiers

In the appendix we present the complete set of results obtained for this work that we omit from

the main text owing to their size. Figure A1 shows the full set of results of the HAR dataset, Figure A2

shows the full results for the PAMAP2 dataset, and Figure A3 shows the full results for the USCHAD

dataset. In all cases, the first subfigure corresponds to the results obtained from LR, the middle

subfigure derives from MLP classifiers, and the final subfigure presents the results obtained from a RF.

On average, we can see that the HAR dataset receives the highest overall performance, particularly

with the stat and ecdf features where the performance is often over 0.9. Since the performance of

this dataset is consistently high, we speculate that the dataset may present less of a challenge from a

classification perspective than the other two datasets that we consider. Several aspects will contribute

to this. Firstly, in this dataset the activities were recorded in a very controlled laboratory environment,

and the manner in which some of the activities were recorded is far from natural (e.g., people will rarely

walk a staircase for a period of minutes). Hence, while this dataset provides a powerful resource for

the analysis of common activities, it is difficult to know how models learnt on this data will generalise

in naturalistic settings.

Other datasets (e.g., the SPHERE challenge [52] and Opportunity [61]) capture data and

annotations in less controlled settings, but do not yet capture the aspects of activity required to

be considered naturalistic. However, the SPHERE project is endeavouring to capture and release these

datasets [16,17]. One of the challenges that will need to be addressed in this setting is that of acquiring

labelled data, since the cohort that contribute to the data collection campaigns occur in the homes of

the participants. However, un-and semi-supervised techniques [89,90] and others involving active and

transfer learning [91–93] can be utilised in these settings.

Both PAMAP2 and USCHAD appear to be much more challenging to classify. For one thing, the

average classification performance is much less than HAR, and often there is significantly more variation

across configuration contexts, particularly with RFs. Interestingly, with these datasets, it seems that

the highest performance is often obtained with the longest window lengths (i.e., w = 6.0). Although

this is the longest window that we considered, we did not include longer windows (e.g., w = 7.5 or
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w = 9.0) in our analysis since we believed that in many real settings, some activities will not last for

longer than this (e.g., walking between rooms in a home environment).

A unifying result that is common to most experimental results is that the features with the least

context (i.e., w = 1.5, f = 5) tend to achieve the lowest predictive accuracy on the test set. Often,

this trait can be compensated for by increasing the window length, but with the USCHAD dataset

(Figure A3) it is possible to see that with stat and ecdf features, only small improvements are

achieved by increasing the window length for f = 5. In all of the settings of low context, significant

improvements are made by introducing a model over the sequence. Interestingly, since CRFs have been

shown to improve predictive performance on low-fidelity data contexts, we believe that the design

pattern of chaining simple features (extracted perhaps over longer windows) and simple classifiers

with CRFs can increase predictive reliability in resource-constrained settings, e.g., embedded settings

for Internet of Things (IoT). Additionally, there is a pleasing interpretation to our results that taking

windows of at least 3 s produces consistently strong results: in walking activity windows of 3 s will

capture approximately 6 steps, if one walks at a rate of 2 steps per second. In Fourier analyses, this then

permits the model to quantify the dominant frequencies of the signal reliably.

4.7. Analysis of CNN and LSTM Models

Table 4 presents the results obtained from the CNN and LSTM models on the HAR (left) PAMAP2

(middle) and USCHAD (right). As baseline methods we also present the results of logistic regression on

the stat and ecdf features at the configuration w = 3.0, f = 30.

If we consider the HAR dataset first (left column of Table 4), we can see that in both iid and CRF

settings the statistical and ECDF features perform similarly in terms of their classification performance

(with a difference of 0.003 in favour of the ECDF features). Although the performance of LSTM is

lower than the other models the classification performance is still high. Interestingly, we can see that

all models benefit from chaining their predictions together with CRFs, and the LSTM model (which

achieved the least performance in the iid setting) achieves the highest classification performance with

CRFs, and in so doing its classification error reduced by approximately ≈ 60%.

More modest classification performance is achieved on the PAMAP2 dataset (middle column of

Table 4), and we also observe higher variance in the predictive accuracy across the classifiers considered

(with a range of ≈0.12). In the iid and CRF settings, we can observe that the stat features achieve

highest classification performance, and the model with the next highest classification performance

(LSTM) is ≈0.07 lower. It is difficult to understand why there is such a large performance gap between

the stat features and the others on this dataset. We can, however, observe this pattern across all

considered configurations, c.f. performance images in the Appendix.

Table 4. Classification results obtained by the statistical models (top two rows) and the advanced

neural network models (bottom two rows) on the HAR (left), PAMAP2 (middle) and USCHAD (right)

datasets with the configuration for window lengths of 3 s and accelerometer data sampled at 30 Hz.

Results also show the results obtained with iid and Conditional Random Field models.

HAR PAMAP USCHAD

Model iid CRF Model iid CRF Model iid CRF

stat-LR 0.937 0.950 stat-LR 0.850 0.910 stat-LR 0.864 0.899
ecdf-LR 0.940 0.964 ecdf-LR 0.690 0.791 ecdf-LR 0.778 0.839

CNN 0.940 0.950 CNN 0.731 0.740 CNN 0.771 0.776
LSTM 0.917 0.966 LSTM 0.816 0.842 LSTM 0.831 0.899

Finally, the results of USCHAD dataset are shown in the right column of Table 4. We can see that

the results obtained from the statistical and ECDF features are competitive to those obtained by LSTM

and CNN respectively. In particular, the LSTM model obtains joint equal performance on this dataset
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in these configurations. We can also observe that test accuracy increases in all cases when incorporating

a CRF over the base classifier’s predictions.

We conclude our analysis on the CNN and LSTM models for AR with a comment on the overall

performance in comparison the the stat and ecdf features. We note that no single approach dominates

the others, with stat features sometimes out performing all others, and at other times LSTM models

achieve the best performance. A consistent and repeatable result that CRFs have been shown to

improve classification performance nearly all settings, and sometimes (e.g., with LSTM on the HAR

dataset) reduced classification error by ≈60%. NNs-based approaches do bring several advantages,

however. We note that computation of the stat features in particular is costly in terms of CPU time.

Although the CNN and LSTM models are also costly in training, one advantage of these is that they

are not costly to test.

Although the main focus and contributions of this work is within-paper comparisons (i.e., how

features, classifiers and sensor configurations affect classification performance over consistent data

partitions and activity labels) we briefly take this opportunity to compare our results with existing

literature. First, we will restate that we enforced clean partitions between subjects on train and test

folds. This means that data from the test participants were never used in training. This is a much

harder task than when the split is done with each participant.

The authors of the HAR dataset [4] also introduced the stat features that we used in this

work. With these features test-set accuracy of 0.96 as obtained, which is very similar to the results

that we achieved with stat and ecdf features and CNN and LSTM models. However, we make

improvements on these baseline results when we chain adjacent data points together with a CRF.

Additionally, the authors used additional sensors in their analysis: a gyroscope. As we have

discussed in the Introduction (Section 1), these sensors can consume an order of magnitude more

power than accelerometers, and so we did not consider these in our analysis but yet obtained

comparable performance.

The baseline performance of the PAMAP2 dataset [94] is approximately 80–90%. Our performance

on this dataset ranges from approximately 0.7 to 0.85 in the iid setting, but we achieve predictive

performance competitive accuracy of 0.91 with the CRF-chained stat-LR model. However, the baseline

method considered here also incorporated a total of three accelerometer sensors while we have only

used one.

With USCHAD, the baseline method yields a mean accuracy of approximately 67%, but have

considered a much larger set of activities than our work. Additionally, the authors had access

to supplementary sensors (including a Microsoft Kinect) which provides significant additional

information. It is challenging to compare our results with these owing to the difference in sensor

data and activity labels that were considered, but we have demonstrated that test-set accuracy of

approximately 0.9 can be achieved over the configurations that we considered.

4.8. Analysis of Misclassification Errors

In this section, we show that by analysing classification errors ‘reasonable’ misclassifications

generally are produced, i.e., ‘moving’ activities (walking, walking upstairs, and walking downstairs)

are rarely misclassified as ‘stationary’ activities (lying, sitting, and standing). As a concrete

example, with the HAR dataset we show the contingency tables on the test set over the six activities.

The contingency tables from LR and LR+CRF are shown in Figure 11a,b respectively. In these figures,

the rows indicate the ground truth and the columns the predictions, i.e., element (i, j) indicates that

label i is predicted as j. The contingency table of a perfect classifier will have only zero-valued

off-diagonal components.

We can broadly categorise the target activities as ‘moving’ (consisting of walking, walking

upstairs and walking downstairs) and ‘sedentary’ (sitting, standing and lying). Both contingency

tables considered demonstrate a strong ability to separate between the activity categories, but we
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can see that incorporating the CRF has corrected some of the errors that occurred when using the iid

classification model.
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Figure 11. Contingency tables of activities recognised on the HAR dataset with Linear Regression (LR)

(a) and LR with Conditional Random Fields (CRFs) (b) with a window length of 3 s, and a sampling

rate of 20 Hz. Rows indicate the ground truth and columns indicate predictions. (a) Contingency table

for LR. (b) Contingency table for LR + CRF.

Distinguishing between the stationary activities is determined to be a harder classification task in

our evaluation (particularly between sitting and standing). It is interesting to see that in the iid setting,

lying can be confused as walking upstairs and walking downstairs since there is little in common

between these two activities. We believe this to be because when walking up and down stairs the

accelerometer will be horizontal on the banister, which is a similar pose that would occur when lying

down. However, we can also observe that by introducing the CRF to the problem, these errors have

been corrected, based on the incorporation of the neighbouring context.

5. Conclusions

In this paper we have examined state-of-the-art methods in activity recognition methods using

accelerometers. Our particular interest is in long-term activity recognition in real-world environments,

in which abundance of data, such as high frequency sampling and multiple body sensors, are not

available due to maintenance restrictions in data collection. Using three publicly available data-sets,

we have attempted to answer some open questions in the literature: Should we be using structured

models, or is it sufficient to consider the data as if it were iid? Are the approaches taken so far genuinely

robust across different contexts across a wide variety of activities that summarise activities of daily

living? What are the most appropriate features and how robust are these across activities? What is

the minimum sampling rate required to get good classification performance? Do advanced neural

network models out-perform more classical feature-based representations?

Our results provide evidence for answering many of the questions posed at the beginning of

this paper. First, we have noted that incorporating lower sampling frequencies does not worsen

classification performance. That low sampling frequencies do not deteriorate classification is of

particular interest for machine learning and sensor researchers. We also conclude that the use of longer

feature windows for feature extraction can help the classification, as such configurations may capture a

greater proportion of the temporal context of the activities. This context can alternatively be captured
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by introducing structured models, and we showed examples where structured models are preferable

to unstructured models.

One of the principal contributions of this work is that, somewhat surprisingly, many disparate

experimental configurations yield comparable predictive performance on testing data. We understand

these results arising from the experimental setup directly and indirectly define a pathway for context

to be delivered to the classifier, and that, in some settings, certain configurations are more optimal than

alternatives. Interestingly, our experiments show that regardless of how context arrives to a classifier

(whether via high sampling rate, wide feature windows or by modelling sequences) competitive

performance can be achieved. In particular we summarise our analysis with the following observations:

• Context can be delivered to classification models by increasing the sampling rate, selecting wide

feature windows for feature extraction, modelling the temporal dependence between features.
• Classification performance tends to improve when these configurations are independently

‘increased’ (i.e., more context introduced).
• There tends to be a performance plateau for any given dataset (i.e., maximal performance) and

our results indicate this can be achieved on several device, feature and classifier configurations.

With these observations in mind, our recommendations are that practitioners that use low

sampling rates (e.g., in IoT settings) utilise sequential classifiers in prediction. On less constrained

data acquisition contexts, however, there is more freedom for the practitioner to specify their pipeline.

However, given the consistency of our empirical evaluation we would still recommend incorporating

sequential information on the task in general.

Additionally, we conclude that since most accelerometer-based activity recognition datasets have

been collected in controlled lab environments, it is difficult to estimate performance of these methods

in the wild. Therefore, there is a pressing need for naturalistic datasets, but several challenges are

impeding the collection and release of naturalistic activity recognition datasets.

Future work will include deeper analysis into the definition and explicit specification of the

most important features for activity recognition, particularly in natural settings. This will include

the incorporation of fully Bayesian models in which both the means and variances of the posterior

distribution will be informative towards this goal, e.g., Gaussian Process models using Automatic

Relevance Determination (ARD) [95]. The introduction of such methods will reduce the risk of

overfitting, but Bayesian models can naturally be adapted to hierarchical models which can naturally

lead to transfer learning frameworks [96]. All future experiments will be validated against these

datasets and others.
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Appendix A

This section tabulates the complete set of results. Each table provides the classification accuracy

of the three feature sets considered (stat, ecdf and dict) with LR, RF and MLP. Each table tabulates

classification performance over 24 independent sensor configurations discussed in Section 3.7.
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Figure A1. Classification performance on the HAR dataset with all iid feature configurations.
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Figure A2. Classification performance on the PAMAP2 dataset with all iid feature configurations.
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Figure A3. Classification performance on the USCHAD dataset with all iid feature configurations.
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