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ABSTRACT In this review paper, a comprehensive study on the concept, theory, and applications of com-
posite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs
have been provided. It is shown that CRLH-TLs with negative permittivity (ε < 0) and negative permeability
(µ < 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial
structures called ‘‘metamaterials’’. These artificial structures include series left-handed (LH) capacitances
(CL), shunt LH inductances (LL), series right-handed (RH) inductances (LR), and shunt RH capacitances
(CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the
surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also
shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives,
since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain
and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence,
a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the
performance parameters that are rare and not often discussed in available literature. Therefore, this survey
provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference
for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial the-
ory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials,
gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterial-

TLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue
of study that have a strong impact for the enlargement of the next generation wireless communication
systems.
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INDEX TERMS Metamaterials (MTMs), artificial structures, antennas, negative permittivity (ε < 0), negative
permeability (µ < 0), high performances, composite right/left-handed transmission lines (CRLH-TLs), next
generation wireless communication systems.

I. INTRODUCTION

Metamaterials can be best described as structures that
are artificially engineered to yield certain electromagnetic
properties that do not exist naturally [1]. Metamaterials
characterized with both negative permittivity (ε < 0)
and negative permeability (µ < 0) are referred to as
left-handed metamaterials (LHMs). LHMs have been con-
siderably studied by scientific, technological and engineering
communities [2]. In 2003, LHMs were identified by Science
magazine to be in the top ten of contemporary scientific
breakthroughs [3]. New applications, concepts, and devices
have been developed by employing the unique characteristics
of LHMs [4]. In this study, the basic electromagnetic (EM)
specifications and physical implementations of LHMs are
evaluated based on a transmission line (TL) method. The
TL method is an efficient design approach for applications
of LHMs and it provides a good insight into the physical
phenomena of LHMs. In general, LHMs are described
as generic models of composite right/left hand (CRLH)
models that exhibit right-handed (RH) properties that are
innate in practical LHMs. The characterization, design, and
realization of 1D and 2D CRLH TLs are reviewed and
studied. Additionally, new antenna devices based on CRLH
TLs are investigated and discussed.

TL metamaterials are 1-D metamaterials comprising of the
host TL loaded with reactive elements (e.g., capacitances and
inductances) and/or resonators. TLmetamaterials or metama-
terial TLs can also be considered as a type of artificial TL [5].
Arguably, the most relevant characteristic of metamaterial
TLs compared with conventional TLs is the enablement of
further controllability with respect to the main line parame-
ters (i.e., the phase constant or phase shift of the transmission
line) and the characteristic impedance. As it is revealed in
subsequent sections of this study, this further controllability
provided by metamaterial TLs on the line parameters paves
the way for the design of antenna structures with more com-
pact dimensions, higher performances, and/or novel function-
alities. As a matter of fact, metamaterial TLs and effective
media metamaterials both offer added advantages over their
conventional counterparts due to the controllability of their
specifications beyond those accessible when their conven-
tional alternatives are used. However, it is good to note that,
in some cases creating a CRLH metamaterial TL involves
some short of artificially-engineered prototyping to create the
‘‘non-natural’’ / artificial left-handed components: CL and
LL. This in the end complicates the structure when compared
to natural right-handed, conventional, non-artificial TLs. For
instance, a microstrip-line leaky-wave antenna (LWA) oper-
ating in its radiative mode (leaky mode) with conventional
right-handed operation is simpler than its CRLH microstrip
counterpart. Therefore, in some applications there is no such
need to obtain CRLH operation [6]–[10].

Figs.1 (a), (b), and (c) show the circuit models for PRH
(purely RH), PLH (purely LH), and CRLH lossless TLs,
respectively. The PRH TL equivalent circuit model, shown
in Fig. 1(a), is typically the combination of a series inductor
LR and a shunt capacitor CR. The PLH TL circuit model,
exhibited in Fig. 1(b), is the dual counterpart of the PRH
TL. The PRH TL is a synergy of a times-unit length shunt
inductor, LL and a times-unit length series capacitance, CL .
For practical purposes, the realization of a PLH structure
is not feasible. This is due to the unavoidable RH parasitic
series inductor (LR) and shunt capacitor (CR) effects (parasitic
capacitance resulting from voltage gradients, and inescapable
parasitic inductance resulting from the flow of current in
the direction of metallization). Thus, a CRLH-structure
introduces a very generic configuration of a structure with LH
properties. The generic CRLH TL equivalent circuit model
exhibited in Fig.1(c) comprises of a series combination of an
inductance LR and a capacitanceCL , and a shunt capacitorCR
in parallel with an inductor LL .
The propagation constant (γ ) of a transmission line (TL) is

evaluated as: γ = α + jβ =
√
ZY , where Y and Z represent

the admittance and impedance, respectively. Considering the
CRLH-TL, Z and Y can be evaluated as follows [1], [2], [11]:

Z (ω) = j(ωLR −
1

ωCL
) (1)

Y (ω) = j(ωCR −
1

ωLL
) (2)

So, a homogenous CRLH TL will have the following
dispersion relation:

β (ω) = s(ω)

√

ω2LRCR +
1

ω2LLCL
− (

LR

LL
+
CR

CL
) (3)

where

s(ω)















−1 if ω < ωŴ1 = min(
1

√
LRCL

,
1

√
LLCR

)

+1 if ω > ωŴ2 = max(
1

√
LRCL

,
1

√
LLCR

)
(4)

In Eqn.(3), the phase constant, β can either be purely
real or purely imaginary depending on the sign convention
the radicand assumes (i.e., plus or minus, respectively).
If β is solely real over a frequency range, a pass-band
is present in that frequency range due to the condition,
γ = jβ. On the other hand, if β is purely imaginary over
a frequency range, a stop-band is present in that frequency
range due to the condition, γ = α. Such a stop-band is a
unique to the CRLH-TL and does not exist in the PRH-TL
or the PLH-TL. Although, in conventional PRH-periodic
TL stop-band occurs due to space-harmonic Floquet-mode
coupling, and PRH-periodic TL can balance the disper-
sion to obtain seamless backward-to-forward scanning.
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FIGURE 1. Circuit model of the (a) RH transmission line, (b) LH transmission line, and (c) CRLH transmission line.

This balancing condition is somehow similar to the condition
to suppress the open-stop band (OSB) occurring in conven-
tional periodic LWAs [12], [13]. Figs. 2 (a), (b), and (c) show
the dispersion curve (i.e., ω − β relationship) of a PRH-TL,
PLH-TL, and CRLH-TL, respectively. From the dispersion
curves, the deduction and evaluation of the group velocity
(

vg = ∂ω/∂β
)

and the phase velocity
(

vp = ω/β
)

of these
TLs can be made. For a PRH-TL, it can also be inferred
from the curves that vg and vp are parallel

(

i.e.,vpvg > 0
)

.
Whereas for a PLH-TL, the curves indicate that vg and vp
are not parallel

(

i.e.,vpvg < 0
)

. The CRLH-TL’s dispersion
curve also shows the presence of LH

(

i.e.,vpvg < 0
)

and RH
(

i.e.,vpvg > 0
)

regions. From Fig. 2(c), it can be seen that for
a CRLH-TL, if γ is purely real, a stop-band is present.
Generally, the series and shunt resonances of the

CRLH-TL are distinct. This is referred to as the unbalanced
case. However, the LH and RH contribution balance out at a
given frequency when the series and shunt resonances are the
same.

LRCL = LLCR (5)

Hence, a balanced case condition is obtained as a result, and
the resulting simplified equivalent circuit model is displayed
in Fig. 3(a). For the condition in Eqn.(5), the propagation
constant in Eqn.(3) decreases to a simpler expression from
which Eqn.(6) is derived.

β = βR + βL = ω
√

LRCR −
1

ω
√
LLCL

(6)

where the phase constant, β is the combination of the
RH-phase constant (βR) and the LH-phase constant (βL)
when it is distinctly split.

As the frequency increases, the CRLH-TL becomes
dispersive increasingly. This is because the phase velocity
(i.e., vp = ω/β) now possesses an increasing dependence
on the frequency, as expressed in Eqn.(6). On the contrary,
other types of periodic-LWAs can control their dispersion to
tune the frequency-scanning ratio (angle of radiation versus
frequency slope), using some engineering methods [14], [15].
Apart from frequency-scanning, it is interesting to perform
fixed-frequency electronic scanning with LWAs. Apart from
the electronically-scannable CRLHLWAs, conventional (non
CRLH) electronically reconfigurable LWA which also per-
form backward-to-forward electronic scanning using tunable
RF components, and without the need of complex CRLH

balanced unit-cell design [16], [17]. Therefore, in the case
of CRLH it is challenging to control the scanning ratio
while keeping the balancing condition. Nevertheless, in [18]
and [19] the proposed CRLH LWAs have controlled the
frequency-scanning sensitivity / speed / ratio applying some
interesting approaches. Eqn.(6) shows that at low frequencies,
the CRLH-TL is LH-dominant, while at high frequencies,
the CRLH-TL is RH-dominant. This depicts the dual nature
of the CRLH- transmission line. The dispersion diagram
for the balanced CRLH- transmission line is exhibited
in Fig. 3(b). From Fig. 3(b), the transition from LH to RH
happens at:

ω0
Unbalanced−→

1
4
√
LLCLLRCR

Balanced−→
1

√
LC

(7a)

L = LL + LR (7b)

C = CL + CR (7c)

where ω0 is the transition frequency. Therefore, for the
balanced case, there is a smooth transition takes place from
LH to RH, since γ is purely imaginary, in contrast to the
unbalanced case. Consequently, a stop-band is not present for
the balanced CRLH-TL’s dispersion. Although β is null at ω0
(relative to an infinite guided wavelength (i.e., λg = 2π

/

|β|),
due to a non-zero vg at ω0, wave propagation still occurs.
Also, at ω0, the phase shift is null for a TL of length d (i.e.,
ϕ = −βd = 0). In the LH frequency range (i.e., ω < ω0),
phase lead (i.e., ϕ > 0) occurs and in the RH frequency range
(i.e., ω > ω0), phase delay (i.e., ϕ < 0) occurs.

The characteristic impedance of a transmission line is
presented by Z0 =

√
ZY . For the CRLHTL, the characteristic

impedance is stated as follows [1], [2], [11]:

Z0
Unbalanced−→ ZL

√

CLLRω2

LLCRω2
Balanced−→ ZL = ZR (8)

ZL =

√

LL

CL
(9)

ZR =

√

LR

CR
(10)

where ZL and ZR are the PLH and PRH impedances,
respectively.

For the unbalanced case, the characteristic impedance
is dependent on the frequency dependent. Eqn.(8) shows
that the balanced case is independent of the frequency
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FIGURE 2. Dispersion curves for the transmission lines of the Fig.1. (a) RH transmission line, (b) LH transmission line, and (c) CRLH
transmission line (unbalanced).

FIGURE 3. Balanced case of the Fig.1(c). (a) simplified circuit model, and (b) dispersion curve displaying
seamless LH to RH transition.

independent and thus, it is possible to have a broad bandwidth
matching.

The derived TL equations above are analogous to the
constitutive parameters that define a CRLH material. The
propagation constant of a TL as stated earlier is γ = jβ =√
ZY . Given the propagation constant of a material (β =

ω
√

εµ), the equation in below can be derived [1], [2], [11]:

−ω2εµ = ZY (11)

Similarly, the characteristic impedance of the TL, i.e., Z0 =√
ZY is analogous to the intrinsic impedance of the material,

i.e., η =
√

µ/ε and it is expressed as follows:

Z0 = η or
Z

Y
=

µ

ε
(12)

Eqn.(11) is analogous to the permeability and permittivity
of a material, and the impedance and admittance of its
transmission line model.

µ =
Z

jω
= LR −

1

ω2CL
(13)

ε =
Y

jω
= CR −

1

ω2LL
(14)

Fig. 4 shows the refractive index (i.e., n = cβ/ω) for the
balanced and unbalanced CRLH-TL. In Fig.4, the CRLH-TL
has a negative refractive index in its LH-range and a positive
refractive index of refraction in its RH-range.

FIGURE 4. Typical index of refraction diagrams for the balanced- and
unbalanced-CRLH TLs in blue and green, respectively.

A. LC NETWORK

Naturally, homogeneous CRLH-TLs do not exist. However,
when an EM wave is not ‘‘impaired’’ by discontinuities
in the propagating structure or medium since the guided
wavelength is considerably larger compared, in a certain
range of frequencies CRLH-TLs can be effectively made to
be homogenous and can be physically implemented. A typical
CRLH-TL of length d that is effectively homogenous
can be built through a cascade of the band-pass LC unit
cell of Fig.5(a), periodically or non-periodically. Typically,
to ensure computational and manufacturing convenience of
the CRLH-TL, periodicity is required [11]. The unit cell
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FIGURE 5. LC-based CRLH TL. (a) Unit-cell. (b) LC periodic network, and (c) homogeneous CRLH TL, which is equivalent to (b).

of Fig.5(a) has no dimensions compared to the model of
Fig. 1(c) which is incremental with an infinitesimal physical
length (i.e., 1z in meters). By considering its electrical
length, θ = 1ϕ (rad), the LC unit cell’s phase can
be illustrated. However, for a practical realization of the
applied inductors and capacitors, a physical length p needs
to be established. The choice of applied technology (e.g.,
microstrip, coplanar waveguide, surface mount components,
etc.) impacts on the physical dimensions of the unit cell of the
LC. The LC unit-cell of Fig. 5(a) is similar to the incremental
model of Fig. 1(c) for the limit p = 1z → 0. According to
the homogeneity condition p → 0 in Fig.5(b), it is possible
to construct a TL (by cascading the LC unit-cell) equivalent
to an ideal homogeneous CRLH-TL of length d [11]. TL is
made to appear homogeneous to the EM wave as a result of
the homogeneity condition. In practice, the electrical length
of the unit cell becomes less than π/2 and the LC-based
CRLH-TL appears to be effectively homogeneous by the EM
waves if and/or when the unit cell is less than the guided
wavelength (i.e., p < λg/4) [11].

For the LC unit cell, considering the periodic boundary
conditions (PBCs) which are similar to the Bloch-Floquet
theorem [11], the dispersion relation (for the LC unit cell)
is justified and expressed as follows [1], [2], [11]:

β (ω) =
1

p
cos−1(1 +

ZY

2
) (15)

where the series impedance (Z ) and shunt admittance (Y ) of
the LC unit-cell are determined by:

Z (ω) = j(ωLR −
1

ωCL
), Y (ω) = j(ωCR −

1

ωCL
) (16)

The Taylor approximation cos (βp) ≈ 1 − (βp)2 /2 can
employed due to the small electrical length of the unit cell;
as a result, Eqn.(15) becomes:

β (ω) =
s (ω)

p

√

ω2LRCR +
1

ω2LLCL
− (

LR

LL
+
CR

CL
) (17)

Eqn.(17) is equivalent to Eqn.(3) which describes the homo-
geneous dispersion relation. Therefore, for electrical lengths,
the LC-based CRLH-TL and homogeneous CRLH-TL are
analogous.

B. PHYSICAL IMPLEMENTATION

In the preceding subsection, the LC method to generate
a CRLH-TL has been demonstrated and discussed. This
LC network can only be realized by employing physical
components that are able to yield the required capacitors
(CR and CL) and inductors (LR and LL). In recent times,
the application of surface-mount technology (SMT) chip
components or distributed components is attracting a lot
of interest for the implementation of such an LC network.
Microstrip, strip line, coplanar waveguide, or other similar
technologies can be used to realize distributed components.

Numerous factors inform the choice of SMT chip or
distributed components. CRLH structures based on SMT
components are quite commonly and simpler to realize
efficiently in terms of analysis and design. This is because of
the availability of ready-to-use SMT chip components which
do not need to be modelled and manufactured compared
to the distributed components. However, the availability
of SMT components is in discrete quantities and they
are generally operational only at low frequencies (i.e.,
3–6 GHz, corresponding on their amounts). As a result,
SMT-based CRLH-structures are characterized with limited
operational frequency ranges and specific phase. It’s an
application-specific choice between SMT chip components
and distributed components. For instance, in radiation-type
applications, SMT chip components may be infeasible.

Fig.6. shows a CRLH-TL based distributed component.
The structural implementation is via microstrip having
interdigital capacitors and stub inductors linked to the GND.
The equivalent circuit model of Fig. 5(a) and the unit-cell
of the structure (exhibited in the inset) are analogous. LH and
the RH effects are produced by the interdigital capacitors
and stub inductors. Particularly, the LH capacitance CL is
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FIGURE 6. 1-D microstrip CRLH TL constructed of interdigital capacitors
and shorted-stub inductors [11].

realized by the interdigital capacitors and the LH inductance
LL results from the stubs linked by means of via-holes to the
ground plane. The capacitance that exists between the trace
andGND assumes the RH capacitanceCR, and the inductance
resulting from by the magnetic flux produced by the flow of
current in the digits of the interdigital capacitor assumes the
RH inductance, LR.
By loading a host line with split ring resonators (SRRs) or

with other similar resonators similar, CRLH-TL can also be
realized. Martin et al. proposed the first SRRs based LH-TL
in 2003 [1], [20]. The line described in [1] is a coplanar
waveguide (CPW) with etched (on the backside of the
substrate and beneath the slots) pairs of SRRs and inductive
shunt connecting strips. Although the backward nature of
wave propagation adjacent to the resonance frequency of
the SRRs is detailed in [21], the structure mainly portrays
a CRLH behaviour due to properties of the host CPW
TL. In [1], the equivalent model of these SRR based
CRLH-lines (unit-cells) is provided. When complementary
SRRs or CSRRs are etched in the ground plane, underneath
a conductor strip with gaps in series [22]–[24], resonant-type
CRLH TL based on microstrip technology can be realized the
conductor strip [25].

The combination of open SRRs or OSRRs [26] and open
CSRRs or OCSRRs [27] can also be used to implement
resonant type CRLH TLs. Open resonators show half the
resonance frequency (when considering similar size and
substrate) compared to SRRs or CSRRs. As a result, their
electrical size is smaller (by a factor of two) [26]–[28].
This property makes OSRRs and OCSRRs attractive for
the miniaturization of devices. References [26], [27] pro-
vide typical topologies and equivalent circuit models for
OSRR and OCSRR loading of CPW structures. Basically,
the OSRR and the OCSRR can be explained using a resonator
placed in series and parallel, respectively. However, some
phase shift which ought to be accounted for to ensure
an efficient design of the structures is introduced by the
host line. The structural models are mainly composed of
compounded resonators having parasitic reactive elements
(i.e., capacitor and inductor) for the OSRR loaded CPW
and the OCSRR-loaded CPW. Due to the presence of these
parasitic reactive elements, it is not feasible to implement
canonical CRLH-structures using a cascade of OSRR and

OCSRR-loaded CPW section. However, these parasitic
reactive elements assume low values, and in practice, a good
approximation of the canonical CRLH behaviour is observed
for OSRR- and OCSRR-based lines. In comparison to SRR
or CSRR loaded lines, the primary distinction is that there
is no transmission zero in left direction of the left-handed
band. The accuracy of the circuit models is also another vital
consideration. The open particles (OSRRs and OCSRRs)
possess a smaller electrical size. As a result, the equivalent
circuit models of the structures based on OSRR and OCSRR
give a more accurate analysis up to higher frequencies in
comparison to the models for the lines loaded with SRR or
CSRR. Reference [27] portrays a typical OSRR and OCSRR
CRLH CPW TL.

II. COMMMON AND RELEVANT APPLICATIONS OF

MTM-TL TO ANTENNA SYSTEMS

This section will focus on artificial metamaterial TLs for
the realization of various cost effective, easy to design
and manufacture, and mass produce antenna structures with
miniaturized dimensions, wide bandwidth, high radiation
gain and efficiency, wide range of scanning ability, and
low profile, and some of their most common and relevant
applications [29], [30]. In below they have been studied,
reviewed, and discussed.

A. BROADBAND AND MULTIBAND ANTENNAS

Considering broadband antennas, for their design, the opera-
tive bandwidths are specified over the frequency range where
the desired specifications are met within the required limits.
The phase shift resulting from variations in the frequency
from the nominal operating values restricts the bandwidth in
distributed circuits experienced by TLs and stubs. In a typical
TL having a length l, the electrical length (or phase) of the line
at a given angular frequency ω0 can be obtained as follows:

ϕ0 = βl =
l

vp
ω0 (18)

where vp connotes the line’s phase velocity of the line. From
the aforementioned, the bandwidth closely corresponds to
the group delay which is evaluated as the derivative of ϕ

with respect to frequency. Consequently, it follows on that
the bandwidth becomes broader as the line becomes shorter.
In other words, an inverse relationship exists between the
bandwidth and the essential phase of the line that is design
specific. This is indicative of the fact that in traditional
distributed circuits, the operational bandwidth cannot be
easily controlled manipulated. This can be attributed to the
limitations of conventional TLs in terms of the degrees of
freedom. However, the loading elements allow for extra
parameters in metamaterial TLs, and to an extent the phase
response can be manipulated. Under normal conditions, it is
expected that the bandwidth will not be determined by the
required phase. In other words, to enhance the bandwidth,
it becomes essential to have similar slopes in the proximity of
the operational frequency for the dispersion characteristics.
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Artificial metamaterial TLs can be employed to achieve
this. Following this method, numerous antenna devices with
increased bandwidths have been proposed in [31]–[50].
In [51] two wideband antennas loaded with split ring

resonators have been designed and manufactured (see Fig.7).
The results exhibited in Fig.7 demonstrate that after loading
the conventional monopole antennas to the asymmetrical
meander-lines split ring resonators the lower resonance
frequency modes have been stimulated. The split ring
resonator’s dimensions have been modified to achieve a
resonance near the monopole antenna’s resonance. It has
been shown that when both resonance coincide the antenna’s
frequency bands and radiation characteristics have been
increased. The antenna’s length andwidth are 0.25λ0×0.11λ0
and 0.25λ0×0.21λ0 at 4GHz for monopole antennas, and
0.29λ0×0.21λ0 at 2.9GHz for both monopole antennas
loaded with split ring resonators. For conventional F- and
T-shaped antennas with no split ring resonators the highest
measured gain and radiation efficiency are 3.6dBi - 78.5%,
and 3.9dBi - 80.2%, respectively, which have been occurred
at 5GHz. For antennas loaded with split ring resonators,
these parameters are 4dBi - 81.2%, and 4.4dBi - ∼83%
for F- and T- antennas, respectively, which have been
appeared at 6GHz. By realizing the meander-lines split ring
resonators as a matching load on the monopole antennas
they can support the frequency bands from 2.9GHz to
6.41GHz and 2.6GHz to 6.6GHz, which are corresponded to
75.4% and ∼87% fractional bandwidths, respectively. These
achievements show∼2.4 and 2.11 times improvements on the
measured bandwidths in comparison with the conventional
monopole antennas with approximately fixed dimensions.
As shown in Fig.8, the experimental results of an

electrically compact printed monopole antenna have been
elaborated in [52] with the operational bandwidth of 185%
(0.115-2.90 GHz) for S11 ≤−10 dB, peak gain and
radiation efficiency of 2.35 dBi and 78.8%, occurred
at 1.45 GHz. The antenna’s layout is approximated to
a back-to-back triangular formed patch structure that is
stimulated by a common feed-line with a meander-line
T-form divider. The truncated GND contains a central stub
placed under the feed-line. The antenna’s bandwidth has
enlarged with the inclusion of meander-line slits in the
patch and four double split-ring resonators realized on the
GND. The antenna radiates approximately omnidirectionally
to provide coverage throughout the large parts of VHF and
S-bands, and the entire parts of the UHF and L-bands. The
antenna with physical dimensions of 48.32×43.72×0.8 mm3

and the electrical size of 0.235λ0×0.211λ0×0.003λ0 has
advantages of low-profile and low-cost, which make it
potential candidate for applications in wideband wireless
communications systems.
A planar antenna structure constructed of two pairs

of interconnected meandered-line loops grounded to a
truncated T-formed ground-plane through two via holes
has been exhibited in Fig.9 [53]. The T-shaped GND has
applied as a reflector to improve the antenna’s performance

FIGURE 7. Antennas loaded split ring resonators. (a) F-antenna
(top-surface), (b) T- antenna (top-surface), (c) bottom-side of both
antennas with no split ring resonators, (d) bottom-side of both antennas
loaded with split ring resonators, (e) S11 ≤−10dB for the F-antenna,
(f) S11 ≤−10dB for the T-antenna, (g) radiation properties for the
F-antenna, and (h) radiation properties for the T-antenna [51].

parameters. The antenna is miniaturized occupying an space
of 38.5 × 36.6mm2 (0.070λ0×0.067λ0), where λ0 is the
free-space wavelength at 0.55 GHz. The antenna radiates
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FIGURE 7. (Continued.) Antennas loaded split ring resonators.
(a) F-antenna (top-surface), (b) T- antenna (top-surface), (c) bottom-side
of both antennas with no split ring resonators, (d) bottom-side of both
antennas loaded with split ring resonators, (e) S11 ≤−10dB for the
F-antenna, (f) S11 ≤−10dB for the T-antenna, (g) radiation properties for
the F-antenna, and (h) radiation properties for the T-antenna [51].

FIGURE 8. (a) Fabricated prototype and (b) simulated and measured
reflection coefficient S11 ≤−10 dB [52].

omnidirectionally in the E-plane over its working frequency
band of 0.55-3.85GHz with a maximum gain and efficiency
of 5.5dBi and 90.1%, respectively, happened at 2.35GHz.

FIGURE 9. Proposed meandered antenna, (a) top surface, (b) back-side,
and (c) reflection coefficients [53].

These features make the proposed antenna proper for various
applications in particular JCDMA, UHF RFID, GSM 900,
GPS, KPCS,DCS, IMT-2000,WiMAX,WiFi, andBluetooth.

In [54] a approach has been applied to enlarge the fre-
quency band of antennas without compromising the physical
dimensions. This is achieved by embedding capacitive slots in
the rectangular patch with a truncated GND, and stimulating
the antenna via a meandered strip-line feed as depicted
in Fig.10. The proposed structure has been manufactured
on the FR-4 layer with εr of 4.6, thickness of 0.8mm, and
tangδ of 0.001. Antenna covers an frequency bandwidth of
5.25 GHz from 0.8 to 6.05 GHz, which corresponds to a
practical bandwidth of 153.28%with a peak gain of 5.35 dBi,
maximum radiation efficiency of 84.12%, and low cross-
polarization. These achievements capable the antenna to be
used in stable and reliable multiband applications across the
UHF, L-, S- and major part of C- bands. The antenna offers
benefits of low profile, low cost, ease of manufacturing,
durability and conformability.

In [55] MTM-based transmission lines have been applied
to antenna systems to improve their performance character-
istics. The concept of MTM and its applications to antenna
structures have been described in [55]. Fig.11 presents
two novel ultra-wideband (UWB) compact patch antennas
modeled based on the CRLH-TLs. By applying the CRLH
principle the size reduction and frequency bandwidth expan-
sion have been obtained. additionally, a large frequency
bandwidth and good radiation properties have been achieved
by optimizing the dimensions of the structures. Two different
types of radiators are investigated, i) a planar patch antenna
compound of four O-shaped unit-cells, and ii) a planar patch
antenna built of six O-formed unit-cells. The performance
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FIGURE 10. (a) Top surface of the proposed antenna, (b) its bottom side,
(c) its reflection coefficient, and (its radiation gain and efficiency
curves [54].

parameters of these antennas shown in Fig.11 confirm the
developed concept.

B. LEAKY-WAVE ANTENNAS (LWAs)

New LWAs are one of the primary applications of the
implementation of artificial metamaterial TL. Conventional
elements whose main source of radiation is the power leakage
propagating along the structure (this illustrates the term LW)
leading to a high directivity are characterized as leaky-wave
antennas [56], [57]. For leaky-wave antennas, the phase
constant β accounts for the radiated angle (θm) and the
maximum beam width (1θ) as follows [57]:

sinθm ≈ (
β

k0
) (19)

1θ = (
1

(

l
λ0

)

cosθm

) (20)

l is the antenna’s length, k0 and λ0 are wave number and
wavelength of the free-space, respectively. Note that radiation

FIGURE 11. (a) Metamaterial-TL based antenna with four cells, (b) its
reflection coefficient, (c) MTM-TL based antenna constructed of six-cells,
(d) its reflection coefficient [55].

only occurs if |β| < k0. When this condition holds,
the structure tends to radiate, and the propagation constant
(which is wave number of the free-space) accounts for the
radiation beam angle. Since β depends on the frequency
dependent, frequency scanning is possible relative to the
angle of the beam. For CRLH TLs, the propagation constant
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can be controlled to have a total frequency scanning com-
prising of radiation angle beams with positive (forward), zero
(broadside), and even negative (backward. Experimentally,
this is shown in [58]–[64]. In certain applications, it may not
be feasible to use frequency scanning for signal generation.
Consequently, frequency independent scanning and beam
width control schemes are a necessity. Reconfigurable CRLH
TL leaky-wave structures are a common means to achieve
this. Typical structures allow for the control of the radiation
beam at a fixed frequency by keeping it constant with respect
to frequency. This approach is demonstrated in [61] where
varactor diodes are applied. Other than varactor diodes,
the implementation of metamaterial leaky-wave antennas by
means of ferroelectrics and liquid crystals are also very
promising [62]. In recent times, whole systems used for
signal arrival detection arrival through the evaluation of the
received power at the feed terminals have adopted this type
of structure in their designs [63]. This approach allows for
a simplification of the traditional systems which are mostly
based on multiple antennas such as phase arrays. In this
way, very similar functionalities are achieved using a single
and compact radiating element at a lower cost and highly
reduced power consumption. In [65] and [66] the tapered or
modulated frequency-scanning LWAs have presented. These
type of LWAs have applied to shape the scanned beam
such as control of side-lobe level (SLL), confined beam
shaping, near-field focusing/convergence, field divergence
for sectorized shaped beams. . . etc. The drawback of these
metamaterial-based CRLH TL LWAs is that, although they
can balance the dispersion to obtain seamless backward-
to-forward scanning, this balancing condition is in general
more quite complicated to be obtained together with a taper
design. In other words, to taper the LWA complex fields (both
in amplitude and phase) it is required to modulate the LWA
TL cross-section dimensions along the antenna long aperture.
Doing this while keeping the balancing CRLH condition is
quite complex [67].
According to existing literature, there are many variants

and realizations of leaky-wave antennas. These include,
but are not limited to concave and convex structures,
dual-polarized or dual-band [64] LWAs, and others. More
details on the review of these variants and realizations can
be found in [68].

1) BACKFIRE-TO-ENDFIRE LWA

If there exists an optimummatching to the air impedance [69],
the balanced CRLH TL can take the form of an efficient
frequency-scanned LWA. However, some LWAs based on
right-handed TLs operate with the fundamental mode, which
has a leaky or fast-wave region (|β| < k0, where k0 is the
propagation constant of the free-space) and are not over-
moded, and they have a direct feeding circuit without the
need of creating CRLH TL [70]–[72]. They can also operate
in both in only-forward-scanning (uniform) or periodic
configuration (for backward-to-forward scanning). Similarly,
conventional uniform LWAs can radiate through broadside

direction by using a bidirectional configuration [73], [74].
Therefore, compared to the most of the conventional LW
antennas, the CRLH-LWantenna has two distinct advantages.
Firstly, a CRLH leaky-wave antenna can adequately function
at its basic mode. This is because in the fundamental mode,
a radiation (or fast-wave) region (|β| < k0) exists in addition
to a guided (or slow-wave) region (|β| > k0) [2]. On the
other hand, to make RH structures radiate, they must be
implemented at higher order modes. Therefore, compared to
their alternatives, they need amore complex and less-efficient
feeding structure. This is mainly since the basic mode of the
most of the RH-structures are inevitably guided (β > k0) and
a typical CRLH-LW antenna can scan continuously from the
backward (backfire) to forward (endfire) angles in contrast
to the most of the traditional LW antennas. This can inferred
through evaluating the LW antenna scanning angle relation
stated as follows:

θ = sin−1(
β0 + 2nπ/p

k0
) (21)

where β0, n, and p are the basic mode’s propagation constant,
the space harmonic [75], and the period, respectively. For
a non-periodic LW-antenna, n is null, and β0 becomes
operating mode’s propagation constant. For the CRLH-LW
antenna (n is null, i.e., the fundamental mode), θ assumes
values ranging from −90◦ (backfire) to +90◦ (endfire),
over the continuous frequency range where | |β| < k0
holds [2]. Forward and backward scanning can be obtained
by making the CRLH LW antenna operational below or
above its transition frequency (ω0), respectively. For the
balanced CRLH-TL, at ω0 the antenna may have a broadside
radiation since vg 6= 0 at β = 0. On the other hand,
traditional non-periodic LW-antennas are only able to scan
from broadside to endfire, because β always assumes positive
values. Additionally, broadside radiation is not feasible for
conventional non-periodic LW-antennas. This is because
for RH structures, vg is null (i.e., a standing wave) at
a null value or position for β. By working at negative
and positive space harmonics (n = ±1, ±2, ±3, . . .),
conventional periodic LWAs are capable of scanning from
backfire to endfire even though broadside radiation cannot
occur [69].

To have backfire-to-endfire operations, a new leaky-wave
antenna able of scanning from −25◦ to +45◦ is presented
in [76]. The antenna in [76] adopts MTM-TLs and its
physical implementation comprises of spiral and rectangular
slots on a Monofilar Archimedean structure having metallic
via-holes and spiral inductors. To realize the metamaterial
antenna, the effects of left-handed capacitances in series are
produced by the slots, and the effects of shunt left-handed
inductances are produced by the spirals with via-holes.
The physical implementation of the antenna’s prototype
is displayed in Fig.12. The prototype is implemented on
a FR4 lossy substrate having an electrical dimensions of
0.0302λ0×0.0357λ0×0.0008λ0, where λ0 represents the
wavelength of free-space at 0.165 GHz. The experimental
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FIGURE 12. (a) Backfire-to-endfire LWA, (b) reflection coefficient responses, and (c) radiation patterns. HFSS: solid lines and
experimental: dashed lines [76].

antenna’s frequency bandwidth is 0.71 GHz (i.e., 165 MHz
to 875 MHz) and this corresponds to 136.5% fractional
bandwidth. The primary improvement of this antenna is its
wide-angle scanning which ranges from −25◦ to +45◦ at
desired gain of 1.2 dBi and radiation efficiency of 50.1%,
respectively, both measured at an operating frequency
of 400 MHz. The antenna’s wide-angle scanning properties
make it very promising suitable for passive radar (i.e.,
VHF-UHF bands) applications spanning across FM-Radio,
television, and mobile phones.
In [31], an novel beam scanning LWA capable of wide-

angle scanning over a range from −35◦ to +34.5◦ between
57-62 GHz and having broadside radiation centered at
60 GHz is proposed and investigated using empirical results.
The proposed LWA design is in [31] adopts the concept of
CRLH-TL. Its structural single layer consists of a matrix
of 3 × 9 square slits implemented on a dielectric layer.
For bandwidth and radiation enhancement, 5 and T-formed
slits have printed on the ground-plane (GND). The antenna
shows good MTM property and provides beam scanning
functionalities relative to the frequency using the matrix
of square slots. The physical dimensions of the antenna is
18.7× 6× 1.6 mm3 and its electrical one is 3.43λ0× 1.1λ0×
0.29λ0, where λ0 represents the wavelength of the free space
at 55GHz. The antenna’s impedance bandwidth is 10 GHz
(i.e., 55-65 GHz) corresponding 16.7% fractional bandwidth.
At 62 GHz, its optimum gain is 7.8dBi and the efficiency
is 84.2%. The antenna has a lightweight and low profile
making it inexpensive to mass produce. The configuration
and performance parameters of the proposed LWA have
depicted in Fig.13.

A innovative small structure constructing of six E-formed
arms configured and laid out in two rows and three columns as
depicted in Fig.14 is presented in [32]. The antenna structure
in [32] is proposed as a new LWA capable of steering its
beam in the broadside direction from −30◦ to +15◦. It is
operational in over a experimental frequency bandwidth of
0.93-3.65 GHz (that is about 119% for all frequency points
where S11 less than or equal to −10 dB). As the frequency
increases, its scanned angle deflects from backward radiation
to forward radiation. The antenna structure has a total
phyical dimensions of 19.2 mm × 15.2 mm × 1.6 mm
(i.e., an electricl dimensions of 0.059λ0× 0.047λ0× 0.004λ0,
where λ0 represents the wavelength of the free space at
0.93 GHz). It is implemented on a 1.6 mm thick Rogers
RT/Duroid 5880 layer having εr = 2.2 and tanδ = 0.0009.
In the broadside direction, the maximum experimented gain
is 8 dBi and the radiation efficiency is 90%. The antenna has a
low-profile antenna making it to be easily flush-mounted on
various components and structures such as mobile devices,
cellular base stations and vehicles.

2) TRAVELLING WAVE ANTENNA

A single-layer travelling-wave antenna (TWA) based on
CRLH MTM-TL structure is presented in [45]. The antenna
is implemented via a combination of inter-digital capaci-
tances and dual-spiral inductance slits. With incorporating
dual-spiral inductance slits within the CRLH MTM-TL,
a small TWA is achieved (see Fig.15). The dimension
of the CRLH MTM-TL TWA is 21.5 × 30.0 mm2 or
0.372λ0×0.520λ0, where λ0 is the wavelength of the
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FIGURE 13. (a) Leaky-wave antenna, (b) reflection coefficient responses before and after implement the GND slots. Dashed lines
plot the case after apply the slots, (c) radiation gain and efficiency responses when the antenna has unloaded and loaded with
GND slots, and (d) backward to forward radiation patterns [31].
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FIGURE 14. (a) Prototypes of the LWA (structural parameters have mentioned in millimeter), (b) reflection coefficients, (c) 2-D
radiation patterns. Solid and dashed lines represents the measured and simulated results, respectively, (d) Scanning angle as
function of the frequency, (e) Gains curves as function of the frequency, and (f) Gain curves versus scanning angle [32].

free-space at the center frequency of 5.2 GHz. The manu-
factured TWA works throughout 1.8-8.6 GHz with a feasible
bandwidth larger than 120%. It shows a highest gain and
radiation efficiency of 4.2dBi and 81% at 5 GHz. With
preventing the utilize of lumped elements, via-holes, and
defected ground structures (DGS), the TWA model is more
economical for mass generation and simple to integration into
wireless communication systems.
[46] introduces a left-handed MTM TWA based on

MTM-TL to improve the antenna’s gain and radiation
efficiency without compromising on its practical band-
width. The antenna shown in Fig.16 comprises of a series
of coupled unit-cells having ‘‘X-formed’’ slits that are
inductively terminated to GND. The antenna’s effective

aperture improves by enhancing the number of unit-cells.
As a result, the gain improves and the radiation efficiency
performance has no negative effect on the antenna’s feasible
bandwidth. The antenna’s characterisation is carried out
utilizing HFSSTM, and it is manufactured applying standard
PCB fabricating methods on a 1.6mm thick dielectric layer
with a εr = 2.2. The antenna works within frequency
band of 0.4-4.7 GHz. The antenna’s electrical dimensions
is 0.017λ0×0.006λ0×0.0020λ0, where λ0 is the wavelength
of the free-space at 0.4 GHz. The antenna is considerably
smaller compared with similar traditional designs. Optimum
gain and radiation efficiency occurred at 2.5 GHz are 2dBi
and 65%. These benefits make the antenna attractive for
utilize in multiple wireless communication applications.
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FIGURE 15. (a) CRLH MTM-TL implemented on 50 ohm microstrip line,
(b) layout of the CRLH MTM-TL TWA, (c) manufactured prototype,
(d) transmission and reflection coefficient responses of the TWA, and
(e) TWA’s gain and radiation efficiency responses [45].

FIGURE 16. (a-c) Antenna’s layout, and (d) its reflection coefficients
responses [46].

C. ZEROTH ORDER RESONATOR ANTENNA

A unique property of CRLH metamaterials is that it is
possible to obtain a null value for β when the frequency is
not equal to the zero. As shown in [33], a new zeroth order
resonator (ZOR) can be generated based on this property.
This type of resonator mainly comprises of a single unit cell
(Fig.6) which is open-ended by capacitive slits. A 1.7mm
thick Rogers RT/Duroid 5880 layer with εr = 2.2 is used
for the implementation of the resonator. When β assumes a
null value, no phase shift occurs throughout the resonator.
This is because the phase shift is defined as ϕ = −βd = 0.
Furthermore, the dependence of the resonance on only the
reactive loadings and its non-relation to the length of the
structure can be demonstrated.
As shown in [77], to build a ZOR antenna, the ZOR

resonator earlier described can be adopted. For this con-
struct, the microstrip-based unit-cell includes an inter-digital
capacitance and a meandered-line shunted and linked to a
rectangular patch which acts as a virtual GND. It is possible
for the antenna’s physical dimensions to be smaller compared
with a half-wavelength because the physical dimensions of
the ZOR do not affect the resonance. Therefore, the reactive
loadings in the antenna’s unit-cells define the antenna’
physical dimensions. In [77], the reduction of size that can
be achieved at design frequency of 4.88 GHz with a ZOR
antenna is demonstrated. The antenna has a size of 10mm,
while the λ/2 microstrip patch antenna’s length is 20.6mm
when considering the same design frequency and substrate.
Novel concepts for the modelling of compact printed

planar MTM antennas with special layouts for broad band
RF, microwave and wireless communication systems are
introduced and investigated in [78]. To implement the anten-
nas, CRLH-TLs (i.e., general TLs containing both LH and
RH characteristics) are realized by the standard fabrication
methods. In this way, the E-formed slots and the SRR acting
as spiral inductances constitute the series LH capacitances
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FIGURE 17. (a) Proposed unit cell layout of the resonating MTM based miniaturized antennas, (b, c) E-formed antenna
constructed of two cells, (d, e) E-formed antenna constructed of three cells, (f, g) reflection coefficients responses for first
and second antennas, respectively, (h, i) gain and radiation efficiency curves for first and second antennas [78].

(CL) and shunt LH inductances (LL), respectively. By opti-
mizing the quantities and dimensions of these elements, good
operational performances can be obtained for the antennas.
Fig.17 shows that the proposed antennas are fabricated by
applying two and three unit-cells with E-shaped configu-
rations possessing total size of 0.017λ0×0.006λ0×0.001λ0
and 0.028λ0×0.008λ0× 0.001λ0, respectively, where λ0
represents the wavelength of the free-space at the operating
frequencies of 500MHz and 650MHz, respectively. The
antennas support the frequency bandwidths of 0.5-1.35 GHz
(0.85MHz) and 0.65-1.85 GHz (1.2 GHz), which translates
to 91.9% and 96.0% fractional bandwidths, respectively.

Besides the small size and broad bandwidth properties,
the experimented gains and efficiencies for the fisrt and
second antennas are 5.3dBi and 85% happened at 1GHz, and
5.7dBi and 90% occurred at 1.4GHz, respectively.

D. SLOTTED ANTENNA

A simple approach to expand the aperture of CRLH-MTM
antennas with negligible effect on the its size has been pre-
sented [34]. Unlike most CRLH-based antennas, the antenna
in [34] is via-less. It is exhibited to operate over a
broad band covering the UHF- and C- bands with proper
radiation specifications. The antenna configuration shown
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FIGURE 18. (a) Extended CRLH MTM antenna, (b) its reflection coefficient responses, and (c) its radiation gain and efficiency curves [34].

in Fig.18 includes of vertically stacked CRLH unit-cells
containing of a patch and meandered-lines. The patch has
etched with an S-formed slit. The design applies a small GND
space. The meandered-line inductor is grounded utilizing
CPW ground. This eliminates the use of a conventional
CRLH TL metal on GND. The antenna is fed by a CPW
match stub which is electromagnetically coupled to the unit-
cells. Its dimensions are 17.5 mm × 32.15 mm × 1.6 mm,
which corresponds to 0.204λ0 × 0.375λ0× 0.018λ0 where λ0
represents the wavelength of the free-space and it is equal to
3.5 GHz. By carrying out a parametric study, the antenna’s
performance is optimized in terms of frequency bandwidth,
radiation gain and efficiency. The results approve that, the
antenna operates within frequency band of 0.85-7.90 GHz,
which is related to a feasible bandwidth of 161.14%. The
antenna’s highest radiation gain and efficiency happened at
3.5 GHz are 5.12 dBi and ∼80%, respectively.

The design feasibility of a MTM antenna structure for
multi-octave band operation is described in [35]. The MTM
unit-cell (Fig.19) contains of an L-formed slot that is
printed within a rectangular patch including a grounded
inductive spiral. The slot fundamentally acts as a series
LH-capacitor and the spiral behaves as a shunt LH-inductor.
The antenna is designed and optimized for frequency band-
width, radiation gain and efficiency performances applying
the CST Microwave Studio. The antenna shows a frequency

bandwidth of 6.02 GHz, which is related to a feasible
bandwidth of 172.49% that is higher than what is obtainable
in multiband antennas in literature. The antenna depicts a
optimum gain and radiation efficiency of 3.7dBi and 73%
occurred at 3.25GHz. The antenna’ physical footprint area is
comparable to other broadband antennas available in litera-
ture. The total size of the antenna at 0.48GHz and 3.25GHz is
0.037λ0×0.027λ0×0.002λ0 and 0.25λ0×0.18λ0× 0.017λ0,
where λ0 is the wavelength of the free-space.

New planar slotted-antennas have proposed in [36] that
display proper radiation properties at the UHF–SHF bands.
The antennas (Fig.20) have implemented by realizing meta-
material unit-cells modelled via capacitive slits printed inside
the radiating patch and grounded spiral-formed inductive
stubs. The proposed designs have manufactured on the
Rogers RO4003 layer with εr = 3.38 and thickness
of 1.6 mm. The first antenna consists of five symmetrical
unit-cells possessing a slot–inductor–slot layout. It works
throughout a broad bandwidth of 1-4.2 GHz with a highest
gain and efficiency of 1.5 dBi and 35% at 2GHz. Second
antenna contains of ten asymmetrical unit-cells with a
slot–inductor formation realized on the same space of layer as
the first design. Its gain is enhanced by 2 dB and its efficiency
is improved by 25% and it works throughout 750 MHz to
4.5GHz. The asymmetrical unit-cell effectively extends the
antenna’s aperture without comprising its size. The antenna’s

VOLUME 8, 2020 144793



M. Alibakhshikenari et al.: Comprehensive Survey of ‘‘MTM-TL Based Antennas: Design, Challenges, and Applications’’

FIGURE 19. (a) Proposed metamaterial based antenna, (b) reflection-coefficient responses, and (c) gain and radiation
efficiency curves [35].

FIGURE 20. (a) Two planar slotted antennas, (b) reflection-coefficient responses, (c) gain and efficiency performances. (Ant.#1:
Dashed-lines, and Ant.#2: Solid-lines) [36].

electrical size is 0.083λ0 × 0.033λ0 × 0.005λ0, where λ0
represents the wavelength of the free-space at 1GHz.

The experimental data of a low-profile light-weight
antenna based on a periodic array of the complementary
artificial magnetic conductor MTM structure, which is

constructed through loading the antenna with E-formed
slots and inductive microstrip lines grounded applying
metallic via-holes are presented in [37]. The antenna’s
prototype is shown in Fig.21 and it works throughout a
broadband of 0.41-4.1 GHz, which relates to a feasible
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FIGURE 21. (a) Antenna, (b) reflection-coefficient responses, (c) voltage standing wave ratio response, and (d) gain and efficiency
responses [37]. Simulated and measured results are presented by solid and dashed lines, respectively.

bandwidth of 165.84%. The size is 40× 35 × 1.6 mm3

or 0.054λ0× 0.047λ0× 0.0021λ0, where λ0 represents the
wavelength of the free-space at 0.41GHz. The highest gain
and radiation efficiency of the optimized antenna occurred
at 2.76 GHz are 4.45dBi and 85.8%, respectively. At the
lower working band of 0.41GHz, the antenna provides a gain
and radiation efficiency of 1.05dBi and 32.5%. The planar
nature of antenna allows for a simple integrationwithwireless
transceivers.
A new UWB small integrated antenna based on CRLH

MTM-TLs has proposed and illustrated in [38]. The antenna
structure is displayed in Fig.22 and it has implemented
applying new inductance and capacitance components (i.e.,
the spiral and rectangular inductances) connected to the
ground plane through the metallic via-holes. The etched
L- and T- formed slots are designed by means of the
MTM and standard manufacturing techniques on a PCB
to realize shunt left-handed inductances (LL) and series
left-handed capacitances (CL), respectively. By using the
proposed approaches to realize the aforesaid components and
using properly adjusted dimensions, the favorable charac-
teristics are obtained. The antenna’s physical dimensions is

22.6 × 5.8 ×0.8 mm3 or 0.037λ0×0.009λ0×0.001λ0, where
λ0 is the wavelength of the free-space at 0.5GHz. The
antenna works from 0.5-11.3 GHz, which is related to
a practical bandwidth of 183%. The radiation gains and
efficiencies various frequencies of at 0.5, 3, 5, 8 and 11.3 GHz
are 1.5dBi and 20%, 3.4dBi and 45%, 4.8dBi and 57%,
6.5dBi and 88%, and 5.7dBi and 73%, respectively. The
significant advantages of the manufactured antenna include,
but are not limited to unidirectional radiation patterns,
cost effective, lightweight, low-profile, and compatibility
and ease of integration within electronic systems. Results
show that the proposed antenna can be fitted on com-
munication systems and integrated into RF electronics to
support today’s multi band wireless application requirements
requiring single or multiple feed designs to omit the need
for antenna switches. Thus, the proposed antenna is a
good potential nomine for modern industrial electronics
applications.

[39] presents a new compact UWB antenna (see Fig.23)
based on CRLH-MTM unit-cells for modern wireless com-
munication systems. The physical dimensions of miniatur-
ized antenna is 15 mm × 7.87 mm × 1.6 mm or 0.15λ0×
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FIGURE 22. (a) CRLH antenna, (b) its manufactìured prototype, (c) unit cell’ circuit model, (d) reflection coefficients, and
(e) radiation gain and efficiency [38].

FIGURE 23. UWB MTM antenna with its return loss parameter [39].

0.07λ0× 0.01λ0 where λ0 is the free-space wavelength at
3GHz. The antenna works over an frequency band of 3 GHz
to 10.6 GHz that is corresponded to a practical bandwidth
of 111%. Gain and efficiency are more than 2.89dBi

and 38.54%, with the optimum values of 9.41 dBi and
99.93%. The antenna’ specifications have accredited by the
experimental data achieved from amanufactured prototype to
make the proof of concept.
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FIGURE 24. (a) MTM antenna, (b) unit-cell’s circuit model, (c) reflection-coefficients, and (d) gain and radiation
efficiency [40].

A innovative antenna based on CRLH-TH unit-cells
realized applying π -shaped slits and spiral inductances that
are engraved directly on the dielectric layer by standard
fabrication approaches has been proposed in [40]. From
Fig.24, it is clear that, each antenna’s unit cell consists
of a π -formed slits and a spiral inductor short-circuited to
ground using a via-hole to have the series LH-capacitances
(CL) and the shunt LH-inductances (LL), respectively. The
antenna is moddeled to work over 5.8-7.3 GHz, which relates
to a practical bandwidth of 23%. The results approve the
antenna shows a relatively broad bandwidth, high radiation
gain and efficiency properties. The gain and efficiency at
6.6GHz are 4.8dBi and 78%. Its unidirectional radiation
pattern with 3 dB angular beamwidth of 90◦ is constant
throughout its working frequency range. The manufactured
antenna is highly small and its physical dimensions in terms
of the free-space wavelength at 5.8GHz is 0.39λ0× 0.13λ0×
0.015λ0.
[41] investigates a small broadband antenna applying

CRLH-TL MTM. The antenna has a practical bandwidth
of 100% and it has beenmodelled to work in a large frequency
band from 0.8-2.40 GHz (see Fig.25). The antenna is built
by realizing two CRLH-TL unit-cells including two inverted
T-formed slits. The slits participate towards producing the
series LH-capacitor (CL). The rectangular patch on which
the slits are etched is grounded with spiral formed high
impedance stubs that participate towards LH inductance
(LL). The antenna’s dimension is 14× 6 × 1.6 mm3 (i.e.,
0.037λ0×0.016λ0×0.004λ0, where λ0 is the wavelength of

the free space at 0.8 GHz). The optimum gain and efficiency
happened at 1.6 GHz are 1.5dBi and approximately 75%,
respectively. The antenna is proper for utilize in wireless
systems operating at UHF-, L-, S- bands, in particular, AMPS,
GSM, WCDMA, UMTS, PCS, cellular, DCS, IMT-2000,
JCDMA, KPCS, GPS, lower band of WiMAX.
In [42], metamaterial unit-cells are applied to model,

develop and investigate two planar antennas. As shown in
Fig.26, slits which are both H-formed or T-formed alongside
a grounded spiral constitute the structural topology of the
antenna. Series left-handed capacitance (CL) effects are
produced by the slits and shunt left-handed inductance (LL)
effects are produced by the spiral. Full-wave electromag-
netic simulation tools have been used for the modelling,
characterization and optimization of the unit-cell. Both the
E-formed and H-formed slot configuration of the antenna
employ two unit-cells implemented on a 0.8mm thick Rogers
RO4003 layer having an εr of 3.38. The dimension of
the H-formed unit-cell antenna is 15× 6.9 × 0.8 mm3 or
0.06λ0×0.02λ0×0.003λ0, where λ0 is the wavelength of the
free-space at 1.2GHz. The size of the T-formed unit-cell
antenna is 15.5mm× 6.9mm× 0.8mmor 0.05λ0× 0.02λ0×
0.002λ0, where λ0 is the wavelength of the free-space at
1.1 GHz. Fig.26 shows the measurement results confirming
that the H-formed unit-cell antenna supports a working
bandwidth of 1.2-6.7 GHz, relating to a practical bandwidth
of ∼140%. Fig.26 also shows that the T-formed unit-cell
antennas has an operational bandwidth of 1.1-6.85 GHz,
corresponding to a practical bandwidth of ∼145%. Over its
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FIGURE 25. Antenna, and its reflection coefficient responses [41].

FIGURE 26. (a) H-antenna, (b) T-antenna, (c) H-antenna’s reflection-coefficient responses, (d) T-antenna’s
reflection-coefficient responses, (e) H-antenna’s gain and radiation efficiency responses, and (f) T-antenna’s gain and
radiation efficiency response[42].

bandwidth, the gain of the H-formed unit-cell antenna ranges
from 2 dBi to 6.8 dBi and its radiation efficiency ranges from
50% to 86%. Over its bandwidth, the gain of the T-shaped
unit-cell antenna ranges from 2 dBi to 7.1 dBi and its radiation
efficiency ranges from 48% to 91%. The specifications
of the proposed antennas make them potential candidates

for integration into wireless communication systems and
portable microwave devices such as transceivers.

In [43], MTM CRLH-TLs are adopted for the implemen-
tation of a new miniaturized broadband antenna. The antenna
is tuned for improved frequency bandwidth, efficiency and
radiation pattern and it offers an enhanced gain performance.
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FIGURE 27. CRLH UWB antenna and its reflection coefficient response [43].

As shown in Fig.27, an inductively grounded (through a
metal via-hole) rectangular radiation patch with two inverted
F-formed slits printed on it is used for the realization
of the CRLH-TL. For the implementation of the antenna,
two CRLH-TL unit-cells are adopted to have a bandwidth
coverage from 3.1-5.4 GHz, corresponding to 4.11% prac-
tical bandwidth. The antenna’s total physical dimension is
11× 7.4 × 0.8 mm3 or 0.15λ0×0.1λ0× 0.011λ0, where λ0
is the wavelength of the free space at a 4.25 GHz operational
frequency. Its optimum gain and radiation efficiency have
occurred at 5.4 GHz, which are 6.4dBi and 89.04%. Some
of the applications in various wireless technologies include
(but are not limited) WLAN, WiMAX and WiFi.
In [44], a MTM antenna applying the principle of

CRLH-TL is presented. Fig.28 shows that the radiation
cells configurations are based on L- and F- formed slots
which are etched on the radiation patches for organizing
a series-capacitance impact (CL). Also, the radiation cells
consist the spirals and via-holes for the shunt-inductances
realization (LL). By cascading the suitable number of cells,
the desirable antennas for VHF and UHF bands are modelled.
First-antenna with four L-formed cells is implemented on the
Rogers RO4003 layer with thickness of 0.8mm and εr =
3.38 so that each of cells takes an area of 2.3×4.9 mm2. The
antenna supports the frequency bandwidth of 0.2-1.8 GHz,
which relates to 160% feasible-bandwidth. The antenna
resonates at the operating frequencies of 600, 850, 1200, and
1550 MHz with the highest gain (3.4 dBi) and efficiency
(88%) at 1550MHz. To improve the antenna performances,
a second antenna is modeled by adding an extra cell to the
first antenna, changing the slot layout to an F-formed and
enhancing the thickness of the layer to 1.6mm. F-formed
antenna with a dimension of 14.5 × 4.4 ×1.6 mm3 covers
a the requency band of 0.11-2.10 GHz with five resonance
frequencies at 450, 725, 1150, 1670, and 1900 MHz relating
to 180.1% feasible-bandwidth. The antenna’s highest gain
and efficiency occurred at 1900 MHz are 4.5dBi and 95%.

III. SIMPLIFIED COMPOSITE RIGHT/LEFT-HANDED

TRANSMISSION LINE (SCRLH-TL)

The emergence of the simplified CRLH-TL or SCRLH-TL
and its applications in antenna designs has caused in
antennas with broad bandwidth, proper radiation patterns,

and small structures that can be easily manufactured applying
traditional techniques [47], [80], [81]. Unlike CRLH-TL,
the SCRLH-TL resonates at zeroth and positive modes
rather than negative order modes due to the absence of LH
capacitance or inductance. When radiating at positive modes,
the antenna achieves a higher efficiency in comparison with
when it is radiating at the zeroth and negative modes. This
advantage makes SCRLH-TL a proper nomine for modelling
UWB antennas with a compact physical footprint area.

In [81], the feasible study of a new planar antenna model
is investigated. The antenna is synthesized utilizing SCRLH-
TL. The SCRLH-TL is a version of a traditional CRLH-TL
without the presence of a shunt-inductor in the unit-cell.
Exhibiting a RH response having nonlinear dispersion
characteristics and a smooth Bloch-impedance distribution,
the SCRLH-TL attracts a lot of interest. As shown in Fig.29,
three small rectangular patch radiators are placed in the
region of the inner slot of the antenna. In Fig.29, each
patch radiator has an E-shaped notch and a larger E-shaped
notch is near the antenna’s 50� terminal. The SCRLHTL
property is inherent in the E-formed notches. The antenna’s
impedance bandwidth is determined by the gap (on the
slot) between the smaller patches and the conductor (next
to the larger E-formed notch). The radiation characteristics
of the antenna are dependent on the sizes of the smaller
patches. A conductor-backed CPW TL is used to fee the
antenna. The antenna can operate within frequency band
of 0.7-8 GHz, which relates to a bandwidth of 7.3 GHz and
a fractional bandwidth of 167.81%. Over this bandwidth,
the antenna has resonances at 4.75 and 7 GHz. The gain
and radiation efficiency at 4.75 GHz are 4dBi and 80%. The
same parameters at 7 GHz are 3.6dBi and 73%. Themeasured
performances of the antenna were used for its validation. The
antenna’s size is 0.0504λ0×0.0462λ0×0.0018λ0 in terms of
the wavelength of the free-space at 700 MHz.

Feasible study of an innovative planar array antenna based
on a SCRLH-TL for implement in circularly polarized (CP)
synthetic aperture radar (SAR) systems operated in UHF,
L, S and C-Bands is presented in [48]. Fig.30 shows that
the array antenna includes of 6 × 6 matrix of spiral formed
radiating elements that are stimulated by proximity-coupled,
single feed-line. Pattern synthesis approach is applied to
specify the excitation coefficients (amplitude and phase) to
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FIGURE 28. (a) L-shaped antenna, (b) its reflection coefficient responces, (c) its radiation gain and efficiency, (d) F-shaped
antenna, (e) its reflection coefficients responces, and (f) its radiation gain and efficiency [44].

apply to the individual array elements to obtain the essential
pattern form. The array antenna’s size is 111.5×96.06 mm2.
Its frequency bandwidth is 3.85 GHz covering the band of
0.3-4.15 GHz, relating to a practical bandwidth of 173%.
Highest gain and radiation efficiency are 4.8dBi and 79.5%,

which have been happened at 2.40 GHz. The antenna’s 3dB
axial ratio bandwidth is 3.94GHz from 0.144-4.66 GHz.
The beamwidth of the antenna in the azimuth and elevation
planes change between 60◦ and 120◦ across its operational
frequency range. The antenna design satisfies the challenging
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FIGURE 29. Test antenna prototype, its reflection coefficient and gain responses [81].

electrical and physical specifications demanded for CP-SAR
employed on-board unmanned aerial vehicles (UAVs).

The innovative SCRLH-TL antennas for UWB applica-
tions have illustrated in [49] and depicted in Fig.31, which
display excellent radiation properties. The SCRLH-TLs
are realized applying F-formed and T-formed slots on the
GND and radiating arms. The impedance matching of the
coplanar waveguide feed-line to the antenna was increased
by integrating an H-formed microstrip stub into the feed-
line. The antenna works inside 0.65-9.2 GHz, that relates
to an feasible bandwidth of 173.6%. The highest gain
and efficiency are 3.5dBi and 70% at 4.5 GHz. Unlike
conventional antennas, the antenna’s size is not compromised
with the introduction of extra patches utilizing the proposed
method. The antenna dimensions are 25 mm × 15 mm
× 1.6 mm or 0.054λ0×0.032λ0×0.003λ0, where λ0 is the
free-space wavelength at 0.65 GHz.

IV. TWO- AND THREE- DIMENSIONAL TRANSMISSION

LINE METAMATERIALS

It is good to note that 1DMTM-TLs are the CRLH structures
considered so far. However, 2D and 3D MTM-TLs can also
be realized. Instead of providing full details on the available
realizations of 2D and 3D MTM-TLs, this section mainly
focuses on the generic ideas for the synthesis of 2D and
3D MTM-TLs to showcase the relevant works which are
applicable to this topic. In [50], the implementation of 2D
MTM-TLs involving the introduction of a square grid of

TLs having capacitors in series and inductors in parallel at
the nodes is presented. A similar implementation without
the use of lumped elements has been proposed in [82]. The
proposed structure in [82] is a mushroom model that can
be depicted and analysed by a 2D CRLH-TL. Its dispersion
curve indicates both forward wave propagation and backward
wave propagation properties. Further realizations of 3D
MTM-TLs can be found in [83] and [84]. In [83] and [84],
implementation of super-lens and the experimental validation
of the augmentation of evanescent waves are carried out,
respectively. Other notable works include [85] and [86].
In [85] and [86], the rotated TL matrix approach and the
symmetrical condensed node of TL matrix are adopted,
respectively, as structures stemming from the traditional
dielectrics and their 3D TL models [87]. It is good to note
that other methods for the realization of 3D MTM-TLs
based on split rings (which are arranged in cubic lattices)
have been proposed [88], [89]. However, fishnet structures
constructed by means of microfabrication or nanofabrication
technologies appear to be the most promising realizations of
bulk MTM-TLs. More specifically, at quasi-optical or optical
frequencies, [90], [91].

V. PERFORMANCE PARAMETERS OF MTM TL-BASED

ANTENNAS IN COMPARISON WITH THEIR

CONVENTIONAL ONES

In this section the effects of the metamaterial concept on the
antenna’s performance parameters in terms of dimensions,
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FIGURE 30. (a) Array antenna with direct feed-line, (b) Array antenna onboard a UAV, (c) radiating unit-cell element, (d) applied
cross-polarization suppression methods. (e) Photograph of the SAR array antenna, (f) reflection coefficient responses, (g) Gain and
radiation efficiency, and (h) Axial-ratio at θ = 0◦[48].

impedance bandwidth, radiation gain, radiation efficiency,
simplicity, and cost effective have been reviewed and

compared with their conventional ones without applying the
metamaterial principle. It is shown that, the metamaterial
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FIGURE 31. (a) Antenna #1, (b) Antenna #2, (c) reflection-coefficient responses, and (d) measured gain and radiation efficiency
responses [49].

TABLE 1. Performance parameters of the MTM TL-based antennas in comparison with their conventional structures.

transmission-based antennas cover wider frequency band
with higher radiation characteristics and constant physical
dimensions in comparison with their conventional ones.
Additionally, after apply the metamaterial concept the
complexity of the antennas has not increased, which makes
them cost effective for mass production.

VI. CONCLUSION

This review study has investigated CRLH MTM-TLs by
considering their use in the design of antennas presented
in available literature. To analyse the critical features of

metamaterial theory and concept, several examples are
used. Comparisons on the basis of physical size, frequency
bandwidth, materials, gain, radiation efficiency, and radiation
patterns are made for all the examples that are based on
CRLH MTM-TLs. This review study has illustrated that by
integrating slots, interdigital capacitors, spiral- and meander
lines-shaped stubs, and via-holes into the design of antennas,
very broadband of frequency with high performances can
be obtained. Additionally, the use of metamaterial allows
for structural simplicity. In addition, MTM antennas display
better performances with a cost effective fabrication process.
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As revealed in all the metamaterial-based antenna design
examples, foot-print area decrement is an serious topic of
study that has a straightforward influence for the growth of
the next generation wireless communication systems. Thus,
a broad range of design possibilities is introduced in this study
to highlight the improvement of the performance parameters
that is rare in available literature. Therefore, this review
work provides a wide overview of the early-stage concepts
of metamaterial-based design as a thorough reference for
specialist antenna designers.
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