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ABSTRACT Smart health care is an important aspect of connected living. Health care is one of the basic

pillars of human need, and smart health care is projected to produce several billion dollars in revenue in

the near future. There are several components of smart health care, including the Internet of Things (IoT),

the Internet of Medical Things (IoMT), medical sensors, artificial intelligence (AI), edge computing, cloud

computing, and next-generation wireless communication technology. Many papers in the literature deal with

smart health care or health care in general. Here, we present a comprehensive survey of IoT- and IoMT-

based edge-intelligent smart health care, mainly focusing on journal articles published between 2014 and

2020. We survey this literature by answering several research areas on IoT and IoMT, AI, edge and cloud

computing, security, and medical signals fusion. We also address current research challenges and offer some

future research directions.

INDEX TERMS Internet of Things (IoT), Internet of Medical Things (IoMT), edge computing, cloud

computing, medical signals, smart health care, artificial intelligence.

I. INTRODUCTION

The rising number of chronic patients and the aging of the

population render the avoidance of diseases an important

requirement of healthcare. Prevention is not only defined by

regular exercise, nutrition, and periodic preventive controls

as a way to sustain a healthier environment but also as a

method of keeping serious conditions from becoming worse.

The future health sector must tackle an increasing number

of chronic problems and the scarcity of treatments to satisfy

patient demands [1]. COVID-19 has recently highlighted the

importance of quick, comprehensive, and accurate eHealth-

care and intelligent healthcare involving different types of

medical and physiological data to diagnose the virus.

The use of emerging technology in protective policies and

behavioral systems can help identify potential health condi-

tions early and enable the scheduling of appropriate steps,

such as concurrently monitoring treatments and preparing

new assessments. The world’s smart health market is forecast

to reach USD 143.6 billion in 2019, which will expand by an

average growth rate of 16.2% between 2020 and 2027 [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Patricia Tobon .

Smart healthcare refers to platforms for health systems that

leverage devices such as wearable appliances, the Internet of

Things (IoT), and the mobile Internet to easily enter health

documents and link people, resources, and organizations.

Intelligent medical treatment includes diverse actors, includ-

ing physicians, staff, hospitals, and research bodies. It com-

prises a dynamic framework with many facets, including

disease prevention and identification, assessment and evalua-

tion, management of healthcare, patient decision-making, and

medical research. Elements of intelligent healthcare involve

automated networks like the IoT, mobile Internet, cloud net-

working, Big Data, 5G, and artificial intelligence (AI), along

with evolving biotechnology.

Sensors have been gradually embedded into diverse sys-

tems of our lives through computer technology, automation,

and automated signal processing. Sensor-produced data can

enable clinicians to more quickly and reliably recognize crit-

ical situations and help patients become more informed of

their symptoms and future treatments. Intrusive and noninva-

sive tools—ranging from devices to read bodily temperature

to dialysis control systems—provide personal and multime-

dia details and assistance to patients and the health care

sector.

3660 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0002-9781-3969
https://orcid.org/0000-0003-4659-7693


F. Alshehri, G. Muhammad: Comprehensive Survey of the IoT and AI-Based Smart Healthcare

Medical signals come in the form of 1D and 2D

signals such as electrocardiograms (ECGs), electroen-

cephalograms (EEGs), electroglottographs (EGGs), elec-

trooculograms (EOGs), electromyograms (EMGs), body

temperature, blood pressure (BP), and heart rate. A health

care monitoring system may use these medical signals to

monitor a patient.

The IoT is slowly starting to connect both doctors and

consumers through health care. Ultrasounds, BP readings,

glucose receptors, EEGs, ECGs, and more continue to mon-

itor patients’ wellness. Conditions like follow-up visits to

doctors are critical. Several health care facilities have started

to utilize smart beds, which can detect a patient’s movement

and automatically adjust the bed to the correct angle and

location. The Internet of Medical Things (IoMT) refers to the

IoT used for medical purposes. When developing a fully inte-

grated health environment, the IoMT can play an important

role.

Sometimes, relying on only one type of medical signal

may not fulfill the requirements for a complete diagnosis of a

certain disease. In such cases, multimodalmedical signals can

be deployed for a better diagnosis. These signals can be fused

at different levels, including the data level, the feature level,

and the classification level [3]. When fusing signals, many

challenges may be encountered. These challenges include

synchronization when acquiring signals from different sen-

sors, data buffering, feature normalization, and classification

fusion [4].

In order to ensure patients’ and stakeholders’ satisfaction,

intelligent health care has been revolutionized with the devel-

opment of AI and machine learning (ML) algorithms in the

context of deep learning (DL) and wireless local area network

(wLAN) technologies [5]. Themedical industry has been able

to manage numerous medical signals from the same user—

simultaneously improving disease detection and prediction

precision—due to these technologies’ high computational

performance, high data volume, accommodation of several

terminal units, and the introduction of 5G and beyond 5G

wireless technology.

In this paper, we present a detailed survey of IoT- and

IoMT-based smart health care systems. The survey is limited

to academic papers written between 2014 and 2020, located

via the IEEE Xplore, ScienceDirect, SpringerLink, MDPI,

Hindawi, the ACM Digital Library, and Google Scholar. The

survey’s aim is to look at different related research areas such

as the state-of-the-art IoT-based smart healthcare, data fusion

of IoTs, AI in smart healthcare, cloud- and edge-based smart

healthcare, and privacy and issues of IoT-based smart health-

care. At the end of this paper, we give few recommendations

and make suggestions of future research directions.

The paper is organized as follows. Section II describes

the methodology adopted to select the papers. Section III

presents a comprehensive survey of the literature and answers

several research questions. Section IV mentions some chal-

lenges and offers future research directions in this field.

Finally, Section V concludes the paper.

II. METHODS

We used the systematic review process PRISMA (Preferred

Reporting Items for Systematic Reviews andMeta-Analyses)

to identify studies and narrow down results for this review,

as shown in Fig. 1. In the review process, there are three

sequential steps, which are identification, scanning, and eli-

gibility testing. In the identification step, papers are identified

through Google Scholar search; after this step we identi-

fied 168 papers. In the scanning step, duplicate and non-

conforming papers are removed; after this step 132 papers

were selected. Then in the eligibility testing step, we removed

the papers that were non-healthcare related. After this final

step, we selected 110 papers to be included in the survey.

FIGURE 1. PRISMA study selection diagram. N represents the number of
papers.

A. RESEARCH AREAS

The research areas we used to select the articles were as fol-

lows: ‘‘state of the art regarding IoMT andmedical signals for

smart health care’’; ‘‘the techniques of multimodal medical

data fusion’’; ‘‘cloud- and edge-based smart health care’’; and

‘‘security and privacy of the IoMT’’.

B. SEARCH STRATEGY

Our survey of articles used a combination of keywords and

involved formulating a search strategy and selecting data

sources. We used the following combination of keywords: a)

‘‘Internet of Medical Things’’; b) ‘‘Fusion medical signals’’;

c) ‘‘Multimodal medical data’’; d) ‘‘Cloud/edge based smart

health care’’; and e) ‘‘Security and privacy Internet of Med-

ical Things.’’ The number of papers elicited by each search

strategy (item) after searching is shown in Fig. 2.

The search strategy was implemented based on the content

of the main research areas. We restricted our selection to

papers written between 2014 and 2020, as shown in Fig. 3.

To locate appropriate papers, we scanned for related publica-

tions in major online research repositories, including IEEE

Xplore, ScienceDirect, SpringerLink, MDPI, Hindawi, the

ACM Digital Library, Google Scholar,. and other health and

engineering journals.

C. SELECTION OF STUDIES

Our initial search identified 168 papers. The ‘‘Internet of

Medical Things’’ keyword got the largest number of papers.
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FIGURE 2. Number of papers by item.

FIGURE 3. Number of papers by year.

After removing duplicate and irrelevant articles, the search

was reduced to 110 articles.

D. DATA EXTRACTION

The following data categories were collected from articles:

a. Application or tasks

b. IoT/IoMT

c. Features

d. Classifier

e. Dataset

f. Accuracy

III. RESEARCH AREAS

The survey is divided into four areas: IoT or IoMT and

medical signals; IoMT or medical signals fusion; edge- and

cloud-based smart health care; and security and privacy in

IoMT-based health care.

A. IoT OR IoMT AND MEDICAL SIGNALS

The research in [3] used a multi-sensor platform with two-

channel pressure pulse wave (PPW) signals and one-channel

ECG to estimate BP. From the collected signals, a total

of 35 physiological and informative features were extracted.

For dimension reduction and to obtain the most promis-

ing indicators for each subject, they presented a weakly

supervised feature (WSF) selection method. Furthermore,

a multi-instance regression algorithm was used to fuse fea-

tures and enhance the blood pressure model.

Authors in [4] presented a technique for emotion recog-

nition and classification across subjects. It integrated the

significance test and sequential backward selection with a

support vector machine (ST-SBSSVM) to enhance the pre-

cision of emotion recognition. The input modalities used

included 32-channel EEG signals; four-channel EOG sig-

nals; four-channel EMG signals; and vital signals measuring

respiration, plethysmography, galvanic skin response, and

body temperature. Ten types of linear and non-linear EEG,

EOG, and EMG features were extracted and fused with the

vital signals to produce a high-dimensional feature vector.

The features were fused and selected using significance tests

and a backward selection search. The selected features were

then fed into a support vector machine (SVM) classifier. The

experiments were performed using two publicly available

datasets, namely DEAP and SEED. The proposed method

achieved 72% accuracy on the DEAP dataset and 89% accu-

racy on the SEED dataset.

One of the serious threats to the worker life is the disaster

in mine area. Gu et al. [5] proposed a real-time monitoring

system to ensure accuracy and reduce the risks to the mine

worker. Authors discussed multi-sensor data fusion, situation

awareness, and covering theories including the Internet of

Things. A random forest (RF) SVM-based model was used

to identify the level of the situation and to merge the data.

The simulation analysis showed a root mean square error

(RMSE) below 0.2 and a TSQ no greater than 1.691 after 200

iterations.

A data fusion enabled Ensemble approach was proposed

in [6]. The collected data from body sensor network (BSNs)

were fused to and inserted into an ensemble classifier for

heart disease prediction. The ensembles were placed in a fog

computing environment and the output from the individual

predictors were fused. A prediction accuracy of 98% was

shown in the result when the number of estimators was set

to 40 at a tree depth of 15.

Steenkiste et al. [7] provided a reliable model for improv-

ing the performance and reliability of predicting sleep apnea

based on sensor fusion method. In order to collect and inte-

grate multi-sensor data, including oxygen saturation, heart

rate, thoracic respiratory belt, and abdominal respiratory belt,

the proposed approach used backward shortcut connections.

To assess robustness and analyzed the performance of the

proposed fusion method, both Convolutional neural network

(CNN) as well as long short-term memory (LSTM) deep

learning base-models were used.

A multi-sensor fusion (HBMF)-based hybrid BSN archi-

tecture has been developed by Lin et al. [8] to enable smart

medical services. Medical services included data process-

ing technologies, robot, and different sensors. To ensure

that the robot make the right decision and to guarantee the

quality of medical services, a multi-sensor fusion approach

based on an interpretable neural network (MFIN) which used

AI technologies has been proposed (see Fig. 5). Reliability
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FIGURE 4. Taxonomy of the survey.

FIGURE 5. Overview of multi-sensor fusion framework.

and flexibility were improved compared with existing multi-

sensor fusion approaches. In [9], seven channels from func-

tional near-infrared spectroscopy (fNIRS) were fused with

seven EEG electrodes to improve the detection of mental

stress. Simultaneous measurements of fNIRS and EEG sig-

nals were carried out on 12 subjects. These measurements

were conducted while subjects solved arithmetic problems

under two different conditions (control and stress). The per-

formance of the fusion of fNIRS and EEG signals was supe-

rior to the performance of each separately.

In [10], a fusion of EEG and ECG videos was proposed

using three different transforms to improve video resolution:

discrete cosine transform (DCT), discrete wavelet transform

(DWT), and hybrid transforms. Both peak signal-to-noise
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FIGURE 6. Fusion model for to predict blood pressure from ECG data.

ratio (PSNR) andmean squared error (MSE) parameters were

used to measure the fusion effect. This empirical study found

that hybrid transforms improved image reconstruction.

Authors in [11] suggested a method of medical image

fusion using rolling guidance filtering (RGF). The study

used an RGF to filter input images into either low-

frequency or high-frequency components. First, the RGF

separated the input images into low-frequency and high-

frequency components, each of which had its own fusion

role. A Laplacian Pyramid (LP)–based fusion rule and a sum-

modified-laplacian (SML) based method were used to fuse

the structural components and the detailed component respec-

tively. The last step was image reconstruction. The proposed

method achieved the best high-frequency information com-

pared with other existing approaches.

A potential field segmentation (PFS) algorithm was pre-

sented by Cabria and Gondra [12]. PFS was used to segment

brain tumors in magnetic resonance imaging (MRI) scans

and the results produced by PFS were fused by ensemble

approaches to achieve a fused segmentation. The proposed

method was based on the physics notion of potential field and

viewed the intensity of a pixel in an MRI scan as a ‘‘mass’’

which produces a potential field. The performance was vali-

dated on a publicly available MRI benchmark database called

Brain Tumor Image Segmentation (BRATS) and showed that

both PFS and FOR were similar methods. However, PFS

was an exclusive segmentation algorithm and required fewer

parameters.

An approach using particle filtering was suggested by

Nathan and Jafari [13] to improve heart rate tracking with

existing artifacts and the use of wearable sensors. They esti-

mated heart rate apart from other signal features and to exploit

the known steady, they designed observation mechanisms.

This has contributed to the fusion of information from var-

ious sensors and signal modalities to increase the accuracy

of monitoring. The performance of the proposed approach

was examined on actual motion objects caused by ECG and

PPG data with corresponding accelerometer observations,

and results showed encouraging average error levels of less

than 2 beats per minute.

A method based on multi-level information fusion was

proposed by the authors in [14] to develop a predictive model

to calculate BP from ECG sensor data. In this method, the

data were fused in five levels (see Fig. 6). Data from multiple

ECG sensors were fused and they used different techniques

to extract the features from the input data in level one and two

respectively. The fusion of output information from seven dif-

ferent classifiers was input into the meta-classifier in level 3.

Knowledge from multi-target regression models for each BP

type was integrated into level 4, and a single predictor for

systolic BP (SBP), diastolic BP (DBP), and mean arterial

pressure (MAP) was obtained in level 5.

In [15], the author presented a method based on physiolog-

ical signals fusion to improve the accuracy of emotion recog-

nition. Its performance was validated by comparing both

fused and non-fused physiological signals on two publicly

available datasets. A feedforward neural network classifier

was trained using both fused and unfused signals. The result

of the proposed method showed an improvement in perfor-

mance on the DEAP and BP4D+ datasets compared with

other current methods.

Chen et al. [16] modified an existing real-time system to

produce a recognition system for human action. The device

obtained data from various sensor types, such as depth cam-

eras and wearable inertial sensors. Low-computation effec-

tive depth perception features and inertial signal features

were inserted into two computationally powerful shared col-

laborative representation classifiers (CRCs). The proposed

method was tested on a publicly available dataset called

UTD-MHAD, and the results showed an improvement in

overall classification rate (> 97%) compared to using each

sensor separately.

A data fusion cluster-tree construction algorithm based on

event-driven (DFCTA) was presented in [17]. They designed

a data fusion system for intelligent health monitoring in the

medical IOT. By calculating the nodes’ fusion waiting time,

the minimum fusion delay path was provided, and the fusion

delay problem within the network was analyzed. The empiri-

cal study showed an improvement in reliability and timely in

the proposed method compared with traditional method.

In [18], two procedures built on intrinsic image decom-

position (IID) was proposed to address the complexity of

complexity in extracting structural and functional informa-

tion from both MRIs and positron emission tomography

(PET) images utilizing the same decomposition scheme. The

presented IID was used to decompose both MRIs and PET

images into two components in the spatial domain. two algo-

rithms were used, algorithm 1 for extracting the structural
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information and eliminating the noise from MRI images,

while algorithm 2 was used for averaging the color informa-

tion from the PET image. Based on IID models, three fusion

methods were employed. IID+PCA, IID+IIC, and IID+HIS

were superior to other existing methods when the planned

method was tested.

Guanqiu [19] proposed a framework for medical image

fusion that combined two methods: dictionary learning and

clustering based on entropy. A Gaussian filter was used

to decompose source images into high-frequency and low-

frequency components. High-frequency and low-frequency

were fused by using dictionary learning and L2-norm based

weighted average algorithms respectively. The comparative

experiments showed that the proposed method enhanced per-

formance compared with other existing methods.

Baloch et al. [20] presented a layered context-aware

data combination tactic for IoT health care applications.

It included three phases: situation building, filtering and con-

text acquisition, and intelligent inference. Reliable, accurate,

and timely data were gathered from various sources. The aim

of the analysis was to resolve issues such as uncertainty, irreg-

ularity, restricted range, and sensor deficiency. The drawback

of this analysis was that no particular method was used to

evaluate the suggested solution.

In [21], a distributed hierarchical data fusion architecture at

various levels was employed using complex event processing

(CEP) technology to improve decision accuracy and timely.

It divided the task of data fusion into three-level processing

models (low, middle, and high levels of data fusion). A smart

health care scenario was prepared with appropriate IoT net-

work topologies to prove the effectiveness of the proposed

architecture. This empirical research found that the proposed

solution allowed for effective decision-making at various

stages of data fusion and showed an overall increase in the

efficiency and response time of primary health services.

Survey Papers on IoMT and Medical Signals:

Herrera et al. [22] presented state-of-the-art regarding sensor

fusion for hand rehabilitation applications. Authors classified

the research on hand rehabilitation into three categories:

exoskeletons, hand movements, and serious games for hand

rehabilitation. Of the types of sensors used, sensors based on

EMG signals were the most common.

Wearable devices play a vital role in long-term health mon-

itoring systems and are currently at the heart of IoMT [23].

In [23], a comprehensive study was presented with the goal of

presenting the most important wearable health care monitor-

ing devices, including biophysiological signs, motion track-

ers, EEG measurement devices, ECGs, BSCs, and so on.

Based on expert, authors suggested that the most critical

elements in health monitoring are motion trackers, vital signs,

and gas detection

In [24], the authors argued that it was complicated to detect

and resolve obstructive sleep apnea (OSA), although it is one

of the most common diseases. The paper highlighted IoT

systems that had supportive technologies and were utilized to

diagnose OSA, including FC, smart devices, ML, the cloud,

and Big Data. It further considered the improvement in the

monitoring of sleep quality and other remote monitoring in

AI-based health systems. In addition to the survey, a novel

IoMT optimization paradigm was proposed to improve the

quality of remote OSA diagnosis. The model showed an

enhancement in the sensitivity, accuracy, energy consump-

tion, and specificity of the system of remote OSA diagnosis.

A thorough and systematic analysis of current multi-

sensor fusion technologies for BSNs was presented by

Gravina et al. [25]. In the context of physical activity, they

have presented an in-depth analysis and assessment of data

fusion. Furthermore, they presented a systematic catego-

rization by pinpointed specific properties and parameters

that affected data fusion design choices at each level of

the traditional classification (data-level, feature-level, and

decision-level).

A comprehensive overview of different modalities fus-

ing, such as MRI- PET imaging, computed tomography

(CT)-MRI, X-ray, and ultrasound, was given by Sumithra

and Malathi [26]. The research pinpointed different types of

multimodal fusion and found that the exact boundary of the

tumor in the brain could be identified by merging both CT

frames and MRI slices.

Authors in [27] presented a thorough overview of the

application of image fusion technology in tumor treatments

and diagnosis, in particular liver tumors. It highlighted the key

values of image fusion techniques by considering their limi-

tations and prospects. It further presented an extensive review

of the procedures and algorithms used in medical image

fusion and concluded with a discussion of the research chal-

lenges and trends in medical image fusion. Table 1 presents a

summary of the papers described above on the IoT or IoMT

and medical signals.

B. IoMT AND MEDICAL SIGNALS FUSION

Swayamsiddha and Mohanty [28] discussed different appli-

cations of the cognitive IoMT (CIoMT) to tackle the

COVID-19 pandemic. Their review showed that the CIoMT

was a successful tool for fast detection, decreasing the work-

load of the health industry, dynamic monitoring, and time

tracking.

Yang et al. [29] proposed a combination of point-of-care

diagnostics and the IoMT to assist patients in receiving proper

health care at home. The proposed platform might reduce

national health costs and monitor disease spread.

Singh et al. [30] highlighted the overall applications of the

IoT philosophy in tackling the COVID-19 health crisis. This

study aimed to decrease costs and improve treatment out-

comes by employing an interconnected network for efficient

flow and exchange of data. Singh et al. [31] also presented an

IoMT concept based onML approaches to tackle the COVID-

19 health crisis. It provided treatments and solutions to issues

related to orthopedic patients.

Kaleem et al. [32] discussed ways to actively apply the IoT

in the medical and smart health care sectors and provided a

method named k-Healthcare in IoT. The proposed method
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TABLE 1. Summary of papers regarding IoT/IoMT and medical signals.
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TABLE 1. Summary of papers regarding IoT/IoMT and medical signals.

used smartphone sensors to collect and transmit data to the

cloud for processing and then to stakeholders.

In [33], an event-driven data fusion tree routing algorithm

was presented. The paper discussed the theory of health infor-

mation and the sports information gathering system, which is

divided into terminal nodes and client management systems.

The proposed algorithm designed communication mecha-

nisms according to the characteristics of IoT communication

and used visual methods for modeling. The outcomes showed

an enhancement in accuracy and timeliness compared with

other methods.

Chiuchisan et al. [34] provided the design for a health care

network to track at-risk patients in smart intensive care units

(ICUs) based on the IoT model. It used a series of sensors

and theXboxKinect to track patient motions and any required

adjustments in environmental parameters to notify physicians

in real time.

Sharipudin and Ismail [35] proposed a health care monitor-

ing system to manage and process data in the patient monitor-

ing system. The proposed system was combined with health

care sensors that measured health parameters. The extracted

parameters were then sent to cloud storage for medical staff’s

reference.

Dimitrov [36] presented a discussion of IoMT appli-

cations and Big Data in the health care field which

permitted innovative commercial models and allowed for

variations in work progression, customer experiences, and

output enhancements. Wearable sensors and mobile appli-

cations were used to fulfill numerous health needs and

to collect Big Data from patients to advance health

education.

Authors in [37] established early warning score systems

based on the characteristics of vital signs. The proposed

system supported the estimation of a health state by providing

a helpful decision and cause for critical care interference.

It investigated the most appropriate ML technique to predict

the risk associated with input medical signals.

Sanyal et al. [38] proposed a federated filtering framework

(FFF) based on the forecast of data at the central fog server

using aggregated model from IoMT devices. This framework

used models provided by local IoMT devices and then shared

with the fog server. It presented a solution for many common

issues, such as energy efficiency, privacy, and latency for

resource-constrained IoMT devices.

Luna-delRisco et al. [39] addressed recognition, obsta-

cles to implementation, and threats to the usage of wearable

technology in the Latin American health care system. Major

problems that the authors noted included the training and

allocation of human capital in health care, the connectivity of

public care, funding arrangements for health programs, and

inequality in health. They considered smart wearable sensors

in health care to be part of the solution.

Adali et al. [40] used a system where joint independent

component analysis (ICA) and transposed independent vec-

tor analysis (IVA) were employed to fuse functional MRI,

structural MRI, and EEG data. Results were obtained from

healthy controls and schizophrenia patients using an audible

oddball (AOD) function. The presented system was validated

on a private dataset which included 36 subjects. The analysis

was performed using the Infomax and entropy bound min-

imization (EBM) algorithms. The experiment revealed that

the joint ICA model could be superior to the transposed IVA
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model. In the case of joint ICA, a robust ICA algorithm such

as EBM was superior to the Infomax algorithm.

Authors in [41] presented a deep CNN model for seizure

detection utilizing an excellent cross-patient seizure classi-

fier. The visualization method demonstrates the spatial distri-

bution of the characteristics learned by the CNN in various

frequency bands when studying the seizure and non-seizure

classes.

Bernel et al. [45] presented a DL method for the fusion of

multimodal data to assist and monitor a user in performing

multi-step tasks. Furthermore, they extracted deep features

from individual data sources by a deep temporal fusion

scheme. The Insulin Self-Injection (ISI) dataset consists of

motion data captured with a wrist sensor and video data

obtained from the wearable cameras of eight subjects. When

the performance of the fusion method was evaluated, the

proposed method was superior to other state-of-the-art fusion

approaches.

Torres et al. [48] proposed a formulation that merged two

features from three different modalities to categorize human

sleep poses in an ICU atmosphere. Unlike other methods that

extract one feature by merging data from various sensors, this

method extracted features independently and then utilized

them to estimate labels. Various properties and scenes were

obtained from different modalities, cameras, and RGB (red,

green, and blue) and depth sensors. Both shape and appear-

ance features were extracted and used to train single modal

classifiers and generate an estimation of the trust level of each

modality.

Using the quantum-behaved particle swarm optimization

(QPSO) algorithm, Xu et al. [46] presented an updated

pulse-coupled neural network (PCNN) model to solve the

problem of PCNN parameters and to improve the efficacy

and correctness of medical image fusion. Different metrics,

including mutual knowledge, standard deviation (SD), spatial

frequency (SF), and structural similarity (SSIM), have been

used to determine the efficiency of various methods. The

result showed that the proposed algorithm has high estima-

tion Accuracy. The proposed method was validated on five

pairs of multimodal medical images from a publicly available

dataset [42] and showed an improvement in performance over

other current methods.

In [47], an approach based on weighted principal compo-

nent analysis (PCA) for multimodal medical fusion in the

contourlet domain was presented. One of the contourlet trans-

form’s limitations was capturing limited directional informa-

tion. In this study, the contourlet transform was combined

with PCA to overcome this limitation and improve the fusion

of medical images. It used max and min fusion rules to

merge the decomposed coefficients, and the results showed

improvement.

Using a hybrid technique combining non-subsampled con-

tourlet transform (NSCT) and stationary wavelet transform

(SWT), Ramlal et al. [49] produced an enhanced multimodal

medical image fusion scheme. NSCT was used to decompose

the source image into various sub-bands, and SWT was used

to decompose the NSCT approximation coefficients into sub-

bands. The efficiency of the proposed procedure was assessed

through four sets of experiments. The suggested system

was compared to other existing fusion schemes and showed

improvement in brightness, clarity, and edge information in

the merged image.

An improved algorithm based on a fuzzy transform (FTR)

for multimodal medical image fusion was presented by Man-

chandaa and Sharmab in [50]. They considered the error

images obtained using FTR pair to improve the performance

of multimodal medical image fusion algorithm. To validate

the proposed algorithm, different datasets were used, and the

result was compared with other multimodal medical image

fusion algorithms. The proposed algorithm showed a sig-

nificant improved in edge strength, standard deviation, and

feature mutual information.

Survey Papers on IoMT and Medical Signals:

Joyia et al. [51] presented the contributions of IoT in the

medical field and their major challenges in the IoMT. Numer-

ous applications and research in IoMT were discussed in

terms of how they solved issues faced by the global health

care industry.

Irfan and Ahmad [52] reviewed current architectural mod-

els and produced a new one for the IoMT. They pinpointed the

motivations that would lead medical practitioners to decide to

adopt the IoMT and further demonstrated privacy and security

problems in the IoMT.

Authors in [53] presented a comprehensive review of the

current architecture for IoMT devices and discussed different

aspects of the IoMT, including communication modules and

major sensing technologies. The paper further discussed the

challenges and opportunities related to using the IoMT in the

health care industry. Communication gateways, data acqui-

sition, and cloud servers were the main components of the

IoMT framework.

In [54], the author presented a comprehensive overview

of multimodal fusion of brain imaging data. This survey

addressed the merits of multimodal data fusion in depth

and summarized different methods of multivariate voxel-wise

data fusion. A number of multimodal medical data fusion

studies, particularly related to psychosis, have been reviewed.

The author summarized this analysis by highlighting the

importance of multimodal convergence in minimizing misdi-

rection and perhaps discovering links between the brain and

mental illness.

Table 2 presents a summary of the papers described above

regarding IoMT and medical signals fusion.

C. EDGE-INTELLIGENT AND CLOUD-BASED SMART

HEALTH CARE

An edge- or cloud-based privacy-preserved automatic emo-

tion recognition system utilizing a CNNwas proposed in [55].

In [56], the authors suggested an appropriate training system

for a deep neural network named ETS-DNN in an edge-

computing environment. In order to change DNN parameters,

ETS-DNN was combined with a hybrid algorithm for hybrid
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TABLE 2. Summary of papers regarding IoMT or medical signals fusion.

modified water wave optimization (HMWWO) In order to

minimize data traffic and latency, data preprocessing and

classification was carried out at the edge of computation. The

results showed that ETS-DNN was superior to the compared

approaches.

Han et al., in [57] provided effective communication

by developing a clustering model for medical applications

(CMMA)) for cluster head selection. The proposed CCMA

aimed to enhance lifetime of communication, improve relia-

bility, and offering energy efficiency in medical application.
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When choosing a cluster head, some criteria should be taken

into consideration such as remaining energy, distance from

the base station, capacity, delay, and queue of the IoMT

devices. An improvement in terms of energy-efficient com-

munication was shown in the proposed method compared

with other existing methods.

Authors in [58] presented a cognitive IoT (CIoT) cloud-

based smart health care framework with an EEG seizure

detection method using DL. Authors in [59] proposed a

voice pathology monitoring system integrating IoT and cloud

technology.

In [60], Olokodana et al. used the ordinary kriging method

to present a real-time seizure detectionmodel in an edge com-

puting paradigm. Fractal dimension features were extracted

from EEG signals, and an ordinary kriging model was then

used for classification. Computational time complexity is one

of the limitations of kriging. In the proposed model, a previ-

ously trained ordinary kriging model was moved to an edge

device for real-time seizure detection. The empirical study

achieved a training accuracy of 99.4% and a mean seizure

detection latency of 0.85 seconds.

In [61], an energy-efficient smart-health system based on

fuzzy classification was proposed for seizure detection. The

raw EEG data was processed at the edge before being trans-

mitted to the mobile–health cloud (MHC). The proposed sys-

tem minimized energy consumption by reducing the amount

of transmitted data and provided high classification accuracy.

The result showed an extension in battery life of 60% and a

classification accuracy above 98%.

A new network paradigm, CIoT, has been proposed based

on the application of cognitive computing technologies [62].

In [63], Chen et al. combined the advantages of edge com-

puting and cognitive computing to create an edge-cognitive-

computing–based (ECC-based) smart health care system

which allocated maximum edge computing resources to

higher-risk patients. The empirical experiments showed that

the proposed system was capable of improving energy effi-

ciency and user quality of experience (QoE).

Authors in [64] presented an edge-IoMT computing archi-

tecture which minimized latency and improved bandwidth

efficiency. It consisted of two components: edge computing

unit modules which compressed and filtered real-time video

data, and cloud infrastructure modules which securely trans-

mitted medical information to the physician.

Akmandor et al. [65] discussed different edge-side com-

puting options which were designed to address challenges

in smart health care systems. They demonstrated an edge-

side reference model comprised of three levels: sensor node,

communication, and base station. The compatibility between

sensors and edge-side requirements enabled smart edge-side

decision-making.

DL was utilized on a mobile health care platform to inves-

tigate a speech pathology detection method in [66] and an

EEG-based remote pathology detection system in [67].

In [68], an automated voice disorder recognition system

was used to monitor people of all age groups and professional

backgrounds. By identifying the source signal from the

speech using linear prediction analysis, the proposed system

could determine the voice disorder.

In [67]–[69], the authors developed a voice disorder detec-

tion andmonitoring system. In [69], they collected voice sam-

ples sent to the edge, which offers low latency and reduces

delays in data traffic flow. After processing data using edge

computing, data were transferred to the cloud for more pro-

cessing and assessment. The medical information was then

sent to a specialist, who prescribed suitable treatments for

patients. The authors tested voice disorder classification and

detection and compared the results with two related systems.

The study found that the proposed technique improved per-

formance in terms of detection and classification with 98.5%

accuracy.

Oueida et al. [70] provided a resource preservation net

(RPN) framework which integrated a custom cloud, edge

computing, and Petri net. The framework improved reliability

and efficiency and reduced both resources and time con-

sumption. The proposed system was suitable for emergency

departments and other types of queuing systems.

In [71], Kharel et al. used Long Range (LoRa) wireless

communication and FC to produce an architecture for smart

remote health monitoring. LoRa radio provides long-range

communication and energy consumption for IoT devices and

is used in the proposed system to link the edge user’s device

with health centers. FC preserves network bandwidth and

reduces latency by minimizing data exchange with the cloud.

Tests showed that LoRa and FC had promising performance

in remote health care monitoring.

In [72], the author utilized several wearable sensors and a

DL method (namely a recurrent neural network [RNN]) to

introduce a human activity prediction system. Data, features,

and activity prediction were processed on fast edge devices

like personal computers. To predict human activities from a

public dataset, the RNN was trained based on the features,

achieving 99.69% mean prediction performance.

Authors in [73] produced a task scheduling approach called

HealthEdge that assigned priority to each task based on its

emergency level in order to decide whether to process the

given task remotely (i.e., in the cloud) or locally. They also

provided a priority-based task queuingmethodwhich allowed

emergency tasks to be processed earlier. The results showed

that increasing the local edge workstation reduced processing

time.

In [74], Vasconcelos et al. proposed a new method called

adaptive brain tissue density analysis (adaptive ABTD) to

improve the detection and classification of strokes. Edge

computing devices provided low computation and cost and

reduced time consumption in detection and diagnosis. The

integration of the adaptive ABTD with edge devices and the

IoT introduced speedy and efficient stroke diagnosis.

Authors in [75] presented a model for cloud-IoT–based

health service applications in an integrated Industry 4.0

environment by enhancing the selection of virtual machines

(VMs). They implemented their cloud-IoT model using three
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optimizers: particle swarm (PSO), genetic algorithm (GA),

and parallel particle swarm (PPSO). The proposed architec-

ture consists of stakeholders who use IoT devices to send

tasks through cloud computing in order to receive services

such as telemedicine and disease diagnosis. The cloud broker

works in the middle to send and receive tasks over the cloud.

Authors in [76] proposed a tree-based deep model for

efficient load distribution to edge devices. The input image

was divided into volume groups and a tree structure passed

through each volume. The tree structure had several branches

and levels, each of which was defined by a convolutional

layer.

In [77], Chung and Yoo increased the effectiveness of

analyzing Big Data by proposing an edge-based health model

using peer-to-peer DNNs. An edge-based health model and a

server model were established separately to tackle the issue

of response time delay. The results showed that combining

DNN techniques and parallel processing models minimized

response time delay.

Limaye and Adegbija [78] provided a comprehensive

review of medical applications and algorithms in IoMT archi-

tectures and their integration with edge computing. IoMT

workloads were compared using MiBench, an existing open

source embedded system benchmark suite. The comparison

showed that the IoMT applications differed from MiBench,

indicating the need for a new benchmark sufficient for the

IoMT microarchitecture. A cloud-based healthcare frame-

work was proposed in [111]. In the framework, several

aspects of data transmission and latency were discussed.

An edge-enabled DNN-based method was proposed in [110].

Table 3 presents a summary of the papers described above

on edge- and cloud-based smart health care.

D. SECURITY AND PRIVACY IN IoMT-BASED HEALTH CARE

The security and privacy of medical data are very important

in smart health care frameworks. A patient’s data should be

handled privately. If privacy is breached, the patient may

be harassed in public, which can lead patients to become

traumatized and depressed. If medical sports data are leaked,

rival sports team members might use these data to solicit

illegal advantages. Therefore, medical data should be dealt

with privately and securely transmitted over communication

channels [123]. This important issue has been addressed in a

great deal of prior research.

Alsubaei et al. [79] presented a taxonomy of security and

privacy in the IoMT. They categorized IoT layers (percep-

tion, network, middleware, application, business); intruder

types (individual, organized group, state-sponsored group);

impact (life risk, brand value loss, data disclosure); and attack

method (social engineering, implementation layer, software

or hardware bugs, malware). The perception layer includes

wearable devices such as fitness trackers, BP sensors, and

respiratory sensors; implantable devices such as capsule cam-

eras; ambient devices such as door sensors and daylight sen-

sors; and stationary devices such as CT scanners and X-rays.

While there are many ways to fuse data from these devices,

the authors did not discuss them in the paper.

In [80], the authors identified the potential security threats

that can affect IoMT-based health care systems and recom-

mended a series of security measures to tackle these threats.

Some of the security issues mentioned in this paper include

overlooking the aspects of built-in security, stakeholders’

unfamiliarity with security solutions and focus on marketing

and financial gain, and a lack of consensus between stake-

holders for overlapping solutions. Based on these threats,

the authors proposed some ontology-inspired, stakeholder-

centric, and scenario-based recommendations in line with

available guidelines.

Ivanov et al. [81] introduced OpenICE-lite, a middleware

for medical device interoperability designed to provide secu-

rity for IoMT devices. Several applications were investigated

for this middleware, including a critical pulmonary shunt

predictor and a remote pulmonary monitoring system.

Lu and Cheng [82] proposed a secure data-sharing scheme

for IoMT devices. First, the system guarantees the protection

of and permitted access to mutual information. Second, the

system conducts effective integrity tests until the customer

opens mutual data to prevent an erroneous application or

calculation performance. Ultimately, the system provides a

lightweight procedure for both consumer and customer. The

scheme removes the burden of generating encryption and

decryption keys solely on end devices.

Mohan [83] presented some cyber threats to IoMT devices

and provided some solutions to these threats. As IoMT

devices are limited by their battery life, they have only lim-

ited encryption capability and are thus at risk in terms of

integrity, confidentiality, and privacy. Sensitive patient data

can be leaked, and denial of service attacks can be made

by draining the battery. As solutions, IoMT devices must be

installed during deployment and software details transferred

to the cloud-based system provider. IoMT devices encrypt

all patient data using lightweight cryptographic methods and

store patient data on the cloud-based system. Only approved

entities who send their verifiable attribute-based certificate to

the cloud provider may access this data.

Nkomo and Brown [84] proposed a cybersecurity frame-

work for IoMT devices in smart health care systems that

had five attributes: identify, protect, detect, respond, and

recover. First, asset management and risk assessment should

be identified. Second, access control, data security, and pro-

tective technology should be developed. Third, anomalies and

events should be detected. Fourth, response planning should

be designed through analysis andmitigation. Fifth, a recovery

path should be planned.

Rathnayake et al. [85] realized a security mechanism for a

smart healthcare system using the IoMT. First, data from dif-

ferent IoMT devices were encrypted using asymmetric cipher

and advanced encryption standard (AES) keys. The keys

were protected using a ciphertext attribute-based encryption

(ABE) protocol. The encrypted data were transmitted through

an insecure network. At the receiver end, AES keys were
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TABLE 3. Summary of papers regarding edge- and cloud-based smart health care.

decrypted using the ABE protocol. Data were then decrypted

using the ASE keys. This mechanism maintained the privacy

and the security of patients’ data.

Seliem and Elgazzar [86] proposed a blockchain for IoMT

(BIoMT) to preserve security and privacy in a smart health

care framework. The BIoMT had four layers. The first layer

was a device layer, which contained IoMT and user interface

devices. The second layer was a facility layer, which had a

bolster to look after IoMT devices. The facility layer provided

the basic blockchain modules for attribute number selection,

security generation, and identity issuance. The third layer

was a cloud layer that provided the computational power

and storage, and the fourth layer was a cluster layer which

contained medical facilities and the service provider.

Wang et al. [91] designed a fog-based access control

(AC) method for the IoMT. The authors developed a method

that installed an extra layer of control on fog servers to

improve protection for local mobile devices. A register in

the AC server was important for compliance with devices.

Data access requests were submitted to the AC server, where

the status of the application could be reviewed. The registry

needed to ensure that the incoming function had been

recorded in the past. The comparison should be performed as

the work form was recorded to ensure that the privacy setting

was changed. The architecture was situated in the fog layer,

where functional-oriented servers could provide the required

AC service to each device.

Dilawar et al. [92] introduced cryptography as a solu-

tion for the safe exchange of patient safety records using

blockchain technologies to protect medical data. A unified

blockchain-based technique would solve many of the diffi-

culties related to a centralized cloud solution. Authors in [93]

introduced an access management model that safeguarded

patients’ medical data from internal information security

attacks. It enabled only legally permitted people to connect

despite physical limitations. The suggested model incorpo-

rated authorization consistent with permits and responsi-

bilities, rather than positions for medical personnel only.

It eliminated the contradictions of current AC models.

Omotosho et al. [94] identified and incorporated some

of the main characteristics of a patient’s health report that

should be published and made accessible at all times as well

3672 VOLUME 9, 2021



F. Alshehri, G. Muhammad: Comprehensive Survey of the IoT and AI-Based Smart Healthcare

as qualities that should be disclosed only during emergency

conditions or pre-hospital treatment. Creating medical fea-

tures from patient health information that may be retrieved

in critical cases is a proactive step that allows technicians to

obtain access to required details in pre-hospital services while

protecting patients’ dignity and confidentiality.

Farahat et al. [95] introduced a data encryption scheme

that involved first encoding data, then encrypting those data

with a rotated key until they were sent across the network.

Doctors can recover the protected data using their login keys

and credentials. The schemewas implemented using low-cost

equipment and reliable applications to ensure safety in the

delivery of medical information.

Guan et al. [96] proposed a differential private data clus-

tering scheme to allow privacy-preserving IoMT using the

MapReduce system. For large-scale data sets, MapReduce is

a parallel programming system that abstracts parallel comput-

ing procedures into two functions: Map and Reduce. In this

scheme, the authors refined the distribution of privacy bud-

gets and the collection of initial centroids to boost the per-

formance of the k-means clustering algorithm. In addition,

an enhanced method for collection of the initial centroids

was suggested to maximize the precision and reliability of

the clustering algorithm.

Hamidi [97] proposed a modern paradigm for the appli-

cation of biometric technologies to the advancement of smart

health care using the IoMT, which, in addition to being simple

to use, requires broad-scope data access. While card IDs and

passwords control entry, these systems can be quickly broken

and are known to often be inefficient. A biometric trait has

four main features: universality, distinctiveness, permanence,

and collectability. The author anticipated four levels of secu-

rity strategies: IoMT device, communication, analytical, and

management.

Alsubaei et al. [80] outlined a web-based IoMT security

assessment framework focused on an ontological scenario-

driven methodology to propose security steps in the IoMT

and to evaluate safety and deterrents in IoMT solutions.

The framework encouraged the development of a strat-

egy that fits stakeholders’ protection goals and facilitates

decision-making.

Elhoseny et al. [98] proposed a hybrid optimization of

asymmetric encryption for IoMT security. An ideal pri-

vate and transparent key-based authentication was used in

IoT therapeutic images. Various approaches were consid-

ered to achieve optimal hybrid optimization, from which

the researchers differentiated and analyzed the critical open-

ended difficulties in enhancing IoT in healthcare.

Shakeel et al. [99] introduced learning-based Deep

Q-Networks to reduce ransomware attacks when handling

health records using IoMT devices. The approach analyzed

the medical knowledge in various layers per the Q-learning

principle, which allowed transitional attacks to be eliminated

with less difficulty. Efficiency was measured in terms of

energy, lifetime, throughput, accuracy, and malware error

detection rate. Yi and Nie [100] proposed a multivariate

quadratic equation–based cryptographic security system for

IoMT devices. A physical analysis model of the crypto-

graphic systemwas designed by analyzing fault tolerance and

differential power on a cloud platform.

Survey Papers on Security and Privacy in IoMT-Based

Health Care: A survey on security and privacy in the IoMT

was presented in [101]. The authors identified four require-

ments for security and privacy: data integrity, data usabil-

ity, data auditing, and patient information privacy. Existing

solutions to these requirements were discussed and included

data encryption, access control, trusted third-party auditing,

data search, and data anonymization. For example, some

encryption methods for access control include attribute-based

encryption and symmetric and asymmetric key encryption.

The paper ended by noting some future challenges, such

as how to deal with insecure networks, develop lightweight

protocols for devices, and share patients’ private data.

Hatzivasilis et al. [102] reviewed security and privacy in

the IoMT. In an IoMT-based health care system, there are

three main application settings: hospitals, homes, and body

sensors. Three security aspects—confidentiality, integrity,

and availability—should be enforced in device, connectiv-

ity, and cloud security. The survey analyzed different types

of security components. Various types of protection mech-

anisms, identification and anonymity techniques, and data

destruction for device reuse were also discussed.

Sun et al. [103] provided an outline of the latest prob-

lems, requirements, and possible risks to the protection and

confidentiality of IoMT-based health care systems. To design

an IoMT networks, one must address postural body move-

ments, rises in temperature, energy efficiency, transmission

range, quality of service, and heterogeneous environments.

The security and confidentiality requirements have different

attribute levels. At the data level, care must be taken regarding

confidentiality, integrity, and availability. At the sensor level,

the design must address tamper-proof hardware, localiza-

tion, self-healing, over-the-air programming, and forward and

backward compatibility. At the personal server level, device

authentication and user authentication should be considered,

while at the medical server level, important requirements

include access control, key management, trust management,

and resistance to denial of service attacks.

Li et al. [104] provided a survey of secured IoMT with

friendly-jamming schemes. The authors reviewed the IoMT’s

existing protection systems and defined key security issues in

the IoMT. They recommended friendly-jamming schemes to

protect patients’ sensitive diagnostic data obtained frommed-

ical sensors. They concluded that, when properly planned,

friendly-jamming approaches could substantially reduce the

probability of effectiveness of eavesdropping activity while

having no substantial impact on legal transmission.

Ghoneim et al. [105] introduced a new medical image

forgery detection method to verify that health care images

had not been changed or altered. The method generates an

image noise map, realizes a multi-resolution regression filter

to the noise map, and feeds the output to SVM-based and
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ELM-based classifiers. Another copy-move image forgery

detection method was proposed in [112]; the method could

be used in medical image forgery detection.

Lin et al. [106] reviewed the security and privacy issues,

challenges, and future directions in the IoMT field. There are

four major categories of medical sensors: disposable health

sensors, connected health sensors, IoT-supported sensors, and

IoT market cap sensors. The authors provided a systematic

review of these sensors in terms of their security and pri-

vacy, followed by the challenges they present. Some of these

challenges included the integration of multiple sensors with

proper protocols, data bursts, and social acceptance. In a

related survey, Masud et al. [117] outlined some limitations

and issues related to the security of IoMT devices and pro-

vided some recommendations. They listed risks such as the

disclosure of personal information, data falsification, lack of

training, and reasonable accuracy.

IV. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

The major challenges of IoT and AI-based smart health-

care include sensors’ interoperability, device communica-

tion, security and privacy, device management, information

management barrier, and efficient use of AI. In some health

care environments, the bulk of IoMT devices can be used

to identify and diagnose an illness, and the data collected

from heterogeneous sensors contains a variety of issues,

such as hardware glitches, drained batteries, or connectivity

problems [106]. There are certain basic problems that are

normal and unregulated. In particular, there are sometimes

unexplained errors in the usage of popular medical sensors,

such as mobile phones and smartwatches. There are also reg-

ular complexities, such as battery power, distinctions between

particular physical characteristics, and variations in the

environment.

The above problems indicate that several difficulties exist

in smart health care, though multimodal signals and several

IoMT devices are being used. A simplified and easier fusion

solution should be discussed to facilitate the general adoption

of such smart health care [115], [119], [121], [123]. Below,

we discuss some of these problems and potential solutions.

The healthcare system can get inconsistent data from

the multiple sensors because of the unawareness from the

researchers. Incomplete data may get thieved or faked by

other people. Radio frequencies of IoTs might have an effect

on reading areas, and readers might give false readings. Tag

collisions and tag detuning should be corrected, along with

metal/liquid effects and tagmisalignment. The system can get

redundant data which need to be refined.

Wearable sensors are equipped with batteries, Bluetooth,

and other materials and were designed to be attached to

human skin. For human safety, it is important to consider

toxicity, flammable materials, and other factors when design-

ing wearable sensors. Wearable sensors that constrain body

movement, such as a belt worn at the waist or ankle, are

uncomfortable, especially for the elderly and children. One

challenge is to develop sensors that continuously monitor

human vital signs using suitable materials and without reduc-

ing user comfort.

There is an increase of the number of connected sensors,

devices, and IoTs in any smart system. A massive healthcare

network will work only if it has sensing capabilities plus the

capacity to produce important information. In the healthcare

system, many millions of sensors and IoTs are linked that

provide massive amounts of data to be studied. In the IoT, the

entities should have compatible data model and knowledge

representation model.

There is a need to recognize interoperability of IoTs or

partnership between nations when it comes to the develop-

ment of digital health infrastructure. This disadvantage, along

with lack of IT infrastructure, is attributed to both a lack of IT

skills and the need for international collaboration in the shar-

ing of confidential medical data, which will promote remote

telemedicine and the provision of high-quality medical care.

Shibboleth is a distributed identification key, which allows

individuals to be authenticated inside and through organi-

zational systems. The conventional Shibboleth mechanism

requires a user to confirm to an ID provider and then directs a

demand for a site to be hosted by a service provider. With

this distributed approach, Shibboleth allows digital health

organizations to have a single sign-on capability, as in the case

of digital health.

Automatic health care programs depend on self-sensing,

self-adjustment, and self-tuning [108], [113]. As background

such as sensor noise and recording environment, varies,

fusion of sensors and IoTs can deal with the modifications,

since they can have a direct impact on system properties such

as precision. Information transfer methods for transfer learn-

ing should be used to permit the system to adjust to particular

circumstances by collecting and transferring acquaintance

from one situation to another.

Unauthorized access to IoT devices may contribute to

extreme health and private information threats to patients.

Linked computers, including the compilation, aggregation,

retrieval and transmission of patient knowledge to the cloud.

Cloning, spoofing, RF jamming and cloud polling is prone

to system type. In the cloud survey, traffic is diverted such

that commands can be injected directly to a computer by an

individual in the center.

Attacks with denials of service (DoS) can impact health

organizations and the security of patients. Although repli-

cation (use of several devices on the network) is a standard

protection of DoS, it might not often be feasible to replicate

resources in a healthcare setting since some of the devices

are essential systems implant. Owing to the amount and

sophistication of new device and hardware bugs, the quick

identification of possible security hazards remains a problem.

This problem is escalating as the Internet links more and

more users. Standard security is also widespread today and

unsecure user interface access raises the threat surface more.

Many wireless networking devices have also recently been

used in the health care industry, including Wi-Fi, BLE and

ZigBee, for linking various medical equipment and sensor
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forms to each other. Defense from eavesdropping, sybil

assault, plunger hole attacks and sleep loss attacks must be

applied with these wireless sensor and sensor technologies.

In order to preserve protection and privacy, core data sets of

personal details, family histories and electronic medical doc-

uments can also be guarding against hackers and malicious

devices.

The misuse of access privileges by allowed insiders is a big

concern. This kind of information sharing occurs when health

facilities disclose sensitive medical information to unautho-

rized people, either due to irresponsibility, for individual or

criminal purposes, or in return for illegal benefits. Celebrities’

health reports and the lawmakers’ information also leaks to

the public from a centralized healthcare system. This could

cause a breach of the regulation by the insiders and the

documents that they would not have access to. For example,

medical personnel who are not taking care of real patient and

former staff who are not yet restricted from data query. A dis-

gruntled party will cause problems to each other by accessing

the protected details of each other. Intruders are trying to

pretend to be healers in order to infiltrate. Cybercrime as a

virus of today’s Internet sector is a big issue and a menace

to health. There are high costs for unsafe medical practice

such as negative impact on their reputation, penalties, legal

liability, and many more.

Traditional AI-based healthcare systems may not gain

acceptability to the doctors. Therefore, explainable AI-based

system can be deployed, where the doctors can visualize

the detection or classification of diseases. The optimization

of edge resources can be efficiently done edge-intelligent

algorithms [105], [107], [109], [114].

The practical usefulness IoMT activated healthcare sys-

tems is rarely addressed in literature. The main concern is

that the most relevant data is owned by companies and is not

accessible to the public. The efficient deployment and utiliza-

tion of data fusion in practice will allow for more reliable

measurement and evaluation of day-to-day physical activity

utilizing low-cost monitors that can lead to easier and better

preventive care for chronic diseases. We assume that hosting

medical data in a public archive with appropriate protection

precautions and exploring current data fusion strategies using

such public data will be a crucial potential direction for future

research.

The advancement of next-generation wireless networks

poses a great prospect in smart healthcare [118], [120], [122].

With the help of 5G and beyond 5G networks, now the health-

care system can be reached anywhere in the world faster than

before. In addition, federated DL and edge-based computing

become easier and powerful [2], [104], [116].

V. CONCLUSION

Smart healthcare is a well-researched area. In the smart health

care domain, there is a breadth of literature covering IoT,

IoMT, medical signals, AI, edge and cloud computing at var-

ious rates and utilizing varied tactics. However, to the best of

our knowledge, there was a lack of a thorough and systematic

analysis of state-of-the-art IoT, IoMT, AI, medical signals use

and fusion, edge and cloud computing, privacy and security in

the smart health care domain. The purpose of this survey was

thus to offer a formal classification and specific comparative

context for IoT, IoMT, AI, edge and cloud computing, privacy

and security in smart health care. The survey included the

use of IoT, IoMT, and medical signals, the fusion of sensors,

and the use of edge and cloud computing in smart healthcare.

It further provided a survey of security and privacy issues

involving IoMT devices. Finally, some research challenges

and future research directions were discussed.
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