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Abstract—Automatic analysis of scanned historical documents
comprises a wide range of image analysis tasks, which are
often challenging for machine learning due to a lack of human-
annotated learning samples. With the advent of deep neural
networks, a promising way to cope with the lack of training data
is to pre-train models on images from a different domain and then
fine-tune them on historical documents. In the current research, a
typical example of such cross-domain transfer learning is the use
of neural networks that have been pre-trained on the ImageNet
database for object recognition. It remains a mostly open question
whether or not this pre-training helps to analyse historical
documents, which have fundamentally different image properties
when compared with ImageNet. In this paper, we present a
comprehensive empirical survey on the effect of ImageNet pre-
training for diverse historical document analysis tasks, including
character recognition, style classification, manuscript dating,
semantic segmentation, and content-based retrieval. While we
obtain mixed results for semantic segmentation at pixel-level, we
observe a clear trend across different network architectures that
ImageNet pre-training has a positive effect on classification as
well as content-based retrieval.

I. INTRODUCTION

Historical documents span centuries of different writing
supports (including stone, palm leaf, papyrus, parchment,
and paper in different states of decay), writing instruments,
languages, scripts, fonts, ornaments, illustrations, and so on.
Furthermore, the image acquisition methods may vary substan-
tially depending on the type of document. When performing
automatic image analysis for a specific type of document using
machine learning, one of the main challenges is to collect a
sufficient amount of representative learning samples. In the
case of ancient languages and scripts, such annotations often
can only be provided by experts in the respective field and are
thus costly to obtain.

∗ These authors contributed equally to this work.

In recent years, the use of deep neural networks has strongly
influenced the state of the art for historical document analysis.
However, deep neural network models have millions of param-
eters to fine-tune and a random initialization [1] may not be
the best option when facing a lack of annotated training data.
Several promising alternatives have been suggested including
layer-wise pre-training [2], [3] and transfer learning [4]. The
latter is the main focus of the present paper. Transfer learning
aims to fine-tune network parameters with respect to another
image analysis task – which features a large amount of
annotated training data – and then use these parameters as
an initialisation for the image analysis task at hand.

Transfer learning is a widespread technique in computer
vision [5], [6]. Since the publication of large datasets such as
ImageNet [7], CIFAR-10 [8], PASCAL [9], and COCO [10],
many architectures have been trained on them and their weights
made publicly available to be used for transfer learning.
Although transfer learning has been around for the last two
decades [11], it has only become popular in the last years
with the breakthrough of Convolutional Neural Networks
(CNNs) architectures consistently winning the Large Scale
Visual Recognition Challenge (ILSVRC) [7] competition since
2012 [12]. Pre-training on ImageNet and successive fine-tuning
on another dataset has become a widely used practice [13],
[14]. It is generally believed that this approach helps to learn
good and general features.

Contribution

Previous studies mostly focus on fine-tuning on datasets
similar to the dataset used for pre-training. Moreover, they only
explore a small set of tasks and neural network architectures.
Historical documents have very different image properties
when compared to the natural images found in the ImageNet
dataset. It is therefore not immediately intuitive that pre-
training a model on ImageNet for historical document analysis
will have the same benefits.

Published in Proceedings of ICDAR 2019 : 15th International 
Conference on Document Analysis and Recognition, 20-25 September 
2019, Sydney, New South Wales, Australia, which should be cited to 
refer to this work.



2

TABLE I: This table gives an overview of the different tasks.
The Kuzushiji-MNIST (KMNIST) dataset contains different Hiragana
(cursive Japanese) characters, here depicted is the character for
“o”. The expected output is the character label of the image. The
Classification of Medieval Handwritings in Latin Scripts (CLaMM)
dataset is annotated for style classification and manuscript dating.
The expected output is the style or date label for a given image.
The Historical Manuscript Database DIVA-HisDB is annotated for
semantic segmentation at pixel level. The example shown here is from
manuscript CB55. The output is a segmentation label for each pixel,
here shown with different colours. The Historical Writer Identification
(Historical-WI) dataset consists of images from different writers. Here
a section from one of the pages from writer 100 is depicted. The output
of the network is a ranking of the most similar writers, based on the
input image.

Dataset Input Task Output

KMNIST

Hiragana

Classification お (o)

CLaMM

Style Classification

Manuscript Dating

Semihybrida

1451-1475 C.E.

DIVA-HisDB

Semantic
Segmentation

at Pixel Level

Historical WI Writer Identification Writer 100

In this paper, we provide a comprehensive empirical study
of the impact of transfer learning from ImageNet pre-trained
models to historical document analysis. A variety of different
applications, datasets and network architectures are taken into
account. The applications can be grouped into three categories:
classification, semantic segmentation at pixel level and content-
based image retrieval. Most of the datasets we use were
published as part of previous competitions at the International
Conference on Document Analysis and Recognition (ICDAR).
Note that the main aim of our study is to investigate the effect
of pre-training on relevant and high-quality datasets, and not
to outperform the winners of the competitions by optimizing
task-specific pre- and post-processing methods.

II. RELATED WORK

ImageNet is the most widely used dataset for pre-training
and transfer learning. Popular beliefs as to why ImageNet is
particularly suited for this task are its large size, the high
number of distinct classes and the close similarity of many
of the classes, e.g. a number of different dog breeds.

Huh et al. [13] examined the impact of various aspects
of ImageNet pre-training and successive fine-tuning on the
PASCAL [9] dataset, such as dataset size, number of classes,
using fine-grained versus coarser class labels and the ratio of
images per class. Additionally, they showed that the afore-
mentioned commonly held beliefs are not accurate, and that
transfer learning still works well with restrictions, such as only
using half of the dataset.

He et al. [15] showed that pre-training on ImageNet speeds
up convergence early in training, but that training from scratch
will eventually catch up and sometimes even surpass the
pre-trained and fine-tuned accuracy. They further argue that
ImageNet pre-training does not automatically give better regu-
larisation and that it shows no benefit when the target tasks or
metrics are more sensitive to spatially localised predictions.
Training from scratch requires different normalisation and
regularisation methods as compared to transfer learning. This
can skew results, benefiting the pre-trained paradigm over
learning from scratch.

Similarly, Kornblith et al. [16] showed that although Ima-
geNet pre-training accelerates convergence, it does not nec-
essarily lead to a better performance if run long enough.
They also investigated how transfer learning relates to the
architecture used in the context of image classification. Their
findings suggest that the accuracy increase from ImageNet pre-
training fades quickly as the size of the dataset for the task at
hand grows larger. They conclude that pre-training is and will
remain an essential tool in the near future but also highlight
clearly that it has limitations.

When it comes to cross-domain transfer learning, its useful-
ness - especially from natural images such as ImageNet - is
subject of an open discussion. There are cases where transfer
learning across domains has been proven to be successful
[17], [18]. In contrast, there is literature suggesting that this
technique is harmful to the final performance of the networks.
Tensmeyer et al. [19] specifically question the usefulness of
transfer learning from ImageNet (natural images of 3D objects)
on document analysis, which are 2D entities. They argue that
feature mappings for natural images fundamentally differ from
feature mappings for documents. They also question whether
architectures optimized for natural image classification are a
good fit for historical document analysis. In their work, they
do not provide conclusive results, focus only on the AlexNet
[12] architecture and lack a thorough comparative study. The
impact of transfer learning from ImageNet was also a topic of
discussion at ICDAR 2017. The organizers of the Competition
on Historical Document Writer Identification [20] speculated
that the competition participant who used a deep learning-
based method, may have performed relatively poorly due
to their network being initialized with ImageNet pre-trained
weights.
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Therefore, a conclusive answer on what the real reasons
behind the benefit of transfer learning are and whether these
can be harnessed in a cross-domain scenario is yet to be found.

III. STUDY DESIGN

In this section, we present the details of our empirical
study, namely the tasks we choose to perform, the datasets and
network architectures we use and finally the training procedure
for each specific task.

A. Tasks

In this work, we choose three tasks as representatives of
some of the most common challenges in the field of historical
document analysis. Specifically, our use cases include image
classification, semantic segmentation at pixel level and content-
based image retrieval. We believe that their radically different
natures will give a robust estimation of the generality of our
findings. Table I gives an overview of the input and output of
the different tasks.

1) Classification: This task is well known in the computer
vision community and consists of producing one or more
descriptive labels for a given input image. In the context
of historical image document analysis this task can be, for
example, formulated as character recognition [21], [22],
style/script classification [23], [24] or manuscript dating [24],
[25]. We train the networks to minimize the cross-entropy loss
function shown below:

L(~x, y) = −log

(

e~xy

∑n

i=0
e~xi

)

(1)

where n is the number of classes, x is a vector of size n
representing the output of the network, and y = {1..n} is a
scalar representing the class label, e.g. style of the document.

2) Semantic Segmentation at Pixel Level: Semantic segmen-
tation at pixel level is a specific case of a classification task.
In this task, each pixel of an input image has to be assigned a
label. This is often performed to analyse the layout of historical
documents [26], [27], or as a form of pre-processing for
further tasks, e.g. line segmentation [28]. Neural networks for
semantic segmentation are trained similarly to the ones for
classification, but the architectures employed are different (see
section III-C).

3) Content-based Image Retrieval: Image similarity (or
content-based image retrieval) is another typical scenario found
in computer vision. In the context of historical document image
analysis, this can be seen in the form of writer identification
[20], signature verification [29] or watermark recognition [18].
To train the networks for this task, we use the triplet loss
approach [30], [31]. The triplet loss operates on a tuple of three
images {a, p, n} where a is the anchor (reference), p is the
positive sample (an image of the same class as the reference),
and n is the negative sample (an image of another class). The
loss function is then defined as:

L(δ+, δ−) = max(δ+ − δ− + µ, 0) (2)

where δ+ and δ− are the Euclidean distances between the
anchor-positive and anchor-negative pairs in the high dimen-
sional output space of the network and µ is the margin used.

B. Datasets

The datasets are available for download through Deep-
DIVA1. The image input size depends on the architecture and
is described in section III-D. Table I shows an example image
for each dataset.

1) Kuzushiji-MNIST: The KMNIST dataset [21] contains
grayscale images of ten different Hiragama characters written
in Kuzushiji (cursive Japanese). It is a curated subset of the full
Kuzushiji dataset, which was created during the digitisation of
around 300’000 old Japanese books. The images in KMNIST
are from 35 classic books printed in the 18th century. The
training set contains 7’000 and the test set 1’000 images per
class, each of size 28× 28 pixels.

2) ICDAR2017 Classification of Medieval Handwritings in
Latin Scripts: This dataset was published for the Classification
of Medieval Handwritings in Latin Scripts (CLaMM) compe-
tition [24] at the ICDAR 2017 conference and includes 3’540
images annotated for style classification and manuscript dating.
The test set contains 2’000 images. The dataset is divided
into 12 classes for style classification (Caroline, Cursiva, Half-
Uncial, Humanistic, Humanistic Cursive, Hybrida, Praegoth-
ica, Semihybrida, Semitextualis, Southern Textualis, Textualis,
Uncial). Each of the 15 classes provided for manuscript dating
corresponds to a specific time interval, ranging from 500 C.E.
to 1600 C.E. The competition provided two variations of the
dataset, we use the subset that contains images of mixed
resolutions and colour representations.

3) ICDAR2017 Competition on Layout Analysis for Chal-
lenging Medieval Manuscripts: The DIVA-HisDB dataset
[32] consists of three different medieval manuscripts (CB55,
CSG18, CSG863), each containing 50 pixel-wise annotated
pages with a size of approximately 4k × 5.5k pixels. The
manuscripts have a challenging layout with four different
classes (main text body, decoration, comment and back-
ground). There is also an additional label for boundary pixels.
These pixels originate from the labelling process and are
background pixels along the border of the text, which are
labelled as text. For our purposes, we relabelled these pixels
as background. The same training and test dataset split is used
as in the ICDAR 2017 Competition on Layout Analysis for
Challenging Medieval Manuscripts [33].

4) ICDAR2017 Historical Writer Identification: The
Historical-WI dataset [20] consists of colored and binarized
versions of handwritten historical documents. The training
dataset consists of 394 writers with three pages per writer,
which gives a total of 1’182 pages. The dataset for the
competition contains 720 writers and five pages per writer,
which makes 3’600 instances in total. We use the coloured
version of the dataset for our experiments.

C. Model Architectures

For the classification and content-based image retrieval
experiments, we investigate four well-known architectures:
VGG19 with batch normalisation (VGG19 BN), Inception V3,
ResNet152 and DenseNet121. A simple architecture with only

1https://bit.ly/DeepDIVA

https://bit.ly/DeepDIVA
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three layers is also trained for each task to give a baseline
for the performance. VGG19 uses batch normalisation [34]
and consists of alternating blocks of convolutional and max-
pooling layers. The Inception architecture [35] introduced
Inception blocks, which combine different convolutional fil-
ters and layers into one block by concatenation. A second
classification head further back in the architecture is added to
counteract the vanishing gradient. Another way to combat the
vanishing gradient was introduced with the ResNet architecture
[36]. The layers in these type of networks contain direct,
additive connections from one layer to a next one, so-called
skip connections. We use the ResNet152 architecture. The idea
of skip connections has also been extended to not only connect
one layer to the next one, but to have blocks of densely-
connected layers. Unlike for the skip connections, the output is
not added but concatenated. These dense blocks are alternated
with 1 × 1 convolutions and max-pooling layers in order to
reduce the number of parameters in the model. Here, we use
the DenseNet121 [37], which features such dense blocks.

For the segmentation experiments, we use two different
architectures: SegNet and DeepLabV3. SegNet [38] can use
any VGG architecture as an encoder, we use VGG19 BN.
For each encoder layer, there is a decoder layer which uses
the max-pooling indices from the respective encoder layer to
perform non-linear up-sampling. The DeepLabV3 architecture
[39] uses a ResNet as the encoder, ResNet18 in our case, and
an Atrous Spatial Pyramid Pooling (ASPP) as the decoder.
A simple architecture with five layers is also trained on the
dataset to give a baseline for the performance.

Deep learning is a fast-moving field, and in recent years,
the models we use marked milestones in advances in terms
of network architecture. All the architectures are available in
DeepDIVA2.

D. Training Procedure

All experiments are run using the DeepDIVA framework
[40]. The models are trained long enough to reach convergence
on the training data. Each architecture is trained from scratch
as well as with ImageNet [7] pre-training to evaluate the effect
of pre-training. All hyper-parameters can be found in our fork
of DeepDIVA3.

1) Classification: The architectures described in section
III-C are trained with data balancing. Three different clas-
sification tasks are performed. For the character recognition
task on the KMNIST dataset, the models are trained for 35
epochs. The input images are resized to match the required
input size of the respective network. On the CLaMM dataset,
the models are trained for 50 epochs for manuscript dating and
style classification. 10 random sections of the required input
size of the respective network are sampled from each input
image, evaluated and their output is averaged.

2) Semantic Segmentation at Pixel Level: The architectures
described in section III-C are trained for 50 epochs. Since
the images are very large, using the whole image as an input

2https://bit.ly/2R8pBqx
3https://bit.ly/2I8c3dX

for the network is not feasible. Instead, a total of 60′000
sections of size 256× 256 are randomly sampled per training
epoch. In the test phase, crops of size 256× 256 are sampled
as a sliding window (with 50% overlap) to segment the full
image. Both architectures used for this task feature encoders,
for which ImageNet pre-trained weights are available. For the
experiments that use pre-training, we initialise only the encoder
using these weights, the weights of the decoder are initialised
randomly.

3) Content-based Image Retrieval: The architectures (see
Section III-C) are trained for ten epochs with 1.5 million
triplets. The 1.5 million triplets are generated every epoch from
the training set (see Section III-B4) with 1’182 pages from 394
unique writers. . The evaluation is performed on the test set
with 3’600 pages from 720 writers, with each page used as a
query in turn. All the networks are designed to embed the input
images in a 128-dimensional space. The images are randomly
cropped to match the required input size of the respective
network. During training one random section per page is fed
to the network. During the test phase, ten random sections of
the input image are evaluated, and their output is averaged.

IV. RESULTS

In the following, results are presented for each of the
three chosen tasks individually, i.e. classification, semantic
segmentation at pixel level and content-based image retrieval.

A. Classification

Table II reports the accuracies achieved by the different
architectures trained from scratch and with ImageNet pre-
training on the KMNIST and CLaMM datasets. In general,
the network architectures clearly profit from pre-training..
ResNet152 shows the largest increase in performance while
DenseNet121 benefits the least.

1) Optical Character Recognition: For this task, we report
the mean accuracy along with the standard deviation computed
over five runs of each experiment. Comparing the mean perfor-
mance of each model using the t-test, the improvement from
trained from scratch to pre-trained is statistically significant for
VGG19 BN, InceptionV3 and ResNet152. DenseNet121 shows
a small decrease of 0.08% with pre-training. The ResNet152
benefits the most from pre-training with a delta of 1.42%,
which also makes it the best performing model.

2) Style Classification: Pre-training leads to a higher ac-
curacy for all architectures with an average increase of 8.1%.
VGG19 BN, Inception V3 and ResNet152 profit the most from
pre-training with an increase in accuracy of around 9.5%.

3) Manuscript Dating: Pre-training improves the perfor-
mance of all the architectures with an average increase of
11.4%. ResNet152 shows the largest increase in accuracy with
17.3%, which also makes it the best performing model.

B. Semantic Segmentation at Pixel Level: DIVA-HisDB

The performance of the segmentation models are evaluated
with the layout analysis tool [41] used in the ICDAR 2017
competition [33]. The tool computes the mean Intersection

https://bit.ly/2R8pBqx
https://bit.ly/2I8c3dX
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TABLE II: Accuracy (%) on the test set for the different architectures trained for the different classification tasks. Character recognition is
performed on the KMNIST dataset. The reported accuracy is the average along with the standard deviation from five runs. Style classification
and manuscript dating are preformed on the CLaMM dataset.

CHARACTER RECOGNITION STYLE CLASSIFICATION MANUSCRIPT DATING

SCRATCH PRE-TRAINED ∆ SCRATCH PRE-TRAINED ∆ SCRATCH PRE-TRAINED ∆

3-LAYER CNN 92.98±0.22 N/A - 12.4 N/A - 11.7 N/A -
VGG19 BN 98.17±0.18 98.35±0.15 +0.18 42.5 52.1 +9.6 24.0 36.1 +12.1

INCEPTION V3 97.82±0.11 98.51±0.11 +0.69 46.5 55.5 +9.0 24.8 35.4 +10.6
RESNET152 97.27±0.26 98.69±0.10 +1.42 39.1 49.3 +10.2 20.6 37.9 +17.3

DENSENET121 98.64±0.06 98.56±0.06 -0.08 47.3 50.9 +3.6 30.7 36.4 +5.7

TABLE III: Mean IU (%) on the test set of the different architectures trained on the three manuscripts of the DIVA-HisDB dataset. For
pre-training, only the encoder is initialized with the pre-trained weights from ImageNet.

MANUSCRIPT CB55 MANUSCRIPT CSG18 MANUSCRIPT CSG863

SCRATCH PRE-TRAINED ∆ SCRATCH PRE-TRAINED ∆ SCRATCH PRE-TRAINED ∆

5-LAYER CNN 55.7 N/A - 56.8 N/A - 45.6 N/A -
SEGNET 86.9 72.9 -14.0 73.0 75.3 +2.3 81.6 61.9 -19.7

DEEPLABV3 92.9 91.4 -1.5 69.8 73.1 +3.3 85.5 86.7 +1.2

TABLE IV: Mean average precision (%) achieved on the test set by
the different architectures trained on the Historical-WI dataset for
writer identification.

WRITER IDENTIFICATION

SCRATCH PRE-TRAINED ∆

3-LAYER CNN 11.4 N/A -
VGG19 BN 14.6 24.0 +9.4

INCEPTION V3 9.1 26.1 +17.0
RESNET152 24.7 22.1 -2.6

DENSENET121 27.2 34.6 +8.2

over Union (mean IU) between the predicted results and the
ground truth. Table III shows the mean IU achieved by the
models on the test set of the three different manuscripts. The
results regarding the effect of transfer-learning from ImageNet
are mixed for both architectures. On some manuscripts pre-
training on ImageNet increases the performance, but on others,
the pre-trained network performs much worse. In terms of
dataset size, semantic segmentation outnumbers the classifica-
tion and content-based image retrieval by far, as every pixel is
a data point. Kornblith et al. [16] have found that the impact
of ImageNet pre-training on the performance of the model
becomes smaller the larger the dataset gets. This could explain
why pre-training is not beneficial for this task.

C. Content-based Image Retrieval: Writer Identification

Table IV reports the mean average precision achieved by
the different architectures trained from scratch and with pre-
training on the Historical-WI dataset. Pre-training improves
the performance of all models except ResNet152. Inception
V3 profits the most from pre-training with an increase in
performance of +17.0%.

V. CONCLUSION

For the classification and content-based image retrieval tasks
we find a clear trend that cross-domain transfer learning from
ImageNet pre-training leads to an improved performance. For
semantic segmentation at pixel level we obtain mixed results.
In some instances pre-training is beneficial but harmed the
performance in others. We speculate that this could be possibly
attributed to the larger amount of training data available for
semantic segmentation, as each pixel can be considered an
individual data point.

Overall, in historical document image analysis, the lack of
annotated training data is often one of the most limiting factors
for machine learning. Facing this restriction, ImageNet pre-
training can significantly help to improve the performance of
deep learning models. In this paper we only investigate the
effect of transfer learning from ImageNet. It would also be
interesting to see how pre-training on other type of datasets,
especially domain-specific ones.
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