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In recent years, FCA has received significant attention from research communities of various fields. Further, the theory

of FCA is being extended into different frontiers and augmented with other knowledge representation frameworks. In this

backdrop, this paper aims to provide an understanding of the necessary mathematical background for each extension of

FCA like FCA with granular computing, a fuzzy setting, interval-valued, possibility theory, triadic, factor concepts and

handling incomplete data. Subsequently, the paper illustrates emerging trends for each extension with applications. To this

end, we summarize more than 350 recent (published after 2011) research papers indexed in Google Scholar, IEEE Xplore,

ScienceDirect, Scopus, SpringerLink, and a few authoritative fundamental papers.
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1. Introduction

Formal concept analysis (FCA) is a mathematical

framework based on lattice theory (Wille, 1982). FCA

starts data analysis from a given incidence matrix in

which each row corresponds to objects, each column

corresponds to attributes, and the matrix field value

denotes the relationship between them. One of the

major outputs of this model is the concept lattice,

reflecting generalization and specialization between the

derived formal concepts from the incidence matrix

(Davey and Priestley, 2002). Formal concepts are a

basic unit of thought and play-major role in knowledge

processing tasks containing distinct extents (sets of

objects) and intents (corresponding common attributes)

(Ganter and Wille, 1999). To handle the uncertainty and

vagueness in data, FCA has been successfully extended

with a fuzzy setting, an interval-valued fuzzy setting,

possibility theory, a rough setting and triadic concept

analysis. These extensions have independent background

mathematics, algorithms, and outputs. Several algorithms

∗Corresponding author

are available in the literature on FCA (Doerfel et al.,

2012; Poelmans et al., 2014), its notions (Kuznetsov

and Obiedkov, 2002; Poelmans et al., 2013b), theoretical

analysis (Aswani Kumar and Singh, 2014; Sarmah et al.,

2015), algorithms (Dias and Vieira, 2015; Kuznetsov and

Obiedkov, 2002; Kuznetsov and Poelmans, 2013) and

applications (Poelmans et al., 2013b; Yan et al., 2015).

The current paper is unique and different from the above

cited works mainly due to two aspects: first, it provides

the necessary mathematical background for each of the

new extensions of FCA that is discussed, and second,

it discusses applications for each extension. This paper

provides a summary of the trends and applications of

FCA after 2011. Further, the paper also provides pointers

to most authoritative literature on FCA. To achieve this,

we have collected 544 articles from prominent indexing

systems.

2. Survey methodology

This systematic study has been conducted with the help

of research papers published after 2011. The rationale

premsingh.csjm@gmail.com
cherukuri@acm.org
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behind is that the summary of FCA findings till 2011

was analyzed in a series of papers by Poelmans et al.

(2013a; 2013b; 2014). A total of 544 research papers

have been collected from the prominent indexing systems

such as Scopus, Google Scholar, leading scientific data

bases such as the ACM Digital Library, IEEE Xplore,

ScienceDirect, SpringerLink, etc. Also, we have referred

to the proceedings of prominent FCA conferences like

ICFCA, ICCS, CLA, etc.

The methodology we have used to extract the

articles is based on the following keywords: formal

concept analysis (FCA), formal concept, fuzzy formal

concept, concept lattice, fuzzy concept lattice and

Galois connection. From the 544 collected papers we

have shortlisted 352 works based on their innovative

content. From these papers the following research trends

identified: (a) FCA with granular computing, (b) FCA

with a fuzzy setting, (c) FCA with an interval-valued

fuzzy setting, (d) FCA with possibility theory, (e) FCA

with rough set theory, (f) triadic concept analysis in a

fuzzy setting, (g) factor concepts, and (h) concept lattices

of incomplete data.

3. Formal concept analysis

In this section we provide a brief background of FCA, its

tools and current research issues.

3.1. Background. FCA is a mathematical model for

knowledge processing tasks. It receives data, structured

in the form of objects, attributes and the relation between

them. This relation is represented as in the form of a

formal context −F = (X,Y,R) where X is a set of

objects, Y is a set of attributes and R is a binary relation

between them, of Table 1 (where a, b, c, . . . , o represent

the attributes y1, y2, . . . , y15, respectively). From the

given context, FCA derives a set of objects (A) and the set

of all attributes (B) that are in common for these objects.

Similarly, the dual operation on the set of attributes

(B) identifies the common objects objects (A) using the

concept forming operator.

Definition 1. (Concept forming operators) The operators

↑: 2X → 2Y and ↓: 2Y → 2X are defined for every

A ⊆ X and B ⊆ Y by:

A↑ = {y ∈ Y | ∀x ∈ A : (x, y) ∈ R} ,

B↓ = {x ∈ X | ∀y ∈ B : (x, y) ∈ R} ,

where A↑ is the set of all attributes shared by all objects

from A. Similarly, B↓ is the set of all objects sharing all

attributes from B. The formal concept is a pair (A,B) of

A ⊆ X and B ⊆ Y such that A↑ = B and B↓ = A. The

collection of all such pairs of concepts forms a concept

lattice under the closure operation.

Definition 2. (Concept lattice) The concept lattice

structure determines the hierarchy of formal concepts

which follows the partial ordering principle: (A1, B1) ≤
(A2, B2) iff A1 ≤ A2 ( B2 ≤ B1) and provides

generalization and specialization between the concepts,

i.e., (A1, B1) is more specific than (A2, B2) ((A2, B2)
is more general). The attributes of each formal concept

are inherited from the most general maximum node,

while the objects are inherited from the most specific

minimum node. Several algorithms have been proposed

for generating the concept lattice (Bartl et al., 2011;

Codocedo et al., 2011; Kuznetsov and Obiedkov, 2002;

Outrata and Vychodil, 2012) including parallel and

recursive algorithms (Fu and Mephu Nguifo, 2004; Krajca

et al., 2008; Langdon et al., 2011). The attribute

implications are represented in the form of A → B over

the set Y (Ganter and Wille, 1999). There are several

patents granted for the inventions that are based on FCA.

Table 2 summarizes some of such patents.

3.2. Tools and ssoftware in FCA. Several tools

and packages are developed to handle the FCA tasks

such as generating concepts, attribute implications, etc.

(http://www.upriss.org.uk/fca/fca.html).

Following is a summary of some of the available tools:

1. ToscanaJ: Provides a view for conceptual schemas

and optimized for a non-technical audience,

http://toscanaj.sourceforge.net/.

2. ConExp: Implements the basic functionality of FCA

with a crisp setting,

http://conexp.sourceforge.net/.

3. ConExp-NG: Is an extension of ConExp with

the focus on usability and maintainability,

https://github.com/fcatools/

conexp-ng.

4. Conexp-clj: Allows us to handle the formal context,

relational algebra with formal contexts, many-valued

contexts, attribute exploration, lattice layouts by

NextClosure or Iceberg Concepts and fuzzy FCA,

https://github.com/exot/conexp-clj/.

5. Galicia: Is an open environment and handles binary

and relational contexts,

http://www.iro.umontreal.ca/

˜galicia/.

6. FcaStone: Is a command-line utility that

converts between the file formats of com-

monly used FCA tools (such as ToscanaJ,

ConExp and Galicia) or FCA formats to

other graphics formats (dot, fig, svg, . . . ),

http://fcastone.sourceforge.net/.

http://www.upriss.org.uk/fca/fca.html
http://toscanaj.sourceforge.net/.
http://conexp.sourceforge.net/.
https://github.com/fcatools/
conexp-ng
https://github.com/exot/conexp-clj/
http://www.iro.umontreal.ca/
~galicia/
http://fcastone.sourceforge.net/
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Table 1. Binary formal context.

a b c d e f g h i j k l m n o

x1 x x x x x x

x2 x x x x x x

x3 x x x x x x

x4 x x x x x x x

x5 x x x x x x x

x6 x x x x x x

x7 x x x x x x

x8 x x x x

Fig. 1. Formal concept lattice for the context shown in Table 1.

7. Lattice Navigator: Provides three applications of

FCA using a single setup file: Lattice Navigator,

Context Editor, Lattice Visualizer,

http://www.fca.radvansky.net/

news.php.

8. Colibri-concepts: Permits to explore only part of a

concept lattice which is most useful when working

with huge lattices,

http://code.google.com/p/colibri

-concepts/.

3.3. Issues in FCA. Hierarchical order visualization

of formal concepts in the concept lattice structure is

an important concern for practical applications of FCA

(Aswani Kumar, 2011a). In this process, one of the major

issues is the size of the concept lattice constructed from

“a large formal context” (Codocedo et al., 2011; Aswani

Kumar et al., 2015a; Aswani Kumar and Srinivas, 2010;

Singh and Gani, 2015). The concept lattice constructed

from the large context becomes complex and impractical.

Hence, handling a large formal context and reducing the

size of the concept lattice are addressed as real issues

in practical applications of FCA (Dias and Vieira, 2015;

Singh et al., 2015a; 2015b).

The issue includes a number of formal concepts,

and implications generated from a large context can

be exponential while counting them is P -complete and

P -hard (Babin and Kuznetsov, 2013; Bartl et al., 2011;

Bazhanov and Obiedkov, 2014; Obiedkov, 2012; Slezak,

2012). This problem also merges with a fuzzy formal

context (Denniston et al., 2013; Ma and Zhang, 2013),

a decision formal context (Li et al., 2012a; 2012b)

multi adjoint concept lattices (Medina and Ojeda-Aciego,

2012; Medina, 2012a; 2012b), and granular computing

(Tadrat et al., 2012; Yang et al., 2011a). Subsequently,

some metrics are proposed to measure the stability

http://www.fca.radvansky.net/
news.php.
http://code.google.com/p/colibri
-concepts/.
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and importance of obtained concepts (Kuznetsov, 2013;

Martin et al., 2013; Pei et al., 2013). In the next section

we illustrate the mathematics behind each of the above

categorized research trends in FCA with an illustrative

example.

4. Current research trends in FCA

In this section we describe trends of FCA such as granular

computing, FCA with a fuzzy setting, an interval-valued

fuzzy setting, possibility theory, a rough setting, a triadic

setting, factor concepts and the incomplete context.

4.1. FCA with granular computing. In this section

we discuss a method for reducing the concepts at a

chosen granulation of their (computed) weight (Butka

et al., 2012; Lei and Tian, 2012; Ma and Zhang, 2013).

Table 2. Some important patents on FCA and their inventions.

Patent information Invention

US patent (May 19,2005) Attribute

US2005/0108252A1 implications

US patent (May 25,2006) Information

US2006/0112108A1 retrieval

US patent (Sep 21,2006) Organizing

US2006/0212470A1 the information

International patent(April 5,2007) Processing

WO2007/038375A2 patient records

US patent (Jul 7,2007) Mapping of

US2005/0149510A1 context

US patent (Jun 10,2010) Identifying

US2010/0153092A1 similar word

China patent (April 6,2011) Dynamic

CN2017885100 mining system

China patent (Aug 24,2011) Remote

CN101699444B sensing

US patent (Jan 5,2012) To structure

US2012/0005210A1 a database

International patent (Feb 2,2012) Electronic

WO2012014938A1 repository

China patent (Jun 20,2012) FCA based

CN102508767A software maintenance

US patent(Feb 26,2013) Conceptual

US8386489B2 similarity

China patent (May 29,2013) Software

CN103123607A maintenance

China patent (Jun 26,2013) Software

CN103176902A error locations

US patent (Jul 25, 2013) Sentiments

US20130191735A1 analysis

US patent(Aug 1,2013) Resume

US2013/0198195A1 classification

European patent (Oct 2,2013) Reducing

EP2645274A1 the lattice

International patent WO 2014 Traffic

013327A1 (Jan23,2014) measurement

The reason is that the number of concepts increases

exponentially in the worst case. In this case, granular

computing provides a path to process the large context

into less time based on the requirement when dealing

with numeric processing (Pedrycz, 2013). An information

granule is the basic notion of granular computing, which

can be defined broadly as a collection of information.

This notion has been recently introduced into the concept

lattice as an attempt to decrease the computation time

(Belohlavek et al., 2013; Wu et al., 2009; 2012; Li et

al., 2015; Xu and Li, 2015). In general, the information

granule regarded as a collection of elements drawn

together by their closeness (resemblance, proximity,

functionality, etc.) articulated in terms of some useful

spatial (Ciobanu and Vaideanu, 2014; Singh and Gani,

2015; Singh and Aswani Kumar, 2015a; Aswani Kumar

et al., 2015a), bidrectional (Aswani Kumar et al., 2015b),

temporal (Belohlavek and Trnecka, 2013; Dias et al.,

2013; Dias and Vieira, 2013), or functional relationships

(Singh and Aswani Kumar, 2012b; Vityaev et al., 2012;

Zhang et al., 2012). Selecting the level to find some

important concepts in the large context is based on user

requirements.

Definition 3. (Granular concept) Information granularity

has been engaged in one way or another in quantifying the

lack of numeric precision computed by different methods.

The computed weight (w) of any given concepts indicates

the importance of attributes (Y ) where 0 ≤ w ≤ 1. This

process gives the priority to the concepts whose weight is

more than the chosen threshold θ (0 ≤ θ ≤ 1) (Belohlavek

and Macko, 2011; Babin and Kuznetsov, 2012).

Example 1. For illustration of the granular based concept

lattice, a context shown in Table 1 has been considered

(Junli et al., 2013). Let us analyse any object xj ∈ X
of a given context and compute its probability P (yj/xi)
for possessing the corresponding attribute yi. Then the

average information weight E(yi), of xi to provide the

attribute yi ∈ Y can be computed as follows (and shown

in Tables 3 and 4) (Junli et al., 2013):

E(yi) = −

m
∑

i=1

P (yi/xj) log2(P (yi/xj)), (1)

where m represents the total number of attributes

wi =
E(yi)

m
∑

i=1

E(yi)
(2)

Weight(B) =

∑

(wi)

m
, (3)

where B is the intent.

The removal of formal concepts at a chosen

granulation is shown in Table 5. Subsequently, it can

be applied to FCA with fuzzy attributes as well (Singh

et al., 2015a; Xu and Li, 2015). �
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4.2. FCA with a fuzzy setting. FCA has been

extended with a fuzzy setting for handling vagueness and

uncertainty in data using the following definitions.

Definition 4. (Fuzzy formal context) It is a triplet K =
(X,Y, R̃), where X is a set of objects, Y is a set of

attributes and R̃ is an L-relation: X × Y → L.

Definition 5. (Residuated lattice) A residuated lattice

L = (L,∧,∨,⊗,→, 0, 1) is the basic structure of truth

degrees, and it is complete iff (i) (L,∧,∨, 0, 1) is a

complete lattice, (ii) (L,⊗, 1) is commutative monoid,

(iii) ⊗ and → are adjoint operators, i.e., a ⊗ b ≤ c iff

Table 3. Computed weight for each attributes of Table 1.

yi P(yi) E(yi) wi

a 0.875 0.169 0.026

b 0.125 0.375 0.057

c 0.500 0.500 0.076

d 0.500 0.500 0.076

e 0.375 0.531 0.081

f 0.500 0.500 0.076

g 0.125 0.375 0.057

h 0.875 0.169 0.026

i 0.125 0.375 0.057

j 0.375 0.531 0.081

k 0.250 0.500 0.076

l 0.250 0.500 0.076

m 0.250 0.500 0.076

n 0.375 0.531 0.081

o 0.500 0.500 0.076

Table 4. Computed weight and deviation for each concepts of

Fig. 1.

Node Intent Average W (B) D(y)

c0 ⊘ 1 1 0

c1 a 0.026 0.026 0

c2 d 0.76 0.076 0

c3 h 0.026 0.026 0

c4 ae 0.054 0.054 0.055

c5 ah 0.026 0.026 0

c6 ad 0.051 0.051 0.0326

c7 ach 0.043 0.043 0.029

c8 adn 0.061 0.061 0.031

c9 dhn 0.061 0.061 0.031

c10 acfho 0.056 0.056 0.028

c11 adfho 0.056 0.056 0.028

c12 adein 0.064 0.064 0.024

c13 bdghn 0.059 0.059 0.022

c14 acfhjo 0.060 0.060 0.027

c15 adfhjo 0.060 0.060 0.027

c16 acfhko 0.059 0.059 0.026

c17 adfhno 0.060 0.060 0.027

c18 acehjlm 0.063 0.063 0.026

c19 acehklm 0.063 0.063 0.025

c20 abcdefghijklmno 1 1 0

a ≤ b → c, ∀a, b, c ∈ L and defined distinctly (Davey and

Priestley, 2002; Macko, 2013).

Definition 6. (Fuzzy Galois connection) For any L-set

A ∈ LX of objects, and B ∈ LY of attributes we can

define an L-set of A↑ ∈ LY attributes and L-set B↓ ∈
LX of objects as follows (Belohlavek and Vychodil, 2012;

Pocs, 2012):

1. A↑(y) =
∧

x∈X

(A(x) → R̃(x, y)),

2. B↓(x) =
∧

y∈Y

(B(y) → R̃(x, y)).

Definition 7. (Fuzzy formal concept) It is a pair of

(A,B) ∈ LX × LY satisfying A↑ = B and B↓ = A,

where A is called the (fuzzy) extent and B is called the

(fuzzy) intent.

Example 2. For illustration, we have considered a fuzzy

context shown in Table 6. For concept generation and

lattice structure, the interested readers can refer to the

works of Belohlavek and Vychodil (2005), Kaiser and

Schmidt (2013), Kang et al. (2012a), Martin and Majidian

(2013) or Martin et al. (2013). �

Definition 8. (Implication) Implication over a attribute

set Y is an expression A ⇒ B, where A,B ⊆ LY .

It represents “if it is (very) true that an object has all

attributes from A, then it has also all attributes from B
(Massanet et al., 2013; Glodeanu, 2012). The notions

Table 5. Removed concepts at chosen granulation.

W (B) θ Removed concepts

1 0.076 < θ ≤ 1 c1,c2,c3,c4,c5,c6, c7
c8,c9,c10, c11, c12,

c13, c14,c15,c17,c18,c19
0.076 0.064 < θ ≤ 0.076 c1,c3,c4,c5,c6,c7,

c8,c9,c10,c11, c12,c13,

c14, c15,c17,c18,c19
0.64 0.063 < θ ≤ 0.064 c1,c3,c4,c5,c6,c7,

c8,c9,c10, c11,c13,c14,

c15,c17,c18,c19
0.063 0.061 < θ ≤ 0.063 c1,c3,c4,c5,c6,

c7,c8,c9, c10,c11,

c13,c14,c15,c17
0.061 0.060 < θ ≤ 0.061 c1,c3,c4,c5,c6,c7,c10,

c11,c13,c14,c15,c17
0.06 0.059 < θ ≤ 0.06 c1,c3,c4,c5,c6,

c7,c10,c11,c13
0.059 0.056 < θ ≤ 0.059 c1,c3,c4,c5,c6,

c7,c10,c11
0.056 0.054 < θ ≤ 0.056 c1,c3,c4,c5,c6,c7
0.054 0.051 < θ ≤ 0.054 c1,c3,c5,c6,c7
0.051 0.043 < θ ≤ 0.051 c1,c3,c5,c7
0.043 0.026 < θ ≤ 0.043 c1,c3,c5
0.026 0 < θ ≤ 0.026 ⊘
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“being very true”, “to have an attribute” and logical

connective “if-then” are determined by the chosen L
(Belohlavek et al., 2013b; Zhai et al., 2012; 2013;

Massanet, 2013).

Example 3. Table 6 generate following implications (i)

(s, 0.5/l, f) → (s, l, f, n), (ii) (0.5/s, 0.5/n) → (s, n),
(iii) (l, f) → (l, f, 0.5/n), (iv) (0.5/l) → (0.5/l, f), (v)

(f, 0.5/n) → (l, f, 0.5/n) (vi) (n) → (s, n). These six

attribute implications are sufficient to determine all the

fuzzy formal concepts generated from Table 6. �

Recently many researchers focused on the analysis

of a fuzzy context having similar attributes set (Alcalde et

al., 2012a; 2012b; 2015; Li and Mi, 2013).

Example 4. For illustration, two fuzzy contexts having

a similar attribute set are shown in Tables 7 and 8, with

CS: Computer science, AC: Accounting, ME: Mechanical,

CK: Cooking, and C1, . . . , C5 representing candidates.

The context shown in Table 7 and 8 can be connected

using the composition R̃1 ∗ R̃2 = R̃3 as shown in Table 9.

For the employment of Waiter most of the candidates are

eligible, where C2 is more suitable having membership

value 1 (Singh and Aswani Kumar, 2015b; Tho et al.,

2006; Wang and Xu, 2011). �

Table 6. Fuzzy formal context.

Size Distance

small (s) large (l) far (f) near(n)

Mercury(Me) 1 0 0 1

Venus(Ve) 1 0 0 1

Earth(Ea) 1 0 0 1

Mars(Ma) 1 0 0.5 1

Jupiter(Ju) 0 1 1 0.5

Saturn(Sa) 0 1 1 0.5

Uranus(Ur) 0.5 0.5 1 0

Neptune(Ne) 0.5 0.5 1 0

Pluto(Pl) 1 0 1 0

Table 7. Requirements of knowledge for employment in a com-

pany: R̃1.

CS AC ME CK

Domestichelper 0.1 0.3 0.1 1.0

Waiter 0.0 0.4 0.0 0.7

Accountant 0.9 1.0 0.0 0.0

Carsalesman 0.5 0.7 0.9 0.0

Table 8. Knowledge of candidate for employment: R̃2.

CS AC ME CK

C1 0.5 0.8 0.3 0.6

C2 0.2 0.5 0.1 1.0

C3 0.0 0.2 0.0 0.3

C4 0.9 0.4 0.1 0.5

C5 0.7 0.5 0.2 0.1

4.3. FCA with an interval valued fuzzy setting.

For adequate analysis of fuzzy attributes, FCA has been

extended to an interval-valued fuzzy setting as described

below (Singh and Aswani Kumar, 2012a).

Definition 9. (Interval number) It is an D− [a−, b+] with

0 ≤ a− ≤ b+ ≤ 1. For interval numbers D1 = [a−1 , b
+
1 ]

and D2 = [a−2 , b
+
2 ], we can define (D[0, 1],≤,∨,∧) is a

complete lattice with [0, 0] as the least element and [1, 1]
as the greatest element.

Definition 10. (Interval-valued fuzzy set) An inter-

val-valued fuzzy set I in V is defined as

I =
{

(v, [µ−
I (v), µ

+
I (v)]) : v ∈ V

}

,

where µ−
I (v) and µ+

I (v) are fuzzy subsets of V such that

µ−
I (v) ≤ µ+

I (v) for all v ∈ V . For interval-valued fuzzy

sets I = [µ−
I (v), µ

+
I (v)] and J = [µ−

J (v), µ
+
J (v)] in V

we can define

• I ∪ J = (v,max(µ−
I (v)), µ−

J (v)),max(µ+
I (v),

µ+
J (v))), where, v ∈ V ;

• I ∩ J = (v,min(µ−
I (v)), µ−

J (v)), min(µ+
I (v),

µ+
J (v))), where v ∈ V .

Definition 11. (Fuzzy graph) A fuzzy graph G =
(V, µ, ρ) is a non-empty set V together with a pair of

functions µ : V → [0, 1] and ρ : V × V → [0, 1], such

that, for all v1, v2 in V , ρ(v1, v2)≤ µ(v1) ∧ µ(v2) , where

µ is said to be the fuzzy vertex set and ρ is the fuzzy edges

set of G.

Definition 12. (Interval-valued fuzzy graph) An

interval-valued fuzzy graph of a graph G, is a pair (I, J)
where I = [µ−

I , µ
+
I ] is an interval-valued fuzzy set on V

and J = [µ−
J , µ

+
J ] is an interval valued fuzzy relation on

the set E such that

µ−
J (pq) ≤ min(µ−

I (p), µ
−
I (q)),

µ+
J (pq) ≤ min(µ+

I (p), µ
+
I (q))

for all pq ∈ E.

Example 5. Suppose that V = {p, q, r} and E =
{pq, qr, rp}. Let I be an interval-valued fuzzy set of V
and J be an interval-valued fuzzy set of E ⊆ V × V
defined by

I = {(p/0.2, q/0.3, r/0.4), (p/0.4, q/0.5, r/0.6)} ,

Table 9. Composition of fuzzy contexts: R̃3 = R̃1 ∗ R̃2.

C1 C2 C3 C4 C5

Domestichelper 0.6 1.0 0.3 0.5 0.1

Waiter 0.9 1.0 0.6 0.8 0.4

Accountant 0.6 0.3 0.1 0.4 0.5

Carsalesman 0.4 0.2 0.5 0.2 0.3
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J =
{

(pq/0.1, qr/0.2, rp/0.1),

(pq/0.3, qr/0.4, rp/0.4)
}

.

Then it can be presented in an interval-valued fuzzy

graph as shown in Fig. 2 (Akram and Dudek, 2011). �

Definition 13. (Complete graph) An interval-valued

fuzzy graph G is complete if

µ−
J (pq) = min(µ−

I (p), µ
−
I (q))

and

µ+
J (pq) = min(µ+

I (p), µ
+
I (q)),

for all pq ∈ E.

Example 6. Consider graph G = (V,E) such that V =
(p, q, r), E = (pq, qr, rp) and I, J are defined as follows:

I = ((p/0.2, q/0.3, r/0.4), (p/0.4, q/0.5, r/0.5));

J = ((pq/0.2, qr/0.3, rp/0.2),

(pq/0.4, qr/0.5, rp/0.4)).

Then G = (I, J) is an interval-valued fuzzy complete

graph. �

Definition 14. The composition, join, and product of

two interval-valued fuzzy graphs G1 and G2 are again an

interval-valued fuzzy graph.

Example 7. (Interval-valued fuzzy context) It is a

triplet (X,Y, I) where X represents objects, Y represents

attributes and I represents interval-valued fuzzy relation:

I =
{

((x, y), [µ−

Ĩ
(x, y), µ+

Ĩ
(x, y)]) : (x, y) ∈ X × Y

}

(cf. Alcalde et al., 2011). As an example we have

considered a context shown in Table 10 (Djouadi and

Prade, 2009). �

Definition 15. (Interval-valued fuzzy con-

cept) (Singh et al., 2015b) It is a pair ((xi,

[µ−

R̃
(x), µ+

R̃
(x)]), (yj ,[µ−

R̃
(y), µ+

R̃
(y)])), which

satisfies (xi, [µ
−

R̃
(x), µ+

R̃
(x)]) = (subb(y))↓ and

(yj , [µ
−

R̃
(y), µ+

R̃
(y)]) = (subb(x))↑, where subb is used

for subset (Djouadi, 2011). For example, the following

interval-valued fuzzy formal concepts can be generated

from Table 10 (Singh and Aswani Kumar, 2014):

Fig. 2. Interval-valued fuzzy graph for Example 5.

1. {⊘, [1.0, 1.0]/y1 + [1.0, 1.0]/y2 + [1.0, 1.0]/y3},

2. {[0.9, 1.0]/x1 + [0.8, 1.0]/x2 + [0.3, 0.6]/x3 +
[0.2, 0.4]/x4, [1.0, 1.0]/y1},

3. {[0.5, 0.7]/x1 + [0.0, 1.0]/x2 + [1.0, 1.0]/x3 +
[0.6, 1.0]/x4, [1.0, 1.0]/y2},

4. {[0.0, 0.2]/x1 + [0.5, 0.5]/x2 + [0.8, 0.8]/x3 +
[0.0, 0.1]/x4, [1.0, 1.0]/y3},

5. {[0.5, 1.0]/x1 + [0.0, 1.0]/x2 + [0.3, 1.0]/x3 +
[0.2, 1.0]/x4, [1.0, 1.0]/y1 + [1.0, 1.0]/y2},

6. {[0.0, 1.0]/x1 + [0.5, 1.0]/x2 + [0.3, 0.8]/x3 +
[0.0, 0.4]/x4, [1.0, 1.0]/y1 + [1.0, 1.0]/y3},

7. {[0.0, 0.2]/x1 + [0.0, 1.0]/x2 + [0.8, 1.0]/x3 +
[0.0, 1.0]/x4, [1.0, 1.0]/y2 + [1.0, 1.0]/y3},

8. {[1.0, 1.0]/x1 + [1.0, 1.0]/x2 + [1.0, 1.0]/x3 +
[1.0, 1.0]/x4,⊘}.

The interval-valued fuzzy concept lattice for the

above generated concepts is shown in Fig. 3. This

extension has been successfully applied in information

retrieval and the rule mining tasks (Zerarga and Djouadi,

2013; Zhai et al., 2012).

4.4. FCA with possibility theory. FCA is augmented

with possibility theory for handling uncertainty in data.

In this section, we provide a summary of the four basic

set-functions of possibility theory in terms of FCA. The

possibility distribution π, defined on a universe U , is

equated to the characteristic (membership) function of a

fuzzy set H in U and the two set-functions (S, T ) are

associated with π as follows (Dubois and Prade, 2012).

Definition 16. (Potential possibility) A possibility

measure is π : π(S) = maxs∈S π(s). It estimates to

what extent event S is consistent with the information

represented by π and characterized by π(S ∪ T ) =

Table 10. Interval-valued fuzzy formal context.

y1 y2 y3

x1 [0.9, 1.0] [0.5, 0.1] [0.0, 0.2]

x2 [0.8, 1.0] [0.0, 1.0] [0.5, 0.5]

x3 [0.3, 0.6] [1.0, 1.0] [0.8, 0.8]

x4 [0.2, 0.4] [0.6, 1.0] [0.0, 0.1]
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max(π(S), π(T )), where as π(⊘) = 0 if π(s) is

normalized (i.e., there exists π(U) = 1). However, in

the Boolean case (the set H is non empty and crisp),

π(S) = 1 iff S ∩H �= ⊘, otherwise 0.

Definition 17. (Actual necessity) It expresses the

necessity (certainty) an event is true as the opposite

event is more impossible as follows: N(S) = 1 −
π(S−) = 1 − maxs/∈S π(s), where /∈ S = U/S.

N(S) estimates to what extent event S is implied by

the information H represented by π and characterized by

decomposition property N(S ∩ T ) = min(N(S), N(T ))
whereas N(⊘) = 0 if N is normalized (i.e., there exists

N(U) = 1). However, in the Boolean case N(A) = 1 iff

⊘ �= H ⊆ A, otherwise 0.

Definition 18. (Actual possibility) A measure of “actual

(or guaranteed) possibility” ∆(S) = maxs∈S π(s). It

estimates to what extent all elements in S are possible and

characterized by ∆(S ∪ T ) =min(∆(S),∆(T )), whereas

∆(⊘) = 1 by convention (hence ∆ ≤ π and ∆(U) = 0 if

π is anti-normalized (i.e., there exists u such that π(u) =
0). However, in the Boolean case, ∆(A)=1 iff S ⊂ H (if

H �= U ), otherwise 0.

Definition 19. (Potential necessity) A dual measure of

“potential necessity or certainty” ∇(S) = 1 − ∇(S−) =
1 − maxs/∈S π(s), which estimates to what extent there

exists at least one value in the complement of S that has

a zero (or more generally a low) degree of possibility

and is characterized by ∇(S ∪ T ) = max(∇(S),∇(T ))
whereas ∇(⊘) = 1 if π is anti-normalized and ∇(U) = 0.

However, in the Boolean case, ∇(S) = 1 iff S ∩H �= U ,

otherwise 0.

The above operators can be combined with each

other in a meaningful way in a formal context K =
(X,Y,R) as follows:

1. Xπ is the set of objects that satisfy at least one

attributes in Y .

Xπ = {x ∈ X |Y ∩R(x) �= ⊘}

= {x ∈ X |∃y ∈ Y : xRy �= ⊘} .

Fig. 3. Interval-valued fuzzy concept lattice of Table 10.

2. XN is the set of objects such that any objects

satisfied by one of them is necessarily in Y :

XN = {x ∈ X |R(x) ⊂ Y }

= {x ∈ X |∀y ∈ Y : (xRy ⇒ y �= Y )} .

3. X∆ is the set of objects that satisfy all attributes in

Y :

X∆ = {x ∈ X |∀y ∈ Y (y ∈ y ⇒ xRy}

= {x ∈ X |Y ⊂ R(x)} .

4. X∇ is the set of objects that do not satisfy at least

one attributes in Y −.

X∇ = {x ∈ X |Y ∪R(x) �= X}

=
{

x ∈ X |∃y ∈ Y − : xR−y
}

.

Definition 20. (Derivational operator) The derivational

operators are defined in an L-context for the fuzzy set Ỹ
∈ LY (X̃ ∈ LX):

(i) X̃δ(x)=∧x∈X (X̃(x) → R(x, y)),

(ii) X̃π(x)=∨x∈X (X̃(x) ∗R(x, y)),

(iii) X̃N (x)=∧x∈X (R(x, y) → (̃X)(x)),

(iv) X̃∇(x)=∨x∈X (−X̃(x) ∗ −R(x, y)),

where → denotes a fuzzy implication and ∗ denotes a

fuzzy conjunction.

Definition 21. (Formal concept with possibility theory)

It is a pair (X̃, Ỹ ) such that X̃∆ = Ỹ and Ỹ ∆ = X̃
(similarly for other operators), and it follows the infimum

and supremum property given by

∧

j∈J

(Xj , Yj) = (
⋂

j∈J

Xj , (
⋃

j∈J

Yj)
∆∆),

∧

j∈J

(Xj , Yj) = ((
⋃

j∈J

Xj)
∆∆,

⋂

j∈J

Yj).

4.5. FCA with rough set theory. Rough set theory

(RST) deals with uncertainty and imperfect knowledge.

It was introduced in FCA by Yao (2004) and Yao et al.

(2012).

Definition 22. (Approximation operator) The dual

approximation operators ◦ and ∆:2X → 2Y can be

defined as below:

X◦ = {y ∈ Y | ∀x ∈ X(xIY ⇒ x ∈ X)}

= {y ∈ Y | Iy ⊆ X)} .
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X∆ = {y ∈ Y | ∃x ∈ X(xIY ∧ x ∈ X)}

= {y ∈ Y | Iy ∩X �= ⊘)} =
⋃

x∈X

xI.

Similarly, other pairs of approximation operators ◦

and ∆:2Y → 2X can be defined as below:

Y ◦ = {x ∈ X | ∀y ∈ Y (xIY ⇒ y ∈ Y )}

= {y ∈ Y | xI ⊆ Y )} .

Y ∆ = {x ∈ X | ∃y ∈ Y (xIY ∧ y ∈ Y )}

= {x ∈ X | xI ∩ Y �= ⊘)} =
⋃

y∈Y

Iy.

Based on the above notions, two new concept lattices

in rough set theory can be introduced as follows.

Definition 23. (Object and attribute oriented concept) A

pair (A,B), A ⊆ X , B ⊆ Y is called an object oriented

concept if X = Y ∆ and Y = X◦. The set of all object

oriented formal concepts forms a lattice. Specifically, the

meet ∧ and join ∨ are defined by

(x1, y1) ∧ (x2, y2) = ((y1 ∩ y2)
∆, y1 ∩ y2),

(x1, y1) ∨ (x2, y2) = (x1 ∪ x2, (x1 ∪ x2)
◦).

Similarly, a pair (A,B), A ⊆ X , B ⊆ Y is called

an attribute oriented concept if X = Y ◦ and Y = X∆.

All the generated property oriented formal concepts form

a lattice. Specifically, the meet ∧ and join ∨ are defined

by

(x1, y1) ∧ (x2, y2) = ((x1 ∩ x2, x1 ∩ x2)
∆),

(x1, y1) ∨ (x2, y2) = ((y1 ∪ y2)
◦, (y1 ∪ y2)).

Example 8. For illustration, we have considered a formal

context shown in Table 11. The object oriented concepts

Table 11. Formal context.
y1 y2 y3 y4 y5

x1 × × × ×
x2 × ×
x3 × ×
x4 × ×
x5 ×
x6 × × ×

generated from Table 11 are

1. {(x1, x2, x3, x4, x5, x6), (y1, y2, y3, y4, y5)},

2. {(x1, x2, x5, x6), (y1, y3, y4)},

3. {(x1, x2, x3, x6), (y2, y3, y4, y5)},

4. {(x1, x2), (y3, y4)},

5. {(x1, x3, x4, x6), (y2, y4, y5)},

6. {(x1), (y4)},

7. {(x3, x4, x5), (y2)},

8. {⊘,⊘}.

Similarly, the attribute oriented formal concepts generated

from Table 11 are

1. {(x1, x2, x3, x4, x5, x6), (y1, y2, y3, y4, y5)},

2. {(x2, x3, x4, x5, x6), (y1, y2, y3, y5)},

3. {(x1, x2, x5), (y1, y3, y4, y5)},

4. {(x3, x4, x5, x6), (y1, y2, y5)},

5. {(x2, x5), (y1, y3)},

6. {(x3, x4), (y2, y5)},

7. {x5, y1},

8. {⊘,⊘},

where ⊘ represents the null set.

The object and attribute oriented concept lattices are

shown in Figs. 4 and 5, respectively. These two concept

lattices differ in representations of the involved subsets

of objects and their attributes. Recently, this extension

has been applied in several research domains (Ganter and

Meschke, 2011; Yang et al., 2011b; Kang et al., 2012b;

Slezak, 2012; Wang and Li, 2012; Yang, 2011; Zhao and

Liu, 2011) as well as for concept approximation (Chen

et al., 2015; Saquer and Deogun, 2001). �

4.6. Triadic concept analysis in a fuzzy setting.

Extension to a triadic context handles more attributes or

conditional attributes in a crisp as well as a fuzzy setting.

Fig. 4. Object oriented concept lattice of Table 11.
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Definition 24. (Triadic context) It is defined as a

quadruple K = (X,Y, Z, Ĩ), where X represents a set of

objects, Y represents a set of attributes and Z represents

a set of conditions, i.e, if (x, y, z) ∈ Ĩ means object x
has attribute y under condition z, whereas in the case of

fuzzy attributes I represents the relationship among them

using fuzzy membership-value. From a triadic context,

the number of dyadic contexts can be derived as follows

(Ignatov et al., 2015): Given a fuzzy set Ck ∈ LXk ,

K induces a dyadic fuzzy context Kij
Ck

= (Xi, Yj , Ĩ
ij
Ck

),

where IijCk
is defined by (Belohlavek and Osicka, 2012a).

ĨijCk
(xi, yj) =

∧

zk∈Zk

Ck(xk) → Ĩ(xi, yj, zk).

The pair (xi, yj) ∈ ĨijCk
iff for each xk ∈ Xk implies

(xi, yj , zk) ∈ Ĩ . The concept forming operator can be

induced by a dyadic context Kij
Ck

, i.e., for a fuzzy set

Ci ∈ LXi we can define a fuzzy set Ci,j
Ck

∈ LYj =

∧xi∈Xi
Ci(xi) → ĨijCk

(xi, yj).

Definition 25. (Triadic fuzzy concepts) It is a triplet

(A1, A2, A3) consisting of fuzzy sets A1 ∈ LX , A2 ∈
LY , A3 ∈ LZ such that Ai = Ai,j,Ak

j , Aj = Aj,k,Ai

k , and

Ak = A
k,i,Aj

i and can be shown in the concept trilattice.

Example 9. For illustration, a triadic context shown

in Table 12 is considered, where objects (Beef Steak,

Cheese Salad, Vegetable Plate and Fried Chicken Wings)

represent dishes; attributes (Taste: T, Aroma: A, Look: L,

and Price: P) represent features of the dishes; customers

(Fry, Bender, Leela, Zoidberg) represent evaluation of the

dishes (Belohlavek and Osicka, 2012b). The degree 0

stands for bad, 1/2 for neutral and 1 for excellent. Table

13 depicts five triadic fuzzy concepts generated from the

context shown in Table 12, which provide the following

information: Concept No. 1 represents customers who

evaluate taste and aroma of beaf steak and fried chicken

Fig. 5. Property oriented concept lattice of Table 11.

wings as excellent whereas their look is evaluated as

neutral. Concept No. 2 represents that customers who

like salad for its excellent taste, aroma and look, whereas

its price evaluates as neutral. Concept No. 3 represents

customers having no preferences in food. Concept No. 4

represents customers who like beef steak and partly fried

chicken wings for their excellent taste and look and at

least neutral aroma. Concept No. 5 shows that there

is no customer who finds all properties of given dishes

excellent.

�

4.7. Factor concepts. In this section, data analysis

using factor concepts is described (Belohlavek, 2012;

Ganter and Glodeanu, 2012; Glodeanu and Ganter, 2012;

Glodeanu, 2011).

Definition 26. (Factor concepts) A subset of formal

concepts F generated from the given formal context F

such that
⋃

(A,B)∈F (A×B) = R is called factorization. If

F is minimal with respect to its cardinality, then it is called

Table 12. Triadic fuzzy formal context.

Steak Salad Veg Wings

Fry

Taste 1 0.5 0 1

Aroma 1 0 0 1

Look 1 0.5 0.5 0.5

Price 0 0.5 1 0.5

Bender

Taste 1 0 0 1

Aroma 1 0 0 1

Look 1 0.5 0 0.5

Price 0.5 0 0 1

Leela

Taste 0.5 1 0.5 0

Aroma 0 1 0 0

Look 0.5 1 0.5 0

Price 0 1 0 0.5

Zoidberg

Taste 1 1 1 1

Aroma 1 1 1 1

Look 1 1 1 1

Price 0 0.5 0 0.5

Table 13. Five triadic fuzzy concepts generated from Table 12.

1 2 3 4 5

Steak 1 0 1 1 1

Salad 0 1 1 0 1

Vegetable 0 0 1 0 1

Wings 1 0 1 0.5 1

Taste 1 1 1 1 1

Aroma 1 1 1 0.5 1

Look 0.5 1 1 1 1

Price 0 0.5 0 0 1

Fry 1 0 0 1 0

Bender 1 0 0 1 0

Leila 0 1 0 0 0

Zoidberg 1 1 1 1 0
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an optimal factorization. The elements of F are called

(optimal) factors. Then O(X,Y,R) ∩ A(X,Y,R) ⊆
F are called mandatory factors, where O(X,Y,R) and

A(X,Y,R) are the sets of object and attribute concepts,

respectively.

The idea of finding factor concepts is based on the

set covering problem.

Example 10. Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
V = {2, 4, 6, 8, 10}, P = ({1, 2}, {2, 3}, {4, 5},

{6, 7, 8}, {9, 10} , {1, 3, 5}, {2, 4}, {4, 6}, {8, 9, 10}).

• C = {{1, 2} , {8, 9, 10}} is not a covering of V
because

⋃

C �= V .

• C = {{1, 2} , {2, 3} , {4, 5} , {6, 7, 8} , {9, 10}} is a

covering of V because
⋃

C = V . But C is not

minimal because there exist coverings of V which

contain smaller number of sets.

• C = {{2, 4} , {6, 7, 8} , {9, 10}} is a minimal

covering of V because
⋃

C = V and no other

covering has smaller numbers of sets than 3.

• C = {{2, 4} , {4, 6} , {8, 9, 10}}.

�

Example 11. As an example, a context shown in Table 14

can be considered, with the following abbreviations: g
(gas and dust), y (young stars), o (old stars), s (spiral

arms), b (bulge), m (minimal star formation). The formal

concepts generated from Table 14 are shown in Table 15.

The matrix shown in Table 14 can be decomposed into a

Boolean matrix
⋃

(A,B)∈F (A×B = I such that |F | ≤ |Y |.
�

Definition 27. (Mandatory concepts) These are

object and attribute concepts, investigated as follows:

O(X,Y,R) = ({c1, c2, c3, c4} and A(X,Y,R) =
({c1, c2, c4, c5, c6}.

The object concepts in Table 15 are O(X,Y,R) ∩
O(X,Y,R) = {c1, c2, c4}. The object concepts are those

formal concepts which we are looking for the analysis.

We can observe that these concepts {c1, c2, c4} do not

Table 14. Formal context of Galaxy types and their properties.

Galaxies g y o s b m

1. Milky Way × × × × ×
2. Virgo A × ×

3. M 82 × × ×
4. M 83 ×
5. M 85 × × × × ×

6. M 102 × ×
7. M 105 × ×

cover the incidence induced by the objects 5 and 6.

These objects can be covered by c3, c5 and c6, as shown

in Table 15. However, the obtained set of concepts

with c5 and c6 would not be a minimal subset with

respect to cardinality. Finally, optimal factor F includes

({c1, c2, c3, c4}, which decompose the matrices (7×6)

shown in Table 13 into two 7×4 and 4×7 matrices to

be analyzed in a 4-dimensional space of factors instead

of describing the galaxies in a 7-dimensional space.

Recently, some applications of factor concepts have been

shown in FCA with a fuzzy setting also (Belohlavek et al.,

2013a; 2011b; Bartl et al., 2011; Ignatov et al., 2015; Yao

et al., 2012) as well as in graph theory (Helmi et al., 2014).

4.8. FCA with incomplete data. In this section,

we provide a discussion on handling incomplete data

(Simiński, 2012).

Definition 28. (Incomplete context) (Krajca et al., 2012;

Li et al., 2013a; Simiński, 2012) An incomplete L-context

is a triplet = (X,Y,R), where X and Y are sets and R:

X × Y → L such that R ⊆ U ∪ {0, 1}. An ordinary

context is the completion of a given relation.

Example 12. For illustration, we have considered an

incomplete context shown in Table 16, where u1 and u2

represent the unknown values, and u1 ≤ u2. Three

possible contexts are shown in Tables 17–19. Their

corresponding lattices are shown in Figs. 6–8. �

Definition 29. (Incomplete fuzzy context) Let U =
{u1, u2, . . . , uk} be the set of variables and V (⊆ 2U ) a set

of assignments representing known dependencies between

the variables. Then we can find the minimal residuated

lattice K (U ∪L) for the set of admissible assignments V .

An incomplete L-context with variables {u1, u2, . . . , uk}

Table 15. Formal concepts generated from the context shown in

Table 14.
Ci Concept Descriptions

C0 (⊘, Y ) empty concept

C1 ({1, 4} , {g, y, o, s, b}) spiral galaxy

C2 ({2, 7} , {o,m}) elliptic galaxy

C3 ({1, 4, 5, 6} , {o, b}) lenticular galaxy

C4 ({1, 3, 4} , {g, y, b}) irregular galaxy

C5 ({1, 2, 4, 5, 6, 7} , {o}) galaxy with old stars

C6 ({1, 3, 4, 5, 6} , {b}) galaxy with bulge

C7 (X,⊘) universal concept

Table 16. Incomplete formal context.

y1 y2 y3 y4 y5

x1 × ×
x2 u1 × u2 ×
x3 × × ×
x4 ×
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is a formal context (X , Y , R̃), where R̃ can take values

Table 17. Possible complete formal context for Table 16.

y1 y2 y3 y4 y5

x1 × ×
x2 × ×
x3 × × ×
x4 ×

Table 18. Second possible complete formal context for Table

16.
y1 y2 y3 y4 y5

x1 × ×
x2 × × ×
x3 × × ×
x4 ×

Table 19. Third possible complete formal context for Table 16.

y1 y2 y3 y4 y5

x1 × ×
x2 × × × ×
x3 × × ×
x4 ×

Fig. 6. Concept lattice for Table 17.

Fig. 7. Concept lattice for Table 18.

Table 20. Incomplete fuzzy formal context.

y1 y2 y3

x1 0.5 0.0 0.5

x2 u1 1.0 0.0

x3 0.0 u2 0.5

x4 0.0 1.0 1.0

from L and U : R̃(X × Y ) ⊆ U ∪ L. This means that

the formal context contains only elements of L and the

variables. Hence, for this purpose we can define a map for

v: U → L, where L is a residuated lattice.

Example 13. For illustration, an incomplete context

shown in Table 20 is considered containing values from

an L context = {0.0, 0.5, 1.0}, and the set of variables u1,

u2 varies between 0.0, 0.5 and 1.0. Hence, the context can

take values from {0.0, 0.5, 1.0} and represent them as a

complete fuzzy context. �

5. Applications of FCA

This section summarizes the applications of FCA reported

in the literature after 2011. Tables 21–24 provide

this summary. From these tables we can conclude

that FCA has attracted applications in several domains

due to its potential of knowledge discovery (Aswani

Kumar, 2011a; 2011b; Aswani Kumar and Singh, 2014),

representation (Iordache, 2011; Poelmans et al., 2013a;

2014), reasoning (Rainer and Ganapati, 2011; Ruairi,

2013; Sebastien et al., 2013) and the decision context

(Li et al., 2011a; 2011b; Shao et al., 2014) which

contains another tuple called a set of decision attributes

(Yang et al., 2011a). Ontology engineering is an

another research direction regarding relations between

individuals and classes. FCA has been applied to identify

important groups of individuals that responded similarly

to peer-identified experts (Alqadah and Bhatnagar, 2012;

Codocedo et al., 2012; Chen et al., 2011; Formica,

2012; Fowler, 2013; Junli et al., 2013; Senatore and

Pasi, 2013; Tadrat et al., 2012; Tho et al., 2006). Recently,

several researchers have shown the application of formal

concepts in description logic for improving the knowledge

representation task (Atif et al., 2014; Borgwardt and

Penaloza, 2014; Distel, 2012; Denniston et al., 2013; Pei

et al., 2013; Wu et al., 2012). Description logic discounts

the structural representation of knowledge consisting of

Fig. 8. Concept lattice for Table 19.
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the terminological part (TBox) and the assertional part

(ABox). Subsequently, hierarchical order visualization

between the entity and its relations in a conceptual graph

using FCA has been discussed (Croitorua et al., 2012;

Li and Guo, 2013; Nguyen et al., 2011; Nguyen and

Yamamoto, 2012; Yu et al., 2013; Annapurna and Aswani

Kumar, 2013).

FCA has been used for handling relational structures

in the source code and dependency between software parts

in several aspects including RBAC (Priss, 2011; 2012;

Priss et al., 2012; 2013). Role based access control

(RBAC) provides the role of a user in the IT systems with

specific permissions like read or write. Designing RBAC

using FCA has been discussed by Aswani Kumar (2013).

The technique to identify unexpected and potential effects

caused by software changes and their impact analysis

using FCA is developed by Korei (2013) and Li et al.

(2013c).

A gene expression dataset is a many-valued context

in which each row corresponds to a gene and each

column to a sample, and the attribute (expression) values

indicate the abundance of mRNA in a sample (Muszyński

and Osowski, 2013), http://indianalgae.co.in.

Hence the patterns of gene data have been studied after the

scaled context using FCA by Kaytoue et al. (2011a). FCA

has been applied for mining the common hypermethylated

genes between breast cancer subtypes by Amin et al.

(2012) and Bouaud et al. (2013). Endres et al. (2012) have

applied FCA to read the semantic information obtained

from fMRI Bold responses using FCA. The ingredients

of FCA with mathematical morphology and description

logics have been combined for image processing tasks by

Atif et al. (2014). We observe that some of the researchers

have tried to analyze the sentiments of people using

FCA (emotions, love, preference) (Li and Tsai, 2013;

Antoni et al., 2014). The word opinion or preference

shows two sides: one is acceptation and another is

non-acceptation, which may mold the concept lattice

for bipolar information visualization (Singh and Aswani

Kumar, 2014).

“Big data” and their analysis attracted the attention of

some researchers using FCA to find the pattern structure

and its visualization (Biao et al., 2012; Kuznetsov,

2013; Radvansky et al., 2013). Subsequently, in cloud

computing, allocating resources to users using FCA has

been discussed by Sarnovsky et al. (2012).

6. Conclusions

In this paper we aimed at analyzing the current research

trends in FCA based on innovations reported in more

than 350 papers published after 2011. We can

observe that FCA has received significant attention of

researchers for knowledge discovery and representation

tasks. Subsequently, FCA is extended into different

Table 21. Some important applications of FCA in the KDD pro-

cess and ontology engineering.

KDD process Research goal

Alcalde et al., 2012c Finding temporal patterns

Alqadah and Bhatnagar, 2012 Mining similar concepts

Aswani Kumar, 2011b Knowledge discovery

Aswani Kumar, 2012 Rule mining

Belohlavek et al., 2011a IPAQ questionnaires

Belohlavek et al., 2013b Background knowledge

Dau, 2013 Analyzing a triple store

Fowler, 2013 Order in taxonomy

Galitsky et al., 2013 Pattern on parse thickets

Macko, 2013 Fuzzy FCA

Missaoui and Kwuida, 2011 Triadic rules

Nguyen et al., 2011 Mathematical search

Nguyen and Yamamoto, 2012 Learning from graph

Li et al., 2011b Symbolic data analysis

Pavlovic, 2012 Quantitative data analysis

Rouane et al., 2013 Multi relational data

Li and Tsai, 2013 Sentiments analysis

Trabelsi et al., 2012 Analyzing folksonomies

Vityaev et al., 2012 Probabilistic concepts

Watmough, 2014 ERP analysis

Yang et al., 2011b Decision-making

Zhao and Liu, 2011 Complex systems

Zhang et al., 2012 Frequent concepts

Tang et al., 2015 Chemical structure

Ontology engineering Research goal

Alqadah and Bhatnagar, 2012 Mining similar concepts

Chen et al., 2011 Merging domain ontology

Dau, 2013 Analyzing triple store

Formica, 2012 Semantic web search

Formica, 2013 Similarity reasoning

Fowler, 2013 Ontology investigation

Ilvovsky and Klimushki, 2013 Duplicate ontology

Junli et al., 2013 Merging ontology

Macko, 2013 Friendly ontology

De Maio et al., 2012b E-learning

De Maio et al., 2014 Ontological structure

Tadrat et al., 2012 Case based reasoning

Tho et al., 2006 Fuzzy ontology

applications of data analysis. In this paper we have

analyzed some of these extensions and augmentation of

FCA with illustrative examples. The first categorized

domain is granular based computing of formal concepts

to describe their importance. Other domains discuss

the mathematics behind FCA with a fuzzy setting, an

interval-valued fuzzy setting, possibility theory, a rough

setting, a triadic, factor and incomplete context to apply

these extensions in the appropriate context for knowledge

processing tasks.

http://indianalgae.co.in
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Table 22. Some important applications of FCA in text mining,

information retrieval and linguistics.

Text mining Research goal

Belohlavek and Macko, 2011 Selecting

some concepts

Ferjani et al., 2012 Feature

extractions

Formica, 2012 Semantic web

Galitsky et al., 2013 Finding patterns

on parse thickets

Hamrouni et al., 2013 Finding some

frequent itemset

Li and Guo, 2013 Investigating

formal query

De Maio et al., 2014 Text mining

Muangprathub et al., 2013 Classification

Li and Tsai, 2013 Text mining

Information retrieval Research goal

Aswani Kumar et al., 2012 Information retrieval

Alqadah and Bhatnagar, 2012 Similar concepts

Bloch, 2011 Bipolar information

Eklund et al., 2012 Similar concepts

Chen et al., 2011 Domain ontology

Codocedo et al., 2012 Finding cousins

Neznanov and Kuznetsov, 2013 FCART tool

Poshyvanyk et al., 2012 Concept location

Priss, 2006 Application in

information sciences

Senatore and Pasi, 2013 Finding correlations

Li and Tsai, 2013 Opinion classification

Zerarga and Djouadi, 2013 Information retrieval

Linguistics Research goal

Alcalde et al., 2011 Linguistic proposition

Bloch, 2011 Linguistics

representation

Chen et al., 2011 Wordnet system

Croitorua et al., 2012 Linguistics

analysis

Muangprathub et al., 2013 Classification

Priss, 2005 Linguistics

application

Yu et al., 2013 Analyzing verbs
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Table 23. Some important applications of FCA in security anal-

ysis, web services, social network analysis and soft-

ware engineering.

Security analysis Research goal

Aswani Kumar, 2013 Role based

access control

Aufaure and Grand, 2013 Social network

analysis

Cook and Coombs, 2004 Military intelligence

Du and Hai, 2013 Mining web page

Elzinga et al., 2010 Terrorist threat

assessment

Poelmans et al., 2013c Criminal trajectories

Priss, 2011 Unix system

monitoring

Romanov et al., 2012 Detect anomalies

Web services Research goal

Qin et al., 2013 Impact analysis

De Maio et al., 2012a E-learning

Priss et al., 2013 Software assessment

Rouane et al., 2013 Mining from multi

relational data

Watmough, 2014 ERP analysis

Tho et al., 2006 Web retrieval

Zhang et al., 2013a; 2013b Extracting data

from web database

Social network analysis Research goal

Aufaure and Grand, 2013 FCA in social

network analysis

Cook and Coombs, 2004 Network analysis

using FCA

Elzinga et al., 2010 Terrorist threat

assessment by FCA

Li et al., 2013c Call graph

for network

Poelmans et al., 2013c Criminal trajectory

network analysis

Wang et al., 2012 Wireless sensor

network

Software engineering Research goal

Helen et al., 2013 Energy saving

model using FCA

Priss et al., 2012 Learning process

Rouane et al., 2013 Relational concept

analysis

Sarnovsky et al., 2012 Distributed

S/W analysis
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cept Analysis, Lecture Notes and Computer Science, Vol.

6628, Springer, Berlin/Heidelberg, pp. 219–234.

Senatore, S. and Pasi, G. (2013). Lattice navigation for

collaborative filtering by means of (fuzzy) formal concept

analysis, Proceedings of the 28th Annual ACM Symposium

on Applied Computing, Coimbra, Portugal, pp. 920–926.

Shao, M.W., Leung, Y. and Wu, W.Z. (2014). Rule

acquisition and complexity reduction in formal decision

contexts, International Journal of Approximate Reasoning

55(1): 259–274.
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