
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 1

A Comprehensive Survey on Graph Neural

Networks
Zonghan Wu, Shirui Pan, Member, IEEE, Fengwen Chen, Guodong Long,

Chengqi Zhang, Senior Member, IEEE, Philip S. Yu, Fellow, IEEE

Abstract—Deep learning has revolutionized many machine
learning tasks in recent years, ranging from image classification
and video processing to speech recognition and natural language
understanding. The data in these tasks are typically represented
in the Euclidean space. However, there is an increasing number
of applications where data are generated from non-Euclidean do-
mains and are represented as graphs with complex relationships
and interdependency between objects. The complexity of graph
data has imposed significant challenges on existing machine
learning algorithms. Recently, many studies on extending deep
learning approaches for graph data have emerged. In this survey,
we provide a comprehensive overview of graph neural networks
(GNNs) in data mining and machine learning fields. We propose
a new taxonomy to divide the state-of-the-art graph neural
networks into four categories, namely recurrent graph neural
networks, convolutional graph neural networks, graph autoen-
coders, and spatial-temporal graph neural networks. We further
discuss the applications of graph neural networks across various
domains and summarize the open source codes, benchmark data
sets, and model evaluation of graph neural networks. Finally,
we propose potential research directions in this rapidly growing
field.

Index Terms—Deep Learning, graph neural networks, graph
convolutional networks, graph representation learning, graph
autoencoder, network embedding

I. INTRODUCTION

THE recent success of neural networks has boosted re-

search on pattern recognition and data mining. Many

machine learning tasks such as object detection [1], [2],

machine translation [3], [4], and speech recognition [5], which

once heavily relied on handcrafted feature engineering to

extract informative feature sets, has recently been revolution-

ized by various end-to-end deep learning paradigms, e.g.,

convolutional neural networks (CNNs) [6], recurrent neural

networks (RNNs) [7], and autoencoders [8]. The success of

deep learning in many domains is partially attributed to the

rapidly developing computational resources (e.g., GPU), the

availability of big training data, and the effectiveness of deep

learning to extract latent representations from Euclidean data

(e.g., images, text, and videos). Taking image data as an

Z. Wu, F. Chen, G. Long, C. Zhang are with Centre for Artificial Intelli-
gence, FEIT, University of Technology Sydney, NSW 2007, Australia (E-
mail: zonghan.wu-3@student.uts.edu.au; fengwen.chen@student.uts.edu.au;
guodong.long@uts.edu.au; chengqi.zhang@uts.edu.au).

S. Pan is with Faculty of Information Technology, Monash University,
Clayton, VIC 3800, Australia (Email: shirui.pan@monash.edu).

P. S. Yu is with Department of Computer Science, University of Illinois at
Chicago, Chicago, IL 60607-7053, USA (Email: psyu@uic.edu)

Corresponding author: Shirui Pan.
Manuscript received Dec xx, 2018; revised Dec xx, 201x.

example, we can represent an image as a regular grid in

the Euclidean space. A convolutional neural network (CNN)

is able to exploit the shift-invariance, local connectivity, and

compositionality of image data [9]. As a result, CNNs can

extract local meaningful features that are shared with the entire

data sets for various image analysis.

While deep learning effectively captures hidden patterns of

Euclidean data, there is an increasing number of applications

where data are represented in the form of graphs. For ex-

amples, in e-commence, a graph-based learning system can

exploit the interactions between users and products to make

highly accurate recommendations. In chemistry, molecules

are modeled as graphs, and their bioactivity needs to be

identified for drug discovery. In a citation network, papers

are linked to each other via citationships and they need to

be categorized into different groups. The complexity of graph

data has imposed significant challenges on existing machine

learning algorithms. As graphs can be irregular, a graph may

have a variable size of unordered nodes, and nodes from a

graph may have a different number of neighbors, resulting

in some important operations (e.g., convolutions) being easy

to compute in the image domain, but difficult to apply to

the graph domain. Furthermore, a core assumption of existing

machine learning algorithms is that instances are independent

of each other. This assumption no longer holds for graph data

because each instance (node) is related to others by links of

various types, such as citations, friendships, and interactions.

Recently, there is increasing interest in extending deep

learning approaches for graph data. Motivated by CNNs,

RNNs, and autoencoders from deep learning, new general-

izations and definitions of important operations have been

rapidly developed over the past few years to handle the com-

plexity of graph data. For example, a graph convolution can

be generalized from a 2D convolution. As illustrated in Figure

1, an image can be considered as a special case of graphs

where pixels are connected by adjacent pixels. Similar to 2D

convolution, one may perform graph convolutions by taking

the weighted average of a node’s neighborhood information.

There are a limited number of existing reviews on the topic

of graph neural networks (GNNs). Using the term geometric

deep learning, Bronstein et al. [9] give an overview of deep

learning methods in the non-Euclidean domain, including

graphs and manifolds. Although it is the first review on GNNs,

this survey mainly reviews convolutional GNNs. Hamilton

et al. [10] cover a limited number of GNNs with a focus

on addressing the problem of network embedding. Battaglia

et al. [11] position graph networks as the building blocks

ar
X

iv
:1

90
1.

00
59

6v
4

 [
cs

.L
G

]
 4

 D
ec

 2
01

9

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 2

(a) 2D Convolution. Analogous
to a graph, each pixel in an image
is taken as a node where neigh-
bors are determined by the filter
size. The 2D convolution takes
the weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of a
node are ordered and have a fixed
size.

(b) Graph Convolution. To get a
hidden representation of the red
node, one simple solution of the
graph convolutional operation is
to take the average value of the
node features of the red node
along with its neighbors. Differ-
ent from image data, the neigh-
bors of a node are unordered and
variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

for learning from relational data, reviewing part of GNNs

under a unified framework. Lee et al. [12] conduct a partial

survey of GNNs which apply different attention mechanisms.

In summary, existing surveys only include some of the GNNs

and examine a limited number of works, thereby missing

the most recent development of GNNs. Our survey provides

a comprehensive overview of GNNs, for both interested re-

searchers who want to enter this rapidly developing field and

experts who would like to compare GNN models. To cover a

broader range of methods, this survey considers GNNs as all

deep learning approaches for graph data.

Our contributions Our paper makes notable contributions

summarized as follows:

• New taxonomy We propose a new taxonomy of graph

neural networks. Graph neural networks are categorized

into four groups: recurrent graph neural networks, convo-

lutional graph neural networks, graph autoencoders, and

spatial-temporal graph neural networks.

• Comprehensive review We provide the most compre-

hensive overview of modern deep learning techniques for

graph data. For each type of graph neural network, we

provide detailed descriptions on representative models,

make the necessary comparison, and summarise the cor-

responding algorithms.

• Abundant resources We collect abundant resources on

graph neural networks, including state-of-the-art models,

benchmark data sets, open-source codes, and practical

applications. This survey can be used as a hands-on guide

for understanding, using, and developing different deep

learning approaches for various real-life applications.

• Future directions We discuss theoretical aspects of

graph neural networks, analyze the limitations of exist-

ing methods, and suggest four possible future research

directions in terms of model depth, scalability trade-off,

heterogeneity, and dynamicity.

Organization of our survey The rest of this survey is

organized as follows. Section II outlines the background of

graph neural networks, lists commonly used notations, and

defines graph-related concepts. Section III clarifies the cate-

gorization of graph neural networks. Section IV-VII provides

an overview of graph neural network models. Section VIII

presents a collection of applications across various domains.

Section IX discusses the current challenges and suggests future

directions. Section X summarizes the paper.

II. BACKGROUND & DEFINITION

In this section, we outline the background of graph neural

networks, list commonly used notations, and define graph-

related concepts.

A. Background

A brief history of graph neural networks (GNNs) Sper-

duti et al. (1997) [13] first applied neural networks to directed

acyclic graphs, which motivated early studies on GNNs. The

notion of graph neural networks was initially outlined in Gori

et al. (2005) [14] and further elaborated in Scarselli et al.

(2009) [15], and Gallicchio et al. (2010) [16]. These early stud-

ies fall into the category of recurrent graph neural networks

(RecGNNs). They learn a target node’s representation by

propagating neighbor information in an iterative manner until

a stable fixed point is reached. This process is computationally

expensive, and recently there have been increasing efforts to

overcome these challenges [17], [18].

Encouraged by the success of CNNs in the computer

vision domain, a large number of methods that re-define the

notion of convolution for graph data are developed in parallel.

These approaches are under the umbrella of convolutional

graph neural networks (ConvGNNs). ConvGNNs are divided

into two main streams, the spectral-based approaches and

the spatial-based approaches. The first prominent research

on spectral-based ConvGNNs was presented by Bruna et al.

(2013) [19], which developed a graph convolution based on

the spectral graph theory. Since this time, there have been

increasing improvements, extensions, and approximations on

spectral-based ConvGNNs [20], [21], [22], [23]. The research

of spatial-based ConvGNNs started much earlier than spectral-

based ConvGNNs. In 2009, Micheli et al. [24] first addressed

graph mutual dependency by architecturally composite non-

recursive layers while inheriting ideas of message passing

from RecGNNs. However, the importance of this work was

overlooked. Until recently, many spatial-based ConvGNNs

(e.g., [25], [26], [27]) emerged. The timeline of representative

RecGNNs and ConvGNNs is shown in the first column of Ta-

ble II. Apart from RecGNNs and ConvGNNs, many alternative

GNNs have been developed in the past few years, including

graph autoencoders (GAEs) and spatial-temporal graph neural

networks (STGNNs). These learning frameworks can be built

on RecGNNs, ConvGNNs, or other neural architectures for

graph modeling. Details on the categorization of these methods

are given in Section III.

Graph neural networks vs. network embedding The

research on GNNs is closely related to graph embedding or

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 3

network embedding, another topic which attracts increasing

attention from both the data mining and machine learning com-

munities [10], [28], [29], [30], [31], [32]. Network embedding

aims at representing network nodes as low-dimensional vector

representations, preserving both network topology structure

and node content information, so that any subsequent graph

analytics task such as classification, clustering, and recom-

mendation can be easily performed using simple off-the-shelf

machine learning algorithms (e.g., support vector machines for

classification). Meanwhile, GNNs are deep learning models

aiming at addressing graph-related tasks in an end-to-end man-

ner. Many GNNs explicitly extract high-level representations.

The main distinction between GNNs and network embedding

is that GNNs are a group of neural network models which are

designed for various tasks while network embedding covers

various kinds of methods targeting the same task. Therefore,

GNNs can address the network embedding problem through

a graph autoencoder framework. On the other hand, network

embedding contains other non-deep learning methods such as

matrix factorization [33], [34] and random walks [35].

Graph neural networks vs. graph kernel methods Graph

kernels are historically dominant techniques to solve the

problem of graph classification [36], [37], [38]. These methods

employ a kernel function to measure the similarity between

pairs of graphs so that kernel-based algorithms like support

vector machines can be used for supervised learning on graphs.

Similar to GNNs, graph kernels can embed graphs or nodes

into vector spaces by a mapping function. The difference is

that this mapping function is deterministic rather than learn-

able. Due to a pair-wise similarity calculation, graph kernel

methods suffer significantly from computational bottlenecks.

GNNs, on one hand, directly perform graph classification

based on the extracted graph representations and therefore are

much more efficient than graph kernel methods. For a further

review of graph kernel methods, we refer the readers to [39].

B. Definition

Throughout this paper, we use bold uppercase characters to

denote matrices and bold lowercase characters denote vectors.

Unless particularly specified, the notations used in this paper

are illustrated in Table I. Now we define the minimal set of

definitions required to understand this paper.

Definition 1 (Graph): A graph is represented as G = (V,E)
where V is the set of vertices or nodes (we will use nodes

throughout the paper), and E is the set of edges. Let vi ∈
V to denote a node and eij = (vi, vj) ∈ E to denote an

edge pointing from vj to vi. The neighborhood of a node v
is defined as N(v) = {u ∈ V |(v, u) ∈ E}. The adjacency

matrix A is a n × n matrix with Aij = 1 if eij ∈ E and

Aij = 0 if eij /∈ E. A graph may have node attributes X
1, where X ∈ Rn×d is a node feature matrix with xv ∈ Rd

representing the feature vector of a node v. Meanwhile, a graph

may have edge attributes Xe, where Xe ∈ Rm×c is an edge

feature matrix with xe
v,u ∈ Rc representing the feature vector

of an edge (v, u).

1Such graph is referred to an attributed graph in literature.

TABLE I: Commonly used notations.

Notations Descriptions

| · | The length of a set.

⊙ Element-wise product.

G A graph.

V The set of nodes in a graph.

v A node v ∈ V .

E The set of edges in a graph.

eij An edge eij ∈ E.

N(v) The neighbors of a node v.

A The graph adjacency matrix.

AT The transpose of the matrix A.

An, n ∈ Z The nth power of A.

[A,B] The concatenation of A and B.

D The degree matrix of A. Dii =
∑n

j=1 Aij .

n The number of nodes, n = |V |.
m The number of edges, m = |E|.
d The dimension of a node feature vector.

b The dimension of a hidden node feature vector.

c The dimension of an edge feature vector.

X ∈ Rn×d The feature matrix of a graph.

x ∈ Rn The feature vector of a graph in the case of d = 1.

xv ∈ Rd The feature vector of the node v.

Xe ∈ Rm×c The edge feature matrix of a graph.

xe
(v,u)

∈ Rc The edge feature vector of the edge (v, u).

X(t) ∈ Rn×d The node feature matrix of a graph at the time step t.

H ∈ Rn×b The node hidden feature matrix.

hv ∈ Rb The hidden feature vector of node v.

k The layer index

t The time step/iteration index

σ(·) The sigmoid activation function.

σh(·) The tangent hyperbolic activation function.

W,Θ, w, θ Learnable model parameters.

Definition 2 (Directed Graph): A directed graph is a graph

with all edges directed from one node to another. An undi-

rected graph is considered as a special case of directed graphs

where there is a pair of edges with inverse directions if two

nodes are connected. A graph is undirected if and only if the

adjacency matrix is symmetric.

Definition 3 (Spatial-Temporal Graph): A spatial-temporal

graph is an attributed graph where the node attributes change

dynamically over time. The spatial-temporal graph is defined

as G(t) = (V,E,X(t)) with X(t) ∈ Rn×d.

III. CATEGORIZATION AND FRAMEWORKS

In this section, we present our taxonomy of graph neural

networks (GNNs), as shown in Table II. We categorize graph

neural networks (GNNs) into recurrent graph neural net-

works (RecGNNs), convolutional graph neural networks (Con-

vGNNs), graph autoencoders (GAEs), and spatial-temporal

graph neural networks (STGNNs). Figure 2 gives examples

of various model architectures. In the following, we give a

brief introduction of each category.

A. Taxonomy of Graph Neural Networks (GNNs)

Recurrent graph neural networks (RecGNNs) mostly are

pioneer works of graph neural networks. RecGNNs aim to

learn node representations with recurrent neural architectures.

They assume a node in a graph constantly exchanges informa-

tion/message with its neighbors until a stable equilibrium is

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 4

TABLE II: Taxonomy and representative publications of Graph Neural Networks (GNNs)

Category Publications

Recurrent Graph Neural Networks (RecGNNs) [15], [16], [17], [18]

Spectral methods [19], [20], [21], [22], [23], [40], [41]

Convolutional Graph Neural Networks (ConvGNNs) Spatial methods

[24], [25], [26], [27], [42], [43], [44]
[45], [46], [47], [48], [49], [50], [51]
[52], [53], [54], [55], [56], [57], [58]

Graph Autoencoders (GAEs)
Network Embedding [59], [60], [61], [62], [63], [64]
Graph Generation [65], [66], [67], [68], [69], [70]

Spatial-temporal Graph Neural Networks (STGNNs) [71], [72], [73], [74], [75], [76], [77]

reached. RecGNNs are conceptually important and inspired

later research on convolutional graph neural networks. In

particular, the idea of message passing is inherited by spatial-

based convolutional graph neural networks.

Convolutional graph neural networks (ConvGNNs) gen-

eralize the operation of convolution from grid data to graph

data. The main idea is to generate a node v’s representation by

aggregating its own features xv and neighbors’ features xu,

where u ∈ N(v). Different from RecGNNs, ConvGNNs stack

multiple graph convolutional layers to extract high-level node

representations. ConvGNNs play a central role in building

up many other complex GNN models. Figure 2a shows a

ConvGNN for node classification. Figure 2b demonstrates a

ConvGNN for graph classification.

Graph autoencoders (GAEs) are unsupervised learning

frameworks which encode nodes/graphs into a latent vector

space and reconstruct graph data from the encoded infor-

mation. GAEs are used to learn network embeddings and

graph generative distributions. For network embedding, GAEs

learn latent node representations through reconstructing graph

structural information such as the graph adjacency matrix. For

graph generation, some methods generate nodes and edges of

a graph step by step while other methods output a graph all

at once. Figure 2c presents a GAE for network embedding.

Spatial-temporal graph neural networks (STGNNs) aim

to learn hidden patterns from spatial-temporal graphs, which

become increasingly important in a variety of applications such

as traffic speed forecasting [72], driver maneuver anticipation

[73], and human action recognition [75]. The key idea of

STGNNs is to consider spatial dependency and temporal

dependency at the same time. Many current approaches in-

tegrate graph convolutions to capture spatial dependency with

RNNs or CNNs to model the temporal dependency. Figure 2d

illustrates a STGNN for spatial-temporal graph forecasting.

B. Frameworks

With the graph structure and node content information as

inputs, the outputs of GNNs can focus on different graph

analytics tasks with one of the following mechanisms:

• Node-level outputs relate to node regression and node

classification tasks. RecGNNs and ConvGNNs can extract

high-level node representations by information propa-

gation/graph convolution. With a multi-perceptron or a

softmax layer as the output layer, GNNs are able to

perform node-level tasks in an end-to-end manner.

• Edge-level outputs relate to the edge classification and

link prediction tasks. With two nodes’ hidden representa-

tions from GNNs as inputs, a similarity function or a neu-

ral network can be utilized to predict the label/connection

strength of an edge.

• Graph-level outputs relate to the graph classification

task. To obtain a compact representation on the graph

level, GNNs are often combined with pooling and read-

out operations. Detailed information about pooling and

readouts will be reviewed in Section V-C.

Training Frameworks. Many GNNs (e.g., ConvGNNs) can

be trained in a (semi-) supervised or purely unsupervised way

within an end-to-end learning framework, depending on the

learning tasks and label information available at hand.

• Semi-supervised learning for node-level classification.

Given a single network with partial nodes being labeled

and others remaining unlabeled, ConvGNNs can learn a

robust model that effectively identifies the class labels

for the unlabeled nodes [22]. To this end, an end-to-

end framework can be built by stacking a couple of

graph convolutional layers followed by a softmax layer

for multi-class classification.

• Supervised learning for graph-level classification.

Graph-level classification aims to predict the class label(s)

for an entire graph [52], [54], [78], [79]. The end-

to-end learning for this task can be realized with a

combination of graph convolutional layers, graph pooling

layers, and/or readout layers. While graph convolutional

layers are responsible for exacting high-level node rep-

resentations, graph pooling layers play the role of down-

sampling, which coarsens each graph into a sub-structure

each time. A readout layer collapses node representations

of each graph into a graph representation. By applying

a multi-layer perceptron and a softmax layer to graph

representations, we can build an end-to-end framework

for graph classification. An example is given in Fig 2b.

• Unsupervised learning for graph embedding. When

no class labels are available in graphs, we can learn the

graph embedding in a purely unsupervised way in an end-

to-end framework. These algorithms exploit edge-level

information in two ways. One simple way is to adopt

an autoencoder framework where the encoder employs

graph convolutional layers to embed the graph into the

latent representation upon which a decoder is used to

reconstruct the graph structure [61], [62]. Another pop-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 5

𝐆𝐫𝐚𝐩𝐡

𝑿

𝑹𝒆𝑳𝒖 𝑹𝒆𝑳𝒖

𝐎𝐮𝐭𝐩𝐮𝐭𝐬

𝐆𝐜𝐨𝐧𝐯

…

𝐆𝐜𝐨𝐧𝐯

…

(a) A ConvGNN with multiple graph convolutional layers. A graph convo-
lutional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a non-linear
transformation is applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood.

𝐆𝐜𝐨𝐧𝐯
𝐆𝐫𝐚𝐩𝐡

𝐑𝐞𝐚𝐝𝐨𝐮𝐭

𝐆𝐜𝐨𝐧𝐯

𝐏𝐨𝐨𝐥𝐢𝐧𝐠

𝐒𝐨𝐟𝐭𝐦𝐚𝐱

𝑿

… …

𝐌𝐋𝐏
𝒚

∑

(b) A ConvGNN with pooling and readout layers for graph classification
[21]. A graph convolutional layer is followed by a pooling layer to coarsen
a graph into sub-graphs so that node representations on coarsened graphs
represent higher graph-level representations. A readout layer summarizes the
final graph representation by taking the sum/mean of hidden representations
of sub-graphs.

𝒁	

φ(

𝒁𝑻𝒁

∗)

𝑨

𝑿

𝑨)

𝐃𝐞𝐜𝐨𝐝𝐞𝐫

𝐄𝐧𝐜𝐨𝐝𝐞𝐫

…

𝐆𝐜𝐨𝐧𝐯	𝐆𝐜𝐨𝐧𝐯

…

(c) A GAE for network embedding [61]. The encoder uses graph convolutional
layers to get a network embedding for each node. The decoder computes the
pair-wise distance given network embeddings. After applying a non-linear
activation function, the decoder reconstructs the graph adjacency matrix. The
network is trained by minimizing the discrepancy between the real adjacency
matrix and the reconstructed adjacency matrix.

𝑨

𝑿

𝐓
𝐢𝐦
𝐞

					𝐆𝐜𝐨𝐧𝐯				𝐂𝐍𝐍						𝐆𝐜𝐨𝐧𝐯					𝐂𝐍𝐍

… …

𝐌𝐋𝐏 𝒚

𝐓
𝐢𝐦
𝐞

(d) A STGNN for spatial-temporal graph forecasting [74]. A graph convolu-
tional layer is followed by a 1D-CNN layer. The graph convolutional layer
operates on A and X(t) to capture the spatial dependency, while the 1D-CNN
layer slides over X along the time axis to capture the temporal dependency.
The output layer is a linear transformation, generating a prediction for each
node, such as its future value at the next time step.

Fig. 2: Different graph neural network models built with

graph convolutional layers. The term Gconv denotes a graph

convolutional layer. The term MLP denotes a multi-layer

perceptron. The term CNN denotes a standard convolutional

layer.

ular way is to utilize the negative sampling approach

which samples a portion of node pairs as negative pairs

while existing node pairs with links in the graphs are

positive pairs. Then a logistic regression layer is applied

to distinguish between positive and negative pairs [42].

In Table III, we summarize the main characteristics of

representative RecGNNs and ConvGNNs. Input sources, pool-

ing layers, readout layers, and time complexity are compared

among various models. In more detail, we only compare the

time complexity of the message passing/graph convolution

operation in each model. As methods in [19] and [20] require

eigenvalue decomposition, the time complexity is O(n3). The

time complexity of [46] is also O(n3) due to the node pair-

wise shortest path computation. Other methods incur equiva-

lent time complexity, which is O(m) if the graph adjacency

matrix is sparse and is O(n2) otherwise. This is because in

these methods the computation of each node vi’s representa-

tion involves its di neighbors, and the sum of di over all nodes

exactly equals the number of edges. The time complexity of

several methods are missing in Table III. These methods either

lack a time complexity analysis in their papers or report the

time complexity of their overall models or algorithms.

IV. RECURRENT GRAPH NEURAL NETWORKS

Recurrent graph neural networks (RecGNNs) are mostly pi-

oneer works of GNNs. They apply the same set of parameters

recurrently over nodes in a graph to extract high-level node

representations. Constrained by computational power, earlier

research mainly focused on directed acyclic graphs [13], [80].

Graph Neural Network (GNN*2) proposed by Scarselli et

al. extends prior recurrent models to handle general types of

graphs, e.g., acyclic, cyclic, directed, and undirected graphs

[15]. Based on an information diffusion mechanism, GNN*

updates nodes’ states by exchanging neighborhood information

recurrently until a stable equilibrium is reached. A node’s

hidden state is recurrently updated by

h(t)
v =

∑

u∈N(v)

f(xv,x
e
(v,u),xu,h

(t−1)
u), (1)

where f(·) is a parametric function, and h
(0)
v is initialized

randomly. The sum operation enables GNN* to be applicable

to all nodes, even if the number of neighbors differs and no

neighborhood ordering is known. To ensure convergence, the

recurrent function f(·) must be a contraction mapping, which

shrinks the distance between two points after projecting them

into a latent space. In the case of f(·) being a neural network,

a penalty term has to be imposed on the Jacobian matrix

of parameters. When a convergence criterion is satisfied,

the last step node hidden states are forwarded to a readout

layer. GNN* alternates the stage of node state propagation

and the stage of parameter gradient computation to minimize

a training objective. This strategy enables GNN* to handle

cyclic graphs. In follow-up works, Graph Echo State Network

(GraphESN) [16] extends echo state networks to improve the

2As GNN is used to represent broad graph neural networks in the survey,
we name this particular method GNN* to avoid ambiguity.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 6

TABLE III: Summary of RecGNNs and ConvGNNs. Missing values (“-”) in pooling and readout layers indicate that the method

only experiments on node-level/edge-level tasks.

Approach Category Inputs Pooling Readout Time Complexity

GNN* (2009) [15] RecGNN A,X,Xe - a dummy super node O(m)

GraphESN (2010) [16] RecGNN A,X - mean O(m)

GGNN (2015) [17] RecGNN A,X - attention sum O(m)

SSE (2018) [18] RecGNN A,X - - -

Spectral CNN (2014) [19] Spectral-based ConvGNN A,X spectral clustering+max pooling max O(n3)

Henaff et al. (2015) [20] Spectral-based ConvGNN A,X spectral clustering+max pooling O(n3)

ChebNet (2016) [21] Spectral-based ConvGNN A,X efficient pooling sum O(m)

GCN (2017) [22] Spectral-based ConvGNN A,X - - O(m)

CayleyNet (2017) [23] Spectral-based ConvGNN A,X mean/graclus pooling - O(m)

AGCN (2018) [40] Spectral-based ConvGNN A,X max pooling sum O(n2)

DualGCN (2018) [41] Spectral-based ConvGNN A,X - - O(m)

NN4G (2009) [24] Spatial-based ConvGNN A,X - sum/mean O(m)

DCNN (2016) [25] Spatial-based ConvGNN A,X - mean O(n2)

PATCHY-SAN (2016) [26] Spatial-based ConvGNN A,X,Xe - sum -

MPNN (2017) [27] Spatial-based ConvGNN A,X,Xe - attention sum/set2set O(m)

GraphSage (2017) [42] Spatial-based ConvGNN A,X - - -

GAT (2017) [43] Spatial-based ConvGNN A,X - - O(m)

MoNet (2017) [44] Spatial-based ConvGNN A,X - - O(m)

LGCN (2018) [45] Spatial-based ConvGNN A,X - - -

PGC-DGCNN (2018) [46] Spatial-based ConvGNN A,X sort pooling attention sum O(n3)

CGMM (2018) [47] Spatial-based ConvGNN A,X,Xe - sum -

GAAN (2018) [48] Spatial-based ConvGNN A,X - - O(m)

FastGCN (2018) [49] Spatial-based ConvGNN A,X - - -

StoGCN (2018) [50] Spatial-based ConvGNN A,X - - -

Huang et al. (2018) [51] Spatial-based ConvGNN A,X - - -

DGCNN (2018) [52] Spatial-based ConvGNN A,X sort pooling - O(m)

DiffPool (2018) [54] Spatial-based ConvGNN A,X differential pooling mean O(n2)

GeniePath (2019) [55] Spatial-based ConvGNN A,X - - O(m)

DGI (2019) [56] Spatial-based ConvGNN A,X - - O(m)

GIN (2019) [57] Spatial-based ConvGNN A,X - sum O(m)

ClusterGCN (2019) [58] Spatial-based ConvGNN A,X - - -

training efficiency of GNN*. GraphESN consists of an encoder

and an output layer. The encoder is randomly initialized and

requires no training. It implements a contractive state transition

function to recurrently update node states until the global

graph state reaches convergence. Afterward, the output layer

is trained by taking the fixed node states as inputs.

Gated Graph Neural Network (GGNN) [17] employs a gated

recurrent unit (GRU) [81] as a recurrent function, reducing the

recurrence to a fixed number of steps. The advantage is that it

no longer needs to constrain parameters to ensure convergence.

A node hidden state is updated by its previous hidden states

and its neighboring hidden states, defined as

h(t)
v = GRU(h(t−1)

v ,
∑

u∈N(v)

Wh(t−1)
u), (2)

where h
(0)
v = xv . Different from GNN* and GraphESN,

GGNN uses the back-propagation through time (BPTT) algo-

rithm to learn the model parameters. This can be problematic

for large graphs, as GGNN needs to run the recurrent function

multiple times over all nodes, requiring the intermediate states

of all nodes to be stored in memory.

Stochastic Steady-state Embedding (SSE) proposes a learn-

ing algorithm that is more scalable to large graphs [18]. SSE

updates node hidden states recurrently in a stochastic and

asynchronous fashion. It alternatively samples a batch of nodes

for state update and a batch of nodes for gradient computation.

To maintain stability, the recurrent function of SSE is defined

as a weighted average of the historical states and new states,

which takes the form

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 7

Grec Grec Grec…
𝒉𝒗
(𝟎)

𝒉𝒗
(𝟏)

𝒉𝒗
(𝟐)

𝒉𝒗
(𝒕)𝟏)

𝒉𝒗
(𝒕)

(a) Recurrent Graph Neural Networks (RecGNNs). RecGNNs use the same
graph recurrent layer (Grec) in updating node representations.

Gconv1 Gconv2 Gconvk…
𝒉𝒗
(𝟎)

𝒉𝒗
(𝟏)

𝒉𝒗
(𝟐)

𝒉𝒗
(𝒌)𝟏)

𝒉𝒗
(𝒌)

(b) Convolutional Graph Neural Networks (ConvGNNs). ConvGNNs use a
different graph convolutional layer (Gconv) in updating node representations.

Fig. 3: RecGNNs v.s. ConvGNNs

h(t)
v = (1− α)h(t−1)

v + αW1σ(W2[xv,
∑

u∈N(v)

[h(t−1)
u ,xu]]),

(3)

where α is a hyper-parameter, and h
(0)
v is initialized randomly.

While conceptually important, SSE does not theoretically

prove that the node states will gradually converge to fixed

points by applying Equation 3 repeatedly.

V. CONVOLUTIONAL GRAPH NEURAL NETWORKS

Convolutional graph neural networks (ConvGNNs) are

closely related to recurrent graph neural networks. Instead of

iterating node states with contractive constraints, ConvGNNs

address the cyclic mutual dependencies architecturally using a

fixed number of layers with different weights in each layer.

This key distinction is illustrated in Figure 3. As graph

convolutions are more efficient and convenient to composite

with other neural networks, the popularity of ConvGNNs

has been rapidly growing in recent years. ConvGNNs fall

into two categories, spectral-based and spatial-based. Spectral-

based approaches define graph convolutions by introducing

filters from the perspective of graph signal processing [82]

where the graph convolutional operation is interpreted as

removing noises from graph signals. Spatial-based approaches

inherit ideas from RecGNNs to define graph convolutions by

information propagation. Since GCN [22] bridged the gap be-

tween spectral-based approaches and spatial-based approaches,

spatial-based methods have developed rapidly recently due to

its attractive efficiency, flexibility, and generality.

A. Spectral-based ConvGNNs

Background Spectral-based methods have a solid math-

ematical foundation in graph signal processing [82], [83],

[84]. They assume graphs to be undirected. The normalized

graph Laplacian matrix is a mathematical representation of an

undirected graph, defined as L = In − D− 1
2AD− 1

2 , where

D is a diagonal matrix of node degrees, Dii =
∑

j(Ai,j).
The normalized graph Laplacian matrix possesses the prop-

erty of being real symmetric positive semidefinite. With this

property, the normalized Laplacian matrix can be factored as

L = UΛUT , where U = [u0,u1, · · · ,un−1] ∈ Rn×n is

the matrix of eigenvectors ordered by eigenvalues and Λ is

the diagonal matrix of eigenvalues (spectrum), Λii = λi.

The eigenvectors of the normalized Laplacian matrix form

an orthonormal space, in mathematical words UTU = I. In

graph signal processing, a graph signal x ∈ Rn is a feature

vector of all nodes of a graph where xi is the value of the ith

node. The graph Fourier transform to a signal x is defined

as F (x) = UTx, and the inverse graph Fourier transform is

defined as F−1(x̂) = Ux̂, where x̂ represents the resulted

signal from the graph Fourier transform. The graph Fourier

transform projects the input graph signal to the orthonormal

space where the basis is formed by eigenvectors of the nor-

malized graph Laplacian. Elements of the transformed signal

x̂ are the coordinates of the graph signal in the new space

so that the input signal can be represented as x =
∑

i x̂iui,

which is exactly the inverse graph Fourier transform. Now the

graph convolution of the input signal x with a filter g ∈ Rn

is defined as

x ∗G g = F
−1(F (x)⊙ F (g))

= U(UTx⊙UTg),
(4)

where ⊙ denotes the element-wise product. If we denote a

filter as gθ = diag(UTg), then the spectral graph convolution

is simplified as

x ∗G gθ = UgθU
Tx. (5)

Spectral-based ConvGNNs all follow this definition. The key

difference lies in the choice of the filter gθ.

Spectral Convolutional Neural Network (Spectral CNN)

[19] assumes the filter gθ = Θ
(k)
i,j is a set of learnable

parameters and considers graph signals with multiple channels.

The graph convolutional layer of Spectral CNN is defined as

H
(k)
:,j = σ(

fk−1∑

i=1

UΘ
(k)
i,j U

TH
(k−1)
:,i) (j = 1, 2, · · · , fk), (6)

where k is the layer index, H(k−1) ∈ Rn×fk−1 is the input

graph signal, H(0) = X, fk−1 is the number of input channels

and fk is the number of output channels, Θ
(k)
i,j is a diagonal

matrix filled with learnable parameters. Due to the eigen-

decomposition of the Laplacian matrix, Spectral CNN faces

three limitations. First, any perturbation to a graph results in

a change of eigenbasis. Second, the learned filters are domain

dependent, meaning they cannot be applied to a graph with a

different structure. Third, eigen-decomposition requires O(n3)
computational complexity. In follow-up works, ChebNet [21]

and GCN [22] reduce the computational complexity to O(m)
by making several approximations and simplifications.

Chebyshev Spectral CNN (ChebNet) [21] approximates the

filter gθ by Chebyshev polynomials of the diagonal matrix of

eigenvalues, i.e, gθ =
∑K

i=0 θiTi(Λ̃), where Λ̃ = 2Λ/λmax−
In, and the values of Λ̃ lie in [−1, 1]. The Chebyshev polyno-

mials are defined recursively by Ti(x) = 2xTi−1(x)−Ti−2(x)
with T0(x) = 1 and T1(x) = x. As a result, the convolution

of a graph signal x with the defined filter gθ is

x ∗G gθ = U(

K∑

i=0

θiTi(Λ̃))UTx, (7)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 8

where L̃ = 2L/λmax − In. As Ti(L̃) = UTi(Λ̃)UT , which

can be proven by induction on i, ChebNet takes the form,

x ∗G gθ =

K∑

i=0

θiTi(L̃)x, (8)

As an improvement over Spectral CNN, the filters defined

by ChebNet are localized in space, which means filters can

extract local features independently of the graph size. The

spectrum of ChebNet is mapped to [−1, 1] linearly. CayleyNet

[23] further applies Cayley polynomials which are parametric

rational complex functions to capture narrow frequency bands.

The spectral graph convolution of CayleyNet is defined as

x ∗G gθ = c0x+ 2Re{

r∑

j=1

cj(hL− iI)j(hL+ iI)−jx}, (9)

where Re(·) returns the real part of a complex number, c0 is

a real coefficent, cj is a complex coefficent, i is the imaginary

number, and h is a parameter which controls the spectrum of

a Cayley filter. While preserving spatial locality, CayleyNet

shows that ChebNet can be considered as a special case of

CayleyNet.

Graph Convolutional Network (GCN) [22] introduces a

first-order approximation of ChebNet. Assuming K = 1 and

λmax = 2 , Equation 8 is simplified as

x ∗G gθ = θ0x− θ1D
− 1

2AD− 1
2x. (10)

To restrain the number of parameters and avoid over-fitting,

GCN further assume θ = θ0 = −θ1, leading to the following

definition of a graph convolution,

x ∗G gθ = θ(In +D− 1
2AD− 1

2)x. (11)

To allow multi-channels of inputs and outputs, GCN modifies

Equation 11 into a compositional layer, defined as

H = X ∗G gΘ = f(ĀXΘ), (12)

where Ā = In + D− 1
2AD− 1

2 and f(·) is an activation

function. Using In+D− 1
2AD− 1

2 empirically causes numerical

instability to GCN. To address this problem, GCN applies

a normalization trick to replace Ā = In + D− 1
2AD− 1

2 by

Ā = D̃− 1
2 ÃD̃− 1

2 with Ã = A + In and D̃ii =
∑

j Ãij .

Being a spectral-based method, GCN can be also interpreted

as a spatial-based method. From a spatial-based perspective,

GCN can be considered as aggregating feature information

from a node’s neighborhood. Equation 12 can be expressed as

hv = f(ΘT (
∑

u∈{N(v)∪v}

Āv,uxu)) ∀v ∈ V. (13)

Several recent works made incremental improvements over

GCN [22] by exploring alternative symmetric matrices. Adap-

tive Graph Convolutional Network (AGCN) [40] learns hid-

den structural relations unspecified by the graph adjacency

matrix. It constructs a so-called residual graph adjacency

matrix through a learnable distance function which takes two

nodes’ features as inputs. Dual Graph Convolutional Network

(DGCN) [41] introduces a dual graph convolutional architec-

ture with two graph convolutional layers in parallel. While

these two layers share parameters, they use the normalized

adjacency matrix Ā and the positive pointwise mutual in-

formation (PPMI) matrix which captures nodes co-occurrence

information through random walks sampled from a graph. The

PPMI matrix is defined as

PPMIv1,v2
= max(log(

count(v1, v2) · |D|

count(v1)count(v2)
), 0), (14)

where v1, v2 ∈ V , |D| =
∑

v1,v2
count(v1, v2) and the

count(·) function returns the frequency that node v and/or

node u co-occur/occur in sampled random walks. By ensem-

bling outputs from dual graph convolutional layers, DGCN

encodes both local and global structural information without

the need to stack multiple graph convolutional layers.

B. Spatial-based ConvGNNs

Analogous to the convolutional operation of a conventional

CNN on an image, spatial-based methods define graph convo-

lutions based on a node’s spatial relations. Images can be con-

sidered as a special form of graph with each pixel representing

a node. Each pixel is directly connected to its nearby pixels,

as illustrated in Figure 1a. A filter is applied to a 3× 3 patch

by taking the weighted average of pixel values of the central

node and its neighbors across each channel. Similarly, the

spatial-based graph convolutions convolve the central node’s

representation with its neighbors’ representations to derive the

updated representation for the central node, as illustrated in

Figure 1b. From another perspective, spatial-based ConvGNNs

share the same idea of information propagation/message pass-

ing with RecGNNs. The spatial graph convolutional operation

essentially propagates node information along edges.

Neural Network for Graphs (NN4G) [24], proposed in

parallel with GNN*, is the first work towards spatial-based

ConvGNNs. Distinctively different from RecGNNs, NN4G

learns graph mutual dependency through a compositional

neural architecture with independent parameters at each layer.

The neighborhood of a node can be extended through in-

cremental construction of the architecture. NN4G performs

graph convolutions by summing up a node’s neighborhood

information directly. It also applies residual connections and

skip connections to memorize information over each layer. As

a result, NN4G derives its next layer node states by

h(k)
v = f(W(k)T xv +

k−1∑

i=1

∑

u∈N(v)

Θ(k)Th(k−1)
u), (15)

where f(·) is an activation function and h
(0)
v = 0. Equation

15 can also be written in a matrix form:

H(k) = f(XW(k) +

k−1∑

i=1

AH(k−1)Θ(k)), (16)

which resembles the form of GCN [22]. One difference is

that NN4G uses the unnormalized adjacency matrix which

may potentially cause hidden node states to have extremely

different scales. Contextual Graph Markov Model (CGMM)

[47] proposes a probabilistic model inspired by NN4G. While

maintaining spatial locality, CGMM has the benefit of proba-

bilistic interpretability.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 9

Diffusion Convolutional Neural Network (DCNN) [25] re-

gards graph convolutions as a diffusion process. It assumes

information is transferred from one node to one of its neigh-

boring nodes with a certain transition probability so that

information distribution can reach equilibrium after several

rounds. DCNN defines the diffusion graph convolution as

H(k) = f(W(k) ⊙PkX), (17)

where f(·) is an activation function and the probability tran-

sition matrix P ∈ Rn×n is computed by P = D−1A. Note

that in DCNN, the hidden representation matrix H(k) remains

the same dimension as the input feature matrix X and is

not a function of its previous hidden representation matrix

H(k−1). DCNN concatenates H(1),H(2), · · · ,H(K) together

as the final model outputs. As the stationary distribution

of a diffusion process is a summation of power series of

probability transition matrices, Diffusion Graph Convolution

(DGC) [72] sums up outputs at each diffusion step instead of

concatenation. It defines the diffusion graph convolution by

H =

K∑

k=0

f(PkXW(k)), (18)

where W(k) ∈ RD×F and f(·) is an activation function.

Using the power of a transition probability matrix implies that

distant neighbors contribute very little information to a central

node. PGC-DGCNN [46] increases the contributions of distant

neighbors based on shortest paths. It defines a shortest path

adjacency matrix S(j). If the shortest path from a node v to

a node u is of length j, then S
(j)
v,u = 1 otherwise 0. With

a hyperparameter r to control the receptive field size, PGC-

DGCNN introduces a graph convolutional operation as follows

H(k) =‖rj=0 f((D̃(j))−1S(j)H(k−1)W(j,k)), (19)

where D̃
(j)
ii =

∑
l S

(j)
i,l , H(0) = X, and ‖ represents the

concatenation of vectors. The calculation of the shortest path

adjacency matrix can be expensive with O(n3) at maximum.

Partition Graph Convolution (PGC) [75] partitions a node’s

neighbors into Q groups based on certain criteria not limited to

shortest paths. PGC constructs Q adjacency matrices according

to the defined neighborhood by each group. Then, PGC applies

GCN [22] with a different parameter matrix to each neighbor

group and sums the results:

H(k) =

Q∑

j=1

Ā(j)H(k−1)W(j,k), (20)

where H(0) = X, Ā(j) = ˜(D
(j)

)−
1
2 Ã(j) ˜(D

(j)
)−

1
2 and

Ã(j) = A(j) + I.

Message Passing Neural Network (MPNN) [27] outlines

a general framework of spatial-based ConvGNNs. It treats

graph convolutions as a message passing process in which

information can be passed from one node to another along

edges directly. MPNN runs K-step message passing iterations

to let information propagate further. The message passing

function (namely the spatial graph convolution) is defined as

h(k)
v = Uk(h

(k−1)
v ,

∑

u∈N(v)

Mk(h
(k−1)
v ,h(k−1)

u ,xe
vu)), (21)

𝒉𝒗𝟐

𝒉𝒗𝟑

𝒉𝒗𝟒

𝒉𝒗𝟏
𝜶𝟏𝟐

𝜶𝟏𝟑

𝜶𝟏𝟒

+

++

(a) GCN [22] explicitly assigns
a non-parametric weight aij =

1√
deg(vi)deg(vj)

to the neighbor

vj of vi during the aggregation
process.

𝒉𝒗𝟐

𝒉𝒗𝟑

𝒉𝒗𝟒

𝒉𝒗𝟏

𝜶𝟏𝟐
𝒉𝒗𝟏

𝒉𝒗𝟐

𝜶𝟏𝟐

𝜶𝟏𝟑

𝜶𝟏𝟒
+

+

+

(b) GAT [43] implicitly captures
the weight aij via an end-to-end
neural network architecture, so
that more important nodes receive
larger weights.

Fig. 4: Differences between GCN [22] and GAT [43]

where h
(0)
v = xv , Uk(·) and Mk(·) are functions with

learnable parameters. After deriving the hidden representations

of each node, h
(K)
v can be passed to an output layer to perform

node-level prediction tasks or to a readout function to perform

graph-level prediction tasks. The readout function generates

a representation of the entire graph based on node hidden

representations. It is generally defined as

hG = R(h(K)
v |v ∈ G), (22)

where R(·) represents the readout function with learnable pa-

rameters. MPNN can cover many existing GNNs by assuming

different forms of Uk(·),Mk(·), and R(·), such as [22], [85],

[86], [87]. However, Graph Isomorphism Network (GIN) [57]

finds that previous MPNN-based methods are incapable of

distinguishing different graph structures based on the graph

embedding they produced. To amend this drawback, GIN

adjusts the weight of the central node by a learnable parameter

ǫ(k). It performs graph convolutions by

h(k)
v = MLP ((1 + ǫ(k))h(k−1)

v +
∑

u∈N(v)

h(k−1)
u), (23)

where MLP (·) represents a multi-layer perceptron.

As the number of neighbors of a node can vary from one to

a thousand or even more, it is inefficient to take the full size

of a node’s neighborhood. GraphSage [42] adopts sampling to

obtain a fixed number of neighbors for each node. It performs

graph convolutions by

h(k)
v = σ(W(k) · fk(h

(k−1)
v , {h(k−1)

u , ∀u ∈ SN (v)})), (24)

where h
(0)
v = xv , fk(·) is an aggregation function, SN (v) is a

random sample of the node v’s neighbors. The aggregation

function should be invariant to the permutations of node

orderings such as a mean, sum or max function.

Graph Attention Network (GAT) [43] assumes contributions

of neighboring nodes to the central node are neither identical

like GraphSage [42], nor pre-determined like GCN [22] (this

difference is illustrated in Figure 4). GAT adopts attention

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 10

mechanisms to learn the relative weights between two con-

nected nodes. The graph convolutional operation according to

GAT is defined as,

h(k)
v = σ(

∑

u∈N (v)∪v

α(k)
vu W

(k)h(k−1)
u), (25)

where h
(0)
v = xv . The attention weight α

(k)
vu measures the

connective strength between the node v and its neighbor u:

α(k)
vu = softmax(g(aT [W(k)h(k−1)

v ||W(k)h(k−1)
u)), (26)

where g(·) is a LeakyReLU activation function and a is a

vector of learnable parameters. The softmax function ensures

that the attention weights sum up to one over all neighbors of

the node v. GAT further performs the multi-head attention to

increase the model’s expressive capability. This shows an im-

pressive improvement over GraphSage on node classification

tasks. While GAT assumes the contributions of attention heads

are equal, Gated Attention Network (GAAN) [48] introduces a

self-attention mechanism which computes an additional atten-

tion score for each attention head. Apart from applying graph

attention spatially, GeniePath [55] further proposes an LSTM-

like gating mechanism to control information flow across

graph convolutional layers. There are other graph attention

models which might be of interest [88], [89]. However, they

do not belong to the ConvGNN framework.

Mixture Model Network (MoNet) [44] adopts a different

approach to assign different weights to a node’s neighbors. It

introduces node pseudo-coordinates to determine the relative

position between a node and its neighbor. Once the relative

position between two nodes is known, a weight function maps

the relative position to the relative weight between these two

nodes. In such a way, the parameters of a graph filter can be

shared across different locations. Under the MoNet framework,

several existing approaches for manifolds such as Geodesic

CNN (GCNN) [90], Anisotropic CNN (ACNN) [91], Spline

CNN [92], and for graphs such as GCN [22], DCNN [25] can

be generalized as special instances of MoNet by constructing

nonparametric weight functions. MoNet additionally proposes

a Gaussian kernel with learnable parameters to learn the

weight function adaptively.

Another distinct line of works achieve weight sharing across

different locations by ranking a node’s neighbors based on

certain criteria and associating each ranking with a learnable

weight. PATCHY-SAN [26] orders neighbors of each node

according to their graph labelings and selects the top q
neighbors. Graph labelings are essentially node scores which

can be derived by node degree, centrality, and Weisfeiler-

Lehman color [93], [94]. As each node now has a fixed

number of ordered neighbors, graph-structured data can be

converted into grid-structured data. PATCHY-SAN applies a

standard 1D convolutional filter to aggregate neighborhood

feature information where the order of the filter’s weights

corresponds to the order of a node’s neighbors. The ranking

criterion of PATCHY-SAN only considers graph structures,

which requires heavy computation for data processing. Large-

scale Graph Convolutional Network (LGCN) [45] ranks a

node’s neighbors based on node feature information. For each

node, LGCN assembles a feature matrix which consists of its

neighborhood and sorts this feature matrix along each column.

The first q rows of the sorted feature matrix are taken as the

input data for the central node.

Improvement in terms of training efficiency Training Con-

vGNNs such as GCN [22] usually is required to save the whole

graph data and intermediate states of all nodes into memory.

The full-batch training algorithm for ConvGNNs suffers sig-

nificantly from the memory overflow problem, especially when

a graph contains millions of nodes. To save memory, Graph-

Sage [42] proposes a batch-training algorithm for ConvGNNs.

It samples a tree rooted at each node by recursively expanding

the root node’s neighborhood by K steps with a fixed sample

size. For each sampled tree, GraphSage computes the root

node’s hidden representation by hierarchically aggregating

hidden node representations from bottom to top.

Fast Learning with Graph Convolutional Network (Fast-

GCN) [49] samples a fixed number of nodes for each graph

convolutional layer instead of sampling a fixed number of

neighbors for each node like GraphSage [42]. It interprets

graph convolutions as integral transforms of embedding func-

tions of nodes under probability measures. Monte Carlo ap-

proximation and variance reduction techniques are employed

to facilitate the training process. As FastGCN samples nodes

independently for each layer, between-layers connections are

potentially sparse. Huang et al. [51] propose an adaptive

layer-wise sampling approach where node sampling for the

lower layer is conditioned on the top one. This method

achieves higher accuracy compared to FastGCN at the cost

of employing a much more complicated sampling scheme.

In another work, Stochastic Training of Graph Convolu-

tional Networks (StoGCN) [50] reduces the receptive field

size of a graph convolution to an arbitrarily small scale using

historical node representations as a control variate. StoGCN

achieves comparable performance even with two neighbors per

node. However, StoGCN still has to save intermediate states

of all nodes, which is memory-consuming for large graphs.

Cluster-GCN [58] samples a subgraph using a graph cluster-

ing algorithm and performs graph convolutions to nodes within

the sampled subgraph. As the neighborhood search is also re-

stricted within the sampled subgraph, Cluster-GCN is capable

of handling larger graphs and using deeper architectures at

the same time, in less time and with less memory. Cluster-

GCN notably provides a straightforward comparison of time

complexity and memory complexity for existing ConvGNN

training algorithms. We analyze its results based on Table IV.

In Table IV, GCN [22] is the baseline method which

conducts the full-batch training. GraphSage saves memory at

the cost of sacrificing time efficiency. Meanwhile, the time

and memory complexity of GraphSage grows exponentially

with an increase of K and r. The time complexity of Sto-

GCN is the highest, and the bottleneck of the memory remains

unsolved. However, Sto-GCN can achieve satisfactory perfor-

mance with very small r. The time complexity of Cluster-GCN

remains the same as the baseline method since it does not

introduce redundant computations. Of all the methods, Cluster-

GCN realizes the lowest memory complexity.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 11

TABLE IV: Time and memory complexity comparison for ConvGNN training algorithms (summarized by [58]). n is the total

number of nodes. m is the total number of edges. K is the number of layers. s is the batch size. r is the number of neighbors

being sampled for each node. For simplicity, the dimensions of the node hidden features remain constant, denoted by d.

Complexity GCN [22] GraphSage [42] FastGCN [49] StoGCN [50] Cluster-GCN [58]

Time O(Kmd+Knd2) O(rKnd2) O(Krnd2) O(Kmd+Knd2 + rKnd2) O(Kmd+Knd2)

Memory O(Knd+Kd2) O(srKd+Kd2) O(Ksrd+Kd2) O(Knd+Kd2) O(Ksd+Kd2)

Comparison between spectral and spatial models Spectral

models have a theoretical foundation in graph signal process-

ing. By designing new graph signal filters (e.g., Cayleynets

[23]), one can build new ConvGNNs. However, spatial models

are preferred over spectral models due to efficiency, generality,

and flexibility issues. First, spectral models are less efficient

than spatial models. Spectral models either need to perform

eigenvector computation or handle the whole graph at the

same time. Spatial models are more scalable to large graphs

as they directly perform convolutions in the graph domain via

information propagation. The computation can be performed in

a batch of nodes instead of the whole graph. Second, spectral

models which rely on a graph Fourier basis generalize poorly

to new graphs. They assume a fixed graph. Any perturbations

to a graph would result in a change of eigenbasis. Spatial-

based models, on the other hand, perform graph convolutions

locally on each node where weights can be easily shared across

different locations and structures. Third, spectral-based models

are limited to operate on undirected graphs. Spatial-based

models are more flexible to handle multi-source graph inputs

such as edge inputs [15], [27], [86], [95], [96], directed graphs

[25], [72], signed graphs [97], and heterogeneous graphs [98],

[99], because these graph inputs can be incorporated into the

aggregation function easily.

C. Graph Pooling Modules

After a GNN generates node features, we can use them

for the final task. But using all these features directly can be

computationally challenging, thus, a down-sampling strategy

is needed. Depending on the objective and the role it plays

in the network, different names are given to this strategy: (1)

the pooling operation aims to reduce the size of parameters

by down-sampling the nodes to generate smaller representa-

tions and thus avoid overfitting, permutation invariance, and

computational complexity issues; (2) the readout operation is

mainly used to generate graph-level representation based on

node representations. Their mechanism is very similar. In this

chapter, we use pooling to refer to all kinds of down-sampling

strategies applied to GNNs.

In some earlier works, the graph coarsening algorithms use

eigen-decomposition to coarsen graphs based on their topo-

logical structure. However, these methods suffer from the time

complexity issue. The Graclus algorithm [100] is an alternative

of eigen-decomposition to calculate a clustering version of

the original graph. Some recent works [23] employed it as a

pooling operation to coarsen graphs.

Nowadays, mean/max/sum pooling is the most primitive and

effective way to implement down-sampling since calculating

the mean/max/sum value in the pooling window is fast:

hG = mean/max/sum(h
(K)
1 ,h

(K)
2 , ...,h(K)

n), (27)

where K is the index of the last graph convolutional layer.

Henaff et al. [20] show that performing a simple max/mean

pooling at the beginning of the network is especially important

to reduce the dimensionality in the graph domain and mitigate

the cost of the expensive graph Fourier transform operation.

Furthermore, some works [17], [27], [46] also use attention

mechanisms to enhance the mean/sum pooling.

Even with attention mechanisms, the reduction operation

(such as sum pooling) is not satisfactory since it makes the

embedding inefficient: a fixed-size embedding is generated

regardless of the graph size. Vinyals et al. [101] propose the

Set2Set method to generate a memory that increases with the

size of the input. It then implements an LSTM that intends

to integrate order-dependent information into the memory

embedding before a reduction is applied that would otherwise

destroy that information.

Defferrard et al. [21] address this issue in another way by

rearranging nodes of a graph in a meaningful way. They devise

an efficient pooling strategy in their approach ChebNet. Input

graphs are first coarsened into multiple levels by the Graclus

algorithm [100]. After coarsening, the nodes of the input graph

and its coarsened version are rearranged into a balanced binary

tree. Arbitrarily aggregating the balanced binary tree from

bottom to top will arrange similar nodes together. Pooling such

a rearranged signal is much more efficient than pooling the

original.

Zhang et al. [52] propose the DGCNN with a similar pool-

ing strategy named SortPooling which performs pooling by

rearranging nodes to a meaningful order. Different from Cheb-

Net [21], DGCNN sorts nodes according to their structural

roles within the graph. The graph’s unordered node features

from spatial graph convolutions are treated as continuous WL

colors [93], and they are then used to sort nodes. In addition

to sorting the node features, it unifies the graph size to q by

truncating/extending the node feature matrix. The last n − q
rows are deleted if n > q, otherwise q−n zero rows are added.

The aforementioned pooling methods mainly consider graph

features and ignore the structural information of graphs. Re-

cently, a differentiable pooling (DiffPool) [54] is proposed,

which can generate hierarchical representations of graphs.

Compared to all previous coarsening methods, DiffPool does

not simply cluster the nodes in a graph but learns a cluster as-

signment matrix S at layer k referred to as S(k) ∈ Rnk×nk+1 ,

where nk is the number of nodes at the kth layer. The

probability values in matrix S(k) are being generated based

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 12

on node features and topological structure using

S(k) = softmax(ConvGNNk(A
(k),H(k))). (28)

The core idea of this is to learn comprehensive node assign-

ments which consider both topological and feature information

of a graph, so Equation 28 can be implemented with any

standard ConvGNNs. However, the drawback of DiffPool is

that it generates dense graphs after pooling and thereafter the

computational complexity becomes O(n2).
Most recently, the SAGPool [102] approach is proposed,

which considers both node features and graph topology and

learns the pooling in a self-attention manner.

Overall, pooling is an essential operation to reduce graph

size. How to improve the effectiveness and computational

complexity of pooling is an open question for investigation.

D. Discussion of Theoretical Aspects

We discuss the theoretical foundation of graph neural net-

works from different perspectives.

Shape of receptive field The receptive field of a node is the

set of nodes that contribute to the determination of its final

node representation. When compositing multiple spatial graph

convolutional layers, the receptive field of a node grows one

step ahead towards its distant neighbors each time. Micheli

[24] prove that a finite number of spatial graph convolutional

layers exists such that for each node v ∈ V the receptive

field of node v covers all nodes in the graph. As a result, a

ConvGNN is able to extract global information by stacking

local graph convolutional layers.

VC dimension The VC dimension is a measure of model

complexity defined as the largest number of points that can

be shattered by a model. There are few works on analyzing

the VC dimension of GNNs. Given the number of model

parameter p and the number of nodes n, Scarselli et al. [103]

derive that the VC dimension of a GNN* [15] is O(p4n2)
if it uses the sigmoid or tangent hyperbolic activation and is

O(p2n) if it uses the piecewise polynomial activation function.

This result suggests that the model complexity of a GNN*

[15] increases rapidly with p and n if the sigmoid or tangent

hyperbolic activation is used.

Graph isomorphism Two graphs are isomorphic if they are

topologically identical. Given two non-isomorphic graphs G1

and G2, Xu et al. [57] prove that if a GNN maps G1 and G2

to different embeddings, these two graphs can be identified

as non-isomorphic by the Weisfeiler-Lehman (WL) test of

isomorphism [93]. They show that common GNNs such as

GCN [22] and GraphSage [42] are incapable of distinguishing

different graph structures. Xu et al. [57] further prove if the

aggregation functions and the readout functions of a GNN are

injective, the GNN is at most as powerful as the WL test in

distinguishing different graphs.

Equivariance and invariance A GNN must be an equivariant

function when performing node-level tasks and must be an

invariant function when performing graph-level tasks. For

node-level tasks, let f(A,X) ∈ Rn×d be a GNN and Q be any

permutation matrix that changes the order of nodes. A GNN is

equivariant if it satisfies f(QAQT ,QX) = Qf(A,X). For

graph-level tasks, let f(A,X) ∈ Rd. A GNN is invariant if

it satisfies f(QAQT ,QX) = f(A,X). In order to achieve

equivariance or invariance, components of a GNN must be

invariant to node orderings. Maron et al. [104] theoretically

study the characteristics of permutation invariant and equiv-

ariant linear layers for graph data.

Universal approximation It is well known that multi-

perceptron feedforward neural networks with one hidden layer

can approximate any Borel measurable functions [105]. The

universal approximation capability of GNNs has seldom been

studied. Hammer et al. [106] prove that cascade correlation

can approximate functions with structured outputs. Scarselli

et al. [107] prove that a RecGNN [15] can approximate any

function that preserves unfolding equivalence up to any degree

of precision. Two nodes are unfolding equivalent if their

unfolding trees are identical where the unfolding tree of a node

is constructed by iteratively extending a node’s neighborhood

at a certain depth. Xu et al. [57] show that ConvGNNs under

the framework of message passing [27] are not universal

approximators of continuous functions defined on multisets.

Maron et al. [104] prove that an invariant graph network can

approximate an arbitrary invariant function defined on graphs.

VI. GRAPH AUTOENCODERS

Graph autoencoders (GAEs) are deep neural architectures

which map nodes into a latent feature space and decode graph

information from latent representations. GAEs can be used to

learn network embeddings or generate new graphs. The main

characteristics of selected GAEs are summarized in Table V.

In the following, we provide a brief review of GAEs from two

perspectives, network embedding and graph generation.

A. Network Embedding

A network embedding is a low-dimensional vector rep-

resentation of a node which preserves a node’s topological

information. GAEs learn network embeddings using an en-

coder to extract network embeddings and using a decoder to

enforce network embeddings to preserve the graph topological

information such as the PPMI matrix and the adjacency matrix.

Earlier approaches mainly employ multi-layer perceptrons

to build GAEs for network embedding learning. Deep Neural

Network for Graph Representations (DNGR) [59] uses a

stacked denoising autoencoder [108] to encode and decode

the PPMI matrix via multi-layer perceptrons. Concurrently,

Structural Deep Network Embedding (SDNE) [60] uses a

stacked autoencoder to preserve the node first-order proximity

and second-order proximity jointly. SDNE proposes two loss

functions on the outputs of the encoder and the outputs

of the decoder separately. The first loss function enables

the learned network embeddings to preserve the node first-

order proximity by minimizing the distance between a node’s

network embedding and its neighbors’ network embeddings.

The first loss function L1st is defined as

L1st =
∑

(v,u)∈E

Av,u||enc(xv)− enc(xu)||
2, (29)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 13

TABLE V: Main characteristics of selected GAEs

Approaches Inputs Encoder Decoder Objective

DNGR (2016) [59] A a multi-layer perceptron a multi-layer perceptron reconstruct the PPMI matrix

SDNE (2016) [60] A a multi-layer perceptron a multi-layer perceptron preserve node 1st-order and 2nd-order proximity

GAE* (2016) [61] A,X a ConvGNN a similarity measure reconstruct the adjacency matrix

VGAE (2016) [61] A,X a ConvGNN a similarity measure learn the generative distribution of data

ARVGA (2018) [62] A,X a ConvGNN a similarity measure learn the generative distribution of data adversarially

DNRE (2018) [63] A an LSTM network an identity function recover network embedding

NetRA (2018) [64] A an LSTM network an LSTM network recover network embedding with adversarial training

DeepGMG (2018) [65] A,X,Xe a RecGNN a decision process maximize the expected joint log-likelihood

GraphRNN (2018) [66] A a RNN a decision process maximize the likelihood of permutations

GraphVAE (2018) [67] A,X,Xe a ConvGNN a multi-layer perceptron optimize the reconstruction loss

RGVAE (2018) [68] A,X,Xe a CNN a deconvolutional net optimize the reconstruction loss with validity constraints

MolGAN (2018) [69] A,X,Xe a ConvGNN a multi-layer perceptron optimize the generative adversarial loss and the RL loss

NetGAN (2018) [70] A an LSTM network an LSTM network optimize the generative adversarial loss

where xv = Av,: and enc(·) is an encoder which consists

of a multi-layer perceptron. The second loss function enables

the learned network embeddings to preserve the node second-

order proximity by minimizing the distance between a node’s

inputs and its reconstructed inputs. Concretely, the second loss

function L2nd is defined as

L2nd =
∑

v∈V

||(dec(enc(xv))− xv)⊙ bv||
2, (30)

where bv,u = 1 if Av,u = 0, bv,u = β > 1 if Av,u = 1, and

dec(·) is a decoder which consists of a multi-layer perceptron.

DNGR [59] and SDNE [60] only consider node structural

information which is about the connectivity between pairs of

nodes. They ignore nodes may contain feature information that

depicts the attributes of nodes themselves. Graph Autoencoder

(GAE*3) [61] leverages GCN [22] to encode node structural

information and node feature information at the same time.

The encoder of GAE* consists of two graph convolutional

layers, which takes the form

Z = enc(X,A) = Gconv(f(Gconv(A,X;Θ1));Θ2),
(31)

where Z denotes the network embedding matrix of a graph,

f(·) is a ReLU activation function and the Gconv(·) function

is a graph convolutional layer defined by Equation 12. The

decoder of GAE* aims to decode node relational information

from their embeddings by reconstructing the graph adjacency

matrix, which is defined as

Âv,u = dec(zv, zu) = σ(zTv zu), (32)

where zv is the embedding of node v. GAE* is trained by

minimizing the negative cross entropy given the real adjacency

matrix A and the reconstructed adjacency matrix Â.

Simply reconstructing the graph adjacency matrix may lead

to overfitting due to the capacity of the autoencoders. Varia-

tional Graph Autoencoder (VGAE) [61] is a variational version

3We name it GAE* to avoid ambiguity in the survey.

of GAE to learn the distribution of data. VGAE optimizes the

variational lower bound L:

L = Eq(Z|X,A)[log p(A|Z)]−KL[q(Z|X,A)||p(Z)], (33)

where KL(·) is the Kullback-Leibler divergence function

which measures the distance between two distributions, p(Z)
is a Gaussian prior p(Z) =

∏n

i=1 p(zi) =
∏n

i=1 N(zi|0, I),
p(Aij = 1|zi, zj) = dec(zi, zj) = σ(zTi zj), q(Z|X,A) =∏n

i=1 q(zi|X,A) with q(zi|X,A) = N(zi|µi, diag(σ
2
i)).

The mean vector µi is the ith row of an encoder’s outputs

defined by Equation 31 and log σi is derived similarly as

µi with another encoder. According to Equation 33, VGAE

assumes the empirical distribution q(Z|X,A) should be as

close as possible to the prior distribution p(Z). To further

enforce the empirical distribution q(Z|X,A) approximate the

prior distribution p(Z), Adversarially Regularized Variational

Graph Autoencoder (ARVGA) [62], [109] employs the training

scheme of a generative adversarial networks (GAN) [110]. A

GAN plays a competition game between a generator and a

discriminator in training generative models. A generator tries

to generate ‘fake samples’ to be as real as possible while a

discriminator attempts to distinguish the ‘fake samples’ from

real ones. Inspired by GANs, ARVGA endeavors to learn an

encoder that produces an empirical distribution q(Z|X,A)
which is indistinguishable from the prior distribution p(Z).

Similar as GAE*, GraphSage [42] encodes node features

with two graph convolutional layers. Instead of optimizing

the reconstruction error, GraphSage shows that the relational

information between two nodes can be preserved by negative

sampling with the loss:

L(zv) = −log(dec(zv, zu))−QEvn∼Pn(v) log(−dec(zv, zvn
)),

(34)

where node u is a neighbor of node v, node vn is a distant node

to node v and is sampled from a negative sampling distribution

Pn(v), and Q is the number of negative samples. This loss

function essentially enforces close nodes to have similar repre-

sentations and distant nodes to have dissimilar representations.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 14

DGI [56] alternatively drives local network embeddings to

capture global structural information by maximizing local

mutual information. It shows a distinct improvement over

GraphSage [42] experimentally.

For the aforementioned methods, they essentially learn

network embeddings by solving a link prediction problem.

However, the sparsity of a graph causes the number of

positive node pairs to be far less than the number of negative

node pairs. To alleviate the data sparsity problem in learning

network embedding, another line of works convert a graph into

sequences by random permutations or random walks. In such

a way, those deep learning approaches which are applicable

to sequences can be directly used to process graphs. Deep

Recursive Network Embedding (DRNE) [63] assumes a node’s

network embedding should approximate the aggregation of its

neighborhood network embeddings. It adopts a Long Short-

Term Memory (LSTM) network [7] to aggregate a node’s

neighbors. The reconstruction error of DRNE is defined as

L =
∑

v∈V

||zv − LSTM({zu|u ∈ N(v)})||2, (35)

where zv is the network embedding of node v obtained by

a dictionary look-up, and the LSTM network takes a random

sequence of node v’s neighbors ordered by their node degree

as inputs. As suggested by Equation 35, DRNE implicitly

learns network embeddings via an LSTM network rather than

using the LSTM network to generate network embeddings. It

avoids the problem that the LSTM network is not invariant to

the permutation of node sequences. Network Representations

with Adversarially Regularized Autoencoders (NetRA) [64]

proposes a graph encoder-decoder framework with a general

loss function, defined as

L = −Ez∼Pdata(z)(dist(z, dec(enc(z)))), (36)

where dist(·) is the distance measure between the node

embedding z and the reconstructed z. The encoder and decoder

of NetRA are LSTM networks with random walks rooted on

each node v ∈ V as inputs. Similar to ARVGA [62], NetRA

regularizes the learned network embeddings within a prior

distribution via adversarial training. Although NetRA ignores

the node permutation variant problem of LSTM networks, the

experimental results validate the effectiveness of NetRA.

B. Graph Generation

With multiple graphs, GAEs are able to learn the gener-

ative distribution of graphs by encoding graphs into hidden

representations and decoding a graph structure given hidden

representations. The majority of GAEs for graph generation

are designed to solve the molecular graph generation problem,

which has a high practical value in drug discovery. These

methods either propose a new graph in a sequential manner

or in a global manner.

Sequential approaches generate a graph by proposing nodes

and edges step by step. Gomez et al. [111], Kusner et al. [112],

and Dai et al. [113] model the generation process of a string

representation of molecular graphs named SMILES with deep

CNNs and RNNs as the encoder and the decoder respectively.

While these methods are domain-specific, alternative solutions

are applicable to general graphs by means of iteratively adding

nodes and edges to a growing graph until a certain criterion is

satisfied. Deep Generative Model of Graphs (DeepGMG) [65]

assumes the probability of a graph is the sum over all possible

node permutations:

p(G) =
∑

π

p(G, π), (37)

where π denotes a node ordering. It captures the complex joint

probability of all nodes and edges in the graph. DeepGMG

generates graphs by making a sequence of decisions, namely

whether to add a node, which node to add, whether to add

an edge, and which node to connect to the new node. The

decision process of generating nodes and edges is conditioned

on the node states and the graph state of a growing graph

updated by a RecGNN. In another work, GraphRNN [66]

proposes a graph-level RNN and an edge-level RNN to model

the generation process of nodes and edges. The graph-level

RNN adds a new node to a node sequence each time while

the edge-level RNN produces a binary sequence indicating

connections between the new node and the nodes previously

generated in the sequence.

Global approaches output a graph all at once. Graph Vari-

ational Autoencoder (GraphVAE) [67] models the existence

of nodes and edges as independent random variables. By

assuming the posterior distribution qφ(z|G) defined by an

encoder and the generative distribution pθ(G|z) defined by

a decoder, GraphVAE optimizes the variational lower bound:

L(φ, θ;G) = Eqφ(z|G)[− log pθ(G|z)] +KL[qφ(z|G)||p(z)],
(38)

where p(z) follows a Gaussian prior, φ and θ are learnable

parameters. With a ConvGNN as the encoder and a simple

multi-layer perception as the decoder, GraphVAE outputs a

generated graph with its adjacency matrix, node attributes and

edge attributes. It is challenging to control the global properties

of generated graphs, such as graph connectivity, validity,

and node compatibility. Regularized Graph Variational Au-

toencoder (RGVAE) [68] further imposes validity constraints

on a graph variational autoencoder to regularize the output

distribution of the decoder. Molecular Generative Adversarial

Network (MolGAN) [69] integrates convGNNs [114], GANs

[115] and reinforcement learning objectives to generate graphs

with the desired properties. MolGAN consists of a generator

and a discriminator, competing with each other to improve

the authenticity of the generator. In MolGAN, the generator

tries to propose a fake graph along with its feature matrix

while the discriminator aims to distinguish the fake sample

from the empirical data. Additionally, a reward network is

introduced in parallel with the discriminator to encourage the

generated graphs to possess certain properties according to

an external evaluator. NetGAN [70] combines LSTMs [7]

with Wasserstein GANs [116] to generate graphs from a

random-walk-based approach. NetGAN trains a generator to

produce plausible random walks through an LSTM network

and enforces a discriminator to identify fake random walks

from the real ones. After training, a new graph is derived by

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 15

normalizing a co-occurrence matrix of nodes computed based

on random walks produced by the generator.

In brief, sequential approaches linearize graphs into se-

quences. They can lose structural information due to the

presence of cycles. Global approaches produce a graph all

at once. They are not scalable to large graphs as the output

space of a GAE is up to O(n2).

VII. SPATIAL-TEMPORAL GRAPH NEURAL NETWORKS

Graphs in many real-world applications are dynamic both

in terms of graph structures and graph inputs. Spatial-temporal

graph neural networks (STGNNs) occupy important positions

in capturing the dynamicity of graphs. Methods under this

category aim to model the dynamic node inputs while assum-

ing interdependency between connected nodes. For example, a

traffic network consists of speed sensors placed on roads where

edge weights are determined by the distance between pairs of

sensors. As the traffic condition of one road may depend on its

adjacent roads’ conditions, it is necessary to consider spatial

dependency when performing traffic speed forecasting. As a

solution, STGNNs capture spatial and temporal dependencies

of a graph simultaneously. The task of STGNNs can be

forecasting future node values or labels, or predicting spatial-

temporal graph labels. STGNNs follow two directions, RNN-

based methods and CNN-based methods.

Most RNN-based approaches capture spatial-temporal de-

pendencies by filtering inputs and hidden states passed to a

recurrent unit using graph convolutions [48], [71], [72]. To

illustrate this, suppose a simple RNN takes the form

H(t) = σ(WX(t) +UH(t−1) + b), (39)

where X(t) ∈ Rn×d is the node feature matrix at time step t.
After inserting graph convolution, Equation 39 becomes

H(t) = σ(Gconv(X(t),A;W)+Gconv(H(t−1),A;U)+b),
(40)

where Gconv(·) is a graph convolutional layer. Graph Convo-

lutional Recurrent Network (GCRN) [71] combines a LSTM

network with ChebNet [21]. Diffusion Convolutional Recur-

rent Neural Network (DCRNN) [72] incorporates a proposed

diffusion graph convolutional layer (Equation 18) into a GRU

network. In addition, DCRNN adopts an encoder-decoder

framework to predict the future K steps of node values.

Another parallel work uses node-level RNNs and edge-level

RNNs to handle different aspects of temporal information.

Structural-RNN [73] proposes a recurrent framework to predict

node labels at each time step. It comprises two kinds of

RNNs, namely a node-RNN and an edge-RNN. The temporal

information of each node and each edge is passed through a

node-RNN and an edge-RNN respectively. To incorporate the

spatial information, a node-RNN takes the outputs of edge-

RNNs as inputs. Since assuming different RNNs for different

nodes and edges significantly increases model complexity, it

instead splits nodes and edges into semantic groups. Nodes or

edges in the same semantic group share the same RNN model,

which saves the computational cost.

RNN-based approaches suffer from time-consuming itera-

tive propagation and gradient explosion/vanishing issues. As

alternative solutions, CNN-based approaches tackle spatial-

temporal graphs in a non-recursive manner with the advantages

of parallel computing, stable gradients, and low memory

requirements. As illustrated in Fig 2d, CNN-based approaches

interleave 1D-CNN layers with graph convolutional layers to

learn temporal and spatial dependencies respectively. Assume

the inputs to a spatial-temporal graph neural network is a

tensor X ∈ RT×n×d, the 1D-CNN layer slides over X[:,i,:]

along the time axis to aggregate temporal information for each

node while the graph convolutional layer operates on X[i,:,:]

to aggregate spatial information at each time step. CGCN [74]

integrates 1D convolutional layers with ChebNet [21] or GCN

[22] layers. It constructs a spatial-temporal block by stacking a

gated 1D convolutional layer, a graph convolutional layer and

another gated 1D convolutional layer in a sequential order.

ST-GCN [75] composes a spatial-temporal block using a 1D

convolutional layer and a PGC layer (Equation 20).

Previous methods all use a pre-defined graph structure. They

assume the pre-defined graph structure reflects the genuine

dependency relationships among nodes. However, with many

snapshots of graph data in a spatial-temporal setting, it is

possible to learn latent static graph structures automatically

from data. To realize this, Graph WaveNet [76] proposes a

self-adaptive adjacency matrix to perform graph convolutions.

The self-adaptive adjacency matrix is defined as

Aadp = SoftMax(ReLU(E1E
T
2)), (41)

where the SoftMax function is computed along the row

dimension, E1 denotes the source node embedding and E2

denotes the target node embedding with learnable parameters.

By multiplying E1 with E2, one can get the dependency

weight between a source node and a target node. With a

complex CNN-based spatial-temporal neural network, Graph

WaveNet performs well without being given an adjacency

matrix.

Learning latent static spatial dependencies can help re-

searchers discover interpretable and stable correlations among

different entities in a network. However, in some circum-

stances, learning latent dynamic spatial dependencies may

further improve model precision. For example, in a traffic

network, the travel time between two roads may depend on

their current traffic conditions. GaAN [48] employs attention

mechanisms to learn dynamic spatial dependencies through

an RNN-based approach. An attention function is used to

update the edge weight between two connected nodes given

their current node inputs. ASTGCN [77] further includes a

spatial attention function and a temporal attention function

to learn latent dynamic spatial dependencies and temporal

dependencies through a CNN-based approach. The common

drawback of learning latent spatial dependencies is that it

needs to calculate the spatial dependency weight between each

pair of nodes, which costs O(n2).

VIII. APPLICATIONS

As graph-structured data are ubiquitous, GNNs have a wide

variety of applications. In this section, we summarize the

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 16

benchmark graph data sets, evaluation methods, and open-

source implementation, respectively. We detail practical ap-

plications of GNNs in various domains.

A. Data Sets

We mainly sort data sets into four groups, namely citation

networks, biochemical graphs, social networks, and others. In

Table VI, we summarize selected benchmark data sets. More

details is given in the Supplementary Material A.

B. Evaluation & Open-source Implementations

Node classification and graph classification are common

tasks to assess the performance of RecGNNs and ConvGNNs.

Node Classification In node classification, most methods

follow a standard split of train/valid/test on benchmark data

sets including Cora, Citeseer, Pubmed, PPI, and Reddit. They

reported the average accuracy or F1 score on the test data set

over multiple runs. A summarization of experimental results

of methods can be found in the Supplementary Material B. It

should be noted that these results do not necessarily represent

a rigorous comparison. Shchur et al. identified [131] two

pitfalls in evaluating the performance GNNs on node classifi-

cation. First, using the same train/valid/test split throughout all

experiments underestimates the generalization error. Second,

different methods employed different training techniques such

as hyper-parameter tuning, parameter initialization, learning

rate decay, and early stopping. For a relatively fair comparison,

we refer the readers to Shchur et al. [131].

Graph Classification In graph classification, researchers

often adopt 10-fold cross validation (cv) for model evaluation.

However, as pointed out by [132], the experimental settings

are ambiguous and not unified across different works. In

particular, [132] raises the concern of the correct usage of

data splits for model selection versus model assessment. An

often encountered problem is that the external test set of each

fold is used both for model selection and risk assessment.

[132] compare GNNs in a standardized and uniform evaluation

framework. They apply an external 10 fold CV to get an

estimate of the generalization performance of a model and an

inner holdout technique with a 90%/10% training/validation

split for model selection. An alternative procedure would be a

double cv method, which uses an external k fold cv for model

assessment and an inner k fold cv for model selection. We refer

the readers to [132] for a detailed and rigorous comparison of

GNN methods for graph classification.

Open-source implementations facilitate the work of base-

line experiments in deep learning research. In the Supple-

mentary Material C, we provide the hyperlinks of the open-

source implementations of the GNN models reviewed in this

paper. Noticeably, Fey et al. [92] published a geometric

learning library in PyTorch named PyTorch Geometric 4,

which implements many GNNs. Most recently, the Deep

Graph Library (DGL) 5 [133] is released which provides a

fast implementation of many GNNs on top of popular deep

learning platforms such as PyTorch and MXNet.

4https://github.com/rusty1s/pytorch geometric
5https://www.dgl.ai/

C. Practical Applications

GNNs have many applications across different tasks and

domains. Despite general tasks which can be handled by

each category of GNNs directly, including node classification,

graph classification, network embedding, graph generation,

and spatial-temporal graph forecasting, other general graph-

related tasks such as node clustering [134], link prediction

[135], and graph partitioning [136] can also be addressed by

GNNs. We detail some applications based on the following

research domains.

Computer vision Applications of GNNs in computer vision

include scene graph generation, point clouds classification, and

action recognition.

Recognizing semantic relationships between objects facili-

tates the understanding of the meaning behind a visual scene.

Scene graph generation models aim to parse an image into a

semantic graph which consists of objects and their semantic

relationships [137], [138], [139]. Another application inverses

the process by generating realistic images given scene graphs

[140]. As natural language can be parsed as semantic graphs

where each word represents an object, it is a promising

solution to synthesize images given textual descriptions.

Classifying and segmenting points clouds enables LiDAR

devices to ‘see’ the surrounding environment. A point cloud

is a set of 3D points recorded by LiDAR scans. [141], [142],

[143] convert point clouds into k-nearest neighbor graphs

or superpoint graphs and use ConvGNNs to explore the

topological structure.

Identifying human actions contained in videos facilitates a

better understanding of video content from a machine aspect.

Some solutions detect the locations of human joints in video

clips. Human joints which are linked by skeletons naturally

form a graph. Given the time series of human joint locations,

[73], [75] apply STGNNs to learn human action patterns.

Moreover, the number of applicable directions of GNNs

in computer vision is still growing. It includes human-object

interaction [144], few-shot image classification [145], [146],

[147], semantic segmentation [148], [149], visual reasoning

[150], and question answering [151].

Natural language processing A common application of

GNNs in natural language processing is text classification.

GNNs utilize the inter-relations of documents or words to infer

document labels [22], [42], [43].

Despite the fact that natural language data exhibit a sequen-

tial order, they may also contain an internal graph structure,

such as a syntactic dependency tree. A syntactic dependency

tree defines the syntactic relations among words in a sentence.

Marcheggiani et al. [152] propose the Syntactic GCN which

runs on top of a CNN/RNN sentence encoder. The Syntactic

GCN aggregates hidden word representations based on the

syntactic dependency tree of a sentence. Bastings et al. [153]

apply the Syntactic GCN to the task of neural machine transla-

tion. Marcheggiani et al. [154] further adopt the same model

as Bastings et al. [153] to handle the semantic dependency

graph of a sentence.

Graph-to-sequence learning learns to generate sentences

with the same meaning given a semantic graph of abstract

https://github.com/rusty1s/pytorch_geometric

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 17

TABLE VI: Summary of selected benchmark data sets.

Category Data set Source # Graphs # Nodes(Avg.) # Edges (Avg.) #Features # Classes Citation

Citation
Networks

Cora [117] 1 2708 5429 1433 7
[22], [23], [25], [41], [43], [44], [45]
[49], [50], [51], [53], [56], [61], [62]

Citeseer [117] 1 3327 4732 3703 6
[22], [41], [43], [45], [50], [51], [53]
[56], [61], [62]

Pubmed [117] 1 19717 44338 500 3

[18], [22], [25], [41], [43], [44], [45]
[49], [51], [53], [55], [56], [61], [62]
[70], [95]

DBLP (v11) [118] 1 4107340 36624464 - - [64], [70], [99]

Bio-
chemical
Graphs

PPI [119] 24 56944 818716 50 121
[18], [42], [43], [48], [45], [50], [55]
[56], [58], [64]

NCI-1 [120] 4110 29.87 32.30 37 2 [25], [26], [46], [52], [57], [96], [98]

MUTAG [121] 188 17.93 19.79 7 2 [25], [26], [46], [52], [57], [96]

D&D [122] 1178 284.31 715.65 82 2 [26], [46], [52], [54], [96], [98]

PROTEIN [123] 1113 39.06 72.81 4 2 [26], [46], [52], [54], [57]

PTC [124] 344 25.5 - 19 2 [25], [26], [46], [52], [57]

QM9 [125] 133885 - - - - [27], [69]
Alchemy [126] 119487 - - - - -

Social
Networks

Reddit [42] 1 232965 11606919 602 41 [42], [48], [49], [50], [51], [56]

BlogCatalog [127] 1 10312 333983 - 39 [18], [55], [60], [64]

Others
MNIST [128] 70000 784 - 1 10 [19], [23], [21], [44], [96]
METR-LA [129] 1 207 1515 2 - [48], [72], [76]
Nell [130] 1 65755 266144 61278 210 [22], [41], [50]

words (known as Abstract Meaning Representation). Song

et al. [155] propose a graph-LSTM to encode graph-level

semantic information. Beck et al. [156] apply a GGNN [17]

to graph-to-sequence learning and neural machine translation.

The inverse task is sequence-to-graph learning. Generating a

semantic or knowledge graph given a sentence is very useful

in knowledge discovery [157], [158].

Traffic Accurately forecasting traffic speed, volume or the

density of roads in traffic networks is fundamentally important

in a smart transportation system. [48], [72], [74] address the

traffic prediction problem using STGNNs. They consider the

traffic network as a spatial-temporal graph where the nodes

are sensors installed on roads, the edges are measured by the

distance between pairs of nodes, and each node has the average

traffic speed within a window as dynamic input features.

Another industrial-level application is taxi-demand prediction.

Given historical taxi demands, location information, weather

data, and event features, Yao et al. [159] incorporate LSTM,

CNN and network embeddings trained by LINE [160] to form

a joint representation for each location to predict the number

of taxis demanded for a location within a time interval.

Recommender systems Graph-based recommender systems

take items and users as nodes. By leveraging the relations

between items and items, users and users, users and items,

as well as content information, graph-based recommender

systems are able to produce high-quality recommendations.

The key to a recommender system is to score the importance of

an item to a user. As a result, it can be cast as a link prediction

problem. To predict the missing links between users and items,

Van et al. [161] and Ying et al. [162] propose a GAE which

uses ConvGNNs as encoders. Monti et al. [163] combine

RNNs with graph convolutions to learn the underlying process

that generates the known ratings.

Chemistry In the field of chemistry, researchers apply GNNs

to study the graph structure of molecules/compounds. In a

molecule/compound graph, atoms are considered as nodes,

and chemical bonds are treated as edges. Node classification,

graph classification, and graph generation are the three main

tasks targeting molecular/compound graphs in order to learn

molecular fingerprints [85], [86], to predict molecular proper-

ties [27], to infer protein interfaces [164], and to synthesize

chemical compounds [65], [69], [165].

Others The application of GNNs is not limited to the afore-

mentioned domains and tasks. There have been explorations

of applying GNNs to a variety of problems such as program

verification [17], program reasoning [166], social influence

prediction [167], adversarial attacks prevention [168], electri-

cal health records modeling [169], [170], brain networks [171],

event detection [172], and combinatorial optimization [173].

IX. FUTURE DIRECTIONS

Though GNNs have proven their power in learning graph

data, challenges still exist due to the complexity of graphs. In

this section, we suggest four future directions of GNNs.

Model depth The success of deep learning lies in deep neural

architectures [174]. However, Li et al. show that the perfor-

mance of a ConvGNN drops dramatically with an increase

in the number of graph convolutional layers [53]. As graph

convolutions push representations of adjacent nodes closer

to each other, in theory, with an infinite number of graph

convolutional layers, all nodes’ representations will converge

to a single point [53]. This raises the question of whether going

deep is still a good strategy for learning graph data.

Scalability trade-off The scalability of GNNs is gained at

the price of corrupting graph completeness. Whether using

sampling or clustering, a model will lose part of the graph

information. By sampling, a node may miss its influential

neighbors. By clustering, a graph may be deprived of a distinct

structural pattern. How to trade-off algorithm scalability and

graph integrity could be a future research direction.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 18

Heterogenity The majority of current GNNs assume homo-

geneous graphs. It is difficult to directly apply current GNNs

to heterogeneous graphs, which may contain different types of

nodes and edges, or different forms of node and edge inputs,

such as images and text. Therefore, new methods should be

developed to handle heterogeneous graphs.

Dynamicity Graphs are in nature dynamic in a way that nodes

or edges may appear or disappear, and that node/edge inputs

may change time by time. New graph convolutions are needed

to adapt to the dynamicity of graphs. Although the dynamicity

of graphs can be partly addressed by STGNNs, few of them

consider how to perform graph convolutions in the case of

dynamic spatial relations.

X. CONCLUSION

In this survey, we conduct a comprehensive overview of

graph neural networks. We provide a taxonomy which groups

graph neural networks into four categories: recurrent graph

neural networks, convolutional graph neural networks, graph

autoencoders, and spatial-temporal graph neural networks. We

provide a thorough review, comparisons, and summarizations

of the methods within or between categories. Then we intro-

duce a wide range of applications of graph neural networks.

Data sets, open-source codes, and model assessment for graph

neural networks are summarized. Finally, we suggest four

future directions for graph neural networks.

ACKNOWLEDGMENT

This research was funded by the Australian Government

through the Australian Research Council (ARC) under grants

1) LP160100630 partnership with Australia Government De-

partment of Health and 2) LP150100671 partnership with

Australia Research Alliance for Children and Youth (ARACY)

and Global Business College Australia (GBCA).

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. of CVPR, 2016, pp.
779–788.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Proc. of NIPS,
2015, pp. 91–99.

[3] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. of EMNLP, 2015,
pp. 1412–1421.

[4] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[5] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal processing magazine,
vol. 29, no. 6, pp. 82–97, 2012.

[6] Y. LeCun, Y. Bengio et al., “Convolutional networks for images,
speech, and time series,” The handbook of brain theory and neural

networks, vol. 3361, no. 10, p. 1995, 1995.
[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[8] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,

“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” Journal of machine

learning research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[9] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal

Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[10] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” in Proc. of NIPS, 2017, pp.
1024–1034.

[11] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner et al., “Relational inductive biases, deep learning, and
graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[12] J. B. Lee, R. A. Rossi, S. Kim, N. K. Ahmed, and E. Koh, “Attention
models in graphs: A survey,” arXiv preprint arXiv:1807.07984, 2018.

[13] A. Sperduti and A. Starita, “Supervised neural networks for the
classification of structures,” IEEE Transactions on Neural Networks,
vol. 8, no. 3, pp. 714–735, 1997.

[14] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in
graph domains,” in Proc. of IJCNN, vol. 2. IEEE, 2005, pp. 729–734.

[15] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural

Networks, vol. 20, no. 1, pp. 61–80, 2009.

[16] C. Gallicchio and A. Micheli, “Graph echo state networks,” in IJCNN.
IEEE, 2010, pp. 1–8.

[17] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in Proc. of ICLR, 2015.

[18] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-
states of iterative algorithms over graphs,” in Proc. of ICML, 2018, pp.
1114–1122.

[19] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in Proc. of ICLR, 2014.

[20] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” arXiv preprint arXiv:1506.05163, 2015.

[21] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Proc. of NIPS, 2016, pp. 3844–3852.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. of ICLR, 2017.

[23] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayleynets:
Graph convolutional neural networks with complex rational spectral
filters,” IEEE Transactions on Signal Processing, vol. 67, no. 1, pp.
97–109, 2017.

[24] A. Micheli, “Neural network for graphs: A contextual constructive
approach,” IEEE Transactions on Neural Networks, vol. 20, no. 3, pp.
498–511, 2009.

[25] J. Atwood and D. Towsley, “Diffusion-convolutional neural networks,”
in Proc. of NIPS, 2016, pp. 1993–2001.

[26] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proc. of ICML, 2016, pp. 2014–2023.

[27] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. of ICML,
2017, pp. 1263–1272.

[28] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,”
IEEE Transactions on Knowledge and Data Engineering, 2017.

[29] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation
learning: A survey,” IEEE Transactions on Big Data, 2018.

[30] H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of graph
embedding: problems, techniques and applications,” IEEE Transactions

on Knowledge and Data Engineering, 2018.

[31] P. Goyal and E. Ferrara, “Graph embedding techniques, applications,
and performance: A survey,” Knowledge-Based Systems, vol. 151, pp.
78–94, 2018.

[32] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network
representation,” in Proc. of IJCAI, 2016, pp. 1895–1901.

[33] X. Shen, S. Pan, W. Liu, Y.-S. Ong, and Q.-S. Sun, “Discrete network
embedding,” in Proc. of IJCAI, 2018, pp. 3549–3555.

[34] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, and C. Zhang, “Binarized
attributed network embedding,” in Proc. of ICDM. IEEE, 2018.

[35] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proc. of KDD. ACM, 2014, pp. 701–710.

[36] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph kernels,” Journal of Machine Learning Research,
vol. 11, no. Apr, pp. 1201–1242, 2010.

[37] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of

Machine Learning Research, vol. 12, no. Sep, pp. 2539–2561, 2011.

[38] N. Navarin and A. Sperduti, “Approximated neighbours minhash graph
node kernel.” in Proc. of ESANN, 2017.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 19

[39] N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph
kernels,” arXiv preprint arXiv:1903.11835, 2019.

[40] R. Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional
neural networks,” in Proc. of AAAI, 2018, pp. 3546–3553.

[41] C. Zhuang and Q. Ma, “Dual graph convolutional networks for graph-
based semi-supervised classification,” in WWW, 2018, pp. 499–508.

[42] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. of NIPS, 2017, pp. 1024–1034.

[43] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proc. of ICLR, 2017.

[44] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” in Proc. of CVPR, 2017, pp. 5115–5124.

[45] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional
networks,” in Proc. of KDD. ACM, 2018, pp. 1416–1424.

[46] D. V. Tran, A. Sperduti et al., “On filter size in graph convolutional
networks,” in SSCI. IEEE, 2018, pp. 1534–1541.

[47] D. Bacciu, F. Errica, and A. Micheli, “Contextual graph markov model:
A deep and generative approach to graph processing,” in Proc. of ICML,
2018.

[48] J. Zhang, X. Shi, J. Xie, H. Ma, I. King, and D.-Y. Yeung, “Gaan: Gated
attention networks for learning on large and spatiotemporal graphs,” in
Proc. of UAI, 2018.

[49] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” in Proc. of ICLR,
2018.

[50] J. Chen, J. Zhu, and L. Song, “Stochastic training of graph convolu-
tional networks with variance reduction,” in Proc. of ICML, 2018, pp.
941–949.

[51] W. Huang, T. Zhang, Y. Rong, and J. Huang, “Adaptive sampling
towards fast graph representation learning,” in Proc. of NeurIPS, 2018,
pp. 4563–4572.

[52] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proc. of AAAI, 2018.

[53] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proc. of AAAI, 2018.

[54] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hi-
erarchical graph representation learning with differentiable pooling,” in
Proc. of NeurIPS, 2018, pp. 4801–4811.

[55] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, and L. Song, “Geniepath: Graph
neural networks with adaptive receptive paths,” in Proc. of AAAI, 2019.

[56] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” in Proc. of ICLR, 2019.

[57] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks,” in Proc. of ICLR, 2019.

[58] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proc. of KDD. ACM, 2019.

[59] S. Cao, W. Lu, and Q. Xu, “Deep neural networks for learning graph
representations,” in Proc. of AAAI, 2016, pp. 1145–1152.

[60] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proc. of KDD. ACM, 2016, pp. 1225–1234.

[61] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS

Workshop on Bayesian Deep Learning, 2016.
[62] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially

regularized graph autoencoder for graph embedding.” in Proc. of IJCAI,
2018, pp. 2609–2615.

[63] K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network
embedding with regular equivalence,” in Proc. of KDD. ACM, 2018,
pp. 2357–2366.

[64] W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong,
H. Chen, and W. Wang, “Learning deep network representations with
adversarially regularized autoencoders,” in Proc. of AAAI. ACM, 2018,
pp. 2663–2671.

[65] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning
deep generative models of graphs,” in Proc. of ICML, 2018.

[66] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn:
A deep generative model for graphs,” Proc. of ICML, 2018.

[67] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of
small graphs using variational autoencoders,” in ICANN. Springer,
2018, pp. 412–422.

[68] T. Ma, J. Chen, and C. Xiao, “Constrained generation of semantically
valid graphs via regularizing variational autoencoders,” in Proc. of

NeurIPS, 2018, pp. 7110–7121.
[69] N. De Cao and T. Kipf, “MolGAN: An implicit generative model

for small molecular graphs,” ICML 2018 workshop on Theoretical

Foundations and Applications of Deep Generative Models, 2018.

[70] A. Bojchevski, O. Shchur, D. Zügner, and S. Günnemann, “Netgan:
Generating graphs via random walks,” in Proc. of ICML, 2018.

[71] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
International Conference on Neural Information Processing. Springer,
2018, pp. 362–373.

[72] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in Proc. of ICLR, 2018.

[73] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn:
Deep learning on spatio-temporal graphs,” in Proc. of CVPR, 2016,
pp. 5308–5317.

[74] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in Proc.

of IJCAI, 2018, pp. 3634–3640.

[75] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. of AAAI,
2018.

[76] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for
deep spatial-temporal graph modeling,” in Proc. of IJCAI, 2019.

[77] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proc. of AAAI, 2019.

[78] S. Pan, J. Wu, X. Zhu, C. Zhang, and P. S. Yu, “Joint structure feature
exploration and regularization for multi-task graph classification,” IEEE

Transactions on Knowledge and Data Engineering, vol. 28, no. 3, pp.
715–728, 2016.

[79] S. Pan, J. Wu, X. Zhu, G. Long, and C. Zhang, “Task sensitive
feature exploration and learning for multitask graph classification,”
IEEE transactions on cybernetics, vol. 47, no. 3, pp. 744–758, 2017.

[80] A. Micheli, D. Sona, and A. Sperduti, “Contextual processing of
structured data by recursive cascade correlation,” IEEE Transactions

on Neural Networks, vol. 15, no. 6, pp. 1396–1410, 2004.

[81] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” in Proc. of

EMNLP, 2014, pp. 1724–1734.

[82] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
2013.

[83] A. Sandryhaila and J. M. Moura, “Discrete signal processing on
graphs,” IEEE transactions on signal processing, vol. 61, no. 7, pp.
1644–1656, 2013.

[84] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
processing on graphs: Sampling theory,” IEEE Transactions on Signal

Processing, vol. 63, no. 24, pp. 6510–6523, 2015.

[85] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Proc. of NIPS, 2015, pp. 2224–
2232.

[86] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley,
“Molecular graph convolutions: moving beyond fingerprints,” Journal

of computer-aided molecular design, vol. 30, no. 8, pp. 595–608, 2016.

[87] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and
A. Tkatchenko, “Quantum-chemical insights from deep tensor neural
networks,” Nature communications, vol. 8, p. 13890, 2017.

[88] J. B. Lee, R. Rossi, and X. Kong, “Graph classification using structural
attention,” in Proc. of KDD. ACM, 2018, pp. 1666–1674.

[89] S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, and A. A. Alemi, “Watch
your step: Learning node embeddings via graph attention,” in Proc. of

NeurIPS, 2018, pp. 9197–9207.

[90] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst, “Geodesic
convolutional neural networks on riemannian manifolds,” in Proc. of

CVPR Workshops, 2015, pp. 37–45.

[91] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein, “Learning shape
correspondence with anisotropic convolutional neural networks,” in
Proc. of NIPS, 2016, pp. 3189–3197.

[92] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller, “Splinecnn: Fast
geometric deep learning with continuous b-spline kernels,” in Proc. of

CVPR, 2018, pp. 869–877.

[93] B. Weisfeiler and A. Lehman, “A reduction of a graph to a canon-
ical form and an algebra arising during this reduction,” Nauchno-

Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16, 1968.

[94] B. L. Douglas, “The weisfeiler-lehman method and graph isomorphism
testing,” arXiv preprint arXiv:1101.5211, 2011.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 20

[95] T. Pham, T. Tran, D. Q. Phung, and S. Venkatesh, “Column networks
for collective classification,” in Proc. of AAAI, 2017, pp. 2485–2491.

[96] M. Simonovsky and N. Komodakis, “Dynamic edgeconditioned filters
in convolutional neural networks on graphs,” in Proc. of CVPR, 2017.

[97] T. Derr, Y. Ma, and J. Tang, “Signed graph convolutional network,” in
Proc. of ICDM, 2018.

[98] F. P. Such, S. Sah, M. A. Dominguez, S. Pillai, C. Zhang, A. Michael,
N. D. Cahill, and R. Ptucha, “Robust spatial filtering with graph
convolutional neural networks,” IEEE Journal of Selected Topics in

Signal Processing, vol. 11, no. 6, pp. 884–896, 2017.

[99] X. Wang, H. Ji, C. Shi, B. Wang, C. Peng, Y. P., and Y. Ye,
“Heterogeneous graph attention network,” in WWW, 2019.

[100] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE transactions on pattern

analysis and machine intelligence, vol. 29, no. 11, pp. 1944–1957,
2007.

[101] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” in Proc. of ICLR, 2016.

[102] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proc. of

ICML, 2019, pp. 3734–3743.

[103] F. Scarselli, A. C. Tsoi, and M. Hagenbuchner, “The vapnik–
chervonenkis dimension of graph and recursive neural networks,”
Neural Networks, vol. 108, pp. 248–259, 2018.

[104] H. Maron, H. Ben-Hamu, N. Shamir, and Y. Lipman, “Invariant and
equivariant graph networks,” in ICLR, 2019.

[105] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, vol. 2, no. 5,
pp. 359–366, 1989.

[106] B. Hammer, A. Micheli, and A. Sperduti, “Universal approximation
capability of cascade correlation for structures,” Neural Computation,
vol. 17, no. 5, pp. 1109–1159, 2005.

[107] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “Computational capabilities of graph neural networks,” IEEE

Transactions on Neural Networks, vol. 20, no. 1, pp. 81–102, 2008.

[108] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.

of ICML. ACM, 2008, pp. 1096–1103.

[109] S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning
graph embedding with adversarial training methods,” IEEE Transac-

tions on Cybernetics, 2019.

[110] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Proc. of NIPS, 2014, pp. 2672–2680.

[111] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-
Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre,
T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical
design using a data-driven continuous representation of molecules,”
ACS central science, vol. 4, no. 2, pp. 268–276, 2018.

[112] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar
variational autoencoder,” in Proc. of ICML, 2017.

[113] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song, “Syntax-directed
variational autoencoder for molecule generation,” in Proc. of ICLR,
2018.

[114] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in ESWC. Springer, 2018, pp. 593–607.

[115] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Proc. of NIPS, 2017, pp.
5767–5777.

[116] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv

preprint arXiv:1701.07875, 2017.

[117] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI magazine, vol. 29,
no. 3, p. 93, 2008.

[118] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in Proc. of KDD.
ACM, 2008, pp. 990–998.

[119] M. Zitnik and J. Leskovec, “Predicting multicellular function through
multi-layer tissue networks,” Bioinformatics, vol. 33, no. 14, pp. i190–
i198, 2017.

[120] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor
spaces for chemical compound retrieval and classification,” Knowledge

and Information Systems, vol. 14, no. 3, pp. 347–375, 2008.

[121] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shuster-
man, and C. Hansch, “Structure-activity relationship of mutagenic aro-
matic and heteroaromatic nitro compounds. correlation with molecular

orbital energies and hydrophobicity,” Journal of medicinal chemistry,
vol. 34, no. 2, pp. 786–797, 1991.

[122] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from
non-enzymes without alignments,” Journal of molecular biology, vol.
330, no. 4, pp. 771–783, 2003.

[123] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J.
Smola, and H.-P. Kriegel, “Protein function prediction via graph
kernels,” Bioinformatics, vol. 21, no. suppl 1, pp. i47–i56, 2005.

[124] H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma,
“Statistical evaluation of the predictive toxicology challenge 2000–
2001,” Bioinformatics, vol. 19, no. 10, pp. 1183–1193, 2003.

[125] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld,
“Quantum chemistry structures and properties of 134 kilo molecules,”
Scientific data, vol. 1, p. 140022, 2014.

[126] G. Chen, P. Chen, C.-Y. Hsieh, C.-K. Lee, B. Liao, R. Liao, W. Liu,
J. Qiu, Q. Sun, J. Tang et al., “Alchemy: A quantum chemistry dataset
for benchmarking ai models,” arXiv preprint arXiv:1906.09427, 2019.

[127] L. Tang and H. Liu, “Relational learning via latent social dimensions,”
in Proc. of KDD. ACM, 2009, pp. 817–826.

[128] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[129] H. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M.
Patel, R. Ramakrishnan, and C. Shahabi, “Big data and its technical
challenges,” Communications of the ACM, vol. 57, no. 7, pp. 86–94,
2014.

[130] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr,
and T. M. Mitchell, “Toward an architecture for never-ending language
learning.” in Proc. of AAAI, 2010, pp. 1306–1313.

[131] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann, “Pitfalls
of graph neural network evaluation,” in NeurIPS workshop, 2018.

[132] Anonymous, “A fair comparison of graph neural networks for graph
classification,” in Submitted to ICLR, 2020, under review. [Online].
Available: https://openreview.net/forum?id=HygDF6NFPB

[133] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma, Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li,
A. J. Smola, and Z. Zhang, “Deep graph library: Towards efficient and
scalable deep learning on graphs,” in ICLR Workshop on Representation

Learning on Graphs and Manifolds, 2019.

[134] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “Mgae: Marginalized
graph autoencoder for graph clustering,” in Proc. of CIKM. ACM,
2017, pp. 889–898.

[135] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proc. of NeurIPS, 2018.

[136] T. Kawamoto, M. Tsubaki, and T. Obuchi, “Mean-field theory of graph
neural networks in graph partitioning,” in Proc. of NeurIPS, 2018, pp.
4362–4372.

[137] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation
by iterative message passing,” in Proc. of CVPR, vol. 2, 2017.

[138] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh, “Graph r-cnn for scene
graph generation,” in Proc. of ECCV. Springer, 2018, pp. 690–706.

[139] Y. Li, W. Ouyang, B. Zhou, J. Shi, C. Zhang, and X. Wang, “Fac-
torizable net: an efficient subgraph-based framework for scene graph
generation,” in Proc. of ECCV. Springer, 2018, pp. 346–363.

[140] J. Johnson, A. Gupta, and L. Fei-Fei, “Image generation from scene
graphs,” in Proc. of CVPR, 2018.

[141] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM

Transactions on Graphics (TOG), 2019.

[142] L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic
segmentation with superpoint graphs,” in Proc. of CVPR, 2018.

[143] G. Te, W. Hu, A. Zheng, and Z. Guo, “Rgcnn: Regularized graph cnn
for point cloud segmentation,” in 2018 ACM Multimedia Conference

on Multimedia Conference. ACM, 2018, pp. 746–754.

[144] S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu, “Learning human-object
interactions by graph parsing neural networks,” in Proc. of ECCV.
Springer, 2018, pp. 401–417.

[145] V. G. Satorras and J. B. Estrach, “Few-shot learning with graph neural
networks,” in Proc. of ICLR, 2018.

[146] M. Guo, E. Chou, D.-A. Huang, S. Song, S. Yeung, and L. Fei-Fei,
“Neural graph matching networks for fewshot 3d action recognition,”
in Proc. of ECCV. Springer, 2018, pp. 673–689.

[147] L. Liu, T. Zhou, G. Long, J. Jiang, L. Yao, and C. Zhang, “Prototype
propagation networks (ppn) for weakly-supervised few-shot learning
on category graph,” in Proc. of IJCAI, 2019.

https://openreview.net/forum?id=HygDF6NFPB

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 21

[148] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3d graph neural
networks for rgbd semantic segmentation,” in Proc. of CVPR, 2017,
pp. 5199–5208.

[149] L. Yi, H. Su, X. Guo, and L. J. Guibas, “Syncspeccnn: Synchronized
spectral cnn for 3d shape segmentation.” in Proc. of CVPR, 2017, pp.
6584–6592.

[150] X. Chen, L.-J. Li, L. Fei-Fei, and A. Gupta, “Iterative visual reasoning
beyond convolutions,” in Proc. of CVPR, 2018.

[151] M. Narasimhan, S. Lazebnik, and A. Schwing, “Out of the box:
Reasoning with graph convolution nets for factual visual question
answering,” in Proc. of NeurIPS, 2018, pp. 2655–2666.

[152] D. Marcheggiani and I. Titov, “Encoding sentences with graph con-
volutional networks for semantic role labeling,” in Proc. of EMNLP,
2017, pp. 1506–1515.

[153] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph
convolutional encoders for syntax-aware neural machine translation,”
in Proc. of EMNLP, 2017, pp. 1957–1967.

[154] D. Marcheggiani, J. Bastings, and I. Titov, “Exploiting semantics in
neural machine translation with graph convolutional networks,” in Proc.

of NAACL, 2018.

[155] L. Song, Y. Zhang, Z. Wang, and D. Gildea, “A graph-to-sequence
model for amr-to-text generation,” in Proc. of ACL, 2018.

[156] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using
gated graph neural networks,” in Proc. of ACL, 2018.

[157] D. D. Johnson, “Learning graphical state transitions,” in Proc. of ICLR,
2016.

[158] B. Chen, L. Sun, and X. Han, “Sequence-to-action: End-to-end seman-
tic graph generation for semantic parsing,” in Proc. of ACL, 2018, pp.
766–777.

[159] H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and
Z. Li, “Deep multi-view spatial-temporal network for taxi demand
prediction,” in Proc. of AAAI, 2018, pp. 2588–2595.

[160] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in WWW, 2015, pp. 1067–1077.

[161] R. van den Berg, T. N. Kipf, and M. Welling, “Graph convolutional
matrix completion,” stat, vol. 1050, p. 7, 2017.

[162] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale
recommender systems,” in Proc. of KDD. ACM, 2018, pp. 974–983.

[163] F. Monti, M. Bronstein, and X. Bresson, “Geometric matrix completion
with recurrent multi-graph neural networks,” in Proc. of NIPS, 2017,
pp. 3697–3707.

[164] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface
prediction using graph convolutional networks,” in Proc. of NIPS, 2017,
pp. 6530–6539.

[165] J. You, B. Liu, R. Ying, V. Pande, and J. Leskovec, “Graph convolu-
tional policy network for goal-directed molecular graph generation,” in
Proc. of NeurIPS, 2018.

[166] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” in Proc. of ICLR, 2017.

[167] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf: Social
influence prediction with deep learning,” in Proc. of KDD. ACM,
2018, pp. 2110–2119.

[168] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on
neural networks for graph data,” in Proc. of KDD. ACM, 2018, pp.
2847–2856.

[169] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “Gram:
graph-based attention model for healthcare representation learning,” in
Proc. of KDD. ACM, 2017, pp. 787–795.

[170] E. Choi, C. Xiao, W. Stewart, and J. Sun, “Mime: Multilevel medical
embedding of electronic health records for predictive healthcare,” in
Proc. of NeurIPS, 2018, pp. 4548–4558.

[171] J. Kawahara, C. J. Brown, S. P. Miller, B. G. Booth, V. Chau, R. E.
Grunau, J. G. Zwicker, and G. Hamarneh, “Brainnetcnn: convolutional
neural networks for brain networks; towards predicting neurodevelop-
ment,” NeuroImage, vol. 146, pp. 1038–1049, 2017.

[172] T. H. Nguyen and R. Grishman, “Graph convolutional networks with
argument-aware pooling for event detection,” in Proc. of AAAI, 2018,
pp. 5900–5907.

[173] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph
convolutional networks and guided tree search,” in Proc. of NeurIPS,
2018, pp. 536–545.

[174] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of CVPR, 2016, pp. 770–778.

APPENDIX

A. Data Set

Citation Networks consist of papers, authors, and their re-

lationships such as citations, authorship, and co-authorship.

Although citation networks are directed graphs, they are often

treated as undirected graphs in evaluating model performance

with respect to node classification, link prediction, and node

clustering tasks. There are three popular data sets for paper-

citation networks, Cora, Citeseer and Pubmed. The Cora data

set contains 2708 machine learning publications grouped into

seven classes. The Citeseer data set contains 3327 scientific

papers grouped into six classes. Each paper in Cora and

Citeseer is represented by a one-hot vector indicating the

presence or absence of a word from a dictionary. The Pubmed

data set contains 19717 diabetes-related publications. Each

paper in Pubmed is represented by a term frequency-inverse

document frequency (TF-IDF) vector. Furthermore, DBLP is

a large citation data set with millions of papers and authors

which are collected from computer science bibliographies. The

raw data set of DBLP can be found on https://dblp.uni-trier.de.

A processed version of the DBLP paper-citation network is

updated continuously by https://aminer.org/citation.

TABLE VII: Reported experimental results for node clas-

sification on five frequently used data sets. Cora, Citeseer,

and Pubmed are evaluated by classification accuracy. PPI and

Reddit are evaluated by micro-averaged F1 score.

Method Cora Citeseer Pubmed PPI Reddit

SSE (2018) - - - 83.60 -

GCN (2016) 81.50 70.30 79.00 - -

Cayleynets (2017) 81.90 - - - -

DualGCN (2018) 83.50 72.60 80.00 - -

GraphSage (2017) - - - 61.20 95.40

GAT (2017) 83.00 72.50 79.00 97.30 -

MoNet (2017) 81.69 - 78.81 - -

LGCN (2018) 83.30 73.00 79.50 77.20 -

GAAN (2018) - - - 98.71 96.83

FastGCN (2018) - - - - 93.70

StoGCN (2018) 82.00 70.90 78.70 97.80 96.30

Huang et al. (2018) - - - - 96.27

GeniePath (2019) - - 78.50 97.90 -

DGI (2018) 82.30 71.80 76.80 63.80 94.00

Cluster-GCN (2019) - - - 99.36 96.60

Biochemical Graphs Chemical molecules and compounds can

be represented by chemical graphs with atoms as nodes and

chemical bonds as edges. This category of graphs is often used

to evaluate graph classification performance. The NCI-1 and

NCI-9 data set contain 4110 and 4127 chemical compounds

respectively, labeled as to whether they are active to hinder

the growth of human cancer cell lines. The MUTAG data set

contains 188 nitro compounds, labeled as to whether they are

aromatic or heteroaromatic. The D&D and PROTEIN data

set represent proteins as graphs, labeled as to whether they

are enzymes or non-enzymes. The PTC data set consists of

344 chemical compounds, labeled as to whether they are

carcinogenic for male and female rats. The QM9 data set

records 13 physical properties of 133885 molecules with up

to 9 heavy atoms. The Alchemy data set records 12 quantum

mechanical properties of 119487 molecules comprising up to

https://dblp.uni-trier.de
https://aminer.org/citation

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2019 22

TABLE VIII: A Summary of Open-source Implementations

Model Framework Github Link

GGNN (2015) torch https://github.com/yujiali/ggnn

SSE (2018) c https://github.com/Hanjun-Dai/steady state embedding

ChebNet (2016) tensorflow https://github.com/mdeff/cnn graph

GCN (2017) tensorflow https://github.com/tkipf/gcn

CayleyNet (2017) tensorflow https://github.com/amoliu/CayleyNet.

DualGCN (2018) theano https://github.com/ZhuangCY/DGCN

GraphSage (2017) tensorflow https://github.com/williamleif/GraphSAGE

GAT (2017) tensorflow https://github.com/PetarV-/GAT

LGCN (2018) tensorflow https://github.com/divelab/lgcn/

PGC-DGCNN (2018) pytorch https://github.com/dinhinfotech/PGC-DGCNN

FastGCN (2018) tensorflow https://github.com/matenure/FastGCN

StoGCN (2018) tensorflow https://github.com/thu-ml/stochastic gcn

DGCNN (2018) torch https://github.com/muhanzhang/DGCNN

DiffPool (2018) pytorch https://github.com/RexYing/diffpool

DGI (2019) pytorch https://github.com/PetarV-/DGI

GIN (2019) pytorch https://github.com/weihua916/powerful-gnns

Cluster-GCN (2019) pytorch https://github.com/benedekrozemberczki/ClusterGCN

DNGR (2016) matlab https://github.com/ShelsonCao/DNGR

SDNE (2016) tensorflow https://github.com/suanrong/SDNE

GAE (2016) tensorflow https://github.com/limaosen0/Variational-Graph-Auto-Encoders

ARVGA (2018) tensorflow https://github.com/Ruiqi-Hu/ARGA

DRNE (2016) tensorflow https://github.com/tadpole/DRNE

GraphRNN (2018) tensorflow https://github.com/snap-stanford/GraphRNN

MolGAN (2018) tensorflow https://github.com/nicola-decao/MolGAN

NetGAN (2018) tensorflow https://github.com/danielzuegner/netgan

GCRN (2016) tensorflow https://github.com/youngjoo-epfl/gconvRNN

DCRNN (2018) tensorflow https://github.com/liyaguang/DCRNN

Structural RNN (2016) theano https://github.com/asheshjain399/RNNexp

CGCN (2017) tensorflow https://github.com/VeritasYin/STGCN IJCAI-18

ST-GCN (2018) pytorch https://github.com/yysijie/st-gcn

GraphWaveNet (2019) pytorch https://github.com/nnzhan/Graph-WaveNet

ASTGCN (2019) mxnet https://github.com/Davidham3/ASTGCN

14 heavy atoms. Another important data set is the Protein-

Protein Interaction network (PPI). It contains 24 biological

graphs with nodes represented by proteins and edges repre-

sented by the interactions between proteins. In PPI, each graph

is associated with one human tissue. Each node is labeled with

its biological states.

Social Networks are formed by user interactions from online

services such as BlogCatalog and Reddit. The BlogCatalog

data set is a social network which consists of bloggers and

their social relationships. The classes of bloggers represent

their personal interests. The Reddit data set is an undirected

graph formed by posts collected from the Reddit discussion

forum. Two posts are linked if they contain comments by the

same user. Each post has a label indicating the community to

which it belongs.

Others There are several other data sets worth mentioning.

The MNIST data set contains 70000 images of size 28 × 28
labeled with ten digits. An MNINST image is converted to a

graph by constructing an 8-nearest-neighbors graph based on

its pixel locations. The METR-LA is a spatial-temporal graph

data set. It contains four months of traffic data collected by

207 sensors on the highways of Los Angeles County. The

adjacency matrix of the graph is computed by the sensor

network distance with a Gaussian threshold. The NELL data

set is a knowledge graph obtained from the Never-Ending

Language Learning project. It consists of facts represented by

a triplet which involves two entities and their relation.

B. Reported Experimental Results for Node Classification

A summarization of experimental results of methods which

follow a standard train/valid/test split is given in Table VII.

C. Open-source Implementations

Here we summarize the open-source implementations of

graph neural networks reviewed in the survey. We provide the

hyperlinks of the source codes of the GNN models in table

VIII.

https://github.com/yujiali/ggnn
https://github.com/Hanjun-Dai/steady_state_embedding
https://github.com/mdeff/cnn_graph
https://github.com/tkipf/gcn
https://github.com/amoliu/CayleyNet
https://github.com/ZhuangCY/DGCN
https://github.com/williamleif/GraphSAGE
https://github.com/PetarV-/GAT
https://github.com/divelab/lgcn/
https://github.com/dinhinfotech/PGC-DGCNN
https://github.com/matenure/FastGCN
https://github.com/thu-ml/stochastic_gcn
https://github.com/muhanzhang/DGCNN
https://github.com/RexYing/diffpool
https://github.com/PetarV-/DGI
https://github.com/weihua916/powerful-gnns
https://github.com/benedekrozemberczki/ClusterGCN
https://github.com/ShelsonCao/DNGR
https://github.com/suanrong/SDNE
https://github.com/limaosen0/Variational-Graph-Auto-Encoders
https://github.com/Ruiqi-Hu/ARGA
https://github.com/tadpole/DRNE
https://github.com/snap-stanford/GraphRNN
https://github.com/nicola-decao/MolGAN
https://github.com/danielzuegner/netgan
https://github.com/youngjoo-epfl/gconvRNN
https://github.com/liyaguang/DCRNN
https://github.com/asheshjain399/RNNexp
https://github.com/VeritasYin/STGCN_IJCAI-18
https://github.com/yysijie/st-gcn
https://github.com/nnzhan/Graph-WaveNet
https://github.com/Davidham3/ASTGCN

	I Introduction
	II Background & Definition
	II-A Background
	II-B Definition

	III Categorization and Frameworks
	III-A Taxonomy of Graph Neural Networks (GNNs)
	III-B Frameworks

	IV Recurrent Graph Neural Networks
	V Convolutional Graph Neural Networks
	V-A Spectral-based ConvGNNs
	V-B Spatial-based ConvGNNs
	V-C Graph Pooling Modules
	V-D Discussion of Theoretical Aspects

	VI Graph autoencoders
	VI-A Network Embedding
	VI-B Graph Generation

	VII Spatial-temporal Graph Neural Networks
	VIII Applications
	VIII-A Data Sets
	VIII-B Evaluation & Open-source Implementations
	VIII-C Practical Applications

	IX Future Directions
	X Conclusion
	References
	X-A Data Set
	X-B Reported Experimental Results for Node Classification
	X-C Open-source Implementations

