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Abstract

Machine Learning (ML) has been enjoying an unprecedented surge in applications that solve problems and enable
automation in diverse domains. Primarily, this is due to the explosion in the availability of data, significant
improvements in ML techniques, and advancement in computing capabilities. Undoubtedly, ML has been applied to

various mundane and complex problems arising in network operation and management. There are various surveys on
ML for specific areas in networking or for specific network technologies. This survey is original, since it jointly presents
the application of diverse ML techniques in various key areas of networking across different network technologies. In

this way, readers will benefit from a comprehensive discussion on the different learning paradigms and ML
techniques applied to fundamental problems in networking, including traffic prediction, routing and classification,
congestion control, resource and fault management, QoS and QoE management, and network security. Furthermore,

this survey delineates the limitations, give insights, research challenges and future opportunities to advance ML in
networking. Therefore, this is a timely contribution of the implications of ML for networking, that is pushing the
barriers of autonomic network operation and management.
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1 Introduction
Machine learning (ML) enables a system to scrutinize data

and deduce knowledge. It goes beyond simply learning or

extracting knowledge, to utilizing and improving knowl-

edge over time and with experience. In essence, the goal of

ML is to identify and exploit hidden patterns in “training”

data. The patterns learnt are used to analyze unknown

data, such that it can be grouped together or mapped to

the known groups. This instigates a shift in the traditional

programming paradigm, where programs are written to

automate tasks. ML creates the program (i.e. model) that

fits the data. Recently, ML is enjoying renewed interest.

EarlyML techniques were rigid and incapable of tolerating

any variations from the training data [134].
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Recent advances in ML have made these techniques

flexible and resilient in their applicability to various real-

world scenarios, ranging from extraordinary to mundane.

For instance, ML in health care has greatly improved

the areas of medical imaging and computer-aided diag-

nosis. Ordinarily, we often use technological tools that

are founded upon ML. For example, search engines

extensively use ML for non-trivial tasks, such as query

suggestions, spell correction, web indexing and page rank-

ing. Evidently, as we look forward to automating more

aspects of our lives, ranging from home automation to

autonomous vehicles, ML techniques will become an

increasingly important facet in various systems that aid in

decision making, analysis, and automation.

Apart from the advances in ML techniques, various

other factors contribute to its revival. Most importantly,

the success of ML techniques relies heavily on data [77].

Undoubtedly, there is a colossal amount of data in todays’

networks, which is bound to grow further with emerging
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networks, such as the Internet of Things (IoT) and its

billions of connected devices [162]. This encourages the

application of ML that not only identifies hidden and

unexpected patterns, but can also be applied to learn and

understand the processes that generate the data.

Recent advances in computing offer storage and pro-

cessing capabilities required for training and testing ML

models for the voluminous data. For instance, Cloud

Computing offers seemingly infinite compute and storage

resources, while Graphics Processing Units [342] (GPUs)

and Tensor Processing Units [170] (TPUs) provide accel-

erated training and inference for voluminous data. It

is important to note that a trained ML model can

be deployed for inference on less capable devices e.g.

smartphones. Despite these advances, network opera-

tions and management still remains cumbersome, and

network faults are prevalent primarily due to human

error [291]. Network faults lead to financial liability and

defamation in reputation of network providers. There-

fore, there is immense interest in building autonomic (i.e.

self-configuring, self-healing, self-optimizing and self-

protecting) networks [28] that are highly resilient.

Though, there is a dire need for cognitive control in net-

work operation and management [28], it poses a unique

set of challenges for ML. First, each network is unique

and there is a lack of enforcement of standards to attain

uniformity across networks. For instance, the enterprise

network from one organization is diverse and disparate

from another. Therefore, the patterns proven to work in

one network may not be feasible for another network of

the same kind. Second, the network is continually evolving

and the dynamics inhibit the application of a fixed set of

patterns that aid in network operation and management.

It is almost impossible to manually keep up with network

administration, due to the continuous growth in the num-

ber of applications running in the network and the kinds

of devices connected to the network.

Key technological advances in networking, such as net-

work programmability via Software-Defined Networking

(SDN), promote the applicability of ML in networking.

Though, ML has been extensively applied to problems in

pattern recognition, speech synthesis, and outlier detec-

tion, its successful deployment for network operations and

management has been limited. Themain obstacles include

what data can be collected from and what control actions

can be exercised on legacy network devices. The ability to

program the network by leveraging SDN alleviates these

obstacles. The cognition from ML can be used to aid in

the automation of network operation and management

tasks. Therefore, it is exciting and non-trivial to apply

ML techniques for such diverse and complex problems in

networking. This makes ML in networking an interesting

research area, and requires an understanding of the ML

techniques and the problems in networking.

In this paper, we discuss the advances made in the

application ofML in networking.We focus on traffic engi-

neering, performance optimization and network security.

In traffic engineering, we discuss traffic prediction, clas-

sification and routing that are fundamental in providing

differentiated and prioritized services. In performance

optimization, we discuss application of ML techniques in

the context of congestion control, QoS/QoE correlation,

and resource and fault management. Undoubtedly, secu-

rity is a cornerstone in networking and in this regard,

we highlight existing efforts that use ML techniques for

network security.

The primary objective of this survey is to provide a

comprehensive body of knowledge on ML techniques

in support of networking. Furthermore, we complement

the discussion with key insights into the techniques

employed, their benefits, limitations and their feasibility

to real-world networking scenarios. Our contributions are

summarized as follows:

– A comprehensive view of ML techniques in network-
ing. We review literature published in peer-reviewed

venues over the past two decades that have high

impact and have been well received by peers. The

works selected and discussed in this survey are com-

prehensive in the advances made for networking. The

key criteria used in the selection is a combination of

the year of publication, citation count and merit. For

example, consider two papers A and B published in

the same year with citation counts x and y, respec-
tively. If x is significantly larger than y, A would be

selected for discussion. However, upon evaluating B,
if it is evidenced that it presents original ideas, criti-

cal insights or lessons learnt, then it is also selected for

discussion due to its merit, despite the lower citation

count.

– A purposeful discussion on the feasibility of the ML
techniques for networking. We explore ML tech-

niques in networking, including their benefits and

limitations. It is important to realize that our coverage

of networking aspects are not limited to a specific net-

work technology (e.g. cellular network, wireless sensor

network (WSN), mobile ad hoc network (MANET),

cognitive radio network (CRN)). This gives readers

a broad view of the possible solutions to networking

problems across network technologies.

– Identification of key challenges and future research
opportunities. The presented discussion on ML-

based techniques in networking uncovers fundamen-

tal research challenges that confront networking and

inhibit ultimate cognition in network operation and

management. A discussion of these opportunities will

motivate future work and push the boundaries of

networking.



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 3 of 99

Though there are various surveys on ML in network-

ing [18, 61, 82, 142, 246, 339], this survey is purposefully

different. Primarily, this is due to its timeliness, the com-

prehensiveness of ML techniques covered, and the vari-

ous aspects of networking discussed, irrespective of the

network technology. For instance, Nguyen and Armitage

[339], though impactful, is now dated and only addresses

traffic classification in networking. Whereas, Fadlullah

et al. [142] and Buczak et al. [82], both state-of-the-

art surveys, have a specialized treatment of ML to spe-

cific problems in networking. On the other hand, Klaine

et al. [246], Bkassiny et al. [61] and Alsheikh et al. [18],

though comprehensive in their coverage ofML techniques

in networking, are specialized to specific network tech-

nology i.e. cellular network, CRN and WSN, respectively.

Therefore, our survey provides a holistic view of the appli-

cability, challenges and limitations of ML techniques in

networking.

We organize the remainder of this paper as follows.

In Section 2, we provide a primer on ML, which dis-

cusses different categories of ML-based techniques, their

essential constituents and their evolution. Sections 3, 4

and 5 discuss the application of the various ML-based

techniques for traffic prediction, classification and rout-

ing, respectively. We present the ML-based advances in

performance management, with respect to congestion

control, resource management, fault management, and

QoS/QoE management for networking in Sections 6, 7, 8

and 9. In Section 10, we examine the benefits of ML for

anomaly and misuse detection for intrusion detection in

networking. Finally, we delineate the lessons learned, and

future research challenges and opportunities for ML in

networking in Section 11. We conclude in Section 12 with

a brief overview of our contributions. To facilitate reading,

Fig. 1 presents a conceptual map of the survey, and Table 1

provides the list of acronyms and definitions for ML.

2 Machine learning for networking—a primer
In 1959, Arthur Samuel coined the term “Machine Learn-

ing”, as “the field of study that gives computers the ability to

learn without being explicitly programmed” [369]. There

are four broad categories of problems that can leverage

ML, namely, clustering, classification, regression and rule

extraction [79]. In clustering problems, the objective is

to group similar data together, while increasing the gap

between the groups.Whereas, in classification and regres-

sion problems, the goal is to map a set of new input data to

a set of discrete or continuous valued output, respectively.

Rule extraction problems are intrinsically different, where

the goal is to identify statistical relationships in data.

ML techniques have been applied to various problem

domains. A closely related domain consists of data anal-

ysis for large databases, called data mining [16]. Though,

ML techniques can be applied to aid in data mining, the

goal of data mining problems is to critically and metic-

ulously analyze data—its features, variables, invariants,

temporal granularity, probability distributions and their

transformations. However, ML goes beyond data mining

to predict future events or sequence of events.

Generally, ML is ideal for inferring solutions to prob-

lems that have a large representative dataset. In this way,

as illustrated in Fig. 2, ML techniques are designed to

identify and exploit hidden patterns in data for (i) describ-

ing the outcome as a grouping of data for clustering

problems, (ii) predicting the outcome of future events for

classification and regression problems, and (iii) evaluat-

ing the outcome of a sequence of data points for rule

extraction problems. Though, the figure illustrates data

and outcome in a two-dimensional plane, the discus-

sion holds for multi-dimensional datasets and outcome

functions. For instance, in the case of clustering, the out-

come can be a non-linear function in a hyperplane that

discriminates between groups of data. Networking prob-

lems can be formulated as one of these problems that

can leverage ML. For example, a classification problem in

networking can be formulated to predict the kind of secu-

rity attack: Denial-of-Service (DoS), User-to-Root (U2R),

Root-to-Local (R2L), or probing, given network condi-

tions. Whereas, a regression problem can be formulated

to predict of when a future failure will transpire.

Though there are different categories of problems that

enjoy the benefits of ML, there is a generic approach

to building ML-based solutions. Figure 3 illustrates the

key constituents in designing ML-based solutions for net-

working. Data collection pertains to gathering, generating

and, or defining the set of data and the set of classes

of interest. Feature engineering is used to reduce dimen-

sionality in data and identify discriminating features that

reduce computational overhead and increase accuracy.

Finally, ML techniques carefully analyze the complex

inter- and intra-relationships in data and learn a model for

the outcome.

For instance, consider an example of Gold values over

time, as illustrated in Fig. 2c. Naïvely, a linear regression

model, shown as a best-fit line through the historical data,

can facilitate in predicting future values of Gold. There-

fore, once the ML model is built, it can be deployed to

deduce outcomes from new data. However, the outcomes

are periodically validated, since they can drift over time,

known as concept drifting. This can be used as an indi-

cator for incremental learning and re-training of the ML

model. In the following subsections, we discuss each of the

components in Fig. 3.

2.1 Learning paradigms

There are four learning paradigms in ML, supervised,

unsupervised, semi-supervised and reinforcement learn-

ing. These paradigms influence data collection, feature
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Fig. 1 Conceptual map of the survey

engineering, and establishing ground truth. Recall, the

objective is to infer an outcome, given some dataset.

The dataset used in constructing the ML model is

often denoted as training data and labels are associ-

ated with training data if the user is aware of the

description of the data. The outcome is often per-

ceived as the identification of membership to a class of

interest.

There are two schools of thought on the methodol-

ogy for learning; generative and discriminative [333]. The

basis for the learning methodologies is rooted in the

famous Bayes’ theorem for conditional probability and

the fundamental rule that relates joint probability to con-

ditional probability. Bayes’ theorem is stated as follows.

Given two events A and B, the conditional probability is

defined as

P(A | B) =
P(B | A) × P(A)

P(B)
,

which is also stated as

posterior =
likelihood × prior

evidence
.
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Table 1 List of acronyms for machine learning

AdaBoost Adaptive Boosting

AIWPSO Adaptive Inertia Weight Particle Swarm Optimization

BN Bayesian Network

BNN Bayesian Neural Network

BP BackPropagation

CALA Continuous Action-set Learning Automata

CART Classification and Regression Tree

CMAC Cerebellar Model Articulation Controller

DBN Deep belief Network

DBSCAN Density-based Spatial Clustering of Applications with Noise

DE Differential Evolution

DL Deep Learning

DNN Deep Neural Network

DQN Deep Q-Network

DT Decision Tree

EM Expectation Maximization

EMD Entropy Minimization Discretization

FALA Finite Action-set Learning Automata

FCM Fuzzy C Means

FNN Feedforward Neural Network

GD Gradient Descent

HCA Hierarchical Clustering Analysis

HMM Hidden Markov Model

HNN Hopfield Neural Network

ID3 Iterative Dichotomiser 3

k-NN k-Nearest Neighbor

KDE Kernel Density Estimation

LDA Linear Discriminant Analysis

LSTM Long Short-term Memory

LVQ Learning Vector Quantization

MART Multiple Additive Regression Tree

MaxEnt Maximum Entropy

MDP Markov Decision Process

ML Machine Learning

MLP Multi-layer Perceptron

NB Naïve Bayes

NBKE Naïve Bayes with Kernel Estimation

NN Neural Network

OLS Ordinary Least Squares

PCA Principal Component Analysis

PNN Probabilistic Neural Network

POMDP Partially Observable Markov Decision Process

RandNN Random Neural Network

RBF Radial Basis Function

RBFNN Radial Basis Function Neural Network

Table 1 List of acronyms for machine learning (Continued)

RBM Restricted Boltzman Machines

REPTree Reduced Error Pruning Tree

RF Random Forest

RIPPER Repeated Incremental Pruning to Produce Error Reduction

RL Reinforcement Learning

RNN Recurrent Neural Network

SARSA State-Action-Reward-State-Action

SGBoost Stochastic Gradient Boosting

SHLLE Supervised Hessian Locally Linear Embedding

SLP Single-Layer Perceptron

SOM Self-Organizing Map

STL Selt-Taught Learning

SVM Support Vector Machine

SVR Support Vector Regression

TD Temporal Difference

THAID THeta Automatic Interaction Detection

TLFN Time-Lagged Feedforward Neural Network

WMA Weighted Majority Algorithm

XGBoost eXtreme Gradient Boosting

The joint probability P(A, B) of events A and B

is P(A ∩ B) = P(B | A) × P(A), and the con-

ditional probability is the normalized joint probabil-

ity. The generative methodology aims at modeling the

joint probability P(A, B) by predicting the conditional

probability. On the other hand, in the discriminative

methodology a function is learned for the conditional

probability.

Supervised learning uses labeled training datasets to

create models. There are various methods for labeling

datasets known as ground truth (cf., Section 2.4). This

learning technique is employed to “learn” to identify

patterns or behaviors in the “known” training datasets.

Typically, this approach is used to solve classification

and regression problems that pertain to predicting dis-

crete or continuous valued outcomes, respectively. On

the other hand, it is possible to employ semi-supervised

ML techniques in the face of partial knowledge. That

is, having incomplete labels for training data or miss-

ing labels. Unsupervised learning uses unlabeled training

datasets to create models that can discriminate between

patterns in the data. This approach is most suited for

clustering problems. For instance, outliers detection and

density estimation problems in networking, can pertain

to grouping different instances of attacks based on their

similarities.

Reinforcement learning (RL) is an agent-based itera-

tive process for modeling problems for decision making.
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a b c d

Fig. 2 Problem categories that benefit from machine learning. a Clustering. b Classification. c Regression. d Rule extraction

Generally, learning is based on exemplars from training

datasets. However, in RL there is an agent that interacts

with the external world, and instead of being taught by

exemplars, it learns by exploring the environment and

exploiting the knowledge. The actions are rewarded or

Fig. 3 The constituents of ML-based solutions

penalized. Therefore, the training data in RL constitutes

a set of state-action pairs and rewards (or penalties). The

agent uses feedback from the environment to learn the

best sequence of actions or “policy” to optimize a cumu-

lative reward. For example, rule extraction from the data

that is statistically supported and not predicted. Unlike,

generative and discriminative approaches that are myopic

in nature, RL may sacrifice immediate gains for long-

term rewards. Hence, RL is best suited for making cog-

nitive choices, such as decision making, planning and

scheduling [441].

It is important to note that there is a strong relation-

ship between the training data, problem and the learning

paradigm. For instance, it is possible that due to lack of

knowledge about the training data, supervised learning

cannot be employed and other learning paradigms have to

be employed for model construction.

2.2 Data collection

ML techniques require representative data, possibly with-

out bias, to build an effective ML model for a given

networking problem. Data collection is an important step,

since representative datasets vary not only from one prob-

lem to another but also from one time period to the

next. In general, data collection can be achieved in two

phases—offline and online [460]. Offline data collection

allows to gather a large amount of historical data that can

be used for model training and testing. Whereas, real-

time network data collected in the online phase can be

used as feedback to the model, or as input for re-training

the model. Offline data can also be obtained from var-

ious repositories, given it is relevant to the networking

problem being studied. Examples of these repositories

include Waikato Internet Traffic Storage (WITS) [457],

UCI Knowledge Discovery in Databases (KDD) Archive

[450], Measurement and Analysis on the WIDE Internet

(MAWI)Working Group Traffic Archive [474], and Infor-

mation Marketplace for Policy and Analysis of Cyber-risk

& Trust (IMPACT) Archive [202].

An effective way to collect both offline and online data is

by using monitoring and measurement tools. These tools
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provide greater control in various aspects of data col-

lection, such as data sampling rate, monitoring duration

and location (e.g. network core vs. network edge). They

often use network monitoring protocols, such as Simple

NetworkManagement Protocol (SNMP) [208], Cisco Net-

Flow [100], and IP Flow Information Export (IPFIX) [209].

However, monitoring can be active or passive [152]. Active

monitoring injects measurement traffic, such as probe

packets in the network and collects relevant data from

this traffic. In contrast, passive monitoring collects data

by observing the actual network traffic. Evidently, active

monitoring introduces additional overhead due to band-

width consumption from injected traffic. Whereas, pas-

sive monitoring eliminates this overhead, at the expense

of additional devices that analyze the network traffic to

gather relevant information.

Once data is collected, it is decomposed into training,

validation (also called development set or the “dev set”),

and test datasets. The training set is leveraged to find

the ideal parameters (e.g. weights of connections between

neurons in a Neural Network (NN)) of a ML model.

Whereas, the validation set is used to choose the suitable

architecture (e.g. the number of hidden layers in a NN) of

aMLmodel, or choose amodel from a pool ofMLmodels.

Note, if a ML model and its architecture are pre-selected,

there is no need for a validation set. Finally, test set is used

to assess the unbiased performance of the selected model.

Note, validation and testing can be performed using one of

two methods—holdout or k-fold cross-validation. In the

holdout method, part of the available dataset is set aside

and used as a validation (or testing) set. Whereas, in the

k-fold cross-validation, the available dataset is randomly

divided into k equal subsets. Validation (or testing) pro-

cess is repeated k times, with k − 1 unique subsets for

training and the remaining subset for validating (or test-

ing) the model, and the outcomes are averaged over the

rounds.

A common decomposition of the dataset can con-

form to 60/20/20% among training, validation, and test

datasets, or 70/30% in case validation is not required.

These rule-of-thumb decompositions are reasonable for

datasets that are not very large. However, in the era of big

data, where a dataset can have millions of entries, other

extreme decompositions, such as 98/1/1% or 99/0.4/0.1%,

are also valid. However, it is important to avoid skewness

in the training datasets, with respect to the classes of inter-

est. This inhibits the learning and generalization of the

outcome, leading to model over- and/or under-fitting. In

addition, both validation and testing datasets should be

independent of the training dataset and follow the same

probability distribution as the training dataset.

Temporal and spatial robustness of ML model can be

evaluated by exposing the model to training and valida-

tion datasets that are temporally and spatially distant. For

instance, a model that performs well when evaluated with

datasets collected a year after being trained or from a

different network, exhibits temporal and spatial stability,

respectively.

2.3 Feature engineering

The collected raw data may be noisy or incomplete. Before

using the data for learning, it must go through a pre-

processing phase to clean the data. Another important

step prior to learning, or training a model, is feature

extraction. These features act as discriminators for learn-

ing and inference. In networking, there are many choices

of features to choose from. Broadly, they can be catego-

rized based on the level of granularity.

At the finest level of granularity, packet-level features

are simplistically extracted or derived from collected

packets, e.g. statistics of packet size, including mean, root

mean square (RMS) and variance, and time series infor-

mation, such as hurst. The key advantage of packet-level

statistics is their insensitivity to packet sampling that is

often employed for data collection and interferes with

feature characteristics [390]. On the other hand, Flow-

level features are derived using simple statistics, such as

mean flow duration, mean number of packets per flow,

and mean number of bytes per flow [390]. Whereas,

connection-level features from the transport layer are

exploited to infer connection oriented details. In addi-

tion to the flow-level features, transport layer details,

such as throughput and advertised window size in TCP

connection headers, can be employed. Though these fea-

tures generate high quality data, they incur computational

overhead and are highly susceptible to sampling and rout-

ing asymmetries [390].

Feature engineering is a critical aspect in ML that

includes feature selection and extraction. It is used to

reduce dimensionality in voluminous data and to iden-

tify discriminating features that reduce computational

overhead and increase accuracy of ML models. Feature

selection is the removal of features that are irrelevant

or redundant [321]. Irrelevant features increase compu-

tational overhead with marginal to no gain in accuracy,

while redundant features promote over-fitting. Feature

extraction is often a computationally intensive process of

deriving extended or new features from existing features,

using techniques, such as entropy, Fourier transform and

principal component analysis (PCA).

Features selection and extraction can be performed

using tools, such as NetMate [21] andWEKA [288]. How-

ever, in this case, the extraction and selection techniques

are limited by the capability of the tool employed. There-

fore, often specialized filter, embedded, and wrapper-

based methods are employed for feature selection. Filtering

prunes out the training data after carefully analyzing

the dataset for identifying the irrelevant and redundant
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features. In contrast, wrapper-based techniques take an

iterative approach, using a different subset of features in

every iteration to identify the optimal subset. Whereas,

embedded methods combine the benefits of filter and

wrapper-based methods, and perform feature selection

during model creation. Examples of feature selection

techniques include, colored traffic activity graphs (TAG)

[221], breadth-first search (BFS) [496], L1 Regularization

[259], backward greedy feature selection (BGFS) [137],

consistency-based (CON) and correlation-based feature

selection (CFS) [321, 476]. It is crucial to carefully select an

ideal set of features that strikes a balance between exploit-

ing correlation and reducing/eliminating over-fitting for

higher accuracy and lower computational overhead.

Furthermore, it is important to consider the characteris-

tics of the task we are addressing while performing feature

engineering. To better illustrate this, consider the follow-

ing scenario from network traffic classification. One vari-

ant of the problem entails the identification of a streaming

application (e.g. Netflix) from network traces. Intuitively,

average packet-size and packet inter-arrival times are rep-

resentative features, as they play a dominant role in traffic

classification. Average packet size is fairly constant in

nature [492] and packet inter-arrival times are a good dis-

criminator for bulk data transfer (e.g. FTP) and streaming

applications [390]. However, average packet size can be

skewed by intermediate fragmentation and encryption,

and packet inter-arrival times and their distributions are

affected by queuing in routers [492]. Furthermore, stream-

ing applications often behave similar to bulk data transfer

applications [390]. Therefore, it is imperative to consider

the classes of interest i.e. applications, before selecting the

features for this network traffic classification problem.

Finally, It is also essential to select features that do not

contradict underlying assumptions in the context of the

problem. For example, in traffic classification, features

that are extracted from multi-modal application classes

(e.g. WWW) tend to show a non-Gaussian behavior

[321]. These relationships not only become irrelevant

and redundant, they contradict widely held assump-

tions in traffic classification, such as feature distributions

being independent and following a Gaussian distribu-

tion. Therefore, careful feature extraction and selection is

crucial for the performance of ML models [77].

2.4 Establishing ground truth

Establishing the ground truth pertains to giving a formal

description (i.e. labels) to the classes of interest. There

are various methods for labeling datasets using the fea-

tures of a class. Primarily, it requires hand-labeling by

domain experts, with aid from deep packet inspection

(DPI) [462, 496], pattern matching (e.g. application

signatures) or unsupervised ML techniques (e.g. Auto-

Class using EM) [136].

For instance, in traffic classification, establishing ground

truth for application classes in the training dataset can

be achieved using application signature pattern match-

ing [140]. Application signatures are built using features,

such as average packet size, flow duration, bytes per flow,

packets per flow, root mean square packet size and IP

traffic packet payload [176, 390]. Average packet size and

flow duration have been shown to be good discriminators

[390]. Application signatures for encrypted traffic (e.g.

SSH, HTTPS) extract the signature from unencrypted

handshakes. However, these application signatures must

be kept up-to-date and adapted to the application

dynamics [176].

Alternatively, it is possible to design and rely on

statistical and structural content models for describ-

ing the datasets and infer the classes of interest. For

instance, these models can be used to classify a pro-

tocol based on the label of a single instance of that

protocol and correlations can be derived from unlabeled

training data [286]. On the other hand, common sub-

string graphs capture structural information about the

training data [286]. These models are good at infer-

ring discriminators for binary, textual and structural

content [286].

Inadvertently, the ground truth drives the accuracy of

ML models. There is also an inherent mutual dependency

on the size of the training data of one class of inter-

est on another, impacting model performance [417]. The

imbalance in the number of training data across classes,

is a violation of the assumptions maintained by many ML

techniques, that is, the data is independent and identi-

cally distributed. Therefore, typically there is a need to

combat class imbalance by applying under-, over-, joint-,

or ensemble-sampling techniques [267]. For example, uni-

form weighted threshold under-sampling creates smaller

balanced training sets [222].

2.5 Performance metrics andmodel validation

Once an ML model has been built and the ground truth

has been ascertained, it is crucial to gauge the perfor-

mance of the ML model that will describe, predict, or

evaluate outcomes. However, it is important to realize that

there is no way to distinguish a learning algorithm as the

“best” and it is not fair to compare error rates across a

whole variety of applications [16]. The performance met-

rics can be used to measure the different aspects of the

model, such as reliability, robustness, accuracy, and com-

plexity. In this section, we discuss the validation of the

ML models with respect to accuracy (cf., Table 2), which

is a critical aspect in the applicability of the model for

networking problems. Moreover, the accuracy is often

used as a feedback for incremental learning [389], to

increase model robustness and resilience in a dynamic

environment.
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Table 2 Performance metrics for accuracy validation

Metric Description

Mean Absolute Error (MAE) Average of the absolute error between the actual and predicted values.
Facilitates error interpretability.

Mean Squared Error (MSE) Average of the squares of the error between the actual and predicted
values. Heavily penalizes large errors.

Mean Absolute Prediction Error (MAPE) Percentage of the error between the actual and predicted values. Not
reliable for zero values or low-scale data.

Root MSE (RMSE) Squared root of MSE. Represents the standard deviation of the error
between the actual and predicted values.

Normalized RMSE (NRMSE) Normalized RMSE. Facilitates comparing different models indepen-
dently of their working scale.

Cross-entropy Metric based on the logistic function that measures the error between
the actual and predicted values.

Accuracy Proportion of correct predictions among the total number of predic-
tions. Not reliable for skewed class-wise data.

True Positive Rate (TPR) or recall Proportion of actual positives that are correctly predicted. Represents
the sensitivity or detection rate (DR) of a model.

False Positive Rate (FPR) Proportion of actual negatives predicted as positives. Represents the
significance level of a model.

True Negative Rate (TNR) Proportion of actual negatives that are correctly predicted. Represents
the specificity of a model.

False Negative Rate (FNR) Proportion of actual positives predicted as negatives. Inversely propor-
tional to the statistical power of a model.

Received Operating Characteristic (ROC) Curve that plots TPR versus FPR at different parameter settings. Facili-
tates analyzing the cost-benefit of possibly optimal models.

Area Under the ROC Curve (AUC) Probability of confidence in a model to accurately predict positive
outcomes for actual positive instances.

Precision Proportion of positive predictions that are correctly predicted.

F-measure Harmonic mean of precision and recall. Facilitates analyzing the trade-
off between these metrics.

Coefficient of Variation (CV) Intra-cluster similarity to measure the accuracy of unsupervised classifi-
cation models based on clusters.

Let us consider the accuracy validation of ML models

for prediction. Usually, this accuracy validation undergoes

an error analysis that computes the difference between

the actual and predicted values. Recall, a prediction is an

outcome of ML models for classification and regression

problems. In classification, the common metrics for error

analysis are based on the logistic function, such as binary

and categorical cross-entropy—for binary and multi-class

classification, respectively. In regression, the conventional

error metrics are Mean Absolute Error (MAE) and Mean

Squared Error (MSE). Both regression error metrics dis-

regard the direction of under- and over-estimations in the

predictions. MAE is simpler and easier to interpret than

MSE, though MSE is more useful for heavily penalizing

large errors.

The above error metrics are commonly used to com-

pute the cost function of ML-based classification and

regression models. Computing the cost function of the

training and validation datasets (cf., Section 2.2) allow

diagnosing performance problems due to high bias or

high variance. High bias refers to a simple ML model that

poorly maps the relations between features and outcomes

(under-fitting). High variance implies an ML model that

fits the training data but does not generalize well to pre-

dict new data (over-fitting). Depending on the diagnosed

problem, the ML model can be improved by going back

to one of the following design constituents (cf., Fig. 3):

(i) data collection, for getting more training data (only

for high variance), (ii) feature engineering, for increasing

or reducing the set of features, and (iii) model learning,

for building a simpler or more complex model, or for

adjusting a regularization parameter.

After tuning the ML model for the training and vali-

dation datasets, the accuracy metrics for the test dataset

are reported as the performance validation of the model.

Regression models often use MAE or MSE (i.e. error met-

rics) to report the performance results. Other error met-

rics commonly used in the literature to gauge the accuracy

of regression models include Mean Absolute Prediction

Error (MAPE), RootMSE (RMSE), andNormalized RMSE
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(NRMSE). MAPE states the prediction error as a per-

centage, while RMSE expresses the standard deviation of

the error. Whereas, NRMSE allows comparing between

models working on different scales, unlike the other error

metrics described.

In classification, the conventional metric to report the

performance of an ML model is the accuracy. The accu-

racy metric is defined as the proportion of true predic-

tions T for each class Ci ∀i = 1...N among the total

number of predictions, as follows:

Accuracy =

∑N
i=1 TCi

Total Predictions

For example, let us consider a classification model that

predicts whether an email should go to the spam, inbox,

or promotion folder (i.e. multi-class classification). In this

case, the accuracy is the sum of emails correctly predicted

as spam, inbox, and promotion, divided by the total num-

ber of predicted emails. However, the accuracy metric is

not reliable when the data is skewed with respect to the

classes. For example, if the actual number of spam and

promotion emails is very small compared to inbox emails,

a simple classification model that predicts every email as

inbox will still achieve a high accuracy.

To tackle this limitation, it is recommended to use the

metrics derived from a confusion matrix, as illustrated in

Fig. 4. Consider that each row in the confusionmatrix rep-

resents a predicted outcome and each column represents

the actual instance. In this manner, True Positive (TP)

is the intersection between correctly predicted outcomes

for the actual positive instances. Similarly, True Negative

(TN) is when the classification model correctly predicts

an actual negative instance. Whereas, False Positive (FP)

and False Negative (FN) describe incorrect predictions for

negative and positive actual instances, respectively. Note,

that TP and TN correspond to the true predictions for

Fig. 4 Confusion matrix for binary classification

the positive and negative classes, respectively. Therefore,

the accuracy metric can also be defined in terms of the

confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN

The confusion matrix in Fig. 4 works for a binary clas-

sification model. Therefore, it can be used in multi-class

classification by building the confusion matrix for a spe-

cific class. This is achieved by transforming themulti-class

classification problem into multiple binary classification

subproblems, using the one-vs-rest strategy. For exam-

ple, in the email multi-class classification, the confusion

matrix for the spam class sets the positive class as spam

and the negative class as the rest of the email classes (i.e.

inbox and promotion), obtaining a binary classification

model for spam and not spam email.

Consequentially, the True Positive Rate (TPR) describ-

ing the number of correct predictions is inferred from the

confusion matrix as:

TPR (Recall) =
TP

TP + FN

The converse, False Positive Rate (FPR) is the ratio of

incorrect predictions and is defined as:

FPR =
FP

FP + TN

Similarly, True Negative Rate (TNR) and False Negative

Rate (FNR) are used to deduce the number of correct and

incorrect negative predictions, respectively. The terms

recall, sensitivity, and detection rate (DR) are often used to

refer to TPR. In contrast, a comparison of the TPR versus

FPR is depicted in a Received Operating Characteristics

(ROC) graph. In a ROC graph, where TPR is on the y-

axis and FPR is on the x-axis, a good classification model

will yield a ROC curve that has a highly positive gradi-

ent. This implies high TP for a small change in FP. As the

gradient gets closer to 1, the prediction of the ML model

deteriorates, as the number of correct and incorrect pre-

dictions is approximately the same. It should be noted that

a classification model with a negative gradient in the ROC

curve can be easily improved by flipping the predictions

from the model [16] or swapping the labels of the actual

instances.

In this way, multiple classification models for the same

problem can be compared and can give insight into the

different conditions under which one model outperforms

another. Though the ROC aids in visual analysis, the area

under the ROC curve (AUC), ideally 1, is a measure of

the probability of confidence in the model to accurately

predict positive outcomes for actual positive instances.

Therefore, the precision of the ML model can be formally

defined as the frequency of correct predictions for actual

positive instances:



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 11 of 99

Precision =
TP

TP + FP

The trade-off between recall and precision values allows

to tune the parameters of the classification models and

achieve the desired results. For example, in the binary

spam classifier, a higher recall would avoid missing too

many spam emails (lower FN), but would incorrectly pre-

dict more emails as spam (higher FP). Whereas, a higher

precision would reduce the number of incorrect predic-

tions of emails as spam (lower FP), but would miss more

spam emails (higher FN). F-measure allows to analyze the

trade-off between recall and precision by providing the

harmonic average, ideally 1, of these metrics:

F–measure = 2 ·
Precision · Recall

Precision + Recall

The Coefficient of Variation (CV) is another accuracy

metric, particularly used for reporting the performance

of unsupervised models that conduct classification using

clusters (or states). CV is a standardized measure of dis-

persion that represents the intra-cluster (or intra-state)

similarity. A lower CV implies a small variability of each

outcome in relation to the mean of the corresponding

cluster. This represents a higher intra-cluster similarity

and a higher classification accuracy.

2.6 Evolution of machine learning techniques

Machine learning is a branch of artificial intelligence

whose foundational concepts were acquired over the years

from contributions in the areas of computer science,

mathematics, philosophy, economics, neuroscience, psy-

chology, control theory, and more [397]. Research efforts

during the last 75 years have given rise to a plethora of

ML techniques [15, 169, 397, 435]. In this section, we pro-

vide a brief history of ML focusing on the techniques that

have been particularly applied in the area of computer

networks (cf., Fig. 5).

The beginning of ML dates back to 1943, when the

first mathematical model of NNs for computers was pro-

posed by McCulloch [302]. This model introduced a basic

unit called artificial neuron that has been at the cen-

ter of NN development to this day. However, this early

model required to manually establish the correct weights

of the connections between neurons. This limitation was

addressed in 1949 by Hebbian learning [184], a simple

rule-based algorithm for updating the connection weights

of the early NN model. Like the neuron unit, Hebbian

learning greatly influenced the progress of NN. These two

concepts led to the construction of the first NN com-

puter in 1950, called SNARC (Stochastic Neural Analog

Reinforcement Computer) [397]. In the same year, Alan

Turing proposed a test –where a computer tries to fool

a human into believing it is also human– to determine if

a computer is capable of showing intelligent behavior. He

described the challenges underlying his idea of a “learning

machine” in [449]. These developments encouraged many

researchers to work on similar approaches, resulting in

two decades of enthusiastic and prolific research in the

ML area.

In the 1950s, the simplest linear regression model

called Ordinary Least Squares (OLS) –derived from the

least squares method [266, 423] developed around the

1800s– was used to calculate linear regressions in electro-

mechanical desk calculators [168]. To the best of our

knowledge, this is the first evidence of using OLS in com-

puting machines. Following this trend, two linear models

for conducting classification were introduced: Maximum

Entropy (MaxEnt) [215, 216] and logistic regression [105].

A different research trend centered on pattern recognition

exposed two non-parametric models (i.e. not restricted

to a bounded set of parameters) capable of performing

regression and classification: k-Nearest Neighbors (k-NN)

[147, 420] and Kernel Density Estimation (KDE) [388],

also known as Parzen density [349]. The former uses

a distance metric to analyze the data, while the latter

applies a kernel function (usually, Gaussian) to estimate

the probability density function of the data.

The 1950s also witnessed the first applications of the

Naïve Bayes (NB) classifier in the fields of pattern recog-

nition [97] and information retrieval [297]. NB, whose

foundations date back to the 18th and 19th centuries

[43, 261], is a simple probabilistic classifier that applies

Bayes’ theorem on features with strong independence

assumptions. NB was later generalized using KDE, also

known as NB with Kernel Estimation (NBKE), to estimate

the conditional probabilities of the features. In the area

of clustering, Steinhaus [422] was the first to propose a

continuous version of the to be called k-Means algorithm

[290], to partition a heterogeneous solid with a given

internal mass distribution into k subsets. The proposed

centroid model employs a distance metric to partition the

data into clusters where the distance to the centroid is

minimized.

In addition, the Markov model [159, 296] (elaborated

50 years earlier) was leveraged to construct a pro-

cess based on discrete-time state transitions and action

rewards, named Markov Decision Process (MDP), which

formalizes sequential decision-making problems in a fully

observable, controlled environment [46]. MDP has been

essential for the development of prevailing RL techniques

[435]. Research efforts building on the initial NN model

flourished too: the modern concept of perceptron was

introduced as the first NN model that could learn the

weights from input examples [387]. This model describes

two NN classes according to the number of layers: Single-

Layer Perceptron (SLP), an NN with one input layer



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 12 of 99

Fig. 5 The evolution of machine learning techniques with key milestones

and one output layer, and Multi-Layer Perceptron (MLP),

an NN with one or more hidden layers between the

input and the output layers. The perceptron model is

also known as Feedforward NN (FNN) since the nodes

from each layer exhibit directed connections only to the

nodes of the next layer. In the remainder of the paper,

MLP-NNs and NNs in general, will be denoted by the

tuple (input_nodes, hidden_layer_nodes+, output_nodes),

for instance a (106, 60, 40, 1) MLP-NN has a 160-node

input layer, two hidden layers of 60 and 40 nodes respec-

tively, and a single node output layer.

By the end of the 1950s, the term “Machine Learning”

was coined and defined for the first time by Arthur Samuel

(cf., Section 2), who also developed a checkers-playing

game that is recognized as the earliest self-learning pro-

gram [401]. ML research continued to flourish in the

1960s, giving rise to a novel statistical class of the Markov

model, named Hidden Markov Model (HMM) [426]. An

HMM describes the conditional probabilities between

hidden states and visible outputs in a partially observable,

autonomous environment. The Baum-Welch algorithm

[41] was proposed in the mi-1960s to learn those condi-

tional probabilities. At the same time, MDP continued to

instigate various research efforts. The partially observable

Markov decision process (POMDP) approach to finding

optimal or near-optimal control strategies for partially

observable stochastic environments, given a complete

model of the environment, was first proposed by

Cassandra et al. [25] in 1965, while the algorithm to find

the optimal solution was only devised 5 years later [416].

Another development in MDP was the learning automata

–officially published in 1973 [448]–, a Reinforcement

Learning (RL) technique that continuously updates the

probabilities of taking actions in an observed environ-

ment, according to given rewards. Depending on the

nature of the action set, the learning automata is classi-

fied as Finite Action-set Learning Automata (FALA) or

Continuous Action-set Learning Automata (CALA) [330].

In 1963, Morgan and Sonquis published Automatic

Interaction Detection (AID) [323], the first regression tree

algorithm that seeks sequential partitioning of an observa-

tion set into a series of mutually exclusive subsets, whose

means reduces the error in predicting the dependent vari-

able. AID marked the beginning of the first generation of

Decision Trees (DT). However, the application of DTs to

classification problems was only initiated a decade later

by Morgan and Messenger’s Theta AID (THAID) [305]

algorithm.

In the meantime, the first algorithm for training MLP-

NNs with many layers –also known as Deep NN (DNN)

in today’s jargon– was published by Ivakhnenko and Lapa

in 1965 [210]. This algorithm marked the commence-

ment of the Deep Learning (DL) discipline, though the

term only started to be used in the 1980s in the general

context of ML, and in the year 2000 in the specific con-

text of NNs [9]. By the end of the 1960s, Minsky and

Papertkey’s Perceptrons book [315] drew the limitations

of perceptrons-based NN through mathematical analysis,

marking a historical turn in AI and ML in particular, and

significantly reducing the research interest for this area

over the next several years [397].

Although ML research was progressing slower than

projected in the 1970s [397], the 1970s were marked

by milestones that greatly shaped the evolution of ML,

and contributed to its success in the following years.

These include the Backpropagation (BP) algorithm, the
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Cerebellar Model Articulation Controller (CMAC) NN

model [11], the Expectation Maximization (EM) algo-

rithm [115], the to-be-referred-to as Temporal Difference

(TD) learning [478], and the Iterative Dichotomiser 3

(ID3) algorithm [373].

Werbos’s application of BP –originally a control theory

algorithm from the 1960s [80, 81, 233]– to train NNs [472]

resurrected the research in the area. BP is to date the most

popular NN training algorithm, and comes in different

variants such as Gradient Descent (GD), Conjugate Gra-

dient (CG), One Step Secant (SS), Levenberg-Marquardt

(LM), and Resilient backpropagation (Rp). Though, BP is

widely used in training NNs, its efficiency depends on the

choice of initial weights. In particular, BP has been shown

to have slower speed of convergence and to fall into local

optima. Over the years, global optimization methods have

been proposed to replace BP, including Genetic Algo-

rithms (GA), Simulated Annealing (SA), and Ant Colony

(AC) algorithm [500]. In 1975, Albus proposed CMAC, a

new type of NN as an alternative to MLP [11]. Although

CMAC was primarily designed as a function modeler for

robotic controllers, it has been extensively used in RL and

classification problems for its faster learning compared

to MLP.

In 1977, in the area of statistical learning, Dempster

et al. proposed EM, a generalization of the previous iter-

ative, unsupervised methods, such as the Baum-Welch

algorithm, for learning the unknown parameters of sta-

tistical HMM models [115]. At the same time, Witten

developed an RL approach to solveMDPs, inspired by ani-

mal behavior and learning theories [478], that was later

referred to as Temporal Difference (TD) in Sutton’s work

[433, 434]. In this approach the learning process is driven

by the changes, or differences, in predictions over succes-

sive time steps, such that the prediction at any given time

step is updated to bring it closer to the prediction of the

same quantity at the next time step.

Towards the end of the 1970s, the second generation of

DTs emerged as the Iterative Dichotomiser 3 (ID3) algo-

rithm was released. The algorithm, developed by Quinlan

[373], relies on a novel concept for attribute selection

based on entropy maximization. ID3 is a precursor to the

popular and widely used C4.5 and C5.0 algorithms.

The 1980s witnessed a renewed interest in ML research,

and in particular in NNs. In the early 1980s, three new

classes of NNs emerged, namely Convolutional Neural

Network (CNN) [157], Self-OrganizingMap (SOM) [249],

and Hopfield network [195]. CNN is a feedforward NN

specifically designed to be applied to visual imagery anal-

ysis and classification, and thus require minimal image

preprocessing. Connectivity between neurons in CNN is

inspired by the organization of the animal visual cortex

–modeled by Hubel in the 1960s [200, 201]–, where the

visual field is divided between neurons, each responding

to stimuli only in its corresponding region. Similarly to

CNN, SOM was also designed for a specific application

domain; dimensionality reduction [249]. SOMs employ an

unsupervised competitive learning approach, unlike tra-

ditional NNs that apply error-correction learning (such as

BP with gradient descent).

In 1982, the first form of Recurrent Neural Network

(RNN) was introduced by Hopfield. Named after the

inventor, Hopfield network is an RNN where the weights

connecting the neurons are bidirectional. The modern

definition of RNN, as a network where connections

between neurons exhibit one or more than one cycle,

was introduced by Jordan in 1986 [226]. Cycles pro-

vide a structure for internal states or memory allow-

ing RNNs to process arbitrary sequences of inputs. As

such, RNNs are found particularly useful in Time Series

Forecasting (TSF), handwriting recognition and speech

recognition.

Several key concepts emerged from the 1980s’ con-

nectionism movement, one of which is the concept of

distributed representation [187]. Introduced by Hinton in

1986, this concept supports the idea that a system should

be represented bymany features and that each featuremay

have different values. Distributed representation estab-

lishes a many-to-many relationship between neurons and

(feature,value) pairs for improved efficiency, such that a

(feature,value) input is represented by a pattern of activity

across neurons as opposed to being locally represented by

a single neuron. The second half of 1980s also witnessed

the increase in popularity of the BP algorithm and its suc-

cessful application in training DNNs [263, 394], as well as

the emergence of new classes of NNs, such as Restricted

BoltzmannMachines (RBM) [413], Time-Lagged Feedfor-

ward Network (TLFN) [260], and Radial Basis Function

Neural Network (RBFNN) [260].

Originally named Harmonium by Smolensky, RBM is

a variant of Boltzmann machines [2] with the restric-

tion that there are no connections within any of the

network layers, whether it is visible or hidden. Therefor,

neurons in RBMs form a bipartite graph. This restric-

tion allows for more efficient and simpler learning com-

pared to traditional Boltzmann machines. RBMs are

found useful in a variety of application domains such as

dimensionality reduction, feature learning, and classifi-

cation, as they can be trained in both supervised and

unsupervised ways. The popularity of RBMs and the

extent of their applicability significantly increased after

the mid-2000s as Hinton introduced in 2006 a faster

learning method for Boltzmann machines called Con-

trastive Divergence [186] making RBMs even more attrac-

tive for deep learning [399]. Interestingly, although the

use of the term “deep learning” in the ML community

dates back to 1986 [111], it did not apply to NNs at

that time.
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Towards the end of 1980s, TLFN –an MLP that incor-

porates the time dimension into the model for conducting

TSF [260]–, and RBFNN –an NN with a weighted set of

Radial Basis Function (RBF) kernels that can be trained in

unsupervised and supervised ways [78]– joined the grow-

ing list of NN classes. Indeed any of the above NNs can

be employed in a DL architecture, either by implement-

ing a larger number of hidden layers or stacking multiple

simple NNs.

In addition to NNs, several otherML techniques thrived

during the 1980s. Among these techniques, Bayesian Net-

work (BN) arose as a Directed Acyclic Graph (DAG)

representation model for the statistical models in use

[352], such as NB and HMM –the latter considered as

the simplest dynamic BN [107, 110]–. Two DT learning

algorithms, similar to ID3 but developed independently,

referred to as Classification And Regression Trees (CART)

[76], were proposed to model classification and regres-

sion problems. Another DT algorithm, under the name of

Reduced Error Pruning Tree (REPTree), was also intro-

duced for classification. REPTree aimed at building faster

and simpler tree models using information gain for split-

ting, along with reduced-error pruning [374].

Towards the end of 1980s, two TD approaches were

proposed for reinforcement learning: TD(λ) [433] and Q-

learning [471]. TD(λ) adds a discount factor (0 ≤ λ ≤ 1)

that determines to what extent estimates of previous state-

values are eligible for updating based on current errors,

in the policy evaluation process. For example, TD(0) only

updates the estimate of the value of the state preced-

ing the current state. Q-learning, however, replaces the

traditional state-value function of TD by an action-value

function (i.e. Q-value) that estimates the utility of taking

a specific action in specific states. As of today, Q-learning

is the most well-studied and widely-used model-free RL

algorithm. By the end of the decade, the application

domains of ML started expending to the operation and

management of communication networks [57, 217, 289].

In the 1990s, significant advances were realized in

ML research, focusing primarily on NNs and DTs. Bio-

inspired optimization algorithms, such as Genetic Algo-

rithms (GA) and Particle Swarm Optimization (PSO),

received increasing attention and were used to train NNs

for improved performance over the traditional BP-based

learning [234, 319]. Probably one of the most important

achievements in NNs was the work on Long Short-Term

Memory (LSTM), an RNN capable of learning long-term

dependencies for solving DL tasks that involve long input

sequences [192]. Today, LSTM is widely used in speech

recognition as well as natural language processing. In DT

research, Quinlan published the M5 algorithm in 1992

[375] to construct tree-based multivariate linear models

analogous to piecewise linear functions. One well-known

variant of theM5 algorithm isM5P, which aims at building

trees for regression models. A year later, Quinlan pub-

lished C4.5 [376], that builds on and extends ID3 to

address most of its practical shortcomings, including data

overfitting and training withmissing values. C4.5 is to date

one of the most important and widely used algorithms in

ML and data mining.

Several techniques other than NN and DT also pros-

pered in the 1990s. Research on regression analysis

propounded the Least Absolute Selection and Shrink-

age Operator (LASSO), which performs variable selec-

tion and regularization for higher prediction accuracy

[445]. Another well-known ML technique introduced in

the 1990s was Support Vector Machines (SVM). SVM

enables plugging different kernel functions (e.g. linear,

polynomial, RBF) to find the optimal solution in higher-

dimensional feature spaces. SVM-based classifiers find a

hyperplane to discriminate between categories. A single-

class SVM is a binary classifier that deduces the hyper-

plane to differentiate between the data belonging to the

class against the rest of the data, that is, one-vs-rest. A

multi-class approach in SVM can be formulated as a series

of single class classifiers, where the data is assigned to the

class that maximizes an output function. SVM has been

widely used primarily for classification, although a regres-

sion variant exists, known as Support Vector Regression

(SVR) [70].

In the area of RL, SARSA (State-Action-Reward-State-

Action) was introduced as a more realistic, however less

practical, Q-learning variation [395]. Unlike Q-learning,

SARSA does not update the Q-value of an action based on

the maximum action-value of the next state, but instead it

uses the Q-value of the action chosen in the next state.

A new emerging concept called ensemble learning

demonstrated that the predictive performance of a single

learning model can be be improved when combined with

other models [397]. As a result, the poor performance

of a single predictor or classifier can be compensated

with ensemble learning at the price of (significantly) extra

computation. Indeed the results from ensemble learning

must be aggregated, and a variety of techniques have been

proposed in this matter. The first instances of ensemble

learning include Weighted Majority Algorithm (WMA)

[279], boosting [403], bootstrap aggregating (or bagging)

[75], and Random Forests (RF) [191]. RF focused explic-

itly on tree models and marked the beginning of a new

generation of ensemble DT. In addition, some variants of

the original boosting algorithm were also developed, such

as Adaptive Boosting (AdaBoost) [153] and Stochastic

Gradient Boosting (SGBoost) [155].

These advances in ML facilitated the successful deploy-

ment of major use cases in the 1990s, particularly,

handwriting recognition [419] and data mining [3]. The

latter represented a great shift to data-driven ML, and

since then it has been applied in many areas (e.g., retail,
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finance, manufacturing, medicine, science) for processing

huge amounts of data to build models with valuable use

[169]. Furthermore, from a conceptual perspective, Tom

Mitchell formally defined ML: “A computer program is

said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience

E” [317].

The 21st century began with a new wave of increasing

interest in SVM and ensemble learning, and in partic-

ular ensemble DT. Research efforts in the field gener-

ated some of the the most widely used implementations

of ensemble DT as of today: Multiple Additive Regres-

sion Trees (MART) [154], extra-trees [164], and eXtreme

Gradient Boosting (XGBoost) [93]. MART and XGBoost

are respectively a commercial and open source imple-

mentation of Friedman’s Gradient Boosting Decision Tree

(GBDT) algorithm; an ensemble DT algorithm based

on gradient boosting [154, 155]. Extra-trees stands for

extremely randomized trees, an ensemble DT algorithm

that builds random trees based on k randomly chosen

features. However instead to computing an optimal split-

point for each one of the k features at each node as in

RF, extra-trees selects a split-point randomly for reduced

computational complexity.

At the same time, the popularity of DL increased signif-

icantly after the term “deep learning” was first introduced

in the context of NNs in 2000 [9]. However, the attrac-

tiveness of DNN started decreasing shortly after due to

the experienced difficulty of training DNNs using BP (e.g.

vanishing gradient problem), in addition to the increas-

ing competitiveness of other ML techniques (e.g. SVM)

[169]. Hinton’s work on Deep Belief Networks (DBN),

published in 2006 [188], gave a new breath and strength

to research in DNNs. DBN introduced an efficient train-

ing strategy for deep learning models, which was further

used successfully in different classes of DNNs [49, 381].

The development in ML –particularly, in DNNs– grew

exponentially with advances in storage capacity and large-

scale data processing (i.e. Big Data) [169]. This wave of

popularity in deep learning has continued to this day,

yielding major research advances over the years. One

approach that is currently receiving tremendous atten-

tion is Deep RL, which incorporates deep learning models

into RL for solving complex problems. For example, Deep

Q-Networks (DQN) –a combination of DNN and Q-

learning– was proposed for mastering video games [318].

Although the termDeepRLwas coined recently, this concept

was already discussed and applied 25 years ago [275, 440].

It is important to mention that the evolution in ML

research has enabled improved learning capabilities which

were found useful in several application domains, ranging

from games, image and speech recognition, network oper-

ation and management, to self-driving cars [120].

3 Traffic prediction
Network traffic prediction plays a key role in network

operations and management for today’s increasingly com-

plex and diverse networks. It entails forecasting future

traffic and traditionally has been addressed via time series

forecasting (TSF). The objective in TSF is to construct a

regression model capable of drawing accurate correlation

between future traffic volume and previously observed

traffic volumes.

Existing TSF models for traffic prediction can be

broadly decomposed into statistical analysis models and

supervisedMLmodels. Statistical analysis models are typ-

ically built upon the generalized autoregressive integrated

moving average (ARIMA) model, while majority of learn-

ing for traffic prediction is achieved via supervised NNs.

Generally, the ARIMA model is a popular approach for

TSF, where autoregressive (AR) and moving average (MA)

models are applied in tandem to perform auto-regression

on the differenced and “stationarized” data. However, with

the rapid growth of networks and increasing complexity

of network traffic, traditional TSF models are seemingly

compromised, giving rise to more advanced ML models.

More recently, efforts have been made to reduce overhead

and, or improve accuracy in traffic prediction by employ-

ing features from flows, other than traffic volume. In the

following subsections, we discuss the various traffic pre-

diction techniques that leverage ML and summarize them

in Table 3.

3.1 Traffic prediction as a pure TSF problem

To the best of our knowledge, Yu et al. [489] were the first

to apply ML in traffic prediction using MLP-NN. Their

primary motive was to improve accuracy over traditional

ARmethods. This was supported by rigorous independent

mathematical proofs published in the late eighties and the

early nineties by Cybenko [106], Hornik [196], and Funa-

hashi [158]. These proofs showed that SLP-NN approxi-

mators, which employed sufficient number of neurons of

continuous sigmoidal activation type (a constraint intro-

duced by Cybenko and relaxed by Hornik), were universal

approximators, capable of approximating any continuous

function to any desired accuracy.

In the last decade, different types of NNs (SLP, MLP,

RNN, etc.) and other supervised techniques have been

employed for TSF of network traffic. Eswaradass et al.

[141] propose a MLP-NN-based bandwidth prediction

system for Grid environments and compare it to the

Network Weather Service (NWS) [480] bandwidth fore-

casting AR models for traffic monitoring and measure-

ment. The goal of the system is to forecast the available

bandwidth on a given path by feeding the NN with the

minimum, maximum and average number of bits per sec-

ond used on that path in the last epoch (ranging from 10 to

30 s). Experiments on the dotresearch.org network and the
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40 gigabit/s NSF TeraGrid network datasets show that the

NN outperforms the NWS bandwidth forecasting models

with an error rate of up to 8 and 121.9% for MLP-NN and

NWS, respectively. Indeed the proposed NN-based fore-

casting system shows better learning ability than NWS’s.

However, no details are provided for the characteristics of

the MLP employed in the study, nor the time complexity

of the system compared to NWS.

Cortez et al. [104] choose to use a NN ensemble (NNE)

of five MLP-NN with one hidden layer each. Resilient

backpropagation (Rp) training is used on SNMP traffic

data collected from two different ISP networks. The first

data represents the traffic on a transatlantic link, while the

second represents the aggregated traffic in the ISP back-

bone. Linear interpolation is used to complete missing

SNMP data. The NNE is tested for real-time forecasting

(online forecasting on a few-minute sample), short-term

(one-hour to several-hours sample), and mid-term fore-

casting (one-day to several-days sample). The NNE is

compared against AR models of traditional Holt-Winters,

double Holt-Winters seasonal variant to identify repe-

titions in patterns at fixed time periods, and ARIMA.

The comparison amongst the TSF methods show that in

general the NNE produces the lowest MAPE for both

datasets. It also shows that in terms of time and compu-

tational complexity, NNE outperforms the other methods

with an order ofmagnitude, and is well suited for real-time

forecasting.

The applicability of NNs in traffic prediction instigated

various other efforts [86, 500] to compare and contrast

various training algorithms for network traffic prediction.

Chabaa et al. [86] evaluate the performance of various BP

training algorithms to adjust the weights in the MLP-NN,

when applied to Internet traffic time series. They show

superior performance, with respect to RMSE and RPE, of

the Levenberg-Marquardt (LM) and the Resilient back-

propagation (Rp) algorithms over other BP algorithms.

In contrast to the local optimization in BP, Zhu et al.

[500] propose a hybrid training algorithm that is based

on global optimization, the PSO-ABC technique [98]. It is

an artificial bee colony (ABC) algorithm employing par-

ticle swarm optimization (PSO), an evolutionary search

algorithm. The training algorithm is implemented with a

(5, 11, 1) MLP-NN. Experiments on a 2 weeks hourly traf-

fic measurement dataset show that PSO-ABC has higher

prediction accuracy than BP, with an MSE of 0.006 and

0.011, respectively, on normalized data and has stable pre-

diction performance. Furthermore, the hybrid PSO-ABC

has a faster training time than ABC or PSO.

On the other hand, SVM has a low computational over-

head and is more robust to parameter variations (e.g. time

scale, number of samples) in general. However, they are

usually applied to classification rather than TSF. SVM

and its regression variant, SVR, are scrutinized for their

applicability to traffic prediction in [52]. Bermolen et al.

[52] consider the prospect of applying SVR for link load

forecasting. The SVR model is tested on heterogeneous

Internet traffic collected at the POP of an ISP network.

At 1sec timescale, the SVR model shows a slight improve-

ment over an AR model in terms of RMSE. A more sig-

nificant 10% improvement is achieved over a MA model.

Most importantly, SVR is able to achieve 9000 forecast

per sec with 10 input samples, and shows the potential for

real-time operation.

3.2 Traffic prediction as a non-TSF problem

In contrast to TSF methods, network traffic can be

predicted leveraging other methods and features. For

instance, Li et al. [274] propose a frequency domain based

method for network traffic flows, instead of just traffic

volume. The focus is on predicting incoming and out-

going traffic volume on an inter-data center link domi-

nated by elephant flows. Their models incorporate FNN,

trained with BP using simple gradient descent and wavelet

transform to capture both the time and frequency fea-

tures of the traffic time series. Elephant flows are added

as separate feature dimensions in the prediction. How-

ever, collecting all elephant flows at high frequencies is

more expensive than byte count for traffic volume. There-

fore, elephant flow information is collected at lower fre-

quencies and interpolated to fill in the missing values,

overcoming the overhead for elephant flow collection.

The dataset contains the total incoming and outgoing

traffic collected in 30 s intervals using SNMP counters

on the data center (DC) edge routers and inter-DC link

at Baidu over a six-week period. The top 5 applications

account for 80% of the total incoming and outgoing traffic

data, which is collected every 5 min and interpolated to

estimate missing values at the 30 s scale. The time series is

decomposed using level 10 wavelet transform, leading to

120 features per timestamp.

Thus, k-step ahead predictions, feed k × 120 features

into the NN and show a relative RMSE (RRMSE) rang-

ing from 4 to 10% for the NN-Wavelet transformation

model as the prediction horizon varies from 30 s to 20

min. Evidently, wavelet transformation reduces the aver-

age prediction errors for different prediction horizons by

5.4 and 2.9% for incoming and outgoing traffic, respec-

tively. In contrast, the linear ARIMA model has predic-

tion error of approximately 8.5 and 6.9% for incoming

and outgoing traffic, respectively. The combined NN and

wavelet transform model reduces the peak inter-DC link

utilization, i.e. the ISP’s billed utilization, by about 9%.

However, the model does not seem to be fully consid-

ering the features related to the elephant flow, which

may explain the inexplicable good performance of the

0-interpolation, a simple method that fills zeros for all

unknown points.
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Chen et al. [94], investigate the possibility of reduc-

ing cost of monitoring and collecting traffic volume,

by inferring future traffic volume based on flow count

only. They propose a HMM to describe the relationship

between the flow count, flow volume and their temporal

dynamic behavior. The Kernel Bayes Rule (KBR) and RNN

with LSTM unit is used to predict future traffic volume

based on current flow count. A normalized dataset, with

mean=0 and standard deviation=1, consists of network

traffic volumes and corresponding flow counts collected

every 5 min over a 24-week period [391]. The RNN shows

a prediction MSE of 0.3 at best, 0.05 higher than KBR and

twice as much as the prediction error of an RNN fed with

traffic volume instead of flow count. Therefore, though

the motive was to promote flow count based traffic pre-

diction to overcome the cost of monitoring traffic volume,

the performance is compromised.

Poupart et al. [365] explore the use of different ML tech-

niques for flow size prediction and elephant flow detection.

These techniques include gaussian processes regression

(GPR), online bayesian moment matching (oBMM) and a

(106, 60, 40, 1) MLP-NN. Seven features are considered

for each flow, including source IP, destination IP, source

port, destination port, protocol, server versus client (if

protocol is TCP), and the size of the first three data

packets after the protocol/synchronization packets.

The datasets consist of three public datasets from two

university networks [50] and an academic building at

Dartmouth College [251] with over three million flows

each. Elephant flow detection is based on a flow size

threshold that varies from 10KB to 1MB. The experi-

ments show noticeable discrepancies in the performance

of the approaches with varying datasets. Although oBMM

outperforms all other approaches in one dataset with an

average TPR and TNR very close to 100%, it fails mis-

erably in the other datasets with an average TPR below

50% for one dataset. In the latter dataset, oBMM seems

to suffer the most from class imbalance. As the detec-

tion flow size threshold increases, less flows are tagged

as elephant flows, creating class imbalance in the train-

ing dataset and leading to lower TPR. However, it is worth

noting that oBMM outperforms all other approaches in

terms of average TNR in all 3 datasets. On the other hand,

NN and GPR, have an average TPR consistently above

80%. Although NN outperforms GPR in terms of robust-

ness to class imbalance by looking at the consistency of

its TPR with varying flow size threshold, it has the lowest

average TNR of below 80% in all datasets.

The motive for flow size prediction in [365], is to dis-

criminate elephant flows from mice flows in routing to

speed up elephant flow completion time. Presumably,

mice flows are routed through Equal-cost multi-path rout-

ing, while elephant flows are routed through the least

congested path. The performance of the routing policy

combined with GPR and oBMM for elephant flow predic-

tion is tested with a varying subset of features. According

to the authors, GPR improves the completion time by 6.6%

in average for 99% of elephant flows when only the first

packet header information is considered. A 14% improve-

ment is observed when the size of the three first packets is

used along with the header information. It is also noticed

that considering the size of the first three packets alone

leads to over 13.5% improvement, regardless of whether

GPR or oBMM is used, with a very slight impact on the

completion time of mice flows.

3.3 Summary

Supervised NNs (including MLP and RNN) have been

successfully applied to traffic prediction, as shown in

Table 9. TSF approaches, such as [52, 86, 104, 141, 500],

where NNs are used to infer traffic volumes from past

measured volumes, show high long-term and short-term

prediction accuracy at low complexity with limited num-

ber of features and limited number of layers and neurons.

Unfortunately, TSF approaches are restrictive in general.

In fact they are only possible if past observations on the

prediction variable are made. For instance, in order to pre-

dict the traffic for a particular flow f on link l, there must

be a counter on link l actively measuring the traffic for that

particular flow f, which can be challenging on very high

speed links. Because it might not be possible to have the

appropriate counter in place, or because it might be tech-

nically difficult to conduct measurements at the required

speed or granularity, non-TSF approaches can be useful.

Non-TSF approaches were investigated in [94, 274, 365]

to infer traffic volumes from flow count and packet header

fields. Although higher prediction error rates are experi-

enced, these rates remain relatively low not only for NNs

but also for other supervised learning techniques, such

as GPR and oBMM. According to [365] a more com-

plex MLP-NN (in terms of number of layers and neurons)

might be required to achieve better accuracy in a non-

TSF setting, and the performance of supervised learning

techniques varies when tested on different datasets. This

motivates the need for ensemble learning.

It is envisaged that as the applicability of ML tech-

niques for traffic prediction increases, traffic prediction

will improve with respect to computational overhead and

accuracy. Furthermore, learning will enable automation

of various network operation and management activities,

such as network planing, resource provisioning, routing

optimization, and SLA/QoS management.

4 Traffic classification
Traffic classification is quintessential for network oper-

ators to perform a wide range of network operation

and management activities. These include capacity plan-

ning, security and intrusion detection, QoS and service
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differentiation, performance monitoring, and resource

provisioning, to name a few. For example, an operator

of an enterprise network may want to prioritize traffic

for business critical applications, identify unknown traffic

for anomaly detection, or perform workload characteriza-

tion for designing efficient resourcemanagement schemes

that satisfy diverse applications performance and resource

requirements.

Traffic classification requires the ability to accurately

associate network traffic to pre-defined classes of inter-

est. These classes of interest can be classes of applications

(e.g. HTTP, FTP, WWW, DNS and P2P), applications (e.g.

Skype [310], YouTube [488] and Netflix [331]), or class of

service [390]. A class of service, for instance based onQoS,

encompasses all applications or classes of applications that

have the same QoS requirements. Therefore, it is pos-

sible that applications that apparently behave differently,

belong to the same class of service [462].

Generally, network traffic classification methodologies

can be decomposed into four broad categories that lever-

age port number, packet payload, host behavior or flow

features [31, 244]. The classical approach to traffic clas-

sification simply associates Internet Assigned Numbers

Authority (IANA) [207] registered port numbers to appli-

cations. However, since it is no longer the de facto, nor,

does it lend itself to learning due to trivial lookup, it

is not in the scope of this survey. Furthermore, relying

solely on port numbers has been shown to be ineffec-

tive [125, 228, 320], largely due to the use of dynamic

port negotiation, tunneling and misuse of port numbers

assigned to well-known applications for obfuscating traf-

fic and avoiding firewalls [54, 109, 176, 286]. Nevertheless,

various classifiers leverage port numbers in conjunction

with other techniques [31, 56, 244, 417] to improve the

performance of the traffic classifiers. In the following

subsections, we discuss the various traffic classification

techniques that leverage ML and summarize them in

Tables 4, 5, 6, 7 and 8.

4.1 Payload-based traffic classification

Payload-based traffic classification is an alternate to port-

based traffic classification. However, since it searches

through the payload for known application signatures, it

incurs higher computation and storage costs. Also, it is

cumbersome to manually maintain and adapt the signa-

tures to the ever growing number of applications and their

dynamics [138]. Furthermore, with the rise in security and

privacy concerns, payload is often encrypted and its access

is prohibited due to privacy laws. This makes it non-trivial

to infer a signature for an application class using payload

[54, 138].

Haffner et al. [176] reduce the computational overhead

by using only the first few bytes of unidirectional, unen-

crypted TCP flows as binary feature vectors. For SSH

and HTTPS encrypted traffic, they extract features from

the unencrypted handshake that negotiate the encryp-

tion parameters of the TCP connection. They use NB,

AdaBoost and MaxEnt for traffic classification. AdaBoost

outperforms NB and MaxEnt, and yields an overall preci-

sion of 99% with an error rate within 0.5%.

Table 4 Summary of Payload⋆ and Host Behavior†-based Traffic Classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Haffner
et al.
[176]⋆

Supervised
NB, AdaBoost,
MaxEnt

Proprietary Discrete byte encod-
ing for first n bytes of
unidirectional flow

FTP, SMTP, POP3,
IMAP, HTTPS,
HTTP, SSH

n = 64 − 256 bytes Overall error rate <0.51%,
precision > 99%,
recall > 94%

Ma et al.
[286]⋆

Unsupervised
HCA

Proprietary: U.
Cambridge,
UCSD

Discrete byte encod-
ing for first n bytes of
unidirectional flow

FTP, SMTP, HTTP,
HTTPS, DNS, NTP,
NetBIOS, SrvLoc

n = 64 bytes, distance
metric: PD = 250, MP =
150, CSG = 12%

Error rate:
PD ≤ 4.15%, MP ≤ 9.97%,
CSG ≤ 6.19%

Finamore
et al.
[146]⋆

Supervised
SVM

Tstat [439];
NAPA-WINE
[268]; Proprieta
ry: ISP network

Statistical characteri-
zation of first N bytes
of each packet a win-
dow of size C, divided
into G groups of b
consecutive bits

eMule, BitTorrent,
RTP, RTCP, DNS,
P2P-TV (PPLive,
Joost, SopCast,
TVAnts), Skype,
Background

C = 80,N = 12,G = 24,
b = 4

Average TP = 99.6%,
FP < 1%

Schatzmann
et al.
[404]†

Supervised
SVM

Proprietary:
ISP network

Service proximity,
activity profiles,
session duration,
periodicity

Mail, Non-Mail N/A Average accuracy = 93.2%,
precision = 79.2%

Bermolan
et al.
[53]†

Supervised
SVM

Proprietary:
campus net-
work, ISP
network

Packet count
exchanged between
peers in duration △T

PPLive, TVAnts,
SopCast, Joost

△T = 5 s, SVM distance
metric R = 0.5

Worst-case TPR≈ 95%,
FPR < 0.1%

N/A: Not available
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Table 5 Summary of supervised flow feature-based traffic classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Roughan
et al. [390]

Supervised
k-NN

Proprietary:
univ. networks,
streaming
service

Packet-level and flow-level
features

Telnet, FTP-data,
Kazaa, RealMedia
Streaming, DNS,
HTTPS

k = 3, number of
QoS classes = 3,
4, 7

Error rate:
5.1% (4), 2.5% (3),
9.4% (7); (#): number
of QoS Classes

Moore and
Zuev [321]

Supervised
NBKE

Proprietary:
campus
network

Baseline and derivative
packet-level features

BULK, WWW,MAIL,
SERVICES, DB, P2P,
ATTACK,
MULTIMEDIA

N/A Accuracy upto 95%,
TPR upto 99%

Jiang et al.
[218]

Supervised
NBKE

Proprietary:
campus
network

Baseline and derivative
flow-level features

WWW, email,
bulk, attack, P2P,
multimedia, ser-
vice, database,
interaction,
games

N/A Average accuracy ≈

91%

Park et al.
[347]

Supervised
REPTree,
REPTree-
Bagging

NLANR [457] Packet-level, flow-level
and connection-level
features

WWW, Telnet,
Messenger, FTP,
P2P, Multimedia,
SMTP, POP, IMAP,
DNS, Services

Burst packet
threshold =

0.007s

Accuracy ≥ 90%
(features ≥ 7)

Zhang et al.
[496]

Supervised
BoF-NB

WIDE [474],
proprietary: ISP
network

Packet-level and
flow-level features
from unidirectional
flows

BT, DNS, FTP,
HTTP, IMAP, MSN,
POP3, SMTP, SSH,
SSL, XMPP

Aggregation rule
= sum, BoF size

Accuracy 87-94%,
F-measure = 80%

Zhang et al.
[497]

Supervised
RF, Unsuper-
vised k-Means
(BoF-based,
RTC)

KEIO [474],
WIDE [474],
proprietary: ISP
network

Packet-level and
flow-level features
from unidirectional
flows

FTP, HTTP, IMAP,
POP3, RAZOR, SSH,
SSL, UNKNOWN
/ ZERO-DAY (BT,
DNS, SMTP)

N/A RTC upto 15% and
10% better in flow
and byte accuracy,
respectively, than sec-
ond best F-measure=

0.91 (before update),
0.94 (after update)

Auld et al.
[26]

Supervised
BNN

Proprietary Packet-level and flow-level
features

ATTACK, BULK,
DB, MAIL, P2P,
SERVICE, WWW

Number of fea-
tures = 246, hid-
den layers = 0-1,
0-30 nodes in the
hidden layer, out-
put = 10

Accuracy > 99%, 95%
with temporally dis-
tant training and test-
ing datasets

Sun et al.
[431]

Supervised
PNN

Proprietary:
campus
networks

Packet-level and flow-level
features

P2P, WEB, OTHERS Number of fea-
tures = 22

Accuracy = 87.99%;
P2P: TPR = 91.25%,
FPR = 1.36%;
WEB: TPR = 98.74%,
FPR = 27.7%

Este et al.
[140]

Supervised
SVM

LBNL [262],
CAIDA [451],
proprietary:
campus
network

Packet payload size HTTP, SMTP,
POP3, HTTPS,
IMAPS, BitTorrent,
FTP, MSN, eDon-
key, SSL, SMB,
Kazaa, Gnutella,
NNTP, DNS, LDAP,
SSH

Number of sup-
port vectors cf.,
[140]

TP > 90% for most
classes

Jing et al.
[223]

Supervised
FT-SVM

Proprietary
[270, 321]

A subset of 12 from 248
features [321]

BULK, INTERAC-
TIVE, WWW, MAIL,
SERVICES, P2P,
ATTACK, GAME,
MULTIMEDIA,
OTHER

SVM parameters
automatically
chosen

Accuracy up to 96%,
error ratio ↓ 2.35
times, avg. compu-
tation cost ↓ 7.65
times

Wang et al.
[464]

Supervised
multi-class
SVM, unbalance
d binary SVM

Proprietary:
univ. network

Flow-level and
connection-level
features

BitTorrent, eDon-
key, Kazaa, pplive

N/A Accuracy 75-99%

N/A: Not available
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Table 6 Summary of unsupervised flow feature-based traffic classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Liu et al.
[283]

Unsupervised
k-Means

Proprietary:
campus
network

Packet-level and
flow-level features

WWW, MAIL, P2P,
FTP (CONTROL,
PASV, DATA),
ATTACK,
DATABASE,
SERVICES,
INTERACTIVE,
MULTIMEDIA,
GAMES

k = 80 Average accuracy ≈

90%, minimum recall =

70%

Zander
et al. [492]

Unsupervised
AutoClass

NLANR [457] Packet-level and
flow-level features

AOL Messenger,
Napster, Half-Life,
FTP, Telnet, SMTP,
DNS, HTTP

Intra-class homogeneity
(H)

Mean accuracy = 86.5%

Erman
et al. [136]

Unsupervised
AutoClass

Univ.
Auckland
[457]

Packet-level and
flow-level features

HTTP, SMTP, DNS,
SOCKS, IRC, FTP
(control, data),
POP3, LIMEWIRE,
FTP

N/A Accuracy = 91.2%

Erman
et al. [135]

Unsupervised
DBSCAN

Univ. Auck-
land [457],
proprietary:
Univ. Calgary

Packet-level and
flow-level features

HTTP, P2P, SMTP,
IMAP, POP3,
MSSQL, OTHER

eps = 0.03, minPts = 3,
number of clusters = 190

Overall accuracy =

75.6%, average precision
> 95%
(7/9 classes)

Erman
et al. [138]

Unsupervised
k-Means

Proprietary:
univ.
network

Packet-level and
flow-level features
from unidirectional
flows

Web, EMAIL,
DB, P2P, OTHER,
CHAT, FTP,
STREAMING

k = 400 Server-to-client:
Avg. flow accuracy =

95%, Avg. byte accuracy
= 79%;
Web: precision = 97%,
recall = 97%;
P2P: precision = 82%,
recall = 77%

N/A: Not available

Their ML models are scalable and robust due to the use

of partial payloads, and unidirectional flows and diverse

usage patterns, respectively. The unidirectional flows cir-

cumvent the challenges due to asymmetric routing. In

comparison to campus or enterprise networks, residential

network data offer an increased diversity, with respect to,

social group, age and interest with less spatial and tem-

poral correlation in usage patterns. Unfortunately, per-

formance of AdaBoost traffic classifier deteriorates with

noisy data [176] and their approach requires a priori

knowledge about the protocols in the application classes.

Ma et al. [286] show that payload-based traffic classifi-

cation can be performed without any a priori knowledge

of the application classes using unsupervised clustering.

They train their classifiers based on the label of a sin-

gle instance of a protocol and a list of partially correlated

protocols, where a protocol is modeled as a distribution

of sessions. Each session is a pair of unidirectional flow

distributions, one from the source to the destination and

another from the destination to the source. For tractabil-

ity, the sessions are assumed to be finite and a protocol

model is derived as a distribution on n byte flows, rather

than pair of flows.

In product distribution (PD) protocol model, the n byte

flow distribution is statistically represented as a product

of n independent byte distributions, each describing the

distribution of bytes at a particular offset in the flow. Sim-

ilarly, in the Markov process (MP) protocol model, nodes

are labeled with unique byte values and the edges are

weighted with a transition probability, such that the sum

of all egress transition probabilities from a node is one. A

randomwalk through the directed graph identify discrim-

inator strings that are not tied to a fixed offset. In contrast,

the common substring graphs (CSG) capture structural

information about the flows using longest common subse-

quence. A subsequence in a series of common substrings

that capture commonalities including the fixed offsets in

statistical protocol modeling.

Finally, the authors perform agglomerative (bottom-

up) hierarchical clustering analysis (HCA) to group the

observed protocols and distinguish between the classes of

interest. They employ weighted relative entropy for PD

and MP, and approximate graph similarity for CSG, as

the distance metric. In evaluation, the PD-based proto-

col models resulted in the lowest total misclassification

error, under 5%. Thus, there is a high invariance at fixed
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Table 7 Summary of Early⋆ , Sub-flow†-based and Encrypted‡ flow feature-based traffic classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Bernaille et al.
[55]∗

Unsupervised
k-Means

Proprietary:
univ.
network

Packet size and direc-
tion of first P packets
in a flow

eDonkey, FTP, HTTP,
Kazaa, NNTP, POP3,
SMTP, SSH, HTTPS,
POP3S

P = 5, k = 50 Accuracy > 80%

TIE [108, 121]∗ Supervised
J48 DT, k-NN,
Random Tree,
RIPPER, MLP,
NB

Proprietary:
Univ. Napoli
campus
network

Payload size stats and
inter-packet time
stats of first N pack-
ets, bidirectional flow
duration and size,
transport protocol

BitTorrent, SMTP,
Skype2Skype, POP,
HTTP, SOULSEEK,
NBNS, QQ, DNS,SSL
RTP, EDONKEY

N = 1...10 Overall accuracy = 98.4%
with BKS (J48, Random Tree,
RIPPER, PL) combiner, N =

10

Nguyen et al.
[337]†

Supervised
NB, C4.5 DT

Proprietary:
home net-
work, univ.
network,
game server

Inter-packet arrival
time statistics,
inter-packet length
variation statistics, IP
packet length statis-
tics of N consecutive
packets

Enemy Territory
(online game),
VoIP, Other

N = 25 C4.5 DT: Enemy Territory -
recall∗ = 99.3%, prec.∗ = 97%;
VoIP - recall∗ = 95.7%,
precision∗ = 99.2%
NB: Enemy Territory -
recall∗ = 98.9%, prec.∗ = 87%,
VoIP - recall∗ = 99.6%,
precision∗ = 95.4%
∗ median

Erman et al.
[137]⋆

Semi-
supervised
k-Means

Proprietary:
Univ. Calgary

Number of pack-
ets, average packet
size, total bytes, total
header bytes, total
payload bytes (caller
to callee and vice
versa)

P2P, HTTP, CHAT,
EMAIL, FTP,
STREAMING,
OTHER

k = 400, 13 layers,
packet milestones
(number of packets)
in layers are sepa-
rated exponentially
(8, 16, 32, . . . )

Flow accuracy > 94%,
byte accuracy 70-90%

Li et al. [270]⋆ Supervised
C4.5 DT,
C4.5 DT with
AdaBoost,
NBKE

Proprietary A subset of 12 from
248 features [321] of
first N packets

WEB, MAIL,
BULK, Attack,
P2P, DB, Service,
Interactive

N = 5 C4.5 DT: Accuracy >99%;
Attack is an exception with
moderate-high
recall

Jin et al.[222]⋆ Supervised
AdaBoost

Proprietary:
ISP network,
labeled as in
[176]

Lowsrcport, highsrc-
port, duration, mean
packet size, mean
packet rate, toscount,
tcpflags, dstinnet,
lowdstport, highd-
stport, packet, byte,
tos, numtosbytes,
srcinnet

Business, chat,
DNS, FileShar-
ing, FTP, Games,
Mail, Multimedia,
NetNews, Secu-
rityThreat, VoIP,
Web

Number of binary
classifiers (k): TCP =

12, UDP = 8

Error rate:
TCP = 3%, UDP = 0.4%

Bonfiglio et al.
[69]‡

Supervised
NB, Pearson’s
χ2 test

Proprietary:
univ. net-
work, ISP
network

Message size, aver-
age inter-packet gap

Skype NB decision thresh-
old Bmin = −5,
χ2(Thr) = 150

NB∧χ2 :
UDP – E2E - FP = 0.01%,
FN = 29.98%
E2O - FP = 0.0%,
FN = 9.82% (univ. dataset);
E2E - FP = 0.01%,
FN = 24.62%
E2O - FP = 0.11%,
FN = 2.40% (ISP dataset)
TCP – negligible FP

Alshammari
et al. [17]‡

Supervised
AdaBoost,
SVM, NB,
RIPPER, C4.5
DT

AMP [457],
MAWI
[474],
DARPA99
[278],
proprietary
from
Univ.
Dalhousie

Packet size, packet
inter-arrival time,
number of packets,
number of bytes,
flow duration, pro-
tocol (forward and
backward direction)

SSH, Skype N/A C4.5 DT:
SSH – DR = 95.9%,
FPR = 2.8% (Dalhousie), DR
= 97.2%,
FPR = 0.8% (AMP),
DR = 82.9%,
FPR = 0.5% (MAWI)
Skype – DR = 98.4%,
FPR = 7.8% (Dalhousie)
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Table 7 Summary of Early⋆ , Sub-flow†-based and Encrypted‡ flow feature-based traffic classification (Continued)

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

Shbair et al. [409]‡ Supervised
C4.5 DT, RF

Synthetic
trace

Statistical features
from encrypted payload
and [253] (client to server
and vice versa)

Service Provider
(number of services):
Uni-lorraine.fr (15),
Google.com (29),
akamihd.net (6),
Googlevideo.com
(1), Twitter.com (3),
Youtube.com (1),
Facebook.com (4),
Yahoo.com (19),
Cloudfront.com (1)

N/A RF (service provider):
precision = 92.6%,
recall = 92.8%,
F-measure = 92.6%
RF (service): accu-
racy in 95-100% for
majority of service
providers > 100 con-
nections per HTTPS
service

N/A: Not available

offsets in binary and textual protocols, such as DNS and

HTTP, respectively. Though, the CSG resulted in a higher

misclassification error, approximately 7%, it performed

best for SSH encrypted traffic. However, it is important

to realize that encryption often introduces randomness

in the payload. Hence, techniques such as in Ma et al.

[286] that search for keywords at fixed offsets will suffer

in performance.

Techniques that rely on capturing the beginning of

flows [176, 286] are infeasible for links with high data

rates where sampling is often employed. Finamore et al.

[146] overcome this limitation by extracting signatures

Table 8 Summary of NFV⋆ and SDN†-based traffic classification

Ref. ML Technique Dataset Features Classes Evaluation

Settings Results

He et al.
[182]⋆

Supervised k-NN,
Linear-SVM, Radial-
SVM, DT,
RF, Extended
Tree, AdaBoost,
Gradient-AdaBoost,
NB, MLP

KDD [42] Protocol, network service,
source bytes, destination
bytes, login status, error
rate, connection counts,
connection percentages
(different services among
the same host, different
hosts among the same
service)

Attack types from [450] Dynamic selection of
classifier and features
to collect

Accuracy = 95.6%

Amaral
et al. [19]†

Supervised RF,
SGBoost, XGBoost

Proprietary:
enterprise
network

Packet size (1 to N pack-
ets), packet timestamp
(1 to N packets), inter-
arrival time (N packets),
source/destination MAC,
source/destination IP,
source/destination port,
flow duration, packet
count byte count

BitTorrent, Dropbox,
Facebook, Web Brows-
ing (HTTP), LinkedIn,
Skype, Vimeo, YouTube

N = 5 RF: Accuracy 73.6-96.0%
SGBoost:
Accuracy 71.2-93.6%
XGBoost:
Accuracy 73.6-95.2%

Wang
et al.
[462]†

Semi-supervised
Laplacian-SVM

Proprietary:
univ.
network

Entropy of packet
length, average
packet length
(source to destination
and vice versa), source
port, destination port,
packets to respond from
source to destination,
minimum length of pack-
ets from destination to
source, packet inactivity
degree from source
to destination, median
of packet length from
source to destination for
the first N packets

Voice/video conference,
streaming, bulk data
transfer, interactive

N = 20, Laplacian-
SVM parameters λ =

0.00001 − 0.0001, σ =

0.21 − 0.23

Accuracy > 90%

N/A: Not available
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from any point in a flow. In light of the rise in stream-

ing applications, they focus on analyzing packet payload

to extract signature of applications over long-lived UDP

traffic. In essence, to extract application signatures, the

authors employ Pearsons’s Chi-square (χ2) test to capture

the level of randomness in the first N bytes of each packet

divided into G groups of b consecutive bits within a win-

dow of C packets. The randomness is evaluated based on

the distance between the observed values and a reference

uniform distribution. The signatures are then used to train

a SVM classifier that distinguishes between the classes of

interest with an average TP of 99.6%. However, FP are

more sensitive to the window size, and reduce below 5%

only for window sizes over 80.

Despite the disadvantages of payload-based classifica-

tion techniques, the payload-based classifiers achieve high

accuracy and are often employed to establish ground

truth [55].

4.2 Host behavior-based traffic classification

This technique leverages the inherent behavioral charac-

teristics of hosts on the network to predict the classes of

interest. It overcomes the limitations of unregistered or

misused port numbers and encrypted packet payload, by

moving the observation point to the edge of the network

and examining traffic between hosts (e.g. how many hosts

are contacted, by which transport protocol, howmany dif-

ferent ports are involved). These classifiers rely on the

notion that applications generate different communica-

tion patterns. For example, a P2P host may contact several

different peers using a different port number for each peer.

While, a webserver may be contacted by different clients

on the same port.

Schatzmann et al. [404] exploit correlations across pro-

tocols and time, to identify webmail traffic over HTTPS.

They exploit the following features: (i) service proximity—

webmail servers tend to reside in the same domain or

subnet as SMTP, IMAP, and POP servers, that are iden-

tifiable using port numbers [243], (ii) activity profiles—

irrespective of the protocol (i.e. IMAP, POP, webmail),

users of a mail server share distinct daily and weekly usage

habits, (iii) session duration—users of a webmail service

spend more time on emails than other web pages and tend

to keep the web client open for incoming messages, and

(iv) periodicity—webmail traffic exhibit periodic patterns

due to application timers (e.g. asynchronous checking

for new message from AJAX-based clients). The authors

show that these features act as good discriminators for a

SVM classifier to differentiate between webmail and non-

webmail traffic. Using 5-fold cross validation, the classifier

achieves an average accuracy of 93.2% and a precision

of 79.2%. The higher FN is attributed to the inability of

the classifier to distinguish between VPN and webmail

servers.

The data exchanged amongst P2P applications is highly

discriminative [53]. For example, a P2P application may

establish long flows to download video content from a

few peers. Whereas, another P2P application may prefer

to use short flows to download fixed size video chunks

from many peers in parallel. Therefore, Bermolan et al.

[53] leverage this behavior to derive P2P application signa-

tures from the packets and bytes exchanged between peers

in small time windows. Formally, the application signature

is the probability mass function (PMF) of the number of

peers that send a given number of packets and bytes to a

peer in the time interval △T .

These signatures are used to train a SVM classifier with

a Gaussian kernel function and exponential binning strat-

egy, with a rejection threshold (distance metric) of 0.5,

to discriminate between applications belonging to the

P2P-TV class (i.e. PPLive, TVAnts, SopCast, Joost). The

authors evaluate the sensitivity of parameters to optimize

their settings in order to guarantee the best performance,

that is higher TPR and lower FPR. The classifier results

in a worst-case TPR of about 95%, with FPR well below

0.1%. Also, temporal and spatial portability of signatures

is validated with marginal degradation in performance.

However, the accuracy of the host behavior-based traf-

fic classification strongly depends on the location of

the monitoring system, especially since the observed

communication pattern may be affected by routing asym-

metries in the network core [229].

4.3 Flow Feature-based traffic classification

In contrast to payload-based and host behavior-based

traffic classifiers, flow feature-based classifiers have a dif-

ferent perspective. They step back and consider a com-

munication session, which consists of a pair of complete

flows. A complete flow is a unidirectional exchange of

consecutive packets on the network between a port at an

IP address and another port at a different IP address using

a particular application protocol [100]. It is identified with

the quintuple 〈srcIP, destIP, srcPort, destPort, protocol〉.

For example, a complete flow in an online game session

would consist of all sequential packets sent from source

s to destination d (e.g. host to game server). Therefore, a

complete flow includes all packets pertaining to session

setup, data exchange and session tear-down. A sub-flow

is a subset of a complete flow and can be collected over

a time window in an on-going session. A feature is an

attribute representing unique characteristic of a flow, such

as packet length, packet inter-arrival time, flow duration,

and number of packets in a flow. Flow feature-based tech-

nique uses flow features as discriminators to map flows to

classes of interest.

In essence, flow feature-based traffic classification

exploits the diversity and distinguishable characteristics

of the traffic footprint generated by different applications
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[31, 467]. It has the potential to overcome numer-

ous limitations of other techniques, such as unregis-

tered port numbers, encrypted packet payload, routing

asymmetries, high storage and computational overhead

[55, 138, 176, 347]. However, it remains to be evaluated

if flow feature-based classifiers can achieve the accuracy

of payload-based classifiers [176, 286]. The correspond-

ing traffic classification problem can be defined as follows:

given a set of flows X = {x1, x2, x3, . . . , x|X|}, such that

X consists of either complete or sub-flows, and a set of

classes of interest Y = {y1, y2, y3, . . . , y|Y |}, find the map-

ping g(X) → Y . This mapping can be used to classify

previously unseen flows. ML is an ideal tool for finding

this mapping automatically.

4.3.1 Supervised complete flow feature-based traffic

classification

One of the earliest works in network traffic classifica-

tion using ML is from Roughan et al. [390]. They employ

k-NN and Linear Discriminant Analysis (LDA) to map

network traffic into different classes of interest based on

QoS requirements. Their traffic classification framework

uses statistics that are insensitive to application protocol.

The authors employ both packet-level and flow-level fea-

tures. However, they observe that the average packet size

and flow duration act as good discriminators, hence used

these in their preliminary evaluation.

In their evaluation, k-NN outperforms LDA with the

lowest error rate of 5.1 and 9.4% for four and seven class

classification, respectively. They notice that often stream-

ing applications behave very similar to bulk data trans-

fer applications. Therefore, either a prioritization rule is

necessary to break the tie, or extended/derivative fea-

tures must be employed to act as good disciminators.

In their extended evaluation, the authors employ inter-

arrival variability to distinguish between streaming and

bulk data transfer applications.

On the other hand, flow features were also leveraged in

Moore and Zuev [321] that extend NB with Kernel Esti-

mation (NBKE) to overcome the limitations that make

it impractical for network traffic classification. Though,

NB classifiers have been commonly used in classification,

they have two fundamental assumptions, (i) probability of

occurrence of each feature being independent from the

occurrence of another feature, and (ii) probability dis-

tribution of a feature following a Gaussian distribution.

Both of these assumptions are unrealistic for traffic clas-

sification and lead to poor accuracy. However, NBKE is a

feasible alternate that generalizes NB and overcomes the

Gaussian distribution approximation assumption.

Features are extracted from the header of packets in

TCP flows using Fast Correlation-Based Filter (FCBF) to

address the first assumption. In this way, NBKEwith FCBF

achieves a classification accuracy of upto 95% and TPR of

upto 99%. It also achieves temporal stability by classifying

new flows collected twelve months later with an accuracy

of 93% and TPR of 98%. Moreover, it also outperforms NB

with respect to training time. However, it incurs increased

inference time, especially for classifying unknown

flows [347].

Realizing the need for lightweight traffic classification,

Jiang et al. [218] further reduce the complexity of KE by

employing symmetric uncertainty and correlation mea-

sures for feature selection, derived from flows rather than

packets. In this manner, NBKE can still be used to classify

flows with an accuracy of 91.4%. Though, the classification

accuracy is lower than the NBKE in [321], the techniques

of varying sampling and application aware feature selec-

tion increases its applicability for online classification.

Generally, when training time is important, NBKE clas-

sifiers are preferred over tree-based approaches, such as

C4.5 DT and NB tree [347, 476]. However, DT performs

better than NBKE, with respect to execution time and

space in memory [347]. Unfortunately, DT suffers from

overfitting with noisy data, which deteriorates perfor-

mance [347].

It is not always possible to collect bidirectional flows due

to routing asymmetries [138, 347]. However, it is possible

to derive components of the feature vector for an appli-

cation class given a priori knowledge [347], or estimate

the missing statistics [138]. In addition, filtering can be

leveraged to reduce the dimensionality of the feature space

and the training time. Park et al. [347] employ supervised

tree-based classifiers on unidirectional flows and compare

them against NBKE using WEKA [288]. They exploit the

faster classification time and lowmemory storage require-

ments of DT to employ Reduced Error Pruning Tree (REP-

Tree) for classification. REPTree finds a sub-optimal tree

that minimizes classification error. In addition, the Bag-

ging ensemble is used to classify flows using majority rule

to aggregate multiple REPTree predictions. Recall, that

P2P bulk data transfer and streaming applications often

behave similar to each other [390]. Therefore, the authors

in [347] employ a burst feature to better discriminate

between such classes. The burst feature is based on packet

inter-arrival statistics and a predetermined threshold that

dictates whether packets are exhibiting “bursty” behavior.

Evidently, bulk data transfer applications exhibit higher

burst than streaming applications.

Though, it was presumed that Bagging will outperform

REPTree, both classifiers exhibited similar performance.

REPTree achieves over 90% accuracy in classification of

unidirectional flows and plateaus at seven features. This

is in contrast to NBKE, where the classification accuracy

deteriorates dramatically with increasing number of fea-

tures. Though, the accuracy of REPTree is sensitive to

packet sampling, the degradation is limited if the same

sampling rate is used for both training and testing data.
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Evidently, supervised learning yields high classification

accuracy, due to a priori information about the charac-

teristics of the classes of interest. However, it is infeasible

to expect complete a priori information for applications,

since often network operators do not even know all the

applications that are running in the network. Therefore,

Zhang et al. [496] present a traffic classification scheme

suitable for a small set of supervised training dataset. The

small labeled training set can be trivially hand-labeled

based on the limited knowledge of the network operators.

They use discretized statistical flow features and Bag-of-

Flow (BoF)-based traffic classification. A BoF consists of

discretized flows (i.e. correlated flows) that share the des-

tination IP address, destination port and transport layer

protocol.

Traditional NB classifiers are simple and effective in

assigning the test data a posterior conditional probability

of belonging to a class of interest. The BoF-based traf-

fic classification leverages NB to generate predictions for

each flow, and aggregate the predictions using rules, such

as sum, max, median, majority, since flows are correlated.

The F-measure, used to evaluate per class performance,

of BoF-NB outperforms NB irrespective of the aggrega-

tion rule. For example, the F-measure of BoF-NB with the

sum rule is over 15 and 10% higher than NB for DNS and

POP3, respectively. Evidently, the accuracy increases and

error sensitivity decreases as the size of BoFs increase, due

to the growth in BoF intra-diversity [496].

Zhang et al. [497] propose a scheme, called Robust

Traffic Classification (RTC). They combine supervised

and unsupervised ML techniques for the classification

of previously unknown zero-day application traffic, and

improving the accuracy of known classes in the pres-

ence of zero-day application traffic. Their motivation is

that unlabeled data contains zero-day traffic. The pro-

posed RTC framework consists of three modules, namely

unknown discovery, BoF-based traffic classification, and

system update.

The unknown discovery module uses k-Means to iden-

tify zero-day traffic clusters, and RF to extract zero-day

samples. The BoF module guarantees the purity of zero-

day samples, which classifies correlated flows together,

while the system update module complements knowl-

edge by learning new classes in identified zero-day traffic.

RTC is novel in its ability to reflect realistic scenarios

using correlated flows and identify zero-day applications.

Therefore, even with small labeled training datasets, RTC

can achieve a higher flow and byte accuracy of up to 15%

and 10%, respectively, in comparison to the second best

technique.

The accuracy of traffic classification can be increased to

over 99%, by using the discriminative MLP-NN classifier

to assign membership probabilities to flows. Auld et al.

[26] employ hyperbolic tangent for activation function

and a softmax filter to ensure that activation to out-

put generates a positive, normalized distribution over the

classes of interest. Their MLP-NN with Bayesian trained

weights (BNN) also increases the temporal accuracy of

the classifier to 95%. The increase in accuracy is pri-

marily achieved due to the ability to reject predictions.

Though the NN with Bayesian weights attain very high

performance, it comes at the cost of high compute and

storage overhead. Furthermore, some employed features,

such as effective bandwidth based on entropy and fourier

transform of packet inter-arrival time are computationally

intensive, inhibiting its use for online classification. The

authors purport that their Bayesian trained weights are

robust and efficient, and require only zero or one hidden

layer.

On the other hand, Probabilistic Neural Network (PNN)

uses Bayes inference theory for classification. Sun et al.

[431] leverage PNN that requires no learning processes,

no initial weights, no relationship between learning and

recalling processes, and the difference between inference

and target vectors are not used to modify weights. They

employ an activation function that is typical in radial basis

function networks and filter out mice flows. Elephant

versus mice flows is a prevalent problem in traffic classi-

fication, since there is often a lack of representative data

for the short-lived mice flows. Often, these flows are dis-

carded for efficient classification. The authors detect mice

flows as those flows that contain less than 10 packets and

the duration is less than 0.01s. They show that PNN out-

performs RBFNN, a feed forward neural network with

only two layers and a typical non-linear RBF activation

function.

In contrast, Este et al. [140] use single-class SVM fol-

lowed by multi-class SVM for traffic classification. They

consider “semantically valid” bidirectional TCP flows,

while ignoring short flows. A grid is maintained to keep

track of the percentage of vectors of training sets that are

correctly and incorrectly classified as a class. To reduce

the overhead in the grid search, they randomly select a

small number of flows from the training set to satisfacto-

rily train both single and multi-class classifiers to classify

using the first few packets payload sizes. The Multi-class

stage is only resorted to, if the single-class stage is unable

to clearly identify the application classes. The authors

apply their technique to different datasets, with TP of

over 90% and low FP for most classes. However, the per-

formance is compromised for encrypted traffic, where

ground truth is established using unreliable port-based

labeling.

A traffic classification problem with more than two

classes, naïvely transforms the SVM into N one-vs-

rest binary subproblems, resulting in a higher computa-

tion cost for a large number of classes. However, Jing

et al. [223] propose a SVM based on tournaments for



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 27 of 99

multi-class traffic classification. In the tournament design

of SVM, in each round the candidate classes are ran-

domly organized into pairs, where one class of each pair is

selected by a binary SVM classifier, reducing the candidate

classes by half. This limits the number of support vectors,

which is now based only on the two classes in the pair in

contrast to using the entire training dataset. This all-vs-

all approach to multi-class classification in SVM results

in a much lower computational cost for classification. The

tournament in [223] results in only one candidate class

being left as the classified class.

It is important to note that it is possible that the most

appropriate class is eliminated, resulting in higher mis-

classification. To overcome this, a fuzzy policy is used

in the tournament. It allows competing classes to pro-

ceed to the next round without being eliminated, if nei-

ther class has a clear advantage over the other. However,

if two classes are continually paired against each other,

the fuzzy rule will break the tie. Unfortunately, this spe-

cial handling results in higher computational cost. The

authors compare their proposed basic tournament and

fuzzy tournament (FT-SVM) schemes with existing SVM

[270] and [140]. The FT-SVM scheme achieves a high

overall accuracy of up to 96%, reduces classification error

ratio by up to 2.35 times, and reduces average computa-

tion cost by up to 7.65 times.

Traditional SVM and multi-class SVM fall short in effi-

ciency for large datasets. Therefore, Wang et al. [464]

use multi-class SVM along with an unbalanced binary

SVM to perform statistics-based app-level classification

for P2P traffic. Unlike the typical approach of decompos-

ing a multi-class problem into multiple binary classifica-

tion problems and using one-vs-all approach, the authors

employ the all-together approach. They leverage NetFlow

to collect TCP flows on the edge router of their cam-

pus network. In the classification process, unknown flows

go through the unbalanced binary model first. Only if

identified as P2P, they go through a weighted multi-class

model. The unbalanced binary SVM model is built using

non-P2P and N types of P2P traffic to help decrease FP

(i.e. misclassification of non-P2P traffic as P2P). Whereas,

the weighted multi-class model is trained using N types

of P2P traffic, giving more weight to data traffic than

control/signaling traffic. The proposed scheme correctly

classifies atleast 75% and atmost 99% of the entire P2P

traffic with generally low misclassification.

4.3.2 Unsupervised complete flow feature-based traffic

classification

It is not always possible to apply supervised learning on

network traffic, since information about all applications

running in the network is rarely available. An alternate

is unsupervised learning, where the training data is not

labeled. Therefore, the classes of interest are unknown. In

this case, ML techniques are leveraged to learn about sim-

ilarities and patterns in data and generate clusters that can

be used to identify classes of interest. Therefore, cluster-

ing essentially identifies patterns in data and groups them

together. In hard clustering, an unknown data point must

belong to a single cluster, whereas, in soft clustering, a data

point can be mapped into multiple different clusters.

Hard clustering often relies on distance and similarity

metrics to select a cluster that most closely resembles a

data point. Liu et al. [283] employ hard clustering using

k-Means with unsupervised training and achieve an accu-

racy of up to 90%. They use complete TCP flows and

log transformation of features to extract and approxi-

mate features to a normal distribution, disposing of any

noise and abnormality in data. However, it is unrealis-

tic to apply hard clustering for membership, since flow

features from applications, such as HTTP and FTP can

exhibit high similarity [303]. Therefore, it is impractical to

assume a cluster can accurately represent an application

[492]. Hence, a fine-grained view of applications is often

necessary by employing soft clustering and assigning an

unknown data point to a set of clusters. EM is an iter-

ative and probabilistic soft clustering technique, which

guesses the expected cluster(s) and refines the guess using

statistical characteristics, such as mean and variance.

McGregor et al. [303] employ EM to group flows with

a certain probability and use cross-validation to find the

optimal number of clusters. To refine the clusters, they

generate classification rules from the clusters and use the

rules to prune features that have insignificant impact on

classification and repeat the clustering process. Though,

promising preliminary results indicate stable clusters and

an alternative to disaggregate flows based on traffic types,

very limited results are provided.

Similarly, AutoClass is an EM approximation approach

employed in Zander et al. [492] that automatically creates

clusters from unlabeled training datasets. The boundaries

of the classes are improved using an intra-class homo-

geneity metric, defined as the largest fraction of flows

belonging to one application in the class. Their objective

is to maximize the mean of intra-class homogeneities and

achieve a good separation between different application

data. On average, the intra-class homogeneity improves

as number of features increase. It eventually plateaus at

approximately 0.85-0.89, which implies that it is possi-

ble to achieve a good separation between classes without

using the full set of features. However, this is still compu-

tationally expensive.

Erman et al. [136] uncover that this computational over-

head can be reduced by training with half of the clusters,

since majority of flows were grouped into these clusters.

The trade-off between an intra-class homogeneity metric

[492] versus iterative clustering remains to be investi-

gated. The suitability of unsupervised learning in traffic
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classification reached an milestone when AutoClass was

employed to achieve an accuracy of over 91%, higher

than the 82.5% accuracy of the supervised NBKE [136].

Thus, it became possible to identify previously unknown

applications. Unfortunately, the training time of Auto-

Class is magnitudes higher than the training time of

NBKE [321].

In contrast to EM-based unsupervised clustering,

density-based clustering has been found to have a signif-

icantly lower training time. Furthermore, density-based

spatial clustering of applications with noise (DBSCAN)

has the ability to classify noisy data in contrast to k-Means

and AutoClass. It differs from conventional clustering, as

it exploits the idea of a core object and objects connected

to it. An object that does not belong in the neighbor-

hood of a core object and is not a core object itself, is

noise. Noisy objects are not assigned to any clusters. The

neighborhood around an object is demarcated by epsilon

(eps). An object is determined to be the core of the cluster

when the number of objects in its neighborhood exceeds

minimum number of points (minPts). In this manner, data

points are evaluated to be core points, neighbors of core,

or noise, and assigned to clusters or discarded accordingly.

Erman et al. [135] leverage DBSCAN with transport

layer statistics to identify application types. Flows are

collected from TCP-based applications, identifying flow

start and end based on the TCP three way handshake

and FIN/RST packets, respectively. They employ loga-

rithms of features due to their heavy-tail distribution

and deduce similarity based on Euclidean distance. The

authors use WEKA [288] and Cluster 3.0 [194] for eval-

uating DBSCAN, AutoClass and k-Means clustering and

found that AutoClass outperforms DBSCAN. However,

training time of DBSCAN is magnitudes lower than Auto-

Class, 3 min vs. 4.5 h. Furthermore, its non-spherical

clusters are more precise than the spherical clusters of k-

Means. Uniquely, DBSCAN has the ability to classify data

into the smallest number of clusters, while the accuracy of

k-Means is dependent on the cluster size.

Erman et al. [138] extend their previous work [136]

to employ unidirectional TCP flows to classify network

traffic using k-Means. The motivation for unidirectional

flows is justified, since it may not always be possible to

collect bidirectional flows due to routing asymmetries

[138, 347]. Therefore, the authors analyze the effective-

ness of flows in one direction. To this end, they divide

their dataset into three sets, consisting of server-to-client

flows, client-to-server flows, and random flows that have

a combination of both. The beginning and ending of the

TCP flows are identified using SYN/SYNACK packets

and FIN/RST packets, respectively. Whereas, a cluster is

labeled to the traffic class with the majority of flows. As

the number of clusters increase, it is possible to identify

applications with a finer granularity.

It is observed that server-to-client flows consistently

exhibit the highest average classification accuracy of 95

and 79% for flows and bytes, respectively. However, the

random flows attain an average accuracy of 91 and 67%

for flows and bytes, respectively. Whereas, the client-to-

server flows show the average classification accuracy of

94 and 57% for flows and bytes, respectively. Also, the

ML model using the server-to-client dataset has precision

and recall values of 97% for Web traffic, while the P2P

traffic had a precision of 82% and a recall of 77%. It is

apparent that features from traffic in the server-to-client

direction act as a good discriminators to classify unidi-

rectional TCP flows. Furthermore, many network applica-

tion’s payload size is much higher in the server-to-client

direction.

4.3.3 Early and sub-flow-based traffic classification

Relying on the completion of a flow for traffic classifi-

cation not only surmounts to extensive classifier training

time and memory overhead, but also delays time-sensitive

classification decisions. Therefore, Bernaille et al. [55]

leverage the size and direction of the first few P pack-

ets from an application’s negotiation phase (i.e. during

TCP connection setup) for early traffic classification. They

inspect packet payload to establish flow labels and employ

unsupervised k-Means clustering to model the applica-

tion classes. The authors empirically deduce the optimal P

and number of clusters (k) that strikes a balance between

behavior separation and complexity. They represent a flow

in a P-dimensional space, where the pth coordinate is the

size of the pth packet in the flow and compute a behav-

ioral similarity between flows using Euclidean distance

between their spatial representations.

In the online classification phase, the distance between

the spatial representation of a new flow and the cen-

troid of all the clusters is computed. The flow is classified

to the cluster with the minimum distance, hence to the

dominant application class in the cluster. This approach

achieves a classification accuracy exceeding 80% with P =

5 and k = 50 for most application classes. However, if

different application classes exhibit similar behavior dur-

ing the application’s negotiation phase, their flows can

be easily misclassified. For example, POP3 is always mis-

classified as NNTP and SMTP, the dominant application

classes in corresponding clusters. However, this issue can

be resolved by leveraging port number as a feature during

cluster composition [56], which increases the classifica-

tion accuracy of POP3 to over 90%.

Key advantages of the traffic classification approach in

[55] is the ability to classify the same set of application

classes from another network, since network packet sizes

are similar across different traces. Furthermore, as their

approach does not depend on packet payload, it is suit-

able for classifying encrypted traffic. Though, the packet
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size may increase due to encryption method used, it can

be adjusted for based on a simple heuristic [56]. How-

ever, a fundamental requirement is to extract the first few

packets during the negotiation phase of a TCP connec-

tion. Though simplistic, it is not always possible, especially

in networks that use packet sampling. Furthermore, it

is impractical for networks that have high load or miss

packet statistics.

The classification accuracy of stand-alone classifiers

that perform early classification, can be significantly

improved by combining the outputs of multiple classi-

fiers using combination algorithms [108, 121]. Donato

et al. [121] propose Traffic Identification Engine (TIE),

a platform that allows the development and evaluation

of ML (and non-ML) classification techniques as plu-

gins. Furthermore, TIE capitalizes on complementarity

between classifiers to achieve higher accuracy in online

classification. This is realized by using classifier out-

put fusion algorithms, called combiners, including NB,

majority voting (MV), weighted majority voting (WMV),

Dempster-Shafer (D-S) [484], Behavior-Knowledge Space

(BKS) method [199], andWernecke (WER) method [473].

Note, BKS-based combiners overcome the independent

classifier assumption of the other combiners [108]. How-

ever, due to the reliance of classifiers on the first few

packets, it inherits the limitations of [56].

The authors [108, 121] evaluate the accuracy of the

stand-alone classifiers and the combiners. They extract

features for ML from flows in proprietary dataset, which

is split into 20% classifier training set, 40% classifier and

combiner validation set, and 40% classifier and combiner

test set. The authors label the dataset using a ground

truth classifier e.g. payload-based (PL) classifier. In stand-

alone mode, the J48 classifier achieves the highest overall

accuracy of 97.2%. Combining the output of J48 with

other classifiers (i.e. RandomTree, RIPPER, PL) using BKS

method, increases the overall accuracy to 98.4%, when

considering first 10 packets per bidirectional flow. Most

notably, an average gain in accuracy of 42% is achieved

when extracting features from only the first packet, which

is significant for online classification. However, higher

accuracies are achieved when PL classifier is considered

by the combiners in the pool of classifiers, thus increasing

computational overhead.

The objective of Nguyen et al. [337] is to design a traf-

fic classifier that can perform well, irrespective of missing

statistics, using a small number of most recent packets,

called sub-flows [336]. These sub-flows are derived by

using a small sliding window over each flow, of N consec-

utive packets and a step fraction S, to start at packet 0 and

slide across the training dataset in steps of N/S. Param-

eters N and S are critically chosen based on the memory

limitations and the trade-off between classification time

and accuracy.

To ensure high accuracy of the classifier it is imper-

ative to identify and select sub-flows that best capture

the distinctive statistical variations of the complete flows.

To this end, the authors manually identify sub-flow start-

ing positions based on protocol knowledge. They leverage

Assistance of Clustering Technique (ACT) [338] to auto-

mate the selection of sub-flows using unsupervised EM

clustering to establish ground truth. To account for direc-

tionality, Synthetic Sub-flow Pairs (SSP) are created for

every sub-flow recorded with forward and backward fea-

tures swapped, both labeled as the same application class

[335].

Finally, the authors in [337] use NetMate [21] to com-

pute feature values and employ supervised NB and C4.5

DT for traffic classification using WEKA [288]. Both clas-

sifiers perform well when evaluated with missing flow

start, missing directionality, or 5% independent random

packet loss. However, the C4.5 DT classifier performs

better with 99.3% median recall and 97% median preci-

sion, and achieved 95.7% median recall and 99.2% median

precision, for sub-flow size N = 25 packets for Enemy

Territory and VoIP traffic, respectively. The authors also

evaluate a real-world implementation of their approach,

called DIFFUSE, for online traffic classification. DIFFUSE

achieves a high accuracy of 98-99% for Enemy Territory

(online game) and VoIP traffic replayed across the net-

work, while monitoring one or more 1 Gb/s links. Despite

the high accuracy, this technique lacks in flexibility, since

the classifier can only recognize the application classes

that were known a priori.

Erman et al. [137] propose a semi-supervised TCP traf-

fic classification technique that partially overcomes a limi-

tation of [55] and [337]—a priori knowledge of application

class or protocol. They have the following objectives: (i)

use a small number of labeled flows mixed with a large

number of unlabeled flows, (ii) accommodate both known

and unknown applications and allow iterative develop-

ment of classifiers, and (iii) integrate with flow statistics

collection and management solutions, such as Bro [350]

and NetFlow [100], respectively.

To accomplish this, the authors employ backward

greedy feature selection (BGFS) [173] and k-Means clus-

tering to group similar training flows together, while using

Euclidean distance as the similarity metric. Here, the

objective is to use the patterns hidden in flows to assign

them together in clusters, without pre-determined labels.

Note, a small set of pre-determined labels are assigned

to clusters using maximum likelihood, mapping clusters

to application classes. While, other clusters remain unla-

beled, accommodating for new or unknown applications.

Thus, unknown flows are assigned to an unlabeled clus-

ter. This gives network operators the flexibility to add

new unlabeled flows and improve classifier performance

by allowing identification of application classes that were
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previously unknown. The authors establish ground truth

using payload-based signature matching with hand classi-

fication for validation.

In offline classification, the authors in [137] achieve over

94% flow accuracy with just two randomly labeled flows

per cluster, amongst a mix of 64,000 unlabeled flows and

k = 400. For real-time classification, the authors leverage

a layered classification approach, where each layer repre-

sents a packet milestone, that is, the number of packets

a flow has sent or received within a pre-defined sliding

window. Each layer uses an independent model to clas-

sify ongoing flows based on statistics available at the given

milestone.

Though, the model is trained with flows that have

reached each specific packet milestone, previously

assigned labels are disregarded upon reclassification. A

significant increase in the average distance of new flows

to their nearest cluster mean is indicative of the need for

retraining, which could be achieved by incremental learn-

ing. This approach not only has a small memory footprint,

it allows to update the model and potentially improve

classification performance [137]. The authors integrate

their layered online classification in Bro and achieve byte

accuracies in the 70-90% range. Furthermore, the classifier

remains fairly robust over time for different traces.

Similar to [137, 337], Li et al. [270] classify TCP traffic

into application classes, including unknown application

classes using a few packets in a flow. Their approach

uniquely trains the ML model for the application class

“Attack”, that enables early detection and classification of

anomalous traffic. They employ C4.5 DT to achieve high

accuracy for online classification and reduce complexity

in the number of features, by using correlation-based fil-

tering. They perform their evaluations on WEKA [288],

and find C4.5 DT to outperform C4.5 DT with AdaBoost

and NBKE.

The classification accuracy of C4.5 DT with 0.5% ran-

domly selected training flows, exceed 99% for most classes

except Attack, which exhibits moderate-high recall. This

is because Attack is a complex application class that shows

no temporal stability and its characteristics dynamically

change over time. However, it may be possible to over-

come this by iterative retraining of the classifier, either

by using approach similar to [137] or introducing rules

(e.g. based on port numbers or flow metrics) in the DT

to increase temporal stability of the classifier. Further-

more, the use of port numbers in conjunction with other

features results in a slightly higher accuracy. However,

this leaves the classifier vulnerable to issues in port-based

classification.

In contrast to the semi-supervised and unsupervised

techniques for TCP andUDP traffic classification, Jin et al.

[222] employ a supervised approach. They classify net-

work traffic using complete flows, while achieving high

accuracy, temporal and spatial stability, and scalability. For

accuracy and scalability, their system offers two levels of

modularity, partitioning flows and classifying each parti-

tion. In the first level, domain knowledge is exploited to

partition a flow into m non-overlapping partitions based

on flow features, such as protocol or flow size. Second,

each partition can be classified in parallel, leveraging

a series of k-binary classifiers. Each binary classifier, i,

assigns a likelihood score that is reflective of the probabil-

ity of the flow belonging to the ith traffic class. Eventually,

the flow is assigned to the class with the highest score.

They design and leverage weighted threshold sampling

and logistic calibration to overcome the imbalance of

training and testing data across classes. Though, non-

uniform weighted threshold sampling creates smaller bal-

anced training sets, it can distort the distribution of

the data. This may violate the independent and identi-

cally distributed assumption held by most ML algorithms,

invalidating the results of the binary classifiers. Therefore,

logistic calibrators are trained for each binary classifier

and used at runtime to adjust the prediction of the binary

classifiers.

The authors in [222] evaluate their system with respect

to spatial and temporal stability, classification accuracy,

and training and runtime scalability. With training and

testing data collected two months apart from two differ-

ent locations, result in low error rates of 3 and 0.4% for

TCP and UDP traffic, respectively. However, with a larger

time difference between training and testing data collec-

tion, the error rates increase to 5.5 and 1.2% for TCP and

UDP traffic, respectively. By employing collective traffic

statistics [221] via colored traffic activity graphs (TAGs)

improves the accuracy for all traffic classes, reducing the

overall error rate by 15%.

This diminishes the need for frequent retraining of the

classifiers. Their system also provides flexible training

configuration. That is, given a training time budget it can

find the suitable amount of training data and iterations of

the ML algorithm. It took the system about two hours to

train the classifiers resulting in the reported error rates.

Furthermore, their system on a multi-core machine using

multi-threads, was able to handle 6.5 million new flows

arriving per minute.

4.3.4 Encrypted traffic classification

Various applications employ encryption, obfuscation and

compression techniques, that make it difficult to detect

the corresponding traffic. Bonfiglio et al. [69] perform

controlled experiments to reverse engineer the structure

of Skype messages between two Skype clients (E2E) and

between a Skype client and a traditional PSTN phone

(E2O). The proposed framework uses three technique to

identify Skype traffic, with a focus on voice calls, regard-

less of the transport layer protocol, TCP or UDP. The



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 31 of 99

first technique uses a classifier based on the Pearson’s

χ2 test that leverages the randomness in message con-

tent bits, introduced by the Skype encryption process, as

a signature to identify Skype traffic. Whereas, the sec-

ond technique is based on NB classifier that relies on

the stochastic characteristics of traffic, such as message

size and average inter-packet gap, to classify Skype traffic

over IP. The third technique uses DPI to create a baseline

payload-based classifier.

In the evaluation, the NB classifier is effective in iden-

tifying all voice traffic, while the χ2 classifier accurately

identifies all Skype traffic over UDP and all encrypted

or compressed traffic over TCP. Jointly, NB and χ2 clas-

sifier outperform the classifiers in isolation by detecting

Skype voice traffic over UDP and TCP with nearly zero FP.

However, higher FNs are noticeable in comparison to the

isolated classifiers, as the combination disregards video

and data transfers, and correctly identify only those Skype

flows that actually carry voice traffic.

The identification of Skype traffic at the flow level is

also addressed in Alshammari et al. [17] by employing

supervised AdaBoost, Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), SVM, NB and C4.5

DT classifiers. Additionally, these classifiers are used to

identify Secure Shell (SSH) encrypted traffic. The authors

use flow-based statistical features extracted using Net-

Mate [21] and leverageWEKA [288] to train the classifiers

using a sampled dataset for SSH, non-SSH, and Skype,

non-Skype traffic. The trained models are applied to com-

plete datasets to label flows as SSH, non-SSH, Skype and

non-Skype.

In the evaluation, C4.5 DT outperform the other clas-

sifiers for the majority of datasets. For SSH traffic, it

achieves 95.9%DR and 2.8% FPR on theDalhousie dataset,

97.2% DR and 0.8% FPR on the AMP dataset, and 82.9%

DR and 0.5% FPR on the MAWI dataset. Furthermore,

when trained and tested across datasets (i.e. across net-

works), it achieves 83.7% DR and 1.5% FPR. Hence, it

generalizes well from one network to another. The C4.5

DT classifier also performed well for Skype traffic with

98.4% DR and 7.8% FPR in the Dalhousie dataset. How-

ever, secure communication in SSH and HTTPS ses-

sions can contain a variety of applications, identification

of which may be needed for granularity. Unfortunately,

Alshammari et al. [17] do not detect the precise applica-

tions within a secure session.

This problem is addressed by Shbair et al. [409]

by adopting a hierarchical classification to identify the

service provider (e.g. google.com, dropbox.com), fol-

lowed by the type of service (e.g. maps.google.com,

drive.google.com) that are encapsulated in TLS-based

HTTPS sessions. They start with the reconstruction of

TLS connections from the HTTPS traces and label them

using the Server Name Identification (SNI) field, creating

the service provider-service hierarchy. These labeled con-

nections are used to build: (i) a classifier to differen-

tiate between service providers, and (ii) a classifier for

each service provider to differentiate between their cor-

responding services. This hierarchical approach reduces

the effort required to retrain the classifiers in the event of

an addition of a new service. They use statistical features

extracted over encrypted payload with CFS and employ

C4.5 DT and RF classifiers.

In the evaluation, RF performs better in comparison

to C4.5 DT with a precision of 92.6%, recall of 92.8%,

and F-measure of 92.6%, to classify service providers

with selected features. Furthermore, the accuracy of ser-

vice classification is between 95-100% for majority of the

providers. Thus, asserting the benefit of a hierarchical

approach to traffic classification. Also, overall accuracy of

the system across both levels is 93.10% with a degrada-

tion of less than 20% over a period of 23 weeks without

retraining.

4.3.5 NFV and SDN for traffic classification

Recent advances in network paradigms, such as Network

Functions Virtualization (NFV) and SDN enable flexi-

ble and adaptive techniques for traffic classification. The

efforts discussed in this subsection present contrasting

approaches for traffic classification using ML in soft-

warized and virtualized networks.

It is well-known that the performance of classifiers vary

significantly based on the type of flow features used. Fur-

thermore, flows inherently exhibit specific characteristics

of network applications and protocols. Therefore, find-

ing the ideal set of features is fundamental to achieve

efficiency in traffic classification. In a preliminary effort,

He et al. [182] propose a NFV-based traffic-driven learn-

ing framework for traffic classification, called vTC. vTC

consists of a controller, and a set of ML classifiers and fea-

ture collectors as virtual network functions (VNFs). Their

objective is to dynamically select the most effective ML

classifiers and the most cost-efficient flow features, by

leveraging a controller and a group of VNFs, for traffic

classification. The vTC framework strives to achieve a bal-

ance between classification accuracy and speed, and the

choice of features have a significant impact on these crite-

ria. Therefore, it is critical to determine the most suitable

classifier and dynamically adjust feature collection for a

given flow protocol (e.g. TCP, UDP, ICMP).

The cost of extracting different features vary from one

another. The same holds true for the execution of clas-

sifiers. Therefore, it is important to: (i) identify whether

a feature should be collected on the data plane or the

control plane, and (ii) have a centralized view of net-

work resources while selecting the appropriate classifier.

The controller in vTC is responsible for maintaining the

ML models from offline training, and selecting the most
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suitable classifier and flow features to collect by chain-

ing the corresponding VNFs at runtime. It also monitors

the load on the VNFs for scaling resources, if necessary.

The adaptive selection of features and classifiers in vTC,

based on the flow protocol, result in an accuracy of 95.6%.

However, the performance overhead of adaptive selection

of classifiers and features, and chaining of corresponding

VNFs in vTC is not discussed. Furthermore, fine-grained

classification and corresponding results are missing.

SDN offers built-in mechanisms for data collection via

the OpenFlow (OF) protocol. Amaral et al. [19] harness

SDN and OF to monitor and classify TCP enterprise net-

work traffic. They leverage ML to extract knowledge from

the collected data. In their architecture, a SDN applica-

tion collects flow statistics from controlled switches and

pro-actively installs a flow entry to direct all packets to the

controller. For TCP traffic, the controller skips the TCP

control packets, and stores the features of sizes, times-

tamps, MAC and IP addresses, and port numbers for

the first five packets, along with their inter-arrival times.

Then, the controller installs a flow entry with an idle

timeout for local processing at the switch. Upon timeout,

flow features of packet count, byte count and duration are

collected at the controller.

The collected features are pruned using PCA and

adjusted to eliminate high variability and scaling effects.

However, the use of port numbers as a feature leaves the

classifiers susceptible to issues in port-based classifica-

tion. Nevertheless, the authors evaluate three ensemble

ML classifiers, namely RF, Stochastic Gradient Boosting

(SGBoost) and Extreme Gradient Boosting (XGBoost).

The results exhibit high accuracy for some application

classes (e.g. Web Browsing), while poor performance for

others (e.g. LinkedIn). The authors do not provide justi-

fications for the performance of the classifiers. However,

this can be attributed to the fairly small training dataset

used in their evaluation.

In contrast, Wang et al. [462] propose a framework to

classify network traffic to QoS classes rather than appli-

cations. They assume that applications with similar QoS

requirements exhibit similar statistical properties. This

allows for equal treatment of different applications hav-

ing similar QoS requirements. Their framework consists

of two components: (i) traffic identification component

that resides in switches at the network edge, to detect

QoS-significant (i.e. elephant or long-lived) flows, and (ii)

QoS aware traffic classification engine in the SDN con-

troller that leverages DPI (for offline labeling) and semi-

supervised ML to map long-lived flows to QoS classes. A

significant number of flows remain unlabeled due to lim-

ited information on all possible/existing applications, thus

calling for semi-supervised learning.

Similar to [137], periodic retraining of classifier is

required to cater to new applications. The Laplacian-SVM

classifier employed uses flow features from the first twenty

packets to classify flows into QoS classes. Furthermore,

they employ forward feature selection to reduce the num-

ber of features to nine from the initial sixty features. In the

evaluation, the accuracy of classifying long-lived flows to

QoS classes exceed 90%. However, the performance of the

proposed framework is not evaluated, especially in light of

the entropy-based features used for traffic classification.

4.4 Summary

Traditionally, Internet traffic has been classified using

port numbers, payload and host-based techniques. Port-

based techniques are unreliable and antiquated, largely

due to the use of dynamic port negotiation, tunneling

and misuse of port numbers assigned to well-known

applications for obfuscating traffic and avoiding firewalls

[54, 109, 176, 286]. In contrast, payload-based techniques

are designed to inspect application payload. Though, they

are computationally intensive and complicated due to

encryption, supervised and unsupervised ML has been

successfully applied for traffic classification with high

accuracy. Generally, unencrypted handshake payload is

used for traffic classification, which is infeasible for high

data rate links. On the other hand, long-lived UDP traf-

fic lends itself to supervised payload-based traffic clas-

sification, where payload is inspected randomly in an

observation window [146]. However, it is not widely appli-

cable and is highly sensitive to the observation window

size. Similarly, host-based traffic classification is highly

susceptible to routing asymmetries.

In contrast to these myopic approaches, flow feature-

based traffic classification techniques inspect the

complete communication session, which includes all

consecutive, unidirectional packets in the network. This

is the most widely studied technique for traffic classifi-

cation that leverages both supervised and unsupervised

ML. In supervised learning, various kernel estimation,

NN and SVM-based ML techniques have been employed

to achieve high accuracy. Though, traditional kernel

estimation techniques are simple and effective, their

underlying assumptions are unrealistic and infeasible

for traffic classification. In this light, NBKE has been

explored for traffic classification, but NN-based traffic

classification has shown higher accuracy with probabilis-

tic and, or Bayesian trained weights. Similarly, traditional

and multi-class SVM have been applied jointly to increase

the accuracy of traffic classification and its applicability

to large datasets [464].

Rarely do network operators have complete informa-

tion about all the applications in their network. Therefore,

it is impractical to expect complete a priori knowledge

about all applications for traffic classification. Therefore,

unsupervisedML techniques have been explored for prac-

tical traffic classification using flow features. For traffic
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classification with unsupervised ML, both hard and soft

clustering techniques have been investigated. Since flow

features from applications can exhibit high similarity, it

is unrealistic to apply hard clustering for fine-grained

traffic classification. On the other hand, soft clustering

achieves the required granularity with density-based clus-

tering techniques, which also has a lower training time

than EM-based soft clustering technique.

Complete flow feature-based traffic classification has

been shown to achieve high spatial and temporal stabil-

ity, high classification accuracy, and training and runtime

scalability [222]. However, it requires extensive memory

for storage and delays time sensitive classifier decisions.

Flow feature-based traffic classification can be achieved

using only a small of number of packets in a flow, rather

than the complete flow. These sub-flows can be extended

synthetically [55] or derived from a small sliding window

over each flow [337]. Sub-flow-based traffic classifica-

tion achieves high accuracy using fast and efficient C4.5

DT classifier with correlation-based filtering. Similar to

payload-based traffic classification, encryption can also

complicate flow feature-based traffic classification. How-

ever, it is possible to circumvent these challenges. For

instance, a hierarchical method that identifies service

provider followed by type of service, using statistical fea-

tures from encrypted payload has been highly accurate

and temporally stable [409].

Undoubtedly, supervised ML lends itself to accuracy

in traffic classification, while unsupervised techniques

are more robust. Consequentially, joint application of

supervised and unsupervised ML for traffic classifica-

tion [137, 497] has demonstrated success. Not only are

semi-supervised classifiers resilient, they can be easily

adapted for zero-day traffic or retrained for increased

accuracy against previously unknown applications. Recent

advances in networking increase the opportunities in traf-

fic classification with SDN- and NFV-based identification

of applications and classes of QoS. Though, some pre-

liminary work in this area has achieved high accuracy,

more scrutiny is required with respect to their resilience,

temporal and spatial stability, and computational over-

head. Most importantly, it is imperative to assess the

feasibility of these technologies for time sensitive traffic

classification decisions.

5 Traffic routing
Network traffic routing is fundamental in networking and

entails selecting a path for packet transmission. Selection

criteria are diverse and primarily depend on the opera-

tion policies and objectives, such as cost minimization,

maximization of link utilization, and QoS provisioning.

Traffic routing requires challenging abilities for the ML

models, such as the ability to cope and scale with com-

plex and dynamic network topologies, the ability to learn

the correlation between the selected path and the per-

ceived QoS, and the ability to predict the consequences of

routing decisions. In the existing literature, one family of

ML techniques has dominated research in traffic routing,

Reinforcement Learning.

Recall, RL employs learning agents to explore, with no

supervision, the surrounding environment, usually rep-

resented as a MDP with finite states, and learn from

trial-and-error the optimal action policy that maximizes a

cumulative reward. RL models are as such defined based

on a set of states S , a set of actions per stateA(st), and the

corresponding rewards (or costs) rt . When S is associated

with the network, a state st represents the status at time

t of all nodes and links in the network. However, when it

is associated with the packet being routed, st represents

the status of the node holding the packet at time t. In this

case, A(st) represents all the possible next-hop neighbor

nodes, which may be selected to route the packet to a

given destination node. To each link or forwarding action

within a route may be associated an immediate static or

dynamic reward (respectively cost) rt according to a sin-

gle or multiple reward (respectively cost) metrics, such

as queuing delay, available bandwidth, congestion level,

packet loss rate, energy consumption level, link reliability,

retransmission count, etc.

At routing time, the cumulative reward, i.e. the total

reward accumulated by the time the packet reaches its

destination, is typically unknown. In Q-learning, a simple

yet powerful model-free technique in RL, an estimate of

the remaining cumulative reward, also known as Q-value,

is associated with each state-action pair. A Q-learning

agent learns the best action-selection policy by greedily

selecting at each state the action at with highest expected

Q-value maxa∈A(st) Q(st , a). Once the action at is exe-

cuted and the corresponding reward rt is known, the node

updates the Q-value Q(st , at) accordingly as follows:

Q(st , at)←(1−α)Q(st , at)+α

(

rt + γ max
a∈A(st+1)

Q(st+1, a)

)

α (0 < α ≤ 1) and γ (0 ≤ γ ≤ 1) denote the

learning rate and discount factor respectively. The closer

α is to 1, the higher is the impact of the most recently

learned Q-value. While higher γ values make the learn-

ing agent aim for longer-term high rewards. Indeed, the

greedy action-selection approach is only optimal if the

learning agent knows the current Q-values of all possi-

ble actions. The agent can then exploit this knowledge

to select the most rewarding action. If not, an ǫ-greedy

approach may be used such that with probability ǫ the

agent chooses to explore a random action rather than

choosing deterministically the one with highest Q-value.

Though, RL is gaining a lot of attention these days, its

application in network traffic routing dates back to the

early 1990s. Boyan and Littman’s [71, 280] seminal work
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introduced Q-routing, a straight-forward application of

the Q-learning algorithm to packet routing. In Q-routing,

a router x learns tomap a routing policy, such as routing to

destination d via neighbor y, to its Q-value. The Q-value is

an estimate of the time it will take for the packet to reach

d through y, including any time the packet would have to

spend in node x’s queue plus the transmission time over

the link x, y. Upon reception of the packet, y sends back to

x the new estimated remaining routing delay, and x adjusts

accordingly its Q-value based on a learning rate. After

convergence of the algorithm, optimal routing policies are

learned.

Q-routing does not require any prior knowledge of the

network topology or traffic patterns. However, experi-

ments on a 36-node network demonstrated the Q-routing

outperforms the shortest path first routing algorithm in

terms of average packet delivery time. It was also found

that, although Q-routing does no exploration or fine-

tuning after policies and Q-values are learned, it still

outperforms in a dynamically changing network topol-

ogy, a full-echo Q-routing algorithm where the policy is

dynamically adjusted to the current estimated time to des-

tination. In fact, under heavy load, the full-echo Q-routing

algorithm constantly changes the routing policy creating

bottlenecks in the network. On the contrary, the orig-

inal Q-routing shows better stability and robustness to

topology changes under higher loads.

Since then the application of Q-learning to packet

routing has attracted immense attention. A number of

research efforts from late 1990s and early 2000s, built

on and proposed improvements to Q-learning, result-

ing in three main research directions: (a) improving the

performance of Q-routing to increase learning and con-

vergence speed [96, 254], (b) leveraging the low com-

plexity of Q-learning and devising Q-learning-inspired

algorithms adapted to the specificities of the network (e.g.

energy-constrained networks) and/or routing paradigm

(e.g. multicast routing [430]), and (c) enforcing further col-

laboration between the routing learning agents to achieve

complex global performance requirements [424, 479].

In 1996, a memory-based Q-learning algorithm called

predictive Q-routing (PQ-routing) is proposed to keep

past experiences to increase learning speed. PQ-routing

keeps past best estimated delivery times to destination via

each neighboring node y and reuses them in tandem with

more current ones. In 1997, Kumar et al. apply dual rein-

forcement Q-routing (DRQ-Routing) to minimize packet

delivery time [254]. DRQ-Routing integrates dual rein-

forcement learning [167] with Q-routing, so that nodes

along the route between the source and the destination

receive feedbacks in both directions (i.e. from both the

up-stream and down-stream nodes). Both PQ-routing and

DRQ-Routing are fully distributed as in Q-routing, and

use only local information plus the feedbacks received

from neighboring nodes. While PQ-routing shows better

performance than Q-routing at lower-loads, DRQ-routing

converges faster and the protocol shows better overall per-

formance at the cost of slightly increased communication

overhead due to backward rewards.

The problem of ML-based multicast routing was

first addressed by Sun et al. [430] in the context of

MANETs. Q-MAP, a Q-learning-based algorithm, was

proposed to find and build the optimal multicast tree

in MANETs. In Q-MAP, Q-values are associated with

different upstream nodes and the best Q-values are dis-

seminated directly from the sinks to the nodes thus

making exploration of routes unnecessary, while speed-

ing up the convergence of the learning process. Indeed an

exploration-free approach eventually leads to maximum

routing performance since only actions with maximum

Q-values are selected, however it reduces the proto-

col to a static approach that is insensitive to topology

changes.

The traditional single-agent RL model, which is greedy

in nature, provides local optimizations regardless of the

global performance. Therefore, it is not sufficient to

achieve global optimizations such as network lifetime

maximization or network-wide QoS provisioning. Multi-

Agent Reinforcement Learning (MARL) entails that, in

addition to learning information from the environment,

each node exchanges local knowledge (i.e. state, Q-value,

reward) and decisions (i.e. actions) with other nodes in

the network in order to achieve global optimizations. This

helps the nodes to consider not only their own perfor-

mance, but also the one of their neighbors and eventually

others, in selecting the routing policy. Generally, this

comes at the price of increased complexity as the state is

a joint state of all the learning agents, and the transitions

are the result of the joint action of all the agents in the sys-

tem. Q-routing and Q-routing-inspired approaches like

PR-routing and DRQ-Routing do use a form of MARL, as

Q-values are exchanged between neighboring nodes. This

form of MARL is soft in that it is easy to implement and

has low communication and computational complexity as

opposed to the general more complex form of MARL like

in [124, 425].

Team-partitioned opaque-transition reinforcement

learning (TPOT-RL), proposed by Stone and Veloso for

the RoboCup-1998 (Robot Soccer World Cup II) [425],

is the first fully collaborative MARL technique to be

applied to packet routing [424]. Routing was used by the

authors as a proof-of-concept of the applicability of their

algorithm to real world problems. However, in practice

this algorithm has high computational complexity consid-

ering the very large number of states to be explored, and

high communication overhead as every routed packet is

acknowledged back by the sink along the path from the

source for reward computation.
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These early works paved the way to a decade of con-

tinued and prolific research in the area. While exist-

ing research studies preeminently consider routing as a

decentralized operation function, and as such distribute

the learning function across the routing nodes, works like

[276, 461] take a centralized and a partially decentral-

ized approach respectively. In the following we discuss

representative works in the area and summarize them in

Table 9.

5.1 Routing as a decentralized operation function

RL when applied in a fully distributed fashion, turns

each routing node into a learning agent that makes local

routing decisions from information learned from the envi-

ronment. Routing nodes can take their decisions either

independently or through collaboration in a multi-agent

system fashion.

In [151], Forster et al. use a Q-learning approach in

a multicast routing protocol, called FROMS (Feedback

Routing for Optimizing Multiple Sinks). The goal of

FROMS is to route data efficiently, in terms of hop count,

from one source to many mobile sinks in a WSN by find-

ing the optimal shared tree. Like in [430], a FROMS node

is a learning agent that runs Q-learning to incrementally

learn the real costs of different possible routes. Its state is

updated with every data packet that needs to be routed,

and the set of actions is defined by the possible next

hop neighbors (ni) and their route to the sinks
(

hops
ni
Dp

)

.

Rewards are received back from the upstream nodes and

used to update the Q-values of the corresponding actions.

However, unlike [430], next-hop neighbors are selected

using a variant of the ǫ − greedy algorithm, such that

the routing algorithm alternates between an exploration

phase and a greedy exploitation phase. FROMS shows up

to 5 times higher delivery rates than the popular directed

diffusion algorithm [205] in the presence of node failure,

and 20% less network overhead per packet due to route

aggregation.

Arroyo-Valles et al. [24] propose Q-probabilistic routing

(Q-PR), a localization-aware routing scheme for WSNs

that applies Q-learning to achieve a trade-off between

packet delivery rate, expected transmission count (ETX),

and network lifetime. A node’s decision as to drop a packet

or forward it to one of the neighbors is a function of the

energy cost at transmission and reception, packet prior-

ity, and the ETX to the sink through the neighbor. A node

greedily chooses among its next-hop candidate neighbors

the one that minimizes the cost of the route to the sink,

which is estimated by the Q-value of the nodes. It updates

its Q-value every time it relays a packet, and broadcast it

so it is received by its neighbors. Experimental evaluations

are carried out through simulations with over 50 different

topologies of connected networks.

Q-PR is compared to the greedy perimeter stateless

routing algorithm (GPSR) and the Expected progress-

Face-Expected progress (EFE), both localization-aware

routing algorithms. Results show that Q-PR as well as

EFE outperform GPSR in terms of successful delivery rate

(over 98% against 75.66%). Moreover, Q-PR shows lower

number of retransmission retries and acknowledgements

(on average over 50% and 40% less than GPSR and EFE

respectively). Thus the Q-PR algorithm preserves better

the lifetime of the WSN (3× and 4× more than GPSR

and EFE respectively). However the algorithm requires

that each node maintains locally a number of informa-

tion regarding each of its neighbors. These include the

distance between the nodes, the distance of the neighbor

to the sink, the delivery probability between nodes, the

estimated residual energy at the neighboor, and the 2-hop

neighboors. This hampers the scalability of the approach.

Hu and Fei [197] propose QELAR, a model-based vari-

ant of the Q-routing algorithm, to provide faster conver-

gence, route cost reduction, and energy preservation in

underwater WSNs. In QELAR, rewards account for both

the packet transmission energy (incurred for forwarding

the packet to the neighbor node) and the neighbor node’s

residual energy. Taking into account the residual energy

helps achieve a balanced energy distribution among nodes

by avoiding highly utilized routes (hotspots). Amodel rep-

resentation for each packet is adopted such that the state

is defined as per which node holds the packet. Next-hop

nodes are selected greedily based on their expected Q-

values. The latter are maintained by the node along with

corresponding transition probabilities learned at runtime.

Each time a node forwards a packet, it appends its Q-value

along with its energy level.

QELAR is evaluated and compared against the vector-

based forwarding protocol (VBF) through simulations

with 250 mobile sensor nodes uniformly deployed in a

3D space. Results show that QELAR is 25% more energy

efficient than VBF. The lifetime of the network is 25% ∼

30% higher with QELAR in the presence of failures and

network partition compared with VBF with comparable

transmission range, which makes QELAR more robust to

faults. Whereas, both show comparable routing efficiency

and delivery rates. On the other hand, further research

could be pursued to study the convergence speed of the

model-based learning algorithm of QELAR compared to

the model-free Q-learning when appropriate learning rate

and discount factor are used.

In [277] Lin and Schaar address the problem of routing

delay-sensitive applications in the more general context

of multi-hop wireless ad hoc networks. They rely on a n-

step temporal difference (TD) [433] learning method, and

aim at reducing the frequency of message exchange, and

thus the communication overhead without jeopardizing

the convergence speed. The routing protocol is evaluated
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in a simulatedmulti-hop network with 2 sources transmit-

ting videos to a same destination node. Results show that

by reducing the frequency of message exchange by 95%

(from every 1ms to every 20ms), the goodput and effective

data rate are increased by over 40%, and the video quality,

calculated in terms of peak signal-to-noise ratio (PSNR), is

increased by 10%. The convergence time seems to be only

slightly affected (1 ∼ 2sec). This is an interesting find-

ing considering the bandwidth that can be saved and the

interferences that can be avoided by spacing information

exchanges.

Bhorkar et al. also address the problem of routing in

multi-hop wireless ad hoc networks. They propose d-

AdaptOR [59], a distributed adaptive opportunistic rout-

ing protocol which minimizes the average packet routing

cost. d-AdaptOR is based on Q-learning with adaptive

learning rate.

In opportunistic routing, instead of pre-selecting a spe-

cific relay node at each packet transmission as in tradi-

tional routing, a node broadcasts the data packet so that

it is overheard by multiple neighbors. Neighbors who suc-

cessfully acknowledge the packet form the set of candidate

relays. The node will then choose among the candidate

relays the one that will be forwarding the packet to desti-

nation. This property is an opportunity for the Q-learner

to receive from the candidate relays their up-to-date Q-

values. Traditionally, in Q-learning action selection is

based on older, previously received Q-values.

Routing in d-AdaptOR consists of four main steps:

(1) the sender transmits the data packet, (2) neighbors

acknowledge the packet while sending its Q-value, the

estimated cumulative cost-aware packet delivery reward,

(3) the sender selects a routing action, either a next-hop

relay or the termination of packet transmission, based on

the outcome of the previous step using an ǫ-greedy selec-

tion rule (4) after the packet is transmitted, the sender

updates its own Q-value at a learning rate that is spe-

cific to the selected next-hop relay. The learning rate is

adjusted using a counter that keeps track of the num-

ber of packets received from that neighbor node. The

higher the value of the counter, the higher is the conver-

gence rate, though at the expense of Q-values fluctuations.

Indeed the value of the counter depends also on the fre-

quency of explorations. Further research could be pursued

to investigate the optimal exploration-exploration strategy

and the effects of different strategies on the convergence

rate.

d-AdaptOR performance was investigated on the

QualNet simulator using a random network benchmark

consisting of 36 randomly placed wireless nodes. Sim-

ulations show that d-AdaptOR consistently outperforms

existing adaptive routing algorithms, in terms of num-

ber of retransmissions per packet. Further study could be

pursued to investigate the added value of node-specific

learning rates in Q-value computation, compared to the

traditional node-oblivious learning rate that is more effi-

cient in terms of storage and computation.

Xia et al. [482] apply a spectrum-aware DRQ-routing

approach in cognitive radio networks. In CRNs, the avail-

ability of a channel is dynamic, and is dependent on the

activity level of the primary user (PU). The purpose of

the routing scheme is to enable a node to select a next-

hop neighbor node with higher estimate of total number

of available channels up to destination. Indeed, higher

number of available channels reduces channel contention,

and hence reduces the MAC layer delay. However, rely-

ing on the total number of available channels along the

path to destination can lead to very poor results in prac-

tice. The dual DRQ-routing approach was tested through

simulations on a tailored stationary (non-mobile) multi-

hop network topology with 10 cognitive radio nodes

and 2 PUs operating on different channels. DRQ-routing

was also compared against spectrum-aware Q-routing

and spectrum-aware shortest path routing (SP-routing)

at different activity levels. Simulation results show that

after convergence, DRQ-routing minimizes end-to-end

delay, is faster to converge than Q-routing (50% faster

at lower activity level), and that it significantly reduces

end-to-end delay compared to SP-routing at higher activ-

ity levels. However, although the nodes are not mobile

and the topology is fixed, the convergence time at a 2

packet/s activity level is around 700sec which implies that

1400 periods have elapsed before DQR-routing has con-

verged. As the activity level reaches 2.75packet/s, over

3000 periods are necessary for DRQ-routing to con-

verge. These numbers are quite significant, but that is

not surprising considering that a discount factor of 1 was

used.

Elwhishi et al. [133] propose a Collaborative Reinforce-

ment Learning (CRL) -based routing scheme for delay

tolerant networks. CRL is an extension to RL introduced

by Dowling et al. in 2004 for solving system-wide opti-

mization problems in decentralized multi-agent systems

with no global state [123], and was first applied to rout-

ing in MANETs by the same authors in [124]. Routing

schemes for delay tolerant networks are characterized by

the lack of end-to-end aspect, and each node explores

network connectivity through finding a new link to a next-

hop neighbor node when a new packet arrives, which

must be kept in the buffer while a link is formed. SAM-

PLE, the proposed routing mechanism, selects a reliable

next-hop neighbor node while taking into account three

factors; two factors relevant to the channel availability

(node mobility and congestion level), and a factor rel-

evant to the buffer utilization (remaining space in the

buffer). These are learned through feedback exchange

among agents. Tested with different network topologies

and mobility models, SAMPLE shows better performance
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than the traditional AODV and DSR routing algorithms in

terms of packet delivery ratio and throughput.

5.2 Routing as a partially decentralized operation

function

In [461] Wang et al. present AdaR, a routing mechanism

for WSNs based on a centralized implementation of the

model-free Least Squares Policy Iteration (LSPI) RL tech-

nique [258]. AdaR uses an offline learning procedure, and

is claimed to converge to the fixed point routing pol-

icy faster than the traditional Q-learning. The algorithm

takes into account the node’s load, its residual energy,

and hop count to the sink, as well as the reliability of

the links. The algorithm runs in learning episodes. The

base station is the learning agent, while the routing nodes

are passive in terms of learning. However, actions are

selected by the routing nodes in a decentralized fashion

based on the Q-values assigned by the base station, and

the ǫ-greedy selection algorithm. During each episode,

the current Q-values are used to select a route to the

base station. At each hop, the full hop information is

appended to the packet and is used by the base station

to calculate immediate rewards. When the base station

has received enough information (the required number of

packets is undefined), it calculates the newQ-values of the

nodes offline, and disseminates them via a network-wide

broadcast.

AdaR is tested on a simulated WSN with varying node

residual energy and link reliability. Results show that the

algorithm converges faster than Q-learning; a routing suc-

cess rate of ∼ 95% with a low deviation was reached

even before the 5th learning episode, whereas, it took

40 episodes for Q-learning to reach comparable success

rates. This can be explained by Q-learning’s initial Q-

values and the selected learning rate (α = 0.5). Appropri-

ate initial Q-values and higher learning rate would have

helped Q-learning converge faster. In fact, the authors

show that Q-learning is more sensitive to the initial choice

of Q-values than AdaR. Indeed AdaR has some useful

properties, like taking into account different routing cost

metrics and having faster convergence time. However, this

comes at the price of higher computational complexity,

and communication overhead due to the growing size of

the packets at each hop and the broadcasting of Q-values,

which also makes it more sensitive to link failures and

node mobility.

5.3 Routing as a centralized control function

More recently, a centralized SARSA with a softmax pol-

icy selection algorithm has been applied by Lin et al. [276]

to achieve QoS-aware adaptive routing (QAR) in SDN.

Although a multi-layer hierarchical SDN control plane is

considered by the authors, the proposed SARSA-based

routing algorithm is not specific to such an architecture,

and is meant to run on any controller that has global

visibility of the different paths and links in the network.

For each new flow, the first packet is transmit-

ted by the switch to the controller. The controller

implicitly recognizes the QoS requirements of the

flow, calculates the optimal route using the SARSA-

based QAR algorithm, and accordingly updates the for-

warding tables of the switches along the path. The

QoS requirements consist in what metric to mini-

mize/maximize (delay, loss, throughput, etc.). They are

used to control the weight of each metric in the reward

function.

It is suggested that the controller iterates the SARSA

algorithm until convergence, which in practice results in

delayed routing. The question is, how long is the delay and

how suitable is the solution for real-time traffic. Also the

impact of routing new flows on the QoS of other flows in

the network is overlooked. If the flow is an elephant flow,

it may congest the links and severely impact the QoS of

flows with tight delay requirements.

5.4 Summary

The low computational and communication requirements

of traditional RL algorithms, in particular Q-learning, and

their ability to perform well at finding an optimal solution

and adapting to changes in the environment, have moti-

vated their—reportedly successful—application to traffic

routing in a variety of network settings, as shown in

Table 9.

Different approaches have been considered in apply-

ing RL to the traffic routing problem. These approaches

vary in terms of: (i) level of distribution of the learning

capability, and (ii) level of collaboration among multi-

ple learners. Clearly, different approaches lend themselves

more naturally to different network topologies and util-

ity functions. For instance, in SDN [276] as well as

WSN, the existence of a central node—the controller

in SDN and the sink in WSN, respectively—allows for

centralized learning. Whereas, routing in wireless ad

hoc networks calls for decentralized RL [59, 277] where

the learning capability is distributed among the routing

nodes.

For the nodes to select the optimal routing policy,

they need to evaluate different routing policies (actions)

against a given utility function (reward). Rewards can be

calculated in a central node, such as a sink or base station

like in AdaR [461]. Alternatively, rewards are locally esti-

mated by the nodes, which requires the nodes to exchange

information. The nature and the amount of information,

as well as the dissemination process, vary according to

the utility function, as shown in Table 9. Indeed utility

functions such as QoS provisioning, load balancing and

network lifetime maximization, as in Q-PR [24], QELAR

[197, 277], require more information to be disseminated
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at the cost of an increased complexity and communication

overhead.

It is also important to notice that learners are very

loosely coupled inmost recently adopted decentralized RL

approaches, where routers tend to select routing policies

in an asynchronous, independent, very soft MARL fash-

ion. Clearly, MARL aims at coordinating learning agents

in order to achieve the optimal network-wide perfor-

mance. This should further enhance the routing perfor-

mance. However, several challenges arise from MARL. In

fact, the difficulty of defining a good global learning goal,

the overhead for an agent to coherently coordinate with

other learning agents, and the longer convergence time

can be prohibitive when applying MARL to realistic prob-

lem sizes. Indeed, there is a need for understanding the

trade-off between benefits and overhead when applying

MARL, particularly in resource-constrained and dynamic

wireless networks where coordination has eventually a lot

to offer.

6 Congestion control
Congestion control is fundamental to network operations

and is responsible for throttling the number of packets

entering the network. It ensures network stability, fair-

ness in resource utilization, and acceptable packet loss

ratio. Different network architectures deploy their own set

of congestion control mechanisms. The most well-known

congestion control mechanisms are those implemented

in TCP, since TCP along with IP constitute the basis of

the current Internet [13]. TCP congestion control mech-

anisms operate in the end-systems of the network to

limit the packet sending rate when congestion is detected.

Another well-known congestion control mechanism is

queue management [72] that operates inside the inter-

mediate nodes of the network (e.g. switches and routers)

to complement TCP. There have been several improve-

ments in congestion control mechanisms for the Internet

and evolutionary network architectures, such as Delay-

Tolerant Networks (DTN) and Named Data Networking

(NDN). Despite these efforts, there are various short-

comings in areas such as packet loss classification, queue

management, Congestion Window (CWND) update, and

congestion inference.

This section describes several research works that

demonstrate the potential of applyingML to enhance con-

gestion control in different networks.Majority of the tech-

niques have been applied toTCP/IPnetworks. It is important

to note that the first ML-based approaches for congestion

control were proposed in the context of asynchronous t

ransfer mode (ATM) networks [175, 264, 284, 437]. How-

ever, we exclude these works from the survey because,

to the best of our knowledge, this type of network has

a low impact on present and future networking research

interests [177].

6.1 Packet loss classification

In theory, TCP works well regardless of the underly-

ing transmission medium, such as wired, wireless, and

optical. In practice the standard TCP congestion control

mechanism has been optimized for wired networks. How-

ever, the major problem in TCP is that it recognizes and

handles all packet losses as network congestion, that is

buffer overflow. Hence, performing unjustified conges-

tion control when a loss is due to other reasons, such as

packet reordering [150], fading and shadowing in wire-

less networks [130], and wavelength contention in optical

networks [214]. As a consequence, TCP unnecessarily

reduces its transmission rate at each detected packet loss,

lowering the end-to-end throughput.

Therefore, the TCP throughput for wireless networks

can be improved by accurately identifying the cause of

packet loss [34, 62, 490] and reducing the TCP transmis-

sion rate only when congestion is detected. However, TCP

congestion control has no mechanism for identifying the

cause of packet loss. We term this problem as packet loss

classification and various efforts have been made to pro-

pose solutions to this problem. In general, the solutions

for packet loss classification fall in two broad categories,

depending on where the solution is implemented in the

network, that is, at intermediate nodes or in end-systems.

The former requires additional implementation at the

intermediate nodes that either hide the error losses from

the sender [32, 33], or communicate to the sender extra

statistics about the network state, such as congestion noti-

fication [483] and burst acknowledgment (ACK) [490]. It

is important to mention that hiding error losses may vio-

late TCP end-to-end principle as it may require splitting

the TCP connection by sending an ACK to the sender

before the packet arrives at the receiver [129].

In the latter approach, end-systems are complemented

with solutions, such as TCP-Veno [156] and TCP-

Westwood [463]. These leverage information available at

end-systems, such as inter-arrival time (IAT), round-trip

time (RTT), and one-way delay, to distinguish causes of

packet loss and aid TCP congestion control mechanism.

However, it has been shown that it is difficult to perform

a good classification using simple tests, such as the ones

implemented by TCP-Veno and TCP-Westwood, on these

metrics, since they lack correlation to the cause for packet

loss [60].

Therefore, various ML-based solutions have been pro-

posed for packet loss classification in end-systems for

different networks, such as hybrid wired-wireless [38,

129, 130, 163, 282], wired [150], and optical networks

[214]. Generally, the classifier is trained offline, leveraging

diverse supervised and unsupervised ML algorithms for

binary classification. The majority of these techniques use

the metrics readily available at end-systems, and evaluate

their classifier on synthetic data on network simulators,
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such as ns-2 [203]. We delineate the proposed ML-based

solutions for packet loss classification in Table 10 and

discuss these techniques in this subsection.

Liu et al. [282] proposed, to the best of our knowl-

edge, the first approach using ML for inferring the cause

of packet loss in hybrid wired-wireless networks. Partic-

ularly, they distinguish between losses due to congestion

and errors in wireless transmission. They employ EM to

train a 4-state HMM based on loss pair RTT values, that

is RTT measured before a packet loss. The Viterbi algo-

rithm [455] is applied on the trained HMM to infer the

cause of packet loss. The resultant ML-based packet loss

classifier exhibits greater flexibility and superiority over

TCP-Vegas [73]. Since, TCP-Vegas has been shown to out-

perform non-ML-based packet loss classifiers [60], the

ML-based solution of [282] was fundamental in creating

a niche and instigating the feasibility of ML-based solu-

tions for packet loss classification problems. However, the

authors assume that the RTT values never change dur-

ing measurement. This is an unrealistic assumption since

a modification in the return path changes the RTT values

without affecting the cause of packet loss. Thus, affect-

ing the correlation between RTT and cause of packet

loss.

Barman and Matta [38] use EM on a 2-state HMM and

consider discrete delay values to improve the accuracy of

the above packet loss classifier, though at the expense of

a higher computational cost. This work substitutes the

Viterbi algorithm with a Bayesian binary test that pro-

vides comparable accuracy, while being computationally

efficient. However, this ML-based packet loss classifier,

unlike others, requires support from the network to obtain

one of its input features, the estimated probability of wire-

less loss. Furthermore, [38, 282] evaluate their packet loss

classifiers on simple linear topologies, which is far from

realistic network topologies.

In contrast, El Khayat et al. [129, 130, 163] simulate

more than one thousand random hybrid wired-wireless

topologies for collecting a dataset of congestion and wire-

less error losses. The authors compute 40 input features

from this dataset by using information that is only avail-

able at end-systems, including one-way delay and IAT of

packets preceding and succeeding a packet loss. Several

supervised ML algorithms are leveraged to build packet

loss classifiers using these features. All the classifiers

achieve a much higher classification accuracy than non-

ML solutions, such as TCP-Veno and TCP-Westwood. In

particular, Boosting DT with 25 trees provide the high-

est accuracy and the second fastest training time. It is

important to realize that the training time of DT is the

fastest, with a small reduction in accuracy of less than 4%

compared to Boosting DT. Therefore, in case of computa-

tional constraints, DT achieves the best balance between

accuracy and training time.

The authors continue on to improve TCP with the

Boosting DT classifier, which exhibit throughput gains

over the standard TCP-NewReno [185] and TCP-Veno.

The results also show that the improved TCP can main-

tain a fair link share with legacy protocols (i.e. TCP-

friendly). Their ML-based packet loss classifier is flexible

and enables the selection between TCP throughput gain

and fairness without retraining the classifier.

On the other hand, Fonseca and Crovella [150] focus

on detecting the presence of packet loss by differentiating

Duplicated ACKs (DUPACK) caused by congestion losses

and reordering events. Similar to [282], they employ loss

pair RTT as an input feature, however, to infer the network

state and not the state of a single TCP connection. Thus,

avoiding the poor correlation between RTT and the cause

of packet loss. The authors construct a Bayesian packet

loss classifier that achieves up to 90% detection proba-

bility with a false alarm of 20% on real wired network

datasets from the Boston University (BU) and Passive

Measure Analysis (PMA) [1]. The performance is superior

for the BU dataset due to the poor quality of RTT mea-

surements in the PMA dataset. In addition, the authors

adapt an analytic Markov model to evaluate a TCP variant

enhanced with the Bayesian packet loss classifier, result-

ing in a throughput improvement of up to 25% over the

standard TCP-Reno.

In the context of optical networks, Jayaraj et al. [214]

tackle the classification of congestion losses and con-

tention losses in Optical Burst Switching (OBS) networks.

The authors collect data by simulating the National Sci-

ence Foundation Network (NSFNET) with OBS modules

and derive a new feature from the observed losses, called

the number of burst between failures (NBBF). They con-

struct two ML-based packet loss classifiers by applying

EM for both HMM and clustering. These classifiers inte-

grate two TCP variants that keep a low control overhead

for providing better performance (e.g. higher through-

put and fewer timeouts) over the standard TCP-NewReno

[185] and TCP-SACK [299], and Burst-TCP [490] for OBS

networks. The TCP variant using EM for clustering per-

form slightly better than EM for HMM, as the former

produce states (clusters) with a higher degree of similarity,

while requiring a similar training time.

6.2 Queuemanagement

Queue management is a mechanism in the intermedi-

ate nodes of the network that complements TCP con-

gestion control mechanisms. Specifically, queue manage-

ment is in charge of dropping packets when appropriate,

to control the queue length in the intermediate nodes

[72]. The conventional technique for queue management

is Drop-tail, which adopts the First-In-First-Out (FIFO)

scheme to handle packets that enter a queue. In Drop-tail,

each queue establishes a maximum length for accepting
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incoming packets. When the queue becomes full, the sub-

sequent incoming packets are dropped until the queue

becomes available again. However, the combination of

Drop-Tail with the TCP congestion avoidance mecha-

nism leads to TCP synchronization that may cause serious

problems [68, 72]: (i) inefficient link utilization and exces-

sive packet loss due to a simultaneous decrease in TCP

rate, (ii) unacceptable queuing delay due to a continuous

full queue state; and (iii) TCP unfairness due to a few con-

nections that monopolize the queue space (i.e. lock-out

phenomenon).

Active Queue Management (AQM) is a proactive

approach that mitigates the limitations of Drop-tail by

dropping packets (or marking them for drop) before

a queue becomes full [72]. This allows end-systems to

respond to congestion before the queue overflows and

intermediate nodes to manage packet drops. Random

Early Detection (RED) [148] is the earliest and most well

known AQM scheme. RED continually adjusts a dropping

(marking) probability according to a predicted congestion

level. This congestion level is based on a pre-defined

threshold and a computed average queue length. However,

RED suffers from poor responsiveness, fails to stabilize

the queue length to a target value, and its performance

(w.r.t. link utilization and packet drop) greatly depends

on its parameter tuning, which has not been success-

fully addressed [269]. Many AQM schemes have been

proposed to improve these shortcomings [4]. However,

they rely on fixed parameters that are insensitive to the

time-varying and nonlinear network conditions.

For this reason, significant research has been conducted

to apply ML for building an effective and reliable AQM

scheme, which is capable of intelligently managing the

queue length and tuning its parameters based on network

and traffic conditions. The proposals presented in this

survey conduct online training in the intermediate nodes

of the network and evaluate their solutions by simulating

diverse network topologies, mostly in ns2, using charac-

teristics of wired networks. As highlighted in Table 11,

these AQM schemes apply different supervised tech-

niques for TSF [160, 179, 212, 498] and reinforcement-

based methods for deducing the increment in the packet

drop probability [298, 427, 428, 485, 499]. It is important

to note that in this section we use the term increment

to refer to a small positive or negative change in the

value of the packet drop probability. The accuracy results

depict the quality of the ML technique, for either cor-

rectly predicting future time series values or stabilizing

the queue length. In addition, the computational com-

plexity of these AQM schemes depend on the learning

algorithm employed and the elements that constitute the

ML component. For example, the NN structure and its

complementing components. In the following, we discuss

these ML-based AQM schemes.

PAQM [160], to the best of our knowledge, is the first

approach using ML for improving AQM. Specifically,

PAQM used OLS on time series of traffic samples (in

bytes) for predicting future traffic volume. Based on such

predictions, PAQMdynamically adjusted the packet drop-

ping probability. The proposed OLS method relies on the

normalized least mean square (NLMS) algorithm to cal-

culate the linear minimum mean square error (LMMSE).

Through simulations, the authors demonstrated that their

linear predictor achieves a good accuracy, enabling PAQM

to enhance the stability of the queue length when com-

pared to RED-based schemes. Therefore, PAQM is capa-

ble of providing high link utilization while incurring low

packet loss. Similarly, APACE [212] configure the packet

dropping probability by using a similar NLMS-based OLS

on time series of queue lengths to predict the current

queue length. Simulations show that APACE is compara-

ble to PAQM in terms of prediction accuracy and queue

stability, while providing better link utilization with lower

packet loss and delay under multiple bottleneck links.

However, these NLMS-based predictors have a high com-

putational overhead that is unjustified in comparison to a

simpler predictor based on, for instance, a low pass filter.

To address these shortcomings, α_SNFAQM [498] was

proposed to predict future traffic volume by applying the

BP algorithm to train a neuro-fuzzy hybrid model using

NN and fuzzy logic, called α_SNF. This α_SNF predic-

tor uses time series of traffic samples and the predicted

traffic volume as features. Then, α_SNFAQM leverage

the predicted traffic volume and the instantaneous queue

length to classify the network congestion as either severe

or light. On this basis, α_SNFAQM decides to either

drop all packets, drop packets with probability, or drop

none. Simulations demonstrate that the α_SNF predic-

tor slightly exceeds the accuracy of the NMLS-based

predictor and incurs lower computational overhead. Fur-

thermore, α_SNFAQM achieves smaller and more stable

queue length than PAQM and APACE, while provid-

ing comparable goodput. However, α_SNFAQM produce

more packet drops in order to notify the congestion

earlier.

Similarly, to keep a low computational overhead, NN-

RED [179] apply an SLP-NN on time series of queue

length to predict a future queue length. The predicted

queue length is compared to a threshold to decide if

packet dropping is needed for preventing severe conges-

tion. The SLP-NN is trained using the least mean square

(LMS) algorithm (a.k.a., delta-rule), which is marginally

less complex than NLMS. Basic simulations exhibit that

NN-RED outperforms RED and Drop-tail in terms of

queuing delay, dropped packets, and queue stability. How-

ever, this work lacks comparison of NN-RED with similar

approaches, such as PAQM, APACE, and α_SNFAQM, in

terms of performance and computational overhead.
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Table 11 Summary of AQM schemes with online training in the intermediate nodes of a wired network

Ref. ML
Technique

Multiple Synthetic data from Features Output Evaluation

Bottlenecka ns-2 simulation (action-set for RL) Settings Results

PAQM [160] Supervised:
· OLS

� Topology:
· 6-linear
· Arbitrary
dumbbell
Time = 50s

· Traffic
volume
(bytes)

TSF:
· Traffic volume

· NMLS
algorithm
based on
LMMSE

Accuracy:
· 90 − 92.3%

APACE [212] Supervised:
· OLS

� Topology:
· Dumbbell
(1-sink) · 6-linear
Time = 40s

· Queue
length

TSF:
· Queue length

· NMLS
algorithm
based on LMMSE

Accuracy:
· 92%

α_SNFAQM
[498]

Supervised:
· MLP-NN

– Topology:
· Dumbbell (1-sink)
Time = 300s

· Traffic
volume
· Predicted
traffic
volume

TSF:
· Traffic volume

· 2 input
neurons · 2 hidden
layers with
3 neurons
· 1 output
neuron

Accuracy: · 90 − 93%

NN-RED
[179]

Supervised:
· SLP-NN

– Topology:
· Dumbbell
Time = 900s

· Queue length TSF: · Queue
length

· 1+N input neurons
(N past values) · 0
hidden layers
· 1 output
neuron
· Delta-rule
learning

N/A

DEEP
BLUE [298]

Reinforcement:
· Q-learning
- ǫ-greedy

– Topology:
· Dumbbell
Time = 50s
OPNET
simulator
instead of ns-2

States:
· Queue
length · Packet drop
prob. Reward:
· Throughput
· Queuing
delay

Decision making:
· Increment of the
packet drop
probability (finite:
6 actions)

· N/A states
· 6 actions
· ǫ-greedy
ASSb

Optimal
packet
drop probability:
· Outperforms
BLUE [144]

Neuron PID
[428]

Reinforcement:
· PIDNN

� Topology:
· Dumbbell
Time = 100s

· Queue
length error

Decision making:
· Increment of the
packet drop
probability
(continuous)

· 3 input neurons
· 0 hidden layers
· 1 output neuron
· Hebbian learning
· 1 PID component

QLAcc error
c :

· 7.15 QLJit :
· 20.18

AN-AQM
[427]

Reinforcement:
· PIDNN

� Topology:
· Dumbbell
· 6-linear Time
= 100s

· Queue
length error
· Sending
rate error

Decision making:
· Increment of
the packet
drop probability
(continuous)

· 6 input neurons
· 0 hidden layers
· 1 output neuron
· Hebbian learning
· 2 PID components

QLAcc error
c :

· 6.44 QLJit :
· 22.61

FAPIDNN
[485]

Reinforcement:
· PIDNN

� Topology:
· Dumbbell
Time = 60s

· Queue length
error

Decision making:
· Increment of the
packet drop
probability
(continuous)

· 3 input neurons
· 0 hidden layers
· 1 output neuron
· 1 PID component
· 1 fuzzy component

QLAcc error
c :

· 3.73 QLJit :
· 31.8

NRL [499] Reinforcement:
· SLP-NN

� Topology:
· Dumbbell
Time = 100s

· Queue
length error
· Sending rate
error

Decision making:
· Increment of the
packet drop
probability
(continuous)

· 2 input
neurons
· 0 hidden
layers
· 1 output
neuron · RL learning

QLAcc error
c :

· 38.73 QLJit :
· 128.84

aSpecifies if the approach was evaluated for multiple bottleneck links (�) or simply for a single bottleneck link (–)
bAction Selection Strategy (ASS)
cValue computed using RMSE on the results presented in [269] for different network conditions

On the other hand, DEEP BLUE [298] focus on address-

ing the limitations of BLUE [144], an AQM scheme pro-

posed for improving RED. BLUE suffers from inaccurate

parameter setting and is highly dependent on its parame-

ters. DEEP BLUE addresses these problems by introducing

a fuzzy Q-learning (FQL) approach that learns to select
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the appropriate increment (actions) for achieving the opti-

mal packet drop probability. The features for inferring the

FQL states are the current queue length and packet drop

probability. Whereas, the reward signal adopts a linear

combination of the throughput and queuing delay. The

authors use the OPNET simulator to show that DEEP

BLUE improves BLUE in terms of queue stabilization and

dropping policy. In addition, the authors mention that

DEEP BLUE only generates a slight surplus of storage and

computational overhead over BLUE, though no evaluation

results are reported.

Other NN-based AQM schemes adopt an RL approach

for deciding the proper increment of the packet drop

probability. Neuron PID [428] uses a Proportional-

Integral-Derivative (PID) controller that incorporates an

SLP-NN to tune the controller parameters. Specifically,

the SLP-NN receives three terms from the PID compo-

nent and updates their weights by applying the associative

Hebbian learning. The three terms of this PID-based SLP-

NN (PIDNN) are computed from the queue length error,

which is the difference between the target and current

queue lengths. The latter represents the reward signal of

the PID control loop. It is important to note that the PID

component includes a transfer function that increases the

computational overhead of the PIDNN, when compared

to a simple SLP-NN.

AN-AQM [427] extends Neuron PID by including

another PID component. Therefore, the SLP-NN of AN-

AQM receives three terms more from the second PID

component for updating their weights. The three terms

of the second PID component are generated from the

sending rate error, which is the mismatch between the

bottleneck link capacity and the queue input rate. The

latter serves as the reward signal for the PID control

loop. This modification improves the performance of the

PIDNN in more realistic scenarios. However, it incurs a

higher computational overhead, due to an additional PID

transfer function and the increase in the number of input

neurons. Similarly, FAPIDNN [485] adopts a fuzzy con-

troller to dynamically tune the learning rate of a PIDNN.

As in Neuron PID, FAPIDNN includes only one PID com-

ponent to calculate the three terms from the queue length

error. However, the fuzzy controller of FAPIDNN also

adds computational complexity. Alternatively, NRL [499]

directly uses an SLP-NN—without a PID or fuzzy compo

nent—that relies on a reward function to update the learn-

ing parameters. This reward function is computed from

the queue length error and the sending rate error.

Li et al. [269] carry out extensive simulations on ns-

2 to perform a comparative evaluation of the above

NN-based AQM schemes (i.e. Neuron PID, AN-AQM,

FAPIDNN, and NRL) and AQM schemes based on RED

and Proportional-Integral (PI) controllers. For a sin-

gle bottleneck link, the results demonstrate that the

NN-based schemes outperform the RED/PI schemes in

terms of queue length accuracy (QLAcc) and queue length

jitter (QLJit), under different network settings. Where,

QLAcc is the difference between the average queue length

and a target value, while QLJit is the standard devi-

ation of the average queue length. However, the NN-

based schemes result in a higher packet drop than

PI schemes. For multiple bottleneck links, one of the

PI schemes (i.e. IAPI [429]) present better QLAcc and

packet drop, yet producing higher QLJit. When compar-

ing only NN-based schemes, FAPIDNN provides the best

QLAcc, while Neuron PID has the least QLJit and packet

drop. Nevertheless, AN-AQM is superior in these perfor-

mancemetrics for realistic scenarios involving UDP traffic

noise.

6.3 Congestion window update

CWND is one of the TCP per-connection state variables

that limits the amount of data a sender can transmit

before receiving an ACK. The other state variable is the

Receiver Window (RWND), which is a limit advertised by

a receiver to a sender for communicating the amount of

data it can receive. The TCP congestion control mech-

anisms use the minimum between these state variables

to manage the amount of data injected into the network

[13]. However, TCP was designed based on specific net-

work conditions and assumes all losses as congestion (cf.,

Section 6.1). Therefore, TCP in wireless lossy links unnec-

essarily lowers its rate by reducing CWND at each packet

loss, negatively affecting the end-to-end performance.

Furthermore, the CWND update mechanism of TCP is

not suitable for the diverse characteristics of different net-

work technologies [30, 122]. For example, networks with

a high Bandwidth-Delay Product (BDP), such as satel-

lite networks, require a more aggressive CWND increase.

Whereas, networks with a low BDP, such as Wireless Ad

hoc Networks (WANET), call for a more conservative

CWND increase.

The challenge of properly updating CWND in resource-

constrained wireless networks, like WANET and IoT, is

difficult. This is due to their limited bandwidth, pro-

cessing, and battery power, and their dynamic network

conditions [271, 380]. In fact, the deterministic nature

of TCP is more prone to cause higher contention losses

and CWND synchronization problems in WANET, due

to node mobility that continuously modifies the wireless

multi-hop paths [29, 379]. Several TCP variations, such

as TCP-Vegas and TCP-Westwood, have been proposed

to overcome these shortcomings. However, the fixed rule

strategies used by such TCP variations are inadequate for

adapting CWND to the rapidly changing wireless envi-

ronment. For example, TCP-Vegas fails to fully utilize the

available bandwidth in WANETs, as its RTT-based rate

estimate is incorrect under unstable network conditions
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[219]. Furthermore, methods for improving TCP-Vegas

(e.g. Vegas-W [119]) are still insufficient to account for

such variability, as their operation relies on the past net-

work conditions rather than present or future.

As summarized in Table 12, this survey reviews several

approaches based on RL that have been proposed to cope

with the problems of properly updating CWND (or send-

ing rate) according to the network conditions. Some of

these approaches are particularly designed for resource-

constrained networks, including WANETs [29, 219, 379,

380] and IoT [271], while others address a wider range

of network architectures [30, 122, 477], such as satel-

lite, cellular, and data center networks. Unless otherwise

stated, the RL component conducts online training in the

end-systems of the network to decide the increment for

updating CWND. Although some approaches may apply

the same RL technique, they differ in either the defined

action-set (i.e. finite or continuous) or the utilization of a

function approximation.

The evaluation of these RL-based approaches rely on

synthetic data generated from multiple network topolo-

gies simulated in tools, such as GloMoSim, ns-2, and

ns-3. A couple of these approaches [29, 122] also include

experimental evaluation. The performance results show

the improvement ratio of each RL-based approach against

the best TCP implementation baseline. For example, if an

approach is compared to TCP-Reno and TCP-NewReno,

we present the improvement over the latter, as it is an

enhancement over the former. It is important to note that

an optimal CWND update reduces the number of packets

lost and delay, and increases the throughput and fair-

ness. Therefore, the selected improvement metrics allow

to measure the quality of the RL component for deciding

the best set of actions to update CWND.

To the best of our knowledge, TCP-FALA [380] is

the first RL-based TCP variant that focuses on CWND

adaptation in wireless networks, particularly in WANETs.

TCP-FALA introduces a CWND update mechanism that

applies FALA to learn the congestion state of the network.

On receipt of a packet, it computes five states using IATs

of ACKs, and distinguishes DUPACKs to compute the

states in a different way. Each state corresponds to a sin-

gle action that defines the increment for updating CWND.

The probabilities for each possible action are continually

updated, which are used by TCP-FALA for stochasti-

cally selecting the action to be executed. Such stochastic

decision facilitates in adapting to changing network con-

ditions and prevents CWND synchronization problem.

Simulations in GloMoSim demonstrate that TCP-FALA

experiences lower packet loss and higher throughput

than standard TCP-Reno in different network conditions.

However, the limited size of the action-set makes difficult

mapping the range of responses provided by the network

to the appropriate actions. In addition,WANETs require a

much finer update of the CWND due to their constrained

bandwidth.

To overcome this limitation, Learning-TCP [29, 379]

extends TCP-FALA by employing CALA for enabling

a finer and more flexible CWND update. Instead

of separately calculating probabilities for each action,

Learning-TCP continually updates an action probabil-

ity distribution, which follows a normal distribution and

requires less time to compute. Similar to TCP-FALA,

Learning-TCP uses IATs of ACKs for computing the

states, though without distinguishing DUPACKs and

reducing the number of states to two. Several simulations

in ns-2 and GloMoSim show that both Learning-TCP and

TCP-FALA outperform standard TCP-NewReno in terms

of packet loss, goodput, and fairness. Furthermore, the

simulations demonstrate that Learning-TCP is superior to

TCP-FALA and TCP-FeW [329] (a non-ML TCP variant

enhanced for WANETs) with respect to these perfor-

mance metrics. Whereas, TCP-FALA only achieves better

fairness than TCP-FeW. The authors also provide experi-

mental results that are consistent with the simulations.

TCP-GVegas [219] also focuses on updating CWND in

WANETs. It improves TCP-Vegas by combining a grey

model and a Q-learning model. The grey model pre-

dicts the real throughput of the next stage, while the

Q-learning model adapts CWND to network changes.

This Q-learning model uses the three stages of CWND

changes (defined by TCP-Vegas) as the states and the

throughput as the reward. The state is determined from

CWND, RTT, and actual and predicted throughput. The

action-set is continuous and limited by a range computed

from RTT, throughput, and a pre-defined span factor.

TCP-GVegas adopts an ǫ-greedy strategy for selecting the

optimal action that maximizes the quality of the state-

action pair. Simulations in ns-2 reveal that TCP-GVegas

outperforms TCP-NewReno and TCP-Vegas in terms of

throughput and delay for different wireless topologies

and varying network conditions. However, TCP-GVegas

has higher computational and storage overhead compared

to standard TCP and TCP-Vegas. In fact, TCP-GVegas

even has a higher computational and storage overhead

than TCP-FALA and Learning-TCP, though a more thor-

ough performance evaluation is required to determine the

trade-off between these RL-based TCP variants.

In the similar context of resource constrained networks,

TCPLearning [271] apply Q-learning for updating CWND

in IoT networks. This Q-learning model computes the

states by using a 10-interval discretization of each of the

following four features: IAT of ACKs, IAT of packets sent,

RTT, and Slow Start Threshold (SSThresh). TCPLearning

defines a finite action-set that provides five increments

for updating CWND and a selection strategy based on

ǫ-greedy. The reward for each state-action pair is calcu-

lated from the throughput and RTT. To cope with the
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Table 12 Summary of decision making of the increment for updating CWND by using online training at end-systems of the network

Ref. RL Network Synthetic Dataset Features Action-set Evaluation

Technique (action selection) Settings Resultsa

TCP-FALA
[380]

FALA WANET GloMoSim
simulation:
· Topology:
- Random
- Dumbbell

States and reward:
· IAT of ACKs
(distinguish ACKS
and DUPACKs)

Finite:
· 5 actions
(stochastic)

· 1 input feature
· 5 states
· 5 actions

To TCP-NewRenob :
· Packet loss = 66%
· Goodput = 29%
· Fairness = 20%
To TCP-FeW‡ :
· Packet loss = −5%
· Goodput = −10%
· Fairness = 12%

Learning-TCP
[29, 379]

CALA WANET Simulation:
· ns2 and GloMoSim
· Topology:
- Chain
- Random node
- Grid
Experimental:
· Linux-based
· Chain topology

States and reward:
· IAT of ACKs

Continuous:
· Normal action
probability
distribution
(stochastic)

· 1 input feature
· 2 states
· ∞ actions

To TCP-FeW:
· Packet loss = 37%
· Goodput = 13%
· Fairness = 23%
To TCP-FALA:
· Packet loss = 28%
· Goodput = 36%
· Fairness = 14%

TCP-GVegas
[219]

Q-learning WANET ns-2 simulation:
· Topology:
- Chain
- Random

States:
· CWND
· RTTz
· Throughput
Reward:
· Throughput

Continuous:
· Range based on
RTT, throughput,
and a span factor
(ǫ-greedy)

· 3 input features
· 3 states
· N/A actions

To TCP-Vegas:
· Throughput = 60%
· Delay = 54%

FK-
TCPLearning
[271]

FKQL IoT ns-3 simulation:
· Dumbbell topol-
ogy:
- Single source/sink
- Double
source/sink

States:
· IAT of ACKs
· IAT of packets sent
· RTT
· SSThresh
Reward:
· Throughput
· RTT

Finite:
· 5 actions
(ǫ-greedy)

· 5 input features
· 10k states
· 5 actions
· FK approx:
- 100 prototypes

To TCP-NewReno:
· Throughput = 34%
· Delay = 12%
To TCPLearning based
on pure Q-learning:
· Throughput= −1.5%
· Delay = −10%

UL-TCP [30] CALA Wireless:
· Single-hop:
- Satellite
- Cellular
- WLAN
· Multi-hop:
- WANET

ns-2 simulation:
· Single-hop
dumbbell
· Multi-hop topol-
ogy: - Chain
- Random
- Grid

States and reward:
· RTT
· Throughput
· RTO CWND

Continuous:
· Normal action
probability
distribution
(stochastic)

· 3 input features
· 2 states
· ∞ actions

For single-hop, to ATL:
· Packet loss = 51%
· Goodput: = −14%
· Fairness = 53%
For multi-hop, similar
to Learning-TCP

Remy [477] Own
(offline training)

· Wired
· Cellular

ns-2 simulation:
· Wired topology:
- Dumbbell
- Datacenter
· Cellular topology

States:
· IAT of ACKs
· IAT of packets sent
· RTT
Reward:
· Throughput
· Delay

Continuous with
3-dimensions:
· CWNDmultiple
· CWND incre-
ment · Time
between suc-
cessive sends
(ǫ-greedy)

· 4 input features
· (16k)3 states
· 1003 actions
· 16 network
configurations

To TCP-Cubic:
· Throughput = 21%
· Delay = 60%
To
TCP-Cubic/SFQ-CD:
· Throughput = 10% ·

Delay = 38%

PCC [122] Own · Wired
· Satellite

Experimental:
· GENI
· Emulab
· PlanetLab

States:
· Sending rate
Reward:
· Throughput
· Delay
· Loss rate

Finite:
· 2 actions of the
increment for
updating send-
ing rate (not
CWND) (gradient
ascent)

· 3 input features
· 4 states
· 2 actions

To TCP-Cubic:
· Throughput = 21% ·

Delay = 60%

aAverage value of improvement ratio. Results vary according to the configured network parameters (e.g. topology, mobility, traffic)
bBased on the results from the simulated and experimental evaluations in [29]

memory restrictions of IoT devices, the authors use two

function approximation methods: tile coding [435] and

Fuzzy Kanerva (FK) [481]. The latter significantly reduces

the memory requirements, hence, is incorporated in a

modification of TCPLearning, called FK-TCPLearning.

Specifically, FK-TCPLearning with a set of 100 proto-

types, needs only 1.2% (2.4KB) of the memory used by

TCPLearning based on pure Q-learning (200KB), for stor-

ing 50,000 state-action pairs. Furthermore, basic sim-

ulations in ns-3 reveal that FK-TCPLearning improves
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the throughput and delay of TCP-NewReno, while being

marginally inferior to TCPLearning.

The approaches above are specifically designed for

resource constrained networks, hence, restricting their

applicability. For example, TCP-FALA and Learning-TCP

estimate the congestion state from IATs of ACKs, which

are prone to fluctuations in single-hop-wireless networks

with high and moderate BDP, such as satellite networks,

cellular networks, and WLAN. UL-TCP [30] address this

gap by modifying Learning-TCP to compute the two

congestion states from three different network features:

RTT, throughput, and CWND at retransmission time-

out (RTO). Simulations of single-hop-wireless networks

in ns-2 show that UL-TCP achieves significantly better

packet loss and fairness than TCP-NewReno and TCP-

ATL [10] (a non-ML TCP variant designed for single-hop-

wireless networks). However, UL-TCP is slightly inferior

in terms of goodput than TCP-ATL. It is important to

note that, unlike UL-TCP, TCP-ATL requires additional

implementation in the intermediate nodes of the net-

work. For multi-hop-wireless networks (i.e. WANETs),

UL-TCP is compared to TCP-NewReno and TCP-FALA,

and exhibit similar results to Learning-TCP. However, UL-

TCP is slightly more complex than Learning-TCP due to

the storage and usage of more parameters for computing

the states.

Remy [477] and PCC [122] went further by introduc-

ing congestion control mechanisms that learn to oper-

ate in multiple network architectures. Remy designed an

RL-based algorithm that is trained offline under many

simulated network samples. It aims to find the best rule

map (i.e. RemyCC) between the network state and the

CWND updating actions to optimize a specific objective

function. The simulated samples are constructed based

on network assumptions (e.g. number of senders, link

speeds, traffic model) given at design time—along with

the objective function—as prior knowledge to Remy. The

generated RemyCC is deployed in the target network

without further learning to update CWND according to

the current network state and the rule map. Several tests

on simulated network topologies, such as cellular and

data center networks, reveal that most of the generated

RemyCCs provide a better balance between through-

put and delay, in comparison to the standard TCP and

its many enhanced variants, including TCP-Vegas, TCP-

Cubic [174], and TCP-Cubic over Stochastic Fair Queuing

[304] with Controlled-Delay AQM [340] (SFQ-CD). How-

ever, if the target network violates the prior assumptions

or if the simulated samples incompletely consider the

parameters of the target network, the performance of the

trained RemyCC may degrade.

To tackle this uncertainty, PCC [122] avoids network

assumptions and proposes an online RL-based algorithm

that continually selects the increment for updating the

sending rate, instead of CWND, based on a utility func-

tion. This utility function aggregates performance results

(i.e. throughput, delay, and loss rate) observed for new

sending rates during short periods of time. The authors

emulate various network topologies, such as satellite and

data center networks, on experimental testbeds for eval-

uating their proposal. The results demonstrate that PCC

outperforms standard TCP and other variants specially

designed for particular networks, such as TCP-Hybla [83]

for satellite networks and TCP-SABUL [172] for inter-data

center networks.

6.4 Congestion inference

Network protocols adapt their operation based on

estimated network parameters that allow to infer the

congestion state. For example, some multicast and mul-

tipath protocols rely on predictions of TCP throughput

to adjust their behavior [238, 316], and the TCP protocol

computes the retransmission timeout based on RTT esti-

mations [22]. However, the conventional mechanisms for

estimating these network parameters remain inaccurate,

primarily because the relationships between the various

parameters are not clearly understood. This is the case

of analytic and history-based models for predicting the

TCP throughput and the Exponential Weighted Moving

Average (EWMA) algorithm used by TCP for estimating

RTT.

For the aforementioned reasons, several ML-based

approaches have addressed the limitations of inferring the

congestion in various network architectures by estimating

different network parameters: throughput [238, 316, 371],

RTT [22, 128], andmobility [309] in TCP-based networks,

table entries rate in NDNs [230], and congestion level in

DTNs [412]. As depicted in Table 13, the majority of these

proposals apply diverse supervised learning techniques,

mostly for prediction. While, the one focused on DTN

uses Q-learning for building a congestion control mech-

anism. The location of the final solution and the training

type (i.e. online or offline) differ throughout the proposals,

as well as the dataset and tools used for evaluating them.

Similarly, the accuracy column shows a variety of metrics

mainly due to the lack of consistency from the authors for

evaluating the quality of their ML-based components for

correctly predicting a specific parameter.

El Khayat et al. [238] apply multiple supervised learn-

ing techniques for predicting the TCP throughput in a

wired network. From the different features used in the

learning phase for building the ML models, the authors

find that the Timeout Loss Rate (TLR) adds significant

improvement in prediction accuracy. This is because TLR

helps to discriminate two types of losses: triple duplicates

and timeout. The ML models are trained and tested using

synthetic data collected from ns-2 simulations. MLP-NN

achieve the lowest accuracy error, followed byMARTwith
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Table 13 Summary of congestion inference from the estimation of different network parameters

Ref. ML Technique Network Dataset Features Output Evaluation

(location) Settings Resultsab

El Khayat
et al. [238]

Supervised:
· MLP-NN
· MART
· Bagging DT
· Extra-trees
(offline)

Wired
(end-system)

Synthetic data:
· ns-2 simulation
· > 1k random
topologies
Data distribution:
· Training = 18k
· Testing = 7.6k

· Packet size
· RTT: avg, min, max,
stdev
· Sesion loss rate
· Initial timeout
· Packets ACK at
once
· Session duration
· TLR

Prediction:
· Throughput

Ensemble DT:
· 25 trees
NN: N/A

MSE (10−3)c :
· 0.245
· 0.423
· 0.501
· 0.525

Mirza et al.
[316]

Supervised:
· SVR
(offline)

Multi-path
wired
(end-system)

Synthetic data:
· Laboratory testbed
- Dumbbell multi-
path topology
· RON testbed

· Queuing delay
· Packet loss
· Throughput

Prediction:
· Throughput

· 2 input features
· RBF kernel

Rate of predictions
with RPE ≤10%:
· Lab: 51%
· RON: 87%

Quer et al.
[371]

Supervised:
· BN
(offline)

WLAN
(access point)

Synthetic data:
· ns-3 simulation
· Star topology
Data distribution:
· Training = 40k
· Testing = 10k

· MAC-TX
· MAC-RTX
· MAC contention
window
· CWND
· CWND status
· RTT
· Trhoughput

Prediction:
· Throughput

DAG:
· 7 vertices
· 6 edges

Using MAC-TX:
· NRMSE = 0.37
Using all features:
· NRMSE = 0.27

Mezzavilla
et al. [309]

Supervised:
· BN
(offline)

WANET
(end-system)

Synthetic data:
· ns-3 simulation
· Topology:
- (not mentioned)

· MAC-TX
· MAC-RTX
· Slots before TX
· Queue TX packets
· Missing entries in
IP table

Classification:
· Static
· Mobile

DAG:
· 6 vertices
· 5 edges

Using MAC-TX and
MAC-RTX:
· Precision = 0.88
· Recall = 0.91

Fixed-Share
Experts [22]

Supervised:
· WMA (online)

· WANET
· Wired
· Hybrid
wired and
wireless
(end-system)

Synthetic data:
· QualNet
simulation
· Topology:
- RandomWANET
- Dumbbell wired
Real data:
· File transfer
· Wired and WLAN

· RTT Prediction:
· RTT

· 1 input feature
· 100 experts
· Simple experts

MAE (ticks):
· Synthetic data
(ticks of 500ms):
= 0.53
· Real data
(ticks of 4ms):
= 2.95

SENSE [128] Supervised:
· WMA
(online)

Hybrid wired
and wireless
(end-system)

Real data:
· Dataset from [22]

· RTT Prediction:
· RTT

· 1 input feature
· 100 experts
· EWMA experts

MAE (ticks of 4ms):
= 1.55

ACCPndn
[230]

Supervised:
· TLFN
- PSO
- GA
(online)

NDN
(controller
node)

Synthetic data:
· ns-2 simulation
· Topology:
- DFN
- SWITCH
Data distribution:
· Training = 70%
· Validation = 15%
· Testing = 15%

· PIT entries rate Prediction:
· PIT entries
rate

· R input neu-
rons
· 2 hidden layers
with R neurons
· R output neu-
rons R: number
of
contributing
routers

MSE:
· PSO-GA = 2.23
· GA-PSO = 3.25
· PSO = 4.05
· GA = 5.65
· BP = 7.27

Smart-
DTN-CC
[412]

Reinforcement:
· Q-learning
- Boltzmann
- WoLF
(online)

DTN (node) Synthetic data:
· ONE simulation:
· Random topology

States:
· Input rate
· Output rate
· Buffer space
Reward:
· State transition

Decision-
making:
· Action to
control the
congestion
(finite action-
set:
12 actions)

· 3 input features
· 4 states
· 12 actions

Improvement to
CCC:
· Delivery ratio
= 53%
· Delay = 95%

aAverage values. Results vary according to the configured network parameters (e.g. topology, mobility, traffic)
bError metrics: MAE, MSE, NRMSE, and Relative Prediction Error (RPE)
cRespectively to the list of elements in the column ML technique
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25 trees. Both methods are recommended by the authors

when learning from the full feature set. In addition, the

authors demonstrate that all their ML-based predictors

aremore TCP-friendly than conventional throughput ana-

lytic models, like SQRT [300] and PFTK [343], which are

generally used by multicast and real-time protocols.

Mirza et al. [316] also focus on throughput prediction,

however, for multi-path wired networks, such as multi-

homed and wide-area overlay networks. The authors

train and test a supervised time series regression model

using SVR on synthetic data collected from two distinct

testbeds: authors laboratory deployment and the Resilient

Overlay Networks (RON) project [332]. They also include

a confidence interval estimator that triggers retraining if

the predicted throughput falls outside the interval. The

results reveal that the SVR model yields more predictions

with a relative prediction error (RPE) of at least 10% than a

simple history-based predictor. Moreover, the evaluation

show that using active measurement tools for comput-

ing the model features, provide predictions as accurate

as relying on ideal passive measurements. This is impor-

tant because it is difficult to correctly collect passive

measurements in real wide-area paths.

Another approach for predicting TCP throughput is

proposed by Quer et al. [371]. Their ML solution resides

in the access point of aWLAN, instead of the end-systems

as in the above approaches. The authors apply BN for con-

structing a DAG that contains the probabilistic structure

between the multiple features that allow predicting the

throughput. A simplified probabilistic model is derived

from the constructed DAG by using a subset of the fea-

tures for inference. The training and testing of the BN

model rely on synthetic data collected from ns-3 simu-

lations. The results demonstrate that for a good amount

of training samples (≥ 1000), this model provides a low

prediction error. Furthermore, the authors exhibit that

the prediction based only on the number of MAC Trans-

missions (MAC-TX) achieves a comparable error—and

sometimes even lower—than using the full set of features.

A similar BN-based approach is proposed by Mezzav-

illa et al. [309], for classifying the mobility of the nodes in

WANETs as either static or mobile. The DAG is built from

a fewer number of features, therefore, reducing its num-

ber of vertices and edges. As in [371], the authors derive

a simplified probabilistic model from the DAG by using

two features for inference: MAC-TX and MAC Retrans-

missions (MAC-RTX). The results reveal that the simpli-

fied BN model achieves a good accuracy for classifying

mobility inWANETs, when varying the radio propagation

stability. This mobility classifier was used to implement a

TCP variant that outperforms TCP-NewReno in terms of

throughput and outage probability.

Fixed-Share Experts [22] and SENSE [128] concentrate

on a different challenge, i.e. predicting RTT for estimating

the congestion state at the end-systems of the network.

Both are based on the WMA ensemble method and con-

duct online training for TFS. It is important to note

that WMA uses the term experts to refer to algorithms

or hypotheses that form the ensemble model. Partic-

ularly, SENSE extends Fixed-Share Experts by adding:

(i) EWMA equations with different weights as experts,

(ii) a meta-learning step for modifying experts penalty

regarding recent past history, and (iii) a level-shift for

adapting to sudden changes by restarting parameter learn-

ing. The two RTT predictors are trained and tested on

real data collected from file transfers in a hybrid wired-

wireless network. Only Fixed-Share Experts is evaluated

on synthetic data collected from QualNet simulations.

The results on real data show that SENSE achieves a lower

prediction error—measured in ticks of 4ms—than Fixed-

Share Experts for predicting RTT. For synthetic data,

Fixed-Share Experts provide a lower prediction error in

comparison to real data even with a higher tick value of

500ms. In terms of complexity, it is important to mention

that SENSE requires more computational resources than

Fixed-Share Experts, due to the adoption of EWMA as

experts and the meta-learning step.

Finally, other works apply ML techniques to build novel

congestion control mechanisms for non-TCP-based net-

works. ACCPndn [230] propose to include a TLFN into

a controller node for predicting the rate of entries arriv-

ing to the Pending Interest Table (PIT) of NDN routers.

The controller node gathers historical PIT entries rate

from contributing routers and sends the prediction back

to the corresponding router. The defined TLFN consists

of two hidden layers between the input and output layers.

The number of neurons for each layer corresponds to the

number of contributing routers. To improve the param-

eter tuning of the TLFN trained using BP, the authors

introduce a hybrid training algorithm that combines two

optimization methods: PSO and GA. Various tests on

synthetic data collected from ns-2 simulations demon-

strate that the TLFN trained with PSO-GA provides a

lower prediction error than the TLFN with other train-

ing algorithms, such as GA-PSO, GA or PSO only, and

BP. Additionally, ACCPndn incorporate fuzzy decision-

making in each router that uses the predicted PIT entries

rate to proactively respond to network congestion. This

congestion control mechanism considerably outperforms

other NDN congestion control protocols, such as NACK

[487] and HoBHIS [392], in terms of packet drop and link

utilization.

Smart-DTN-CC [412] is another congestion control

mechanism based on ML for DTN nodes. In particular,

Smart-DTN-CC applies Q-learning for adjusting the con-

gestion control behavior to the operating dynamics of the

environment. Four congestion states are computed from

information locally available at each node. The actions are
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selected from a finite set of 12 actions based on Boltzmann

or Win-or-Learn Fast (WoLF) strategies. The reward of

the state-action pairs depend on the transition between

the states caused by a specific action. Simulations in the

Opportunistic Network Environment (ONE) tool show

that Smart-DTN-CC achieves higher delivery ratio and

significantly lower delay than existing DTN congestion

control mechanisms, such as CCC [265] and SR [406].

6.5 Summary

In the current Internet, TCP implements the most preva-

lent congestion control mechanism. TCP degrades the

throughput of the network when packet losses are due

to reasons other than congestion. Therefore, identifying

the cause of packet loss can improve TCP throughput.

Table 10 summarizes various solutions that have lever-

agedML for classifying packet losses at the end-systems of

different network technologies. In hybrid wired-wireless

networks, the unsupervised EM for HMM and various

supervised techniques were used to differentiate wire-

less losses (e.g. fading and shadowing) from congestion.

In wired networks, a supervised Bayesian classifier was

proposed to distinguish DUPACKs caused by reordering

from the ones due to congestion. In optical networks,

the unsupervised algorithm EM was employed on HMM

training and clustering for classifying contention and con-

gestion losses.

TCP variants built upon these ML-based classifiers out-

perform standard and diverse non-ML TCP versions (e.g.

TCP-Veno and Burst-TCP). The majority of the ML-

based classifiers were tested using synthetic data collected

from simulations. EM-based classifiers simulate simpler

topologies. Only the Bayesian classifier was evaluated on

real data, though the small number of losses in the data

negatively affects the results. In addition, all the classifiers

perform binary classification of packet losses. Therefore,

it would be interesting to explore an ML-based classi-

fier that distinguishes between multiple causes of packet

loss.

The other well-known congestion control mechanism is

queue management. Several variations of AQM schemes

(e.g. RED) have been proposed to overcome the TCP

synchronization problem. However, these schemes suffer

from poor responsiveness to time-varying and nonlinear

network conditions. Therefore, different AQM schemes

have integrated ML for better queue length stabilization

and parameter tuning in changing network traffic con-

ditions. As depicted in Table 11, half of the ML-based

AQM schemes apply supervised OLS and NN for predict-

ing future time series values of either traffic volume or

queue length. The predicted values are used to dynami-

cally adjust the packet drop probability. The other half of

ML-based schemes employ reinforcement-basedmethods

for deducing the increment in the packet drop probability.

All these ML-based AQM schemes improve and speed

up the queue stabilization over non-ML AQM schemes

for varying network conditions. However, the evaluation

was based only on simulations of wired networks, though

including single andmultiple bottleneck topologies. Addi-

tionally, none of the ML-based AQM schemes have con-

sidered providing a fair link share among senders and have

not been tested under coexisting legacy schemes in other

bottleneck links in the network.

Another shortcoming in TCP is that its CWND update

mechanism does not fit the distinct characteristics of dif-

ferent networks. For example, while satellite networks

demand an aggressive CWND increase, WANETs per-

form better under a conservative approach. Table 12 out-

lines several solutions that have used RL techniques to

appropriately update CWND according to the network

conditions. Half of these ML-based approaches apply

FALA, CALA, or Q-learning (including the FK func-

tion approximation) on resource-constrained networks

(i.e. WANET and IoT). Whereas, the other half either use

CALA or an own RL design on a wider range of network

architectures, including satellite, cellular, and data center

networks.

TCP variants built upon theseML-based CWNDupdat-

ing mechanisms perform better in terms of throughput

and delay than standard and non-ML TCP versions par-

ticularly enhanced for specific network conditions (e.g.

TCP-FeW and TCP-Cubic). Some of the ML-based TCP

also show improvements in packet loss and fairness. The

evaluation has been only based on synthetic data collected

from simulations and experimental testbeds. In this case,

it would be interesting to explore other ML techniques

rather than RL for properly updating CWND.

TCP, as well as some multicast and multipath proto-

cols, infer the congestion state from estimated network

parameters (e.g. RTT and throughput) to adapt their

behavior. However, such estimation remains imprecise

mainly because of the difficulty in modeling the relation-

ships between the various parameters. As summarized

in Table 13, several solutions have leveraged ML for

inferring congestion in different network architectures by

estimating diverse network parameters. In the context of

TCP-based networks, various supervised techniques were

employed to predict the throughput in wired and WLAN

networks. A supervised BN was also built to classify the

nodemobility inWANETs, while the ensembleWMAwas

used for predicting RTT in WANETs and hybrid wired-

wireless networks. In the context of evolutionary network

architectures, a supervised TLFN predicted the rate of

entries arriving to the PIT of NDN routers, whereas Q-

learning was employed in DTN nodes to select the proper

action for the corresponding congestion state.

All these ML-based estimators outperform the accu-

racy of conventional estimation mechanisms (e.g. EWMA
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and history-based). The evaluation was mostly performed

using synthetic data collected from simulations and lab-

oratory testbeds. Only the WMA-based estimators col-

lected real data to test their approaches.

As final remarks, note that themajority of theML-based

solutions rely on synthetic data to conduct the evalua-

tion. However, synthetic data rely on simulations that may

differ from real conditions. Therefore, there is a need

to collect data from real networks to successfully apply

and evaluate ML-based solutions. In some cases, such

as in queue management, real collected data might not

be enough to accomplish a realistic evaluation because

the solutions impact the immediate network conditions.

Therefore, recent networking technologies, like SDN and

NFV, might support the evaluation in real networks. In

addition, despite some ML-based solutions work on the

same problem and report similar evaluationmetrics, there

is still the need of establishing a common set of metrics,

data, and conditions that facilitate their comparison in

terms of performance and complexity.

7 Resourcemanagement
Resource management in networking entails controlling

the vital resources of the network, including CPU, mem-

ory, disk, switches, routers, bandwidth, AP, radio channels

and its frequencies. These are leveraged collectively or

independently to offer services. Naïvely, network service

providers can provision a fixed amount of resources that

satisfies an expected demand for a service. However, it

is non-trivial to predict demand, while over and under

estimation can lead to both poor utilization and loss in

revenue. Therefore, a fundamental challenge in resource

management is predicting demand and dynamically pro-

visioning and reprovisioning resources, such that the net-

work is resilient to variations in service demand. Despite

the widespread application of ML for load prediction and

resource management in cloud data centers [367], various

challenges still prevail for different networks, including

cellular networks, wireless networks and ad hoc networks.

Though, there are various challenges in resource manage-

ment, in this survey, we consider two broad categories,

admission control and resource allocation.

Admission control is an indirect approach to resource

management that does not need demand prediction. The

objective in admission control is to optimize the uti-

lization of resources by monitoring and managing the

resources in the network. For example, new requests for

compute and network resources are initiated for a VoIP

call or connection setup. In this case, admission con-

trol dictates whether the new incoming request should be

granted or rejected based on available network resources,

QoS requirements of the new request and its conse-

quence on the existing services utilizing the resources in

the network. Evidently, accepting a new request generates

revenue for the network service provider. However, it

may degrade the QoS of existing services due to scarcity

of resources and consequentially violate SLA, incurring

penalties and loss in revenue. Therefore, there is an immi-

nent trade-off between accepting new requests and main-

taining or meeting QoS. Admission control addresses this

challenge and aims to maximize the number of requests

accepted and ser ved by the network without violat-

ing SLA.

In contrast, resource allocation is a decision problem

that actively manages resources to maximize a long-term

objective, such as revenue or resource utilization. The

underlying challenge in resource allocation is to adapt

resources for long-term benefits in the face of unpre-

dictability. General model driven approaches for resource

allocation have fallen short in keeping up with the velocity

and volume of the resource requests in the network. How-

ever, resource allocation is exemplar for highlighting the

advantages of ML, which can learn and manage resource

provisioning in various ways.

7.1 Admission control

As shown in Table 14, Admission control has leveraged

ML extensively in a variety of networks, including ATM

networks [95, 189, 190], wireless networks [8, 36, 359], cel-

lular networks [66, 67, 281, 372, 458], ad hoc networks

[452], and next generation networks [311]. To the best

of our knowledge, Hiramatsu [189] was the first to pro-

pose NN based solutions controlling the admission of

a service requesting resources for a basic call setup in

ATM networks. He demonstrated the feasibility of NN

based approaches for accepting or rejecting requests, for

resilience to dynamic changes in network traffic char-

acteristics. However, there were unrealistic underlying

assumptions. First, all calls had similar traffic characteris-

tics, that is, single bit or multi bitrate. Second, cell loss rate

was the sole QoS parameter.

Later, Hiramatsu [190] overcome these limitations, by

integrating admission control for calls and link capac-

ity control in ATM networks using distributed NNs. The

NNs could now handle a number of bit-rate classes with

unknown characteristics and adapt to the changes in traf-

fic characteristics of each class. Cheng and Chang [95]

use a congestion-status parameter, a cell-loss probability,

and three traffic parameters, including peak bitrate, aver-

age bitrate, and mean peak-rate duration, to achieve a

20% improvement over Hiramatsu. To reduce the dimen-

sionality of the feature space, they transform peak bitrate,

average bitrate, and mean peak-rate duration of a call into

a unified metric.

Piamrat et al. [359] propose an admission control mech-

anism for wireless networks based on subjective QoE

perceived by end-users. This is in contrast to leverag-

ing quantitative parameters, such as bandwidth, loss and
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latency. To do so, they first choose configuration parame-

ters, such as codec, bandwidth, loss, delay, and jitter, along

with their value ranges. Then, the authors synthetically

distort a number of video samples by varying the chosen

parameters. These distorted video samples are evaluated

by human observers who provide a mean opinion score

(MOS) for each sample. The configurations and corre-

sponding MOSs are used to construct the training and

testing datasets for a RandomNeural Network (RandNN),

which predictsMOSs in real-time without human interac-

tion. Though, they evaluate their admission control mech-

anism for user satisfaction and throughput based metrics,

no accuracy or error analysis is reported for the RandNN.

Baldo et al. [36] propose a ML-based solution using

MLP-NN to address the problem of user driven admis-

sion control for VoIP communications in a WLAN. In

their solution, a mobile device gathers measurements on

the link congestion and the service quality of past voice

calls. These measurements are used to train the MLP-

NN to learn the relationship between the VoIP call quality

and the underlying link layer, thus inferring whether an

access point can satisfactorily sustain the new VoIP call.

The authors report 98.5% and 92% accuracy for offline and

online learning, respectively.

On the other hand, Liu et al. [281] propose a self-

learning call admission control mechanism for Code Divi-

sion Multiple Access (CDMA) cellular networks that have

both voice and data services. Their admission control

mechanism is built atop a novel learning control archi-

tecture (e.g., adaptive critic design) that has only one

controller module, namely, a critic network. The critic

network is trained with an 3:6:1 MLP-NN that uses

inputs such as network environment (e.g. total interfer-

ence received at the base station), user behavior (e.g. call

type—new or hand off call), call class (e.g. voice, data), and

the action to accept or reject calls. The output is the Grade

of Service (GoS) measure. The MLP-NN is retrained to

adapt to changes in the admission control requirements,

user behaviors and usage patterns, and the underlying net-

work itself. Through simulation of cellular networks with

two classes of services, the authors demonstrate that their

admission control mechanism outperforms non-adaptive

admission control mechanisms, with respect to GoS, in

CDMA cellular networks.

In contrast, Bojovic et al. [66] design anML-based radio

admission control mechanism to guarantee QoS for var-

ious services, such as voice, data, video and FTP, while

maximizing radio resource utilization in long term evo-

lution (LTE) networks. In their mechanism, the MLP-NN

is trained using features, such as application throughput,

average packet error rate, and average size of payload.

The MLP-NN is then used to predict how the admission

of a new session would affect the QoS of all sessions to

come. Using a LTE simulator, it is shown that MLP-NN

can achieve up to 86% accurate decisions provided it has

been trained over a relatively long period of time. Despite

its high accuracy, a critical disadvantage of MLP-NN is

over-fitting, thus it fails to generalize in the face of partial

new inputs.

Vassis et al. [452] propose an adaptive and distributed

admission control mechanism for variable bitrate video

sessions, over ad hoc networks with heterogeneous video

and HTTP traffic. Unlike previous admission control

approaches that only consider the new request, this mech-

anism takes into account the QoS constraints of all the

services in the network. The authors evaluate five different

NNs, namely MLP, probabilistic RBFNN, learning vec-

tor quantization network (LVQ) –a precursor to SOM–,

HNN, and SVM network. Using network throughput and

packet generation rates of all nodes prior to starting each

session and the average packet delays of those sessions as

the training and validation data, respectively, they found

probabilistic RBFNN to always converge with a success

rate between 77 and 88%.

Similarly, Ahn et al. [8] propose a dynamic admission

control algorithm for multimedia wireless networks based

on unsupervised HNN. In this mechanism, new or hand-

off connections requesting admission are only granted

admission if the bandwidth of the corresponding cell is

sufficient to meet the bandwidth required for their best

QoS level. Otherwise, the QoS levels of the existing con-

nections are degraded to free up some bandwidth for

the new or hand-off connection requesting admission.

The compromised QoS levels of existing connections and

the QoS levels of the new or hand-off connections are

then computed using a hardware-based HNN that per-

mits real-time admission control. Most importantly, the

HNN does not require any training, and can easily adapt

to dynamic network conditions. This admission control

mechanism achieves significant gains in ATM networks,

in terms of minimizing the blocking and dropping proba-

bilities and maximizing fairness in resource allocation.

Recently, Blenk et al. [63] employ RNN for admission

control for the online virtual network embedding (VNE)

problem. Before running a VNE algorithm to embed a

virtual network request (VNR), the RNN predicts the

probability whether VNR will be accepted by the VNE

algorithm based on the current state of the substrate and

the request. This allows the VNE algorithm to process

only those requests that are accepted by the RNN, thus

reducing the overall runtime and improving the system

performance. The RNN is trained with new representa-

tions of substrate networks and VNRs that are based on

topological and network resource features. To obtain a

compact representation, the authors apply PCA on a set

of feature vectors and select features that are sensitive

to high load, including number of nodes, spectral radius,

maximum effective eccentricity, average neighbor degree,
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number of eigenvalues, average path length, and number

of edges. A total of 18 different RNNs are trained offline

using a supervised learning algorithm and a dataset gen-

erated through simulation of two VNE algorithms, namely

Shortest Distance Path and Load Balanced. These RNNs

achieve accuracies between 89% and 98%, demonstrating

that this admission control mechanism can learn from the

historical performances of VNE algorithms.

However, a potential disadvantage of NN based systems

is that the confidence of the predicted output is unknown.

As a remedy, a BN can predict the probability distribu-

tion of certain network variables for better performance in

admission control [67, 372]. Specifically, Bojovic et al. [67]

compare NN and BN models by applying them for admis-

sion control of calls in LTE networks. Both models are

trained to learn the network behavior from the observa-

tion of the selected features. Upon arrival of an incoming

VoIP call and assuming that the call is accepted, these two

models are used to estimate the R-factor [206] QoS met-

ric. A major difference between NN and BN is that NN

can directly predict the value of the R-factor, while BN

provides a distribution over its possible values. In NN, if

the estimated R-factor is greater or smaller than a QoS

threshold, the call is accepted or rejected, respectively.

In contrast, the BN model accepts a call if the probabil-

ity of the R-factor exceeding a threshold is greater than

a probability threshold, or drops it otherwise. This gives

the admission control mechanism additional flexibility to

choose the probability threshold that allows to meet dif-

ferent system requirements by opportunistically tuning

these thresholds. Through a simulation of macro cell LTE

admission control scenario in ns-3, the BN model shows

less FPs and FNs compared to NN.

Similarly, Quer et al. [372] develop an admission control

mechanism for VoIP calls in a WLAN. They employ BN

to predict the voice call quality as a function of link layer

conditions in the network, including the fraction of chan-

nel time occupied by voice and background best effort

traffic, estimated frame error probabilities of voice and

background traffic, and R-factor representing the posteri-

ori performance. The BNmodel is built upon four phases,

(i) a structure learning phase to find qualitative relation-

ships among the variables, (ii) a parameter learning phase

to find quantitative relationships, (iii) the design of an

inference engine to estimate the most probable value of

the variable of interest, and (iv) an accuracy verification

to obtain the desired level of accuracy in the estimation

of the parameter of interest. The authors evaluate the BN

model via ns-3 based simulation of a WLAN, having both

VoIP and TCP traffic, and show an accuracy of 95%.

Besides NN and BN, the admission control problem

has also been formulated as an MDP [311, 458]. Tradi-

tionally, dynamic programming (DP) is used to solve a

MDP. However, DP suffers from two limitations in the

context of admission control. First, it expects the num-

ber of states in the MDP to be in polynomial order,

which is seldom the case in real networks. Second, DP

requires explicit state transition probabilities, which are

non-trivial to determine a priori. Therefore, RL, that

can handle MDP problems with very large state spaces

and unknown state transition probabilities, has been suc-

cessfully applied to solve MDP-based admission control

problems in networking.

Mignanti et al. [311] employ Q-learning to address

admission control for connections in next generation net-

works. In their approach, when a connection request

arrives, the Q-values of accepting and rejecting the

request are computed. The request is accepted or rejected

depending on whether the Q-value for acceptance or

rejection is higher. Similarly, Q-learning has been used to

allocate guard channels as part of the admission control

mechanism for new calls in the LTE femtocell networks

[458]. It is important to realize that allocating a guard

channel for a new or hand-off call can raise the blocking

probability. Therefore, Q-learning has to find the optimal

policy that minimizes the cumulative blocking probability.

RL has also been leveraged for more complex prob-

lems that pertain to admission control with routing

[295, 446]. In such problems, when a request is admitted,

a route has to be established such that each link in the

route meets the QoS requirements of the request. There-

fore, RL-based solutions discussed earlier for admission

control, with only two possible actions, are infeasible for

admission control with routing. Here, the action space

consists of selecting a route from a predefined set of routes

in the network. Tong et al. [446] formulate this prob-

lem as a semi-MDP, and leverage Q-learning to define

policies for route selection, such that the revenue is max-

imized and QoS requirements of the requests are met.

In the formulation, they consider two important classes

of QoS constraints, (i) state dependent constraint (e.g.

capacity constraint) that is a function of only the cur-

rent state, and (ii) past dependent constraint (e.g. fairness

constraint) that depends on statistics over the past his-

tory. Since a detailed specification of a network state is

computationally intractable [446], they exploit statistical

independence of the links in the network for developing

a decentralized RL training and decision making algo-

rithm. In this approach, each link in the network performs

Q-learning locally using only the link state information,

instead of network state information. The authors evalu-

ate their approach to admission control with routing via

simulation of a network with 4 nodes and 12 links. The

results show significant improvement over heuristic based

algorithms.

Similarly, Marbach et al. [295] use RL to construct a

dynamic admission control with routing policy for new

calls in integrated service networks. As the traditional
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DP-based models for admission control with routing are

computationally intractable, Marbach et al. [295] propose

an approximation architecture consisting of an MLP with

internal tunable weights that can be adjusted using TD(0).

However, TD(0) has a slow rate of convergence, hence the

authors integrate it with decomposition approach to rep-

resent the network as a set of decoupled link processes.

This allows to adopt a decentralized training and deci-

sion making, which not only significantly reduce training

time, but also achieve sophisticated admission control

with routing policies that are otherwise difficult to obtain

via heuristics approaches.

7.2 Resource allocation

Recall that the challenge in resource allocation lies in

predicting demand variability and future resource utiliza-

tion. ML-based techniques can be leveraged to learn the

indicators that can aid in resource allocation as summa-

rized in Table 15. The most suitable ML-based approach

for the resource allocation decision problem is RL. The

primary advantage of RL is that it can be deployed with-

out any initial policies, and it can learn to adapt to the

dynamic demands for a reactive resource allocation. For

instance, Tesauro [442] use decompositional RL to allo-

cate and reallocate data center server resources to two dif-

ferent workloads, a web-based time-varying transactional

workload and a non-web-based batch workload. Since the

impact of a resource allocation decision is Markovian, the

RA problem benefits largely from anMDP-based formula-

tion. However, the state and action space of anMDP grows

exponentially and leads to the dimensionality problem.

To address this problem, the authors in [442] propose a

decompositional formula of RL for composite MDPs. The

decompositional RL uses a localized version of SARSA(0)

algorithm to learn a local value function based on local

state and local resource allocation of a request instead of

global knowledge. Vengerov [454] go further in applying

RL to the allocation of multiple resource types (e.g. CPU,

memory, bandwidth), using fuzzy rules where some or all

the fuzzy categories can overlap.Whereas,Mao et al. [294]

use DNN to approximate functions in large scale RL task

in order to develop a multi-resource cluster scheduler.

Most recently, Pietrabissa et al. [361] propose a scalable

RL based solution to the MDP problem for resource allo-

cation using policy reduction mechanism proposed in

[360] and state aggregation that combines lightly loaded

states into one single state.

More specifically, Baldo et al. [35] and Bojovic et al.

[65] optimize network resource allocation. Baldo et al.

[35] use a supervised MLP-NN for real-time character-

ization of the communication performance in wireless

networks and optimize resource allocation. On the other

hand, Bojovic et al. [65] use MLP-NN to select the AP

that will provide the best performance to a mobile user

in IEEE 802.11 WLAN. In their proposals, each user col-

lects measurements from each AP, such as signal to noise

ratio (SNR), probability of failure, business ratio, aver-

age beacon delay, and number of detected stations. These

metrics are used to describe different APs and train a

two layer MLP-NN. The output of the MLP-NN is the

downlink throughput, which is a standard performance

metric used bymobile clients. TheMLP-NN is trained rig-

orously with different configuration parameters to result

in the lowest normalized RMSE (NRMSE). Finally, the

MLP-NN is deployed to select the AP that will yield the

optimal throughput in different scenarios and evaluated

on EXTREME testbed [364]. Undoubtedly, the ML-based

AP selection for network resource allocation, outperforms

AP selection mechanisms based on the signal to noise

ratio (SNR), the load based scheme and the beacon delay

scheme, especially in dynamic environments.

Similarly, Adeel et al. [6] leverage RNN to build an intel-

ligent LTE-Uplink system that can optimize radio resource

allocation based on user requirements, surrounding envi-

ronments, and equipment’s ability. In particular, their

system can allocate the optimal radio parameters to serv-

ing users and suggest the acceptable transmit power to

users served by adjacent cells for inter-cell-interference

coordination. To analyze the performance of RNN, three

learning algorithms are analyzed, namely GD, adaptive

inertia weight particle swarm optimization (AIWPSO),

and differential evolution (DE). One RNN is trained and

validated using each of the above learning algorithms with

a dataset of 6000 samples. The dataset is synthetically

generated by executing multiple simulations of the LTE

environment using a SEAMCAT simulator. Evaluation

results show that AIWPSO outperforms the other learn-

ing algorithms, with respect to accuracy (based on MSE).

However, AIWPSO’s better accuracy is achieved at the

expense of longer convergence time due to extra computa-

tional complexity. Unfortunately, [6] does not evaluate the

effectiveness of resource allocation for the proposed LTE

system. However, the analysis of the learning algorithms

can provide valuable insights in applying ML to similar

networking problems.

Though, admission control and resource allocation have

been studied separately, Testolin et al. [443] leverage ML

to address them jointly for QoE-based video requests in

wireless networks. They combine unsupervised learning,

using stochastic RNN, also known as RBM, with super-

vised classification using a linear classifier, to estimate

video quality in terms of the average Structural SIMilar-

ity (SSIM) index. The corresponding module uses video

frame size that is readily available at the network layer

to control admission and resource provisioning. However,

the relationship between video frame size and SSIM in

non-linear and RBM extracts an abstract representation

of the features that describe the video. The linear classifier
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maps the abstractions to the SSIM coefficients, which are

leveraged to accept or reject new video requests, and to

adapt resource provisioning to meet the network resource

requirements. The authors report a RMSE of below 3%

using videos from a pool of 38 video clips with different

data rates and durations.

Virtualization of network resources through NFV and

virtual networks brings forward a new dimension to the

resource allocation problem, that is, provisioning virtual

resources sitting on top of physical resources. To leverage

the benefits of virtualization, Mijumbi et al. [312] propose

a dynamic resource management approach for virtual net-

works (VNs) using distributed RL that dynamically and

opportunistically allocates resources to virtual nodes and

links. The substrate network is modeled as a decentral-

ized system, wheremultiple agents useQ-learning on each

substrate node and link. These agents learn the optimal

policy to dynamically allocate substrate network resources

to virtual nodes and links. The percentage of allocated

and unused resources (e.g. queue size, bandwidth) in sub-

strate nodes or links represent the states of Q-learning,

with two explicit actions to increase or decrease the per-

centage of allocated resource. A biased learning policy is

exploited with an initialization phase to improve the con-

vergence rate of Q-learning. This Q-learning based action

selection approach for resource allocation outperforms ǫ-

greedy and softmax in ns-3 simulation with real Internet

traffic traces. Furthermore, in comparison to static alloca-

tion, the proposed method improve the ratio of accepting

VNs without affecting their QoSs.

In addition, Mijumbi et al. [312] use FNN to predict

future resource requirements for each VNF component

(VNFC) in a service function chain [313]. Each VNFC is

modeled using a pair of supervised FNNs that learn the

trend of resource requirements for the VNFC by combin-

ing historical local VNFC resource utilization information

with the information collected from its neighbors. The

first FNN learns the dependence of the resource require-

ments for each of the VNFCs, which is used by the

second FNN to forecast the resource requirements for

each VNFC. The predictions are leveraged to spin-up and

configure new VNFCs or deallocate resources to turn off

VNFCs. Evaluation based on real-time VoIP traffic traces

on a virtualized IP Multimedia Subsystem (IMS) reveals a

prediction accuracy of approximately 90%.

In contrast, Shi et al. [410] use BN to predict future

resource reliability, the ability of a resource to ensure

constant system operation without disruption, of NFV

components based on historical resource usage of VNFC.

The learning algorithm is triggered when an NFV com-

ponent is initially allocated to resources. As time evolves,

the BN is continuously trained with resource reliabil-

ity responses and transition probabilities of the BN are

updated, resulting in improved prediction accuracy. The

predictions are leveraged in an MDP to dynamically allo-

cate resources for VNFCs. Using WorkflowSim simulator,

the authors demonstrate that the proposed method out-

performs greedy methods in terms of overall cost.

7.3 Summary

As evident from Tables 14 and 15, the ML-based resource

management schemes studied in this paper can be broadly

classified into two groups—supervised learning-based

and RL-based. Application of unsupervised techniques

in resource management is rather unexplored, with the

exception of a few works. In addition, MLP-NN, though

applied with a variety of parameter settings, is the most

popular supervised technique, while Q-learning domi-

nates the choice of RL-based approaches. Furthermore,

other works have leveraged BN techniques, to intro-

duce the flexibility of having a probability distribution

rather than individual values produced by NN-based

approaches. However, MLP-NNs offer better scalability

than BN and RL, since the number of neurons in different

layers of an MLP-NN can be tuned based on the prob-

lem dimension. Whereas, the number of states in RL can

explode very quickly in a moderate size network. In the

past, several techniques, such as decomposition, decen-

tralization, and approximation have been used to deal

with the dimensionality issue of applying RL. Recently,

RL combined with deep-learning has been shown as

a promising alternative [294] that can be leveraged to

tackle various resourcemanagement problems in practical

settings. Nonetheless, NN-based supervised approaches

exhibit steady performance in terms of both accuracy and

convergence.

Although the ML-based resource management schemes

studied in this paper differ in terms of the feature sets,

they either predict one or more QoS metrics of interest or

generate an acceptance/rejection decision for an incom-

ing request, based on a QoS estimation. The ML-based

resource management approaches also exhibit a similar-

ity regarding the network and dataset. The focus of the

majority of approaches is on wireless networks, where

resource contention is more profound than wired net-

works. Due to the lack of real-life traces, these approaches

adopt different methods to simulate the network of inter-

est and produce training and testing data. Therefore, more

research is needed that can evaluate the performance of

the proposed ML techniques in real networks and with

real data.

8 Fault management
Fault management involves detection, isolation, and cor-

rection of an abnormal condition of a network. It requires

network operators and administrators to have a thor-

ough knowledge of the entire network, its devices and

all the applications running in the network. This is
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an unrealistic expectation. Furthermore, recent advances

in technology, such as virtualization and softwarization

makes today’s network monumental in size, complex-

ity and highly dynamic. Therefore, fault management is

becoming increasingly challenging in today’s networks.

Naïve fault management is reactive and can be perceived

as a cyclic process of detection, localization andmitigation

of faults. First, fault detection jointly correlates vairous

different network symptoms to determine whether one

or more network failures or faults have occurred. For

example, faults can occur due to reduced switch capacity,

increased rate of packet generation for a certain applica-

tion, disabled switch, and disabled links [37]. Therefore,

the next step in fault management is localization of the

root cause of the fault(s), which requires pinpointing the

physical location of the faulty network hardware or soft-

ware element, and determining the reason for the fault.

And lastly, fault mitigation aims to repair or correct the

network behaviour. In contrast, fault prediction is proac-

tive and aims to prevent faults or failures in the future

by predicting them and initiating mitigation procedures

to minimize performance degradation. ML-based tech-

niques have been proposed to address these challenges

and promote cognitive fault management in the areas

of fault prediction, detection, localization of root cause,

and mitigation of the faults. In the following subsections,

we describe the role ML has played in these prominent

challenges for fault management.

8.1 Predicting fault

One of the fundamental challenges in fault manage-

ment is fault prediction to circumvent upcoming network

failures and performance degradation. One of the first

ML-based approaches for detecting anomalous events in

communication networks is [301]. This approach per-

forms fault prediction by continuously learning to distin-

guish between normal and abnormal network behaviors

and triggering diagnostic measures upon the detection

of an anomaly. The continuous learning enables adapta-

tion of the fault prediction and diagnostic measure to the

network dynamics without explicit control. Although the

work in [301] leverages ML in fault prediction, it does

not mention any specific technique. On the other hand,

BNs have been widely used in communication and cellular

networks to predict faults [193, 247, 248].

In a BN, the normal behavior of a network and devia-

tions from the normal are combined in the probabilistic

framework to predict future faults in communication and

cellular networks. However, one shortcoming of the sys-

tem in [193] is that it cannot predict impact on network

service deterioration. Nevertheless, a common drawback

of BN is that they are not sensitive to temporal factors,

and fail to model IP networks that dynamically evolve over

time. For such networks, Ding et al. [118] apply dynamic

BN to model both static and dynamic changes in man-

aged entities and their dependencies. The dynamic BN

model is robust in fault prediction of a network element,

localization of fault and its cause and effect on network

performance.

Snow et al. [414] use a NN to estimate the dependabil-

ity of a 2G wireless network that is used to characterize

availability, reliability, maintainability, and survivability of

the network. Though the NN is trained vigorously with

analytical and empirical datasets, it is limited, due to the

wireless network topology having a fixed topology. This

is far from reality. Furthermore, network fault predictions

are tightly coupled with wireless link quality. Therefore,

in Wang et al. [466], the estimation of the link quality

in WSNs is postulated as a classification problem, and

solved by leveraging supervised DT, rule learner, SVM,

BN, and ensemble methods. The results reveal that DTs

and rule learners achieve the highest accuracy and result

in significant improvement in data delivery rates.

A daunting and fundamental prerequisite for fault pre-

diction is feature selection. It is non-trivial to extract

appropriate features from an enormous volume of event

logs of a large scale or distributed network system [285].

Therefore, feature selection and dimensionality reduction

are imperative for accurate fault prediction. Wang et al.

[466] propose to employ local over the global features, as

local features can be collected without costly communi-

cations in a wireless network. In contrast, Lu et al. [285]

use a manifold learning technique called Supervised Hes-

sian Locally Linear Embedding (SHLLE), to automatically

extract the failure features and generate failure predic-

tion. Based on an empirical experiment, the authors show

that SHLLE outperforms the feature extraction algorithm,

such as PCA, and classification methods, including k-NN

and SVM.

Pellegrini et al. [355] propose an ML-based framework

to predict the remaining time to failure (RTTF) of appli-

cations. Their framework is application-agnostic, that is,

it is applicable to scenarios where a sufficient number

of observations of the monitored phenomena can be

collected in advance. The framework uses different ML

techniques for building prediction models, namely lin-

ear regression, M5P, REPTree, LASSO, SVM, and Least-

Square SVM, allowing network operators to select the

most suitable technique based on their needs. In addition,

otherML techniques can be easily integrated in the frame-

work. TheML techniques in the framework are compared

for a multi-tier e-commerce web application running on a

virtualized testbed, and show that the REPTree and M5P

outperform the otherML techniques for predicting RTTF.

It is essential to note that the model has a high prediction

error when the network system is temporally far from the

occurrence of the failure. However, as the network system

approaches the time of the occurrence of the failure, the
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number of accumulated anomalies increase and themodel

is able to predict the RTTF with a high accuracy.

Wang et al. [469] present a mechanism for predicting

equipment failure in optical networks using ML-based

techniques and TSF. The operational states of an equip-

ment are built by leveraging physical indicators, such as

input optical power, laser bias current, laser temperature

offset, output optical power, environmental temperature,

and unusable time. A double-exponential smoothing time

series algorithm uses the historical data from time t − n

to time t − 1 to predict the values of the physical indica-

tors at a future time instance t + T . This is accomplished

by using a kernel function and penalty factor in an SVM

to model non-linear relationships and reduce misclassi-

fication, respectively. The enhanced SVM accomplish an

accuracy of 95% in predicting equipment failure based on

real data from an optical network operator.

Most recently, Kumar et al. [255] explore the applica-

bility of a wide range of regression and analytical models

to predict inter-arrival time of faults in a cellular net-

work. They analyze time-stamped faults over a period

of one month from multiple base stations of a national

mobile operator in USA. The authors observe that cur-

rent networks barely reside in a healthy state and patterns

of fault occurrence is non-linear. In a comparison of the

different ML-based techniques for fault prediction, they

show that DNN with autoencoders outperform other ML

techniques, including autoregressive NN, linear and non-

linear SVM, and exponential and linear regression. An

autoencoder is a variant of NN that consists of an encoder

and a decoder and used for dimensionality reduction. The

autoencoder is pre-trained on the testing data and then

converted into a traditional NN for computing prediction

error. The pre-training of each layer in an unsupervised

manner allows for better initial weights, and results in

higher prediction accuracy.

8.2 Detecting fault

Unlike fault prediction, fault detection is reactive and

identifies and, or classifies a failure after it has occurred,

using network symptoms, performance degradation, and

other parameters. Rao [382] propose fault detection for

cellular networks that can detect faults at different lev-

els, base station, sector, carrier, and channel. They employ

a statistical hypothesis testing framework which com-

bines parametric, semi-parametric, and non-parametric

test statistics to model expected behavior. In parametric

and semi-parametric statistical tests, a fault is detected

when significant deviations from the expected activity is

observed. In the case of non-parametric statistical tests,

where the expected distribution is not known a-priori, the

authors use a combination of empirical data and statisti-

cal correlations to conduct the hypothesis test. The test is

dependent on a threshold value that is initially set through

statistical analysis of traffic patterns. However, improper

threshold settings may lead to high FPs and FNs. Hence,

the threshold should be adapted to changing traffic pat-

terns due to spatial, temporal, and seasonal effects. In the

background, an open loop routine continuously learns and

updates the threshold, in an adjustable period of time.

However, the time for learning may be large for certain

applications that may impact fault detection time.

Baras et al. [37] implement a reactive system to detect

and localize the root cause of faults for X.25 protocol, by

combining an NN with an expert system. Performance

data, such as blocking of packets, queue sizes, packet

throughput from all applications, utilization of links con-

necting subnetworks, and packet end-to-end delays, are

used to train a RBFNN for various faults. The output of the

NN is a fault code that represents one of the various fault

scenarios. A classifier leverages the aggregated output of

the NN to determine the current status of the network as

normal or faulty. The detection phase is repeated until a

confidence of K out of M is achieved, which activates the

expert system to collect and deduce the location and cause

of the fault.

Recently, Adda et al. [5] build a real-time fault detection

and classification model using k-Means, Fuzzy C Means

(FCM), and EM. They leverage SNMP to collect informa-

tion from the routers, switches, hubs, printers and servers

in an IP network of a college campus. The authors select

12 features that exhibit sensitivity to the behavior of net-

work traffic [370], and use the traffic patterns to form

clusters that represent normal traffic, link failure, server

crash, broadcast storm and protocol error. Their eval-

uation results reveal that though k-Means and EM are

relatively faster than FCM, FCM is more accurate.

Moustapha and Selmic [324] detect faulty nodes in a

WSN using RNN. The nodes in the RNN hidden lay-

ers model sensor nodes in WSN, while the weights on

the edges are based on confidence factors of the received

signal strength indicators (RSSI). Whereas, the output of

the RNN is an approximation of the operation of the

WSN. Fault detection is achieved by identifying discrep-

ancies between approximated and real WSN values. The

RNN successfully detect faults, without early false alarms,

for a small scale WSN with 15 sensors and synthetically

introduced faults.

Recall, supervised fault detection requires models to be

trained with normal and failure-prone datasets. However,

Hajji [178] propose an unsupervised fault detectionmech-

anism for fast detection of anomalies in LAN through traf-

fic analysis. They design a parametric model of network

traffic, and a method for baselining normal network oper-

ations using successive parameter identification, instead

of EM. The fault detection problem is formulated as a

change point problem that observes the baseline ran-

dom variable and raises an alarm as soon as the variable
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exceeds an expected value. Experimental evaluation vali-

date the fault detection mechanism in real-time on a real

network with high detection accuracy.

Recently, Hashmi et al. [181] use different unsuper-

vised algorithms, such as k-Means, FCM, Kohonens SOM,

Local Outlier Factor, and Local Outlier Probabilities, to

detect faults in a broadband service provider network

that serves about 1.3 million customers. For this pur-

pose, they analyze a real network failure log (NFL) dataset

that contains status of customer complaints, along with

network generated alarms affecting a particular region

during a certain time. The selected data spans a dura-

tion of 12 months and contains about 1 million NFL data

points from 5 service regions of the provider. The col-

lected NFL dataset has 9 attributes, out of which 5 are

selected for the analysis: (i) fault occurrence date, (ii) time

of the day, (iii) geographical region, (iv) fault cause, and

(v) resolution time. At first, k-Means, FCM and Koho-

nens SOM clustering techniques are applied to cluster

the NFL dataset that is completely unlabeled. Afterwards,

density-based outlier determination algorithms, such as

Local Outlier Factor, and Local Outlier Probabilities, are

used on the clustered data to determine the degree of

anomalous behavior for every SOM node. The evaluation

results show that SOM outperforms k-Means and FCM in

terms of error metric. Furthermore, Local Outlier Prob-

abilities algorithm applied on SOM is more reliable in

identifying the spatio-temporal patterns linked with high

fault resolution times.

8.3 Localizing the root cause of fault

The next step in fault management is to identify the root

cause and physically locate the fault to initiate mitiga-

tion. This minimizes the mean time to repair in a network

that does not deploy a proactive fault prediction mech-

anism. Chen et al. [91, 92] use DTs and clustering to

diagnose faults in large network systems. The DTs are

trained using a new learning algorithm, MinEntropy [91],

on datasets of failure prone network traces. To minimize

convergence time and computational overhead, MinEn-

tropy uses an early stopping criteria and follows the most

suspicious path in the DT. Chen et al. [91] complement

the DTwith heuristics, to correlate features with the num-

ber of detected failures to aid in feature selection and

fault localization. MinEntropy is validated against actual

failures observed for several months on eBay [127]. For

single fault cases, the algorithm identifies more than 90%

of the faults with low FPRs. In contrast, Chen et al.

[92] employ clustering to group the successes and fail-

ures of requests. A faulty component is detected and

located by analyzing the components that are only used

in the failed requests. In addition to the single fault

cases, the clustering approach can also locate faults occur-

ring due to interactions amongst multiple components,

with a high accuracy and relatively low number of false

positives.

Ruiz et al. [393] use a BN to localize and identify the

most probable cause of two types of failures, the tight fil-

tering and inter-channel interference, in optical networks.

They discretize the continuous real-valued features of

Quality of Transmission (QoT), such as received power

and pre-forward error correction bit error rate (pre-FEC

BER) for categories. The authors use these categories

and type of failures to train the BN, which can identify

the root cause of the failure at the optical layer when

a service experiences excessive errors. The BN achieves

high accuracy of 99.2% on synthetically generated

datasets.

Similarly, Khanafer et al. [237] develop an automated

diagnosis model for Universal Mobile Telecommunica-

tions System (UMTS) networks using BN. The core

elements of the diagnosis model are the causes and symp-

toms of faults. The authors consider two types of symp-

toms, i.e., alarms and Key Performance Indicators (KPI).

To automatically specify KPI thresholds, they investigated

two different discretization methods, an unsupervised

method called Percentile-based Discretization (PBD) and

a supervised method called Entropy Minimization Dis-

cretization (EMD). The performances of the two dis-

cretization methods are evaluated on a semi-dynamic

UMTS simulator that allows the generation of a large

amount of causes and symptoms data required to con-

struct the diagnosis model. As EMD technique outper-

forms PBD by a large margin in the simulation study, the

authors analyze the diagnosis model consisting of BN and

EMD in a real UMTS network, utilizing alarms and KPIs

extracted from an operations and maintenance center.

Using a 3-fold cross-validation test, the correct faults are

diagnosed in 88.1% of the cases. In the remaining cases,

the diagnosis is incorrect for the first cause but correct

for the second, and the diagnosis model converges from

around 100 data points.

Kiciman and Fox [241] propose PinPoint for fault detec-

tion and localization that requires no a priori knowledge

of the faults. The models capture the runtime path of

each request served by the network and delineates it as

the causal path in the network. It exploits the paths to

extract two low-level behaviors of the network, the path

shape and the interaction of the components. Using the

set of previous path shapes modeled as a Probabilistic

Context-Free Grammar (PCFG), it builds a dynamic and

self-adapting reference model of the network. Therefore,

fault prediction is a search for anomalies against the ref-

erence model. Pinpoint uses DT with ID3 to correlate the

anomaly to its probable cause in the network. The DT is

converted to an equivalent set of rules by generating a rule

for each path from the root of the tree to a leaf. PinPoint

ranks the rules, based on the number of paths classified
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as anomalous, to identify the hardware and, or software

components that are correlated with the failures.

Johnsson et al. [225] use discrete state-space particle

filtering to determine the locations of performance degra-

dations in packet switched networks. Their approach

is based on active network measurements, probabilistic

inference, and change detection in the network. They

define a PMF to define the location of faulty components

in the network. It is a lightweight fault detection and

isolation mechanism, which is capable of automatically

detecting and identifying the location of the fault in simu-

lation of different sized tree topologies. It is imperative to

realize that time to fault localization is dependent on pre-

cise position of the fault in the topology. This is because

the links closer to the root are measured more often in

comparison to links close to the leaf nodes. Hence, the

filter is able to learn the positions close to the root. In

addition, the algorithm minimizes false positives or false

negatives for the chosen parameter values.

Barreto et al. [40] develop an unsupervised approach

to monitor the condition of cellular networks using

competitive neural algorithms, including Winner-Take-

All (WTA), Frequency-Sensitive Competitive Learning

(FSCL), SOM, and Neural-Gas algorithm (NGA). The

model is trained on state vectors that represent the nor-

mal functioning of a CDMA2000 wireless network. Global

and local normality profiles (NPs) are built from the

distribution of quantization errors of the training state

vectors and their components, respectively. The overall

state of the cellular network is evaluated using the global

NP and the local NPs are used to identify the causes of

faults. Evidently, the joint use of global and local NPs is

more accurate and robust than applying these methods in

isolation.

8.4 Automatedmitigation

Automated mitigation improves fault management by

minimizing and, or eliminating human intervention, and

reducing downtime. For proactive fault prediction, auto-

mated mitigation involves gathering information from the

suspected network elements to help find the origin of

the predicted fault. For building this information base, a

fault manager may either actively poll selected network

elements, or rely on passive submission of alarms from

them. In both cases, actions should be selected carefully

since frequent polling wastes network resources, while too

many false alarms diminish the effectiveness of automated

mitigation. On the other hand, in the case of reactive

fault detection, automated mitigation selects a workflow

for troubleshooting the fault. Therefore, the fundamental

challenge in automated mitigation is to select the optimal

set of actions or workflow in a stochastic environment.

He et al. [183] address this fundamental challenge for

proactive fault management using a POMDP, to formulate

the trade-off between monitoring, diagnosis, and mitiga-

tion. They assume partial observability, to account for the

fact that some monitored observations might be missing

or delayed in a communication network. They propose

an RL algorithm to obtain approximate solutions to the

POMDP with large number of states representing real-

life networks. The authors devise a preliminary policy

where the states are completely observable. Then, they

fine-tune this policy by updating the belief space and tran-

sition probabilities in the real world, where the states are

incompletely observed.

In contrast, for reactive fault detection, Watanabe

et al. [470] propose a method for automatically extract-

ing a workflow from unstructured trouble tickets to

troubleshoot a network fault. A trouble ticket contains

free-format texts that provide a complete history of trou-

bleshooting a failure. The authors use supervised NB

classifier to automatically classify the correct labels for

each sentence of a trouble ticket and remove unrelated

sentences. They propose an efficient algorithm to align the

same actions described with different sentences by using

multiple sequence alignment. Furthermore, clustering is

used to find the actions that have different mitigation

steps depending on the situation. This aid the operators

in selecting the appropriate next action. Using real trouble

tickets, obtained from an enterprise service, the authors

report a precision of over 83%.

8.5 Summary

As summarized in Tables 16, 17 and 18, most of the

ML-based fault management approaches use different

supervised learning techniques that depend on training

data to predict/detect/locate faults in the network. How-

ever, a common challenge faced by these techniques is

the scarcity of fault data generated in a production net-

work.While both normal and fault data are easily available

for a test or simulated network, only normal data with

infrequent faults are routinely available for a production

network. Although injecting faults can help produce the

required data [285], it is unrealistic to inject faults in

the production network just for the sake of generating

training data. On the other hand, synthetic data gener-

ated in a test or simulated network may not perfectly

mimic the behavior of a production network. Such lim-

itations increase the probability of ML techniques being

ill-trained in an unfamiliar network setting. As a rem-

edy, some approaches leverage unsupervised techniques

that rely on detecting changes in network states instead

of using labeled fault data. However, unsupervised tech-

niques can take longer time to converge than supervised

approaches, potentially missing any fault occurring before

the convergence. Therefore, a potential research direction

can be to explore the applicability of semi-supervised and

RL-based techniques for fault management.
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The ML-based fault management approaches surveyed

in this paper focus on a variety of networks. Conse-

quently, the fault scenarios studied in these approaches

vary greatly as they depend both on the layer (e.g. physical,

link, or IP layer) and the type (e.g. cellular, wireless, local

area network) of the network. The same holds for fea-

ture set and output of these schemes, as both features and

outputs depend on the fault scenario of a particular net-

work. In addition, the evaluation settings adopted by these

approaches lack uniformity. Therefore, a pairwise com-

parison between the evaluation results of two approaches

in any of the Tables 16, 17 and 18 may be misleading.

Nonetheless, it is clear that ML techniques can aid the

cumbersome and human centric fault management pro-

cess, by either predicting faults in advance, or narrowing

down the cause or location of the fault that could not be

avoided in the first place.

9 QoS and QoEmanagement
The knowledge about the impact of network performance

on user experience is crucial, as it determines the success,

degradation or failure of a service. User experience assess-

ment has attracted a lot of attention. In early works, there

was no differentiation between user experience and net-

work QoS. User experience was then measured in terms

of network parameters (e.g. bandwidth, packet loss rate,

delay, jitter), and application parameters, such as bitrate

for multimedia services. While monitoring and control-

ling QoS parameters is essential for delivering high service

quality, it is more crucial, especially for service providers,

to evaluate service quality from the user’s perspective.

User QoE assessment is complex as individual experi-

ence depends on individual expectation and perception.

Both are subjective in nature, and hard to quantify and

measure. QoE assessment methods went through differ-

ent stages this last decade, from subjective testing to

engagementmeasurement through objective quality mod-

eling. Subjective testing, where users are asked to rate or

assign opinions scores averaged into a mean opinion score

(MOS), has been and is still widely used. Subjective testing

is simple and easy to implement, and the MOS metric is

easy to compute. However because one cannot force users

to rate a service and rate it objectively, MOS scores can be

unfair and biased, and are subjected to outliers. Objective

quality models, such as the video quality metric (VQM)

[362], the perceptual evaluation of speech quality (PESQ)

metric [386] and the E-model [51] for voice and video ser-

vices, were proposed to objectively assess service quality

by human beings and infermore “fair” and unbiasedMOS.

Full-reference (FR) quality models, like PESQ and VQM,

compute quality distortion by comparing the original sig-

nal against the received one. They are as such accurate, but

at the expense of a high computational effort. On the con-

trary, no-reference (NR) models like E-model try to assess

the quality of a distorted signal without any reference to

the original signal. They are more efficient to compute,

however they may be less accurate. More recently, mea-

surable user engagement metrics, such as service time and

probability of return, have emerged from data-driven QoE

analysis. Such metrics are found to draw more directly the

impact of user quality perception to content providers;

business objectives.

Statistical and ML techniques have been found useful in

linking QoE to network- and application-level QoS, and

understanding the impact of the latter on the former. Lin-

ear and non-linear regression (e.g. exponential, logarith-

mic, power regression) was used to quantify the individual

and collective impact of network- and application- level

QoS parameters (e.g. packet loss ratio, delay, through-

put, round-trip time, video bitrate, frame rate, etc.) on

the user’s QoE. In the literature, simple-regression mod-

els with a single feature are most dominant [145, 240,

383, 408], although the collective impact of different QoS

parameters was also considered [23, 132].

Simple regression: In [408], Shaikh et al. study existing

correlation between different network-level QoS param-

eters and MOS in the context of a web surfing. They

show that a correlation does exist and that among 3

forms of regression (linear, exponential, and logarithmic),

linear regression renders the best correlation coefficient

between QoE and packet loss rate, exponential regression

captures the correlation between QoE and file download

time with highest accuracy, whereas logarithmic regres-

sion is the best fit for linking QoE to throughput.

Reichl et al. [383], in alignment with theWeber-Fechner

law from the field of psychophysics, use logarithmic

regression to quantify the correlation between available

bandwidth and mobile broadband service users’ MOS.

In [145], Fiedler et al. test the IQX hypothesis accord-

ing to which QoE and QoS parameters are connected

through an exponential relationship. Their experiment

validates the IQX hypothesis for VoIP services, where

PESQ-generatedMOS is expressed as a function of packet

loss, and reordering ratio caused by jitter. For web surf-

ing, exponential mappings are shown to outperform a

previously published logarithmic function.

Steven’s power law from the field of psychophysics,

according to which there is a power correlation between

the magnitude of a physical stimulus and the intensity

or strength that people feel, was applied by Khorsandroo

et al. [239, 240] to find a power mapping function between

MOS and packet loss ratio. A comparative study shows

that the proposed power correlation is outperformed by

the logarithmic correlation from [383].
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Multi-parameter regression: In order to gasp the

impact of the global network condition on the QoE, Elko-

tob et al. [132] propose to map MOS to a set of QoS

parameters (e.g. packet loss rate, frame rate, bandwidth,

round trip time and jitter) as opposed to a single one.

This idea was further promoted by Aroussi et al. [23]

who propose a generic exponential correlation model

between QoE and several QoS parameters based on the

IQX hypothesis.

More complex regression and classification models

based on supervised and unsupervised ML techniques

(including deep learning) were also proposed and tested

against real-life and trace-driven datasets. We report

below on the characteristics of surveyed models and their

performance in terms of accuracy, generally measured in

terms ofMSRE, and linearity, generally measured in terms

of Pearson correlation coefficient (PCC), all summarized

in Tables 19 and 20.

9.1 QoE/QoS correlation with supervised ML

In [235, 236], Khan et al. propose an Adaptive Neural

Fuzzy Inference System (ANFIS)-based model to predict

streamed video quality in terms of MOS. They also inves-

tigate the impact of QoS on end-to-end video quality for

H.264 encoded video, and in particular the impact of radio

link loss models in UMTS networks. A combination of

physical and application layer parameters is used to train

both models. Simulation results show that both models

give good prediction accuracy. However, the authors con-

clude that the choice of parameters is crucial in achieving

good performance. The proposed models in this paper

need to be validated by more subjective testing. Other

works like [501] have also used the ANFIS approach to

identify the causal relationship between the QoS parame-

ters that affect the QoE and the overall perceived QoE.

MLP-NNs are also reported to efficiently estimate the

QoE by Machado et al. [287], who adopt a methodology

that is similar to Khan et al. [235]. In this work, QoE is

estimated by applying an MLP over network-related fea-

tures (delay, jitter, packet loss, etc.) as well as video-related

features (type of video, e.g. news, football, etc.). Differ-

ent MLP models are generated for different program-

generated QoE metrics, including Peak-Signal-to-Noise-

Ratio (PSNR), MOS, Structural SIMilarity (SSIM) [468],

and VQM. A synthetic video streaming dataset of 565

data points is created with EvalVid integrated to NS-2,

and the models are trained over 70% of the database for

parameter fine-tuning. It is observed that different QoE

metrics can lead to very different model parameters. For

instance, for the estimated MOS metric, best results are

achieved by a single hidden-layer MLP with 10 neurons

trained over 2700 epochs. Whereas for SSIM, 2 hidden

layers with, respectively, 12 and 24 neurons trained over

1800 epochs are needed to achieve similar results. With

a MSE of ≈ 0.01, the MOS-MLP model outperforms the

other models. Nevertheless, with appropriate configura-

tion all the models are able to predict the QoE with very

high accuracy.

In [328], Mushtaq et al. apply sixML classifiers to model

QoE/QoS correlation, namely NB, SVM, k-NN, DT, RF

and NN. A dataset is generated from a controlled network

environment where streamed video traffic flows through

a network emulator and different delay, jitter, and packet

loss ratio are applied. Opinion scores are collected from

a panel of viewers and MOS are calculated. ML models

are fed with nine features related to the viewers, net-

work condition and the video itself, namely, viewer gender,

frequency of viewing, interest, delay, jitter, loss, condi-

tional loss, motion complexity and resolution. A 4-fold

cross-validation is performed to estimate the performance

of the models. Results show that DT and RF perform

slightly better than the other models with a mean abso-

lute error of 0.126 and 0.136 respectively, and a TPR of

74% and 74.8% respectively. The parameters of the mod-

els are not disclosed, and neither is the significance of

the selected features in particular the viewer-related ones,

whose usefulness and practicality in real-life deployment

are questionable.

In [89] Charonyktakis et al. develop a modular user-

centric algorithm MLQoE based on supervised learning

to correlate the QoE and network QoS metrics for VoIP

services. The algorithm is modular in that it trains several

supervised learning models based on SVR, single hidden

layer MLP-NN, DT, and GNB, and after cross-validation,

it selects the most accurate model. The algorithm is user-

centric in that a model is generated for each user, which

makes it computationally costly and time consuming. 3

datasets are generated synthetically with calls established

in 3 different testbeds under different network condi-

tions: during handover (dataset 1), in a network with

heavy UDP traffic (dataset 2), in a network with heavy

TCP traffic (dataset 3). OMNET++ and a VoIP tool are

used in this matter. The QoE of the received calls are

assessed through both subjective testing (user-generated

MOS) and objective measurement (PESQ and E-model).

The no-reference ML models are trained with 10 network

metrics (including average delay, packet loss, average jit-

ter, and more) to output predicted MOS. The accuracy of

the MLQoE model in predicting MOS and the accuracies

of pure SVR, NN, DT and GNB models are further com-

pared against the full-reference PSEQ’s, the no-reference

E-model’s, as well as the predictive accuracies of the

single-feature simple-regressionWFL [383] and IQX [145]

models. Experiments show that, in terms of mean abso-

lute error MAE, the supervised learning models generally

outperform E-model and even the full-reference PESQ,

only one exception is observed with dataset 2. It also

shows that there is no single ML model that outperforms
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all others; while the SVR model has the lowest MAE with

dataset 1 (0.66), DT achieves the best result with dataset 2

(0.55) and GBNwith dataset 3 (0.43). MLQoE further out-

performs theWFL-model and the IQX-model with aMAE

improvement of 18 ∼ 42%. Indeed this motivates the

need for a modular ML-based QoE prediction algorithm.

However, further research could be pursued to study the

correlation between the performance of the different ML-

models and the way the QoS parameters evolve in each of

the 3 datasets.

Another subset of ML techniques are considered by

Demirbilek et al. [114] and used to develop no-reference

models to predict QoE for audiovisual services. These

techniques include: decision tree ensemble methods (RF

and BG), and deep learning (DNN). Genetic programming

(GP) is also considered and compared against the ML

techniques. All models are trained and validated through

4 ∼ 10-fold cross-validation on the INRS dataset [113].

The dataset includes user-generated MOS on audiovi-

sual sequences encoded and transmitted with varying

video frame rates, quantization parameters, filters and

network packet loss rates. 34 no-reference application-

and network-level features are considered. Experiments

with different feature sets show that, apart from the DNN

model, all models perform better with the complete set

of features, and hence do not require feature processing.

On the contrary the DNN model performs better when

trained only with 5 independent features, namely: video

frame rate, quantization, noise reduction, video packet

loss rate, and audio packet loss rate. Also, the one-hidden

layer DNN model outperforms the model with 20 hidden

layers in terms of RMSE (0.403 vs. 0.437) and PCC (0.909

vs. 0.894). The conducted experiments also show that all

models perform quite well and that the RF model with

complete set of features performs the best (lowest RMSE

0.340 and highest PCC 0.930). The video packet loss rate

seems to be the most influential feature on the RF model.

The model is further trained on other publicly available

audiovisual datasets and still performs well. However it is

not compared to the other models, which would be useful

to confirm or infirm the supremacy of RF.

9.2 QoE prediction under QoS impairments

In [453], Vega et al. propose an unsupervised deep learn-

ing model based on Restricted Boltzmann Machines

(RBMs) for real-time quality assessment of video stream-

ing services. More precisely, the model is intended to infer

the no-reference features of the received video from only

a subset of those features that the client extracts in real-

time fashion. 10 video-related features are extracted: one

related to the bit stream, five to the frame, two to the

inter-frame and the last two to the content. Network QoS

parameters are not considered in the feature set, how-

ever the impact of the network conditions is studied in

the paper based on two synthetic network-impaired video

datasets, namely ReTRiEVED (for general condition net-

works) and LIMP (for extremely lossy networks). It is

observed that the PCC between the VQM of the received

video and the bit rate feature is the highest amongst the

ten features, under network delay, jitter and throughput

impairments. However, it is the blur ratio that correlates

the most with VQM under severe packet loss condition. A

discrepancy between video types was also recorded. This

eventually motivated the need for one RBM model (with

different feature set) per video type and network impair-

ment, which raised the number of devised models to 32.

Video-type and network-condition specific RBMs (with

100 hidden neurons) eventually shows a better perfor-

mance than the single video-type and network-condition

oblivious model on the ReTRiEVED dataset, according to

the authors, which contradicts the results shown on the

tables. Assuming that there is improvement, the practi-

cality and overhead of the multi-RBMs solution are yet to

be evaluated. In fact, delay, jitter, and throughput impair-

ments are treated as if they were independent conditions

and a condition-specific model is created. In practice,

however impairments are correlated and happen together.

Therefore, if the client has to assess the quality of the

streamed video, it will also have to find out what impair-

ment there is prior to selecting the appropriate predictor.

9.3 QoS/QoE prediction for HAS and DASH

Recently, the widespread adoption of HTTP adaptive

streaming (HAS) drove increasing interest in developing

QoE/QoS-aware HAS clients. Data-driven approaches, in

particular ML, have been employed mainly in two differ-

ent ways: (1) to predict changes in network QoS, namely

throughput, and trigger adaptation mechanism to reduce

rebuffering time [432], and (2) to select appropriate adap-

tation action [102].

It has been shown in recent work [432] that accurate

throughput prediction can significantly improve the QoE

for adaptive video streaming. ML has been widely used in

throughput prediction in general as shown in Section 3.

In the particular context of adaptive video streaming, Sun

et al. propose in [432] the Cross Session Stateful Predic-

tor (CS2P), a throughput prediction system to help with

bitrate selection and adaptation in HAS clients. CS2P

uses HMM for modeling the state-transition evolution

of throughput, one model per session cluster, where ses-

sions are clustered according to common features (e.g.

ISP, region). The system is testing with a video provider

(iQIYI) dataset consisting of 20 million sessions covering

3 million unique client IPs, 18 server IPs, and 87 ISPs.

The HMM model is trained offline via the expectation

maximization algorithm, and 4-fold cross-validation is

used for tuning the number of states (6 states in total).

Online prediction provides an estimate of the throughput
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1 ∼ 10 epochs ahead using maximum likelihood esti-

mation. Throughput is continuously monitored and the

model is updated online accordingly. Midstream through-

put prediction experiments show that the model achieves

7% median absolute normalized prediction error (∼ 20%

75th-percentile error) reducing the median prediction

error by up to 50% compared to history-based predictors

(last sample, harmonic mean, AR) as well as other ML-

based predictors (SVR, GBR, and HMM trained on all

sessions as opposed to the session cluster). It is also shown

that CS2P achieves 3.2% improvement on overall QoE and

10.9% higher average bitrate over state-of-art Model Pre-

dictive Control (MPC) approach, which uses harmonic

mean for throughput prediction. The authors claim that

SVR and GBR perform poorly when trained on the session

cluster. This might be due to the smaller size of the session

cluster dataset, but requires further investigation.

In [102] (that extends [103] - [357]), a Q-learning-

based HAS client is proposed to dynamically adjust to the

current network conditions, while optimizing the QoE.

Adaptation is assumed at the segment level; the qual-

ity level (e.g. bitrate) of the next video segment may go

higher or lower depending on network conditions. States

are defined as a combination of the client buffer filling

level and throughput level. Bmax/Tseg + 1 different buffer

filling levels are considered where Bmax denotes the max-

imum client buffer size in seconds, and Tseg the segment

duration in seconds. WhereasN +1 throughput levels are

considered, ranging between 0 and the client link capac-

ity, where N is the number of quality levels. The reward

function to be maximized is a measure of the QoE, calcu-

lated on the basis of the targeted segment quality level, the

span between the current and targeted quality level, and

the rebuffering level (which may result in video freezes).

The model is trained and tested on NS − 3 with 10-

min different video sequences (6 in total), split into 2sec

segments each encoded at N = 7 different bitrates. The

algorithm is trained for 400 episodes of streaming each

of the video sequences over a publicly available 3G net-

work bandwidth trace [384, 385]. The authors claim that

the Q-learning client achieves in average 9.12% higher

estimated MOS (program-generated), with 16.65% lower

standard deviation, than the traditional Microsoft ISS

Smooth Streaming (MSS) client. Similar performance is

recorded when alternating between 2 video sequences

every 100 streaming episodes. However, shifting to a ran-

dom new video sequence after convergence time was not

investigated.

9.4 Summary

Research in QoS/QoE provisioning has been leverag-

ing ML for both prediction and adaptation, as shown in

Tables 19 and 20. Clearly, research has been dominated

by works on predicting QoE based on video-level and

network-level features. As such, a number of different

QoS/QoE correlation models have been proposed in the

literature for different media types (e.g. voice, video and

image) ranging from simple regression models to NNs,

including SVM, DT, RF, etc. For each media type, dif-

ferent QoE assessment methods and metrics have been

used (e.g. MOS, VQM), each with its own set of com-

putational and operational requirements. The lack of a

common, standard QoE measure makes it difficult to

compare the efficiency of different QoS/QoE prediction

and correlation models. In addition, there is a lack of a

clear quantitative description of the impact of network

QoS on QoE. This impact is poorly understood and varies

from one scenario to another.While some find it sufficient

to correlate the QoE to a single network QoS parameter

[145, 240, 383, 408], e.g. delay or throughput, others argue

that multiple QoS parameters impact the QoE and need

to be considered in tandem as features in a QoE/QoS cor-

relation model [89, 102, 114, 235, 287, 328, 432]. Still othe

rs consider QoS as a confounding parameter and build dif-

ferent QoE assessment models for different network QoS

conditions [453].

This motivates the need for an efficient methodology

for QoE/QoS correlation, based on a combination of

quantifiable subjective and objective QoS measures and

outcomes of service usage. This calls for the identifica-

tion of the influential factors of QoE for a given type of

service and understanding their impact on user’s expec-

tation and satisfaction. QoE measures, such as MOS, and

user engagement metrics are very sensitive to contex-

tual factors. Though, contextual information undoubtedly

influences QoE and is necessary to develop relevant QoE

optimization strategies, it can raise privacy concerns.

Results depicted in Table 19 show that supervised learn-

ing techniques, such as NNs, SVR, DT and RF have

consistent low MOS prediction errors. According to [89],

RF is a better classifier than NN when it comes to pre-

dicting MOS. Table 20 also shows that using ML in HAS

and DASH for prediction and adaptation, using super-

vised learning and RL, can improve QoE. However, this

still needs to be validated in a real-world testbed.

10 Network security
Network security consists of protecting the network

against cyber-threats that may compromise the network’s

availability, or yield unauthorized access or misuse of

network-accessible resources. Undoubtedly, businesses

are constantly under security threats [231], which not only

costs billions of dollars in damage and recovery [227], but

could also have a detrimental impact to their reputation.

Therefore, network security is a fundamental cornerstone

in network operations and management.

It is undeniable that we are now facing a cyber arms

race, where attackers are constantly finding clever ways
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to attack networks, while security experts are developing

new measures to shield the network from known attacks,

and most importantly zero-day attacks. Examples of such

security measures include:

– Encryption of network traffic, especially the payload,

to protect the integrity and confidentiality of the data

in the packets traversing the network.

– Authorization using credentials, to restrict access to

authorized personnel only.

– Access control, for instance, using security policies to
grant different access rights and privileges to different

users based on their roles and authorities.

– Anti-viruses, to protect end-systems againstmalwares,

e.g. Trojan horse, ransom-wares, etc.

– Firewalls, hardware or software-based, to allow or

block network traffic based on pre-defined set of rules.

However, encryption keys and login credentials can be

breached, exposing the network to all kinds of threats.

Furthermore, the prevention capabilities of firewalls and

anti-viruses are limited by the prescribed set of rules

and patches. Hence, it is imperative to include a second

line of defense that can detect early symptoms of cyber-

threats and react quickly enough before any damage is

done. Such systems are commonly referred to as Intru-

sion Detection/Prevention Systems (IDS/IPS). IDSs mon-

itor the network for signs of malicious activities and can

be broadly classified into two categories—Misuse- and

Anomaly-based systems. While the former rely on signa-

tures of known attacks, the latter is based on the notion

that intrusions exhibit a behavior that is quite distinc-

tive from normal network behavior. Hence, the general

objective of anomaly-based IDSs is to define the “normal

behavior” in order to detect deviations from this norm.

When it comes to the application of ML for network

security, through our literature survey we have found that

the majority of works have focused on the application

of ML for intrusion detection. Here, intrusion detection

refers to detecting any form of attacks that may com-

promise the network e.g. probing, phishing, DoS, DDoS,

etc. This can be seen as a classification problem. While

there is a body of work on host-based intrusion detec-

tion (e.g. malware and botnet detection), we do not delve

into this topic, as most of these works utilize traces col-

lected from the end-host (sometimes in correlation with

network traces). Concretely, in our discussion, we focus

on network-based intrusion detection and we classify the

works into three categories, namely misuse, anomaly, and

hybrid network IDSs.

Previous surveys [82, 161, 447] looked at the applica-

tion of ML for cyber-security. However, [161, 447] cover

the literature between 2000-2008, leaving out a decade of

work. More recently, [82] looked at the application of Data

Mining and ML for cyber-security intrusion detection.

The proposed taxonomy consists of the differentML tech-

niques with a sample of efforts that apply the correspond-

ing technique. Our discussion is different, as we focus on

ML-based approaches with a quantitative analysis of exist-

ing works (Tables 21, 22 23, 24 and 25). Furthermore, we

survey efforts related to SDN and reinforcement learning,

which have been recently published.

10.1 Misuse-based intrusion detection

Misuse-based IDSs consist of monitoring the network

and matching the network activities against the expected

behavior of an attack. The key component of such a sys-

tem is the comprehensiveness of the attack signatures.

Typically, the signatures fed to amisuse-IDS rely on expert

knowledge [84]. The source of this knowledge can either

be human experts, or it can be extracted from data. How-

ever, the huge volume of generated network traces renders

manual inspection practically impossible. Furthermore,

attack signatures extracted by sequentially scanning net-

work traces will fail to capture advanced persistent threats

or complex attacks with intermittent symptoms. Intrud-

ers can easily evade detection if the signatures rely on a

stream of suspicious activities by simply inserting noise in

the data.

In light of the above, ML became the tool of choice

for misuse-based IDSs. Its ability to find patterns in big

datasets, fits the need to learn signatures of attacks from

collected network traces. Hence, it comes as no surprise

to see a fair amount of literature [20, 84, 90, 252, 322, 344,

354, 402, 421] that rely onML for misuse-detection. These

efforts are summarized in Table 21. Naturally, all exist-

ing works employ supervised learning, and the majority

perform the detection offline. Note, we classify all work

that use normal and attack data in their training set as

misuse-detection.

The earliest work that employed ML for misuse detec-

tion is [84]. It was among the first to highlight the limi-

tations of rule-based expert systems, namely that they (i)

fail to detect variants of known attacks, (ii) require con-

stant updating, and (iii) fail to correlate between multiple

individual instances of suspicious activities if they occur in

isolation. Following the success of NN in the detection of

computer viruses, the application of NN for misuse detec-

tion as an alternative to rule-based systems is proposed.

The advantages of NN are its ability to analyze network

traces in a less structured-manner (as opposed to rule-

based systems), and to provide prediction in the form of

a probability. The latter can enable the detection of vari-

ants of known attacks. For evaluation, training and testing

dataset are generated using RealSecureTM—a tool that

monitors network data and compares it against signatures

of known attacks. For attack dataset, InternetScannerTM

[368] and Satan Scanner [143] tools are used to gener-

ate port scans and syn-flood attacks on the monitored
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Table 21 Summary of ML-based Misuse Detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Cannady [84] Supervised NN
(offline)

Normal: RealSecure
Attack: [143, 368]

TCP, IP, and
ICMP header
fields and
payload

-1 Layer MLP: 9, a , 2
-Sigmoid function
-Number of nodes in hidden
layers determined by trial &
error

DR: 89%-91% Training +
Testing runtime: 26.13 hrs

Pfahringer
[358]

Supervised
Ensemble of C5
DTs
(offline)

KDD Cup [257] all 41 features -Two-processor (2x300Mhz)
-512M memory, 9 GB disc
Solaris OS 5.6
-10-folds cross-validation

DR Normal: 99.5%
DR Probe: 83.3%
DR DoS: 97.1%
DR U2R: 13.2%
DR R2L: 8.4%
Training: 24 h

Pan et al.
[344]

Supervised NN and
C4.5 DT (offline)

KDD Cup [257] all 41 features -29,313 training data records
-111,858 testing data records
-1 Layer MLP: 70-14-6
-NN trained until MSE = 0.001
or # Epochs = 1500
-Selected attacks for U2L and
R2L
-After-the-event analysis

DR Normal : 99.5%
DR DoS: 97.3%
DR Probe (Satan): 95.3%
DR Probe (Portsweep): 94.9%
DR U2R: 72.7%
DR R2L: 100%
ADR: 93.28% FP: 0.2%

Moradi et al.
[322]

Supervised
NN
(offline)

KDD Cup [257] 35 features -12,159 training data records
-900 validation data records
-6,996 testing data records
-Attacks: SYN Flood and Satan
-2 Layers MLP: 35 35 35 3
-1 Layer MLP: 35 45 35
-ESVM Method

2 Layers MLP DR: 80%
2 Layers MLP Training time
> 25 hrs 2 Layers MLP w/
ESVM DR: 90% 2 Layers
MLP w/ ESVM Training time
< 5 hrs 1 Layers MLP w/
ESVM DR: 87%

Chebrolu et al.
[90]

Supervised BN and
CART (offline)

KDD Cup [257] Feature
Selection using
Markov Blanket
and Gini rule

-5,092 training data records
-6,890 testing data records
- AMD Athlon 1.67 GHz
processor with 992 MB of RAM

DR Normal: 100%
DR Probe: 100%
DR DoS: 100%
DR U2R: 84%
DR R2L: 99.47%
Training BN time: 11.03 ∼ 25.19 sec
Testing BN time: 5.01 ∼ 12.13 sec
Training CART time : 0.59 ∼ 1.15 sec
Testing CART time: 0.02∼ 0.13 sec

Amor et al.
[20]

Supervised NB
(offline)

KDD Cup [257] all 41 features -494,019 training data records
-311,029 testing data records
-Pentium III 700 Mhz
processor

DR Normal: 97.68%
PCC DoS: 96.65%
PCC R2L: 8.66%
PCC U2R: 11.84%
PCC Probing: 88.33%

Stein et al.
[421]

Supervised C4.5 DT
(offline)

KDD Cup [257] GA-based
feature
selection

-489,843 training data records
-311,029 testing data records
-10-fold cross validation
-GA ran for 100 generations

Error rate DoS: 2.22%
Error rate Probe: 1.67%
Error rate R2L: 19.9%
Error rate U2R: 0.1%

Paddabachigari
et al. [354]

Supervised
Ensemble of SVM,
DT, and SVM-DT
Offline

KDD Cup [257] all 41 features 5,092 training data records
6,890 testing data records
AMD Athlon, 1.67 GHz
processor with 992 MB of RAM
-Polynomial kernel

DR Normal: 99.7%
DR Probe:100%
DR DoS: 99.92%
DR U2R: 68%
DR R2L: 97.16%
Training time: 1∼ 19 sec
Testing time: 0.03∼ 2.11 sec

Sangkatsanee
et al. [402]

Supervised
C4.5 DT
(online)

Normal: Reliability Lab
Data 2009 (RLD09)
Attack: [341, 444, 475]

TCP, UPD, and
ICMP header
fields

-55,000 training data records
-102,959 testing data records
-12 features
-2.83 GHz Intel Pentium Core2
Quad 9550 processor with 4
GB RAM and 100 Mbps LAN
-Platform used: Weka V.3.6.0

DR Normal: 99.43%
DR DoS: 99.17%
DR Probe: 98.73%
Detection speed: 2∼ 3 sec
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Table 21 Summary of ML-based Misuse Detection (Continued)

Ref. ML Technique Dataset Features Evaluation

Settings Results

Miller et al.
[314]

Supervised
Ensemble MPML
(Offline)

NSL-KDD [438] all 41 features -125,973 training records
-22,544 testing records
-3 NBs trained w/ 12, 9, 9 fea-
tures
-Platform used Weka [288]

TP: 84.137%
FP: 15.863%

Li et al. [272] Supervised
TCM K-NN
(Offline)

KDD Cup [257] all 41 features
8 features
selected using
Chi-square

-Intel Pentium 4, 1.73 GHz, 1
GB RAM, Windows XP Profes-
sional
- Platform Weka [288]
-49,402 training records
-12,350 testing records
-K = 50

41 features: TP 99.7%
41 features: FP 0%
8 features: TP 99.6%
8 features: FP 0.1%

aDetermined empirically, Mean Square Error (MSE), Percentage Correct Classification (PCC), Average Detection Rate (ADR), Early Stop Validation Method (ESVM)

host. Results show that the NN is able to correctly identify

normal and attack records 89-91% of the time.

In 1999, the KDD cup was launched in conjunction with

the KDD’99 conference. The objective of the contest was

the design of a classifier that is capable of distinguishing

between normal and attack connections in a network. A

dataset was publicly provided for this contest [257], and

since then became the primary dataset used in ML-based

intrusion detection literature. It consists of 5 categories of

attacks, including DoS, probing, user-to-root (U2R) and

root-to-local (R2L), in addition to normal connections.

The top three contestants employed DT-based solutions

[421]. The winner of the contest [358] used an ensem-

ble of 50 times 10 C5 DTs with a mixture of bagging

and boosting [377]. The results of the proposed method

are presented in Table 21. Clearly, the proposed approach

performs poorly for U2R and R2L attack categories. The

authors do mention that many of the decisions were prag-

matic and encouraged more scientific endeavors. Sub-

sequently, an extensive body of literature emerged for

ML-based intrusion detection using the KDD’99 dataset,

in efforts to improve on these results, where some use the

winners’ results as a benchmark.

For instance, Moradi et al. [322] investigate the applica-

tion of NN for multi-class classification using the KDD’99

dataset. Specifically, the authors focused on DoS and

probing attacks. As opposed to the work of [84], two NNs

were trained: one with a single hidden layer and the sec-

ond with two hidden layers, to increase the precision of

attack classification. They leverage the Early Stopping Val-

idation Method [366] to reduce training and validation

time of the NN to less than 5 hours. As expected, the NN

with 2 hidden layers achieves a higher accuracy of 91%,

compared to the 87% accuracy of the NN with a single

hidden layer.

Amor et al. [20] compare NB and DT also using

KDD’99 dataset, and promote NB’s linear training and

classification times as a competitive alternative to DT. NB

is found to be 7 times faster in learning and classification

than DT. For whole attacks, DT shows a slightly higher

accuracy over NB. However, NB achieves better accuracy

for DoS, R2L, and probing attacks. Both NB and DT per-

form poorly for R2L and U2R attacks. In fact, Sabhnani

and Serpen [398] expose that no classifiers can be trained

successfully on the KDD dataset to performmisuse detec-

tion for U2R or R2L attack categories. This is due to the

deficiencies and limitations of the KDD dataset rather

than the inadequacies of the proposed algorithms.

The authors found via multiple analysis techniques

that the training and testing datasets represent dissimilar

hypothesis for the U2R and R2L attack categories; so if one

would employ any algorithm that attempts to learn the sig-

nature of these attacks using the training dataset is bound

to perform poorly on the testing dataset. Yet, the work in

[344] reports surprisingly impressive detection accuracy

for U2R and R2L. Here, a hybrid of BP NN with C4.5 is

proposed, where BP NN is used to detect DoS and prob-

ing attacks, and C4.5 for U2R and R2L. For U2R and R2L

only a subcategory of attacks is considered (yielding a total

of 11 U2R connections out of more than 200 in the orig-

inal dataset and ∼ 2000 out of more than 15000 for R2L

connections).After-the-event analysis is also performed to

feed C4.5 with new rules in the event of misclassification.

Other seminal works consider hybrid and ensemble

methods for misuse detection [90, 354, 421]. The goal of

ensemble methods is to integrate different ML techniques

to leverage their benefits and overcome their individual

limitations. When applied to misuse detection, and more

specifically for the KDD’99 dataset, these work focused

on looking at which ML technique works best for a class

of connections. For instance, Peddabachigari et al. [354]

propose an IDS that leverages an ensemble of DT, SVM

with polynomial kernel based function, and hybrid DT-

SVM to detect various different cases of misuse. Through
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Table 22 Summary of ML for flow feature-based anomaly detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Kayacik et al.
[232]

Unsupervised
Hierarchical
SOM (Offline)

KDD Cup [257] 6 TCP features -494,021 training records
-311,029 records in test set 1
-4,898,431 records in test set 2
-Platforms: SOM-Toolbox [12] &
SOM PAK [250] -3-level SOM
w/ # Epochs: 4000

DR Test-set 1: 89% FP Test-set
1: 4.6% DR Test-set 2: 99.7%
FP Test-set 2: 1.7%

Kim et al. [242] Supervised SVM
(Offline)

KDD Cup [257] selected using GA Training set: kddcup.data.gz
[257] Testing set: corrected.gz
[257] -Detect only DoS attacks
-10-fold cross validation -GA
ran for 20 generations

DR w/ Neural Kernel: 99% DR
w/ Radial Kernel:87% DR w/
Inverse Multi-Quadratic
Kernel: 77%

Jiang et al. [220] Unsupervised
Improved NN
(Offline)

KDD Cup
[256, 257]

all 41 features -40,459 training records
-429,742 testing records
-Cluster Radius Thresh
r=[0.2-0.27]

DR DoS: 99.10%%99.15 DR
Probe: 64.72%80.27% DR U2R:
25.49%60.78% DR R2L
6.34%8.67% DR new attacks:
32.44%42.12% FP: 0.05%1.30%

Zhang et al. [495] Unsupervised
Random
Forests (Offline)

KDD Cup [257] 40 features labeled by
service type

-4 datasets used with % of
attack connections: 1%, 2%,
5%, 10% -Platform used: Weka
[288]

1% attacks: FP: 1% DR: 95%
10% attacks: FP: 1% DR: 80%

Ahmed et al. [7] Supervised
Kernel Function
(Online)

From Abilene
backbone
network

number of packets,
number of individual
IP flows

-2 timeseries binned at 5 min
intervals -Timeseries
dimensions = FxT -F = 121
flows, T = 2016 timesteps

T#1 DR: 21/34-30/34 FP:0-19
T#2 DR:28/44-39/44 FP:5-16

Shon et al. [411] Unsupervised
Soft-margin
SVM and
OCSVM (Offline)

KDD Cup [257]
Data collected
from Dalhousie U.

selected using GA -SVM Toolkits [88, 396]
-100,000 packets for training
-1,000-1,500 packet for testing
-GA run for 100 generations
3-cross fold validation

KDD w/ 9 attack types DR:
74.4% Dalhousie Dataset DR:
99.99% KDD w/ 9 attack types
FN:31.3% Dalhousi Dataset
FP:0.01%

Giacinto et al.
[165]

Unsupervised
Multiple
Classifiers
(Offline)

KDD Cup [257] 29 features for HTTP
34 features for FTP 16
features for ICMP 31
features for Mail 37
features for Misc 29
features for
Private&Other

-494,020 training records
-311,029 testing records -1.5%
of data records is attacks

v-SVC DR: 67.31%-94.25%
v-SVC FP: 0.91%-9.62%

Hu et al. [198] Supervised
Decision
stumps with
AdaBoost
(Offline)

KDD Cup [257] all 41 features -494,021 training records
-311,029 testing records
-Pentium IV with 2.6-GHz CPU
and 256-MB RAM -Platform
used Matlab 7

DR: 90.04%-90.88% FP:
0.31%-1.79% Mean Training
time: 73 sec

Muniyandi et al.
[327]

Unsupervised
K-Means, C4.5
DT (Offline)

KDD Cup [257] all 41 features -15,000 training records -2,500
testing records -Intel Pentium
Core 2 Duo CPU 2.20GHz,
2.19GHz, 0.99GB of RAM w/
Microsoft Windows XP (SP2)
-Platform: Weka 3.5 [288]

DR: 99.6% FP: 0.1% Precision:
95.6% Accuracy: 95.8%
F-measure: 94.0%

Panda et al. [345] Unsupervised
RF, ND, END
(Offline)

NSL-KDD [438] all 41 features -25,192 training instances -IBM
PC of 2.66GHz CPU with 40GB
HDD and 512 MB RAM -10-fold
cross validation

TP: 99.5 FP: 0.1% F-measure:
99.7% Precision: 99.9% Recall
99.9% Time to build model:
18.13 sec

Boero et al. [64] Supervised
RBF-SVM
(Offline)

Normal: from U.
of Genoa
Malwares: [126,
292, 348, 351]

7 SDN OpenFlow
features

-RBF Complexity par: 20 -RBF
kernel par: 2

Normal-TP: 86% Normal-FP:
1.6% Malware-TP: 98.4%
Malware-FP: 13.8%

empirical evaluation, the resultant IDS consist of using DT

for U2R, SVM for DoS, and andDT-SVM to detect normal

traffic. The ensemble of the 3 methods together (with

a voting mechanism) is used to detect probing and R2L

attacks. The resultant accuracy for each class is presented

in Table 21.
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Table 23 Summary of ML for payload-based anomaly detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Zanero et al.
[493]

Unsupervised
A two-tier
SOM-based
architecture
(Offline)

Normal: KDD
Cup [257]
Attack: Scans
from Nessus
[44]

Packet headers
and payload

-2,000 training packets
-2,000 testing packets
-10x10 SOM trained for 10,000
epochs
-Platform used: SOM toolbox [12]

Improves DR by 75% over 1-tiered
S.O.M

Wang et al.
[459]

Unsupervised
Centroid model
(Offline)

KDD Cup [257]
& CUCS

Payload of TCP
traffic

-2 weeks training data
-3 weeks testing data
-Inside network TCP data only
-Incremental learning

DR w/ payload of a packet: 58.8%
DR w/ first 100 bytes of a packet:
56.7%
DR w/ last 100 bytes of a packet:
47.4%
DR w/ all payloads of a con: 56.7%
DR w/ first 1000 bytes of a Con:
52.6%
Training time: 4.6-26.2 sec
Testing time: 1.6-16.1 sec

Perdisci et al.
[356]

Supervised
Ensemble of
single-class SVM
(Offline)

Normal: KDD
Cup [257]
Normal:
GATECH
Attack: CLET
[117]
Attack: PBA
[149]
Generic [204]

Payload -50% of dataset for training
-50% of dataset for testing
-11 OCSVM trained with
2v-grams; v=1...10
-5-fold cross validation on KDD
cup
-7-fold cross validation on
GATECH
-2 GHz Dual Core AMD Opteron
Processor and 8GB RAM

Generic DR w/ FP 10−5: 60%
shell-code DR w/ FP 10−5: 90%
CLET DR w/ FP 10−5: 90%
Detection time KDD Cup: 10.92
ms
Detection time GATECH: 17.11 ms

Gornitz et al.
[171]

Supervised
SVDD
(Online)

Normal: from
Fraunhofer Inst.
Attack:
Metasploit

payload -2,500 training network events
-1,250 testing network events
-Active Learning
-Fraction of Labeled data: 1.5%

DR: 96%
FP: 0.0015%

Stein et al. [421] employ DT with GA. The goal of GA

is to pick the best feature set out of the 41 features pro-

vided in KDD’99 dataset. DT with GA is performed for

every category of attacks, rendering a total of 4 DTs. The

average error rate achieved by each DT at the end of 20

runs is reported in Table 21. Another interesting ensem-

ble learning approach is the one proposed in [90], where

the ensemble is composed of pairs of feature set and

classification technique. More specifically, BN and CART

classification techniques are evaluated on the KDD’99

dataset with different feature sets. Markov blanket [353]

and Gini [76] are adopted as feature selection techniques

for BN and CART, respectively. Markov blanket identifies

the only knowledge needed to predict the behavior of a

particular node; a node here refers to the different cate-

gories of attacks. Gini coefficient measures how well the

splitting rules in CART separates between the different

categories of attacks. This is achieved by pruning away

branches with high classification error. For BN, 17 fea-

tures out of 41 are chosen during the data reduction phase.

For CART, 12 variables are selected. CART and BN are

trained on the 12 and 17 features set, as well as 19 features

set from [326]. They describe the final ensemble method

using pairs (#features, classification), which delineates the

reduced feature set and the classification technique that

exhibits the highest accuracy for the different categories of

attacks and normal traffic. The ensemble model achieves

100% accuracy for normal (12 features set, CART), probe

(17 features set, CART), and DoS (17 features set, Ensem-

ble), and 84% accuracy for U2R (19 features set, CART),

and 99.47% accuracy for R2L (12 features set, Ensemble).

Miller et al. [314] also devise an ensemble method but

based on NB classifiers, denoted as Multi-perspective

Machine Learning (MPML). The key idea behind MPML

is that an attack can be detected by looking at different

network characteristics or “perspective”. These charac-

teristics in turn are represented by a subset of network

features. Hence, they group the features of a perspective

together, and train a classifier using each feature set. The

intuition behind this approach is to consider a diverse and

rich set of network characteristics (each represented by a

classifier), to enhance the overall prediction accuracy. The

predictions made by each classifier are then fed to another

NB model to reach a consensus.

A limitation of the aforementioned approaches is that

they are all employed offline, which inhibits their appli-

cation in real life. A few related works focused on the

training and detection times of their IDS. Most classifiers

(e.g., image, text recognition systems) require re-training

from time to time. However, for IDSs this retraining may
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Table 24 Summary of deep and reinforcement learning for intrusion detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Cannady et al.
[85]

RL
CMAC-NN
(Online)

Prototype Appli-
cation

Patterns of Ping
Flood and UDP
Packet Storm
attacks

-3 Layers NN
-Prototype developed w/ C
& Matlab

Learning Error: 2.199-1.94−07%
New Attack Error:2.199-8.53−14%
Recollection Error: 0.038-3.28−05%
Error after Refinement: 1.24%

Servin et al.
[407]

RL
Q-Learning
(Online)

Generated using
NS-2

Congestion,
Delay, and
Flow-based

-Number of Agents: 7
-DDoS attacks only
-Boltzmann’s rules for E2

FP: 0-10%
Accuracy:∼ 70%-∼ 99%
Recall: ∼ 30%-∼ 99%

Li et al. [273] DL
DBN w/ Auto-
Encoder
(Offline)

KDD Cup [257] all 41 features -494,021 training records
-311,029 testing records
-Intel Core Duo CPU 2.10
GHz and 2GB RAM
-Platform used: Matlab v.7.11
-3 Layers Encoder:
41,300,150,75,*

TPR: 92.20%-96.79%
FPR: 1.58%-15.79%
Accuracy: 88.95%-92.10%
Training time: [1.147-2.625] sec

Alom et al.
[14]

DL
DBN
(Offline)

NSL-KDD [438] 39 features -25,000 training & testing
records

DR w/ 40% data for training: 97.45%
Training time w/ 40% data for train-
ing: 0.32 sec

Tang et al.
[436]

DL
DNN
(Offline)

NSL-KDD [438] 6 basic features -125,975 training records
-22,554 testing records
-3-Layers DNN: 6,12,6,3,2
-Batch Size: 10 # Epochs: 100
-Best Learning Rate: 0.001

Accuracy: 72.0%5-75.75%
Precision: 79%-83%
Recall: 72%-76%
F-measure: 72%-75%

Kim et al.
[245]

DL
LSTM-RNN
(Offline)

KDD Cup [257] all 41 features -1,930 training data records
-10 test datasets of 5000
records
-Intel Core I7 3.60 GHZ, RAM
8GB, OS Ubuntu 14.04
-# Nodes in Input Layer: 41
-# Nodes in Output Layer: 5
-Batch Size:50 #Epoch:500
-Best Learning Rate:0.01

DR: 98.88%
FP: 10.04%
Accuracy: 96.93%

Javaid et al.
[213]

DL
Self-taught Learn-
ing
(Offline)

NSL-KDD [438] all 41 features -125,973 training records
-22,544 testing records
-10-fold cross validation

2-class TP: 88.39%
2-class Precision: 85.44%
2-class Recall: 95.95%
2-class F-measure: 90.4%

Table 25 Summary of ML for Hybrid Intrusion Detection

Ref. ML Technique Dataset Features Evaluation

Settings Results

Mukkamala
et al. [325]

Supervised
RBF-SVM
(Online)

KDD cup [257] all 41 features 7,312 training records
-6,980 testing records
-Platform used: SVMLight
[224]

Accuracy: 99.5%
Training time: 17.77 sec
Testing Time: 1.63 sec

Zhang
et al. [494]

Hybrid
Hierarchical-RBF
(Online)

KDD Cup all 41 features -32,000 training records
-32,000 testing records

SHIDS Normal DR:=99.5%
SHIDS Normal FP: 1.2%
SHIDS Attack DR: [98.2%-99.3%]
SHIDS Attack FP: [0%-5.4%]
PHIDS level 1 DR: 99.8%
PHIDS level 1 DR:1.2%
PHIDS level 2 DR:[98.8%-99.7%]
PHIDS level 2 FP:[0%-4%]
PHIDS level 3 DR: 86.9%
PHIDS level 3 FP: 0%
Training time: 5 min

Depren
et al. [116]

Hybrid
SOM w./ J.48
(Offline)

KDD Cup 6 basic features
for SOM
all 41 features for
J.48

-10-fold cross validation
-Two-phases SOM Training
-Phase 1 learning rate:0.6
-Phase 2 learning rate: 0.05
-Confidence Val. for J.48
pruning: 25%

DR: 99.9%
Missed Rate: 0.1%
FP: 1.25%
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be performed daily (or even hourly) due to the fast and

ever changing nature of cyber-threats [180]. Hence, fast

training times are critical for an adaptable and robust IDS.

[198] tackled the challenge of devising an IDS with fast

training time using an Adaboost algorithm. The proposed

algorithm consists of an ensemble of weak classifiers

(decision stumps), where their decisions are then fed to a

strong classifier to make the final decision. The fast train-

ing time achieved (of 73 s) is attributed to the use of weak

classifiers. Another advantage of decision stumps is the

ability to combine weak classifiers for categorical features

with weak classifiers for continuous features, without any

forced conversation as is typically done in most works.

During the evaluation, a subset of attack types are omitted

from the training set in order to evaluate the algorithm’s

ability to detect unknown attacks. While the reported

accuracy is not significantly high (90%), the training time

is promising for real-time deployment. Clearly, there is

still a need for a model that can achieve fast training time,

without sacrificing the detection accuracy.

Sangkatsanee et al. [402] propose a real-time misuse-

based IDS. Information gain is applied to reduce the num-

ber of features used (for faster detection), resulting in 12

features. Different ML techniques were assessed, among

which DT provided the best empirical results. They devel-

oped a tool that runs on traces collected in 2 s time

intervals, and shows a detection accuracy of 98%. A post-

processing technique is also proposed to reduce FP, which

consists of flagging an attack only if 3-out-of 5 consecutive

records belonging to the same connection were classified

as an attack. While this work is indeed promising, given it

is performed in real-time, it suffers from a few limitations:

(i) it can only detect two types of attacks (DoS and probe),

(ii) it is not compared against other real-time signature-

based IDS (e.g. Snort [87]), (iii) it only looks at attacks

in windows of 2 s, and (iv) its post-processing approach

correlates records between 2 IPs, making it vulnerable to

persistent threats and distributed attacks.

A final effort that merits a discussion here is [272]. This

work employs Transductive Confidence Machine for k-

NN (TCM-KNN), a supervised classification algorithm

with a strangeness measure. A high strangeness measure

indicates that the given instance is an outlier in a particu-

lar class (for which the measurement is being conducted).

The strangeness measure is calculated for every instance

against each possible classification class. This is achieved

by measuring the ratio of the sum of the k-nearest dis-

tances from a given class to the sum of the k-nearest

distances from all other classes. The strangeness measure

is also employed for active learning. Since getting labeled

data for attacks is a cumbersome task, active learning can

relieve part of this tedious process by indicating the subset

of data points that should be labeled to improve the con-

fidence of the classifier. TCM-KNN is evaluated over the

KDD’99 dataset and the results are reported in Table 21.

The benefits of active learning is also evaluated. Start-

ing with a training set of just 12 instances, TCM-KNN

requires the labeling of an additional 40 actively selected

instances to reach a TP of 99.7%. Whereas, random sam-

pling requires the labeling of 2000 instances to attain the

same accuracy.

10.2 Anomaly-based intrusion detection

Though misuse-based IDSs are very successful at detect-

ing known attacks, they fail to identify new ones. Network

cyber-threats are constantly changing and evolving, mak-

ing it crucial to identify “zero-day” attacks. This is where

anomaly-based intrusion detection comes in. Anomaly-

based IDS models normal network behavior, and identify

anomalies as a deviation from the expected behavior. A

big issue with anomaly-based IDSs is false alarms, since

it is difficult to obtain a complete representation of nor-

mality. ML for anomaly detection has received significant

attention, due to the autonomy and robustness it offers in

learning and adapting profiles of normality as they change

over time. With ML, the system can learn patterns of nor-

mal behavior across environments, applications, group of

users, and time. In addition, it offers the ability to find

complex correlations in the data that cannot be deduced

frommere observation. Though anomaly detection can be

broadly divided into flow feature or payload-based detec-

tion, recently, deep learning and reinforcement learning

are being aptly exploited. Primarily, this is due to their

intrinsic ability to extrapolate data from limited knowl-

edge. We delineate and summarize the seminal and state-

of-the-art ML-based techniques for anomaly detection in

Tables 22, 23 and 24.

10.2.1 Flow feature-based anomaly detection

Flow-based anomaly detection techniques rely on learn-

ing the expected (benign) network activities from flow

features. The immediate observation in contrast to misuse

detection is the application of unsupervised learning and

hybrid supervised/unsupervised learning. Some works

employed supervised learning for anomaly detection as

well. The main difference is instead of teaching the model

the expected behavior, in unsupervised learning themodel

is fed with an unlabeled training set to find a structure, or

a hidden pattern, in the data. In anomaly detection, the

notion is that benign network behavior is more common

and will naturally group together, whereas, anomalous

behavior is more sparse and will appear as outliers in

the dataset. Hence, the larger and more dense clusters

will indicate normal connections, while the smaller more

distant data points (or clusters of data points) will indi-

cate malicious behavior. A quick glance at Tables 22, 23,

and 24 will reveal that the KDD’99 dataset is the dataset

of choice in most anomaly-based intrusion detection



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 80 of 99

literature, where some have also employed the improved

version of the dataset, NSL-KDD [438] released in 2009.

In the sequel, we elucidate the most influential work in

the application of flow feature-based ML for anomaly

detection.

We start-off our discussion by looking at supervised

learning techniques. KOAD [7] is an online kernel

function-based anomaly detection IDS. The key feature

of KOAD is its ability to model normal behavior in

face of variable traffic characteristics. It leverages a real-

time anomaly detection algorithm that incrementally con-

structs and maintains a dictionary of input vectors defin-

ing the region of normal behavior. This dictionary is built

using time series of the number of packets and IP flows.

In the evaluation, the authors use a dataset collected by

monitoring 11 core routers in the Abilene backbone net-

work for a week. It comprises of two multi-variate time

series, the number of packets and the number of indi-

vidual IP flows. KOAD is evaluated against PCA and

One-Class Neighbor Machine (OCNM). In packet time

series, OCNM flags 26 out of 34 anomalies but generates

14 FPs, while KOAD gives different TP and FP under dif-

ferent parameters. For instance, it can detect 30 anomaly

records with 17 FPs, and 26 anomaly records with 1 FP.

However, PCA can detect 25 anomalies with 0 FP. On the

other hand, for the flow-count time series, KOAD outper-

forms PCA and OCNM in terms of detection rate but at

the cost of a higher FP.

More recently, Boero et al. [64] leverage a SVM with

radial basis function kernel (RBF-SVM) to devise an IDS

for SDN-based malware detection. A reduced feature set

is evaluated based on features that are collectible via OF

and commercial SDN switches. This limits the number of

features to 7 consisting of the number of packets, number

of bytes, flow duration, byte rate, packet rate, length of the

first packet, and average packet length. The dataset used

for evaluation consists of normal traffic traces from a uni-

versity campus and malware traffic traces from [126, 292,

348, 351]. For a dataset with known attacks, both RBF-

SVM with limited and all features return a TP above 98%

for the malware traces, while TP of RBF-SVM is 86.2% for

normal traces.

However, detecting new attacks using the RBF-SVM

with limited and full features achieve comparable TP

with a high FP of approximately 18% for normal traces.

This shows that restricting the features set to those

that can be collected via SDN switches slightly impacts

the TP rate; however it comes at a cost of a higher

FP. Hence there is a need to enlarge the features set

that SDN switches monitor and collect. As we will see

in the following, the battle between FP and TP will

constantly resurface throughout our discussion. This is

expected since guaranteeing the ground truth is difficult

and requires manual labeling. Furthermore, obtaining a

complete representation of normal behavior is extremely

challenging. Thus, any future legitimate behavior that was

not part of the trained set might be flagged as an anomaly.

The main application of unsupervised learning for

anomaly detection is clustering on the basis that normal

data connections will create larger more dense clusters.

Jiang et al. [220] challenge this notion by showcasing that

the size of the cluster is not sufficient to detect anomalies

and has to be coupled with the distance of the cluster from

other clusters, to increase accuracy of detection. To this

end, the authors propose an Improved Nearest Neighbor

(IMM) technique for calculating cluster radius threshold.

The KDD dataset is used for evaluation and shows that

IMM outperforms three related works [131, 139, 363] in

terms of detection rate and FP. A snippet of their reported

results is presented in Table 22.

Kayacik et al. [232] leverage unsupervised NN with

SOM and investigate their detection capabilities when

trained with only 6 of the most basic TCP features, includ-

ing protocol type, service type, status flag, connection

duration, and total bytes sent to destination/source host.

They evaluate their work on the KDD dataset, and observe

that SOM-based anomaly detection achieves an average

DR (ADR) of 89% with FP in the range of [1.7%-4.6%].

Other interesting applications of unsupervised learning

for anomaly detection is RF [495] and an ensemble of

single-class classifiers [165]. Giacinto et al. [165] train a

single-class classifier, based on v-SVC [405], for each indi-

vidual protocol and network service; e.g. ICMP, HTTP,

FTP, and Mail. This ensures that each classifier is special-

ized in detecting normal and abnormal characteristics for

one these protocols and services. The application of one-

class classifier is particularly interesting for cases where

there is a skewness in the data. This is in-line with the

fact that normal traffic traces are more common than

malicious network activities. Thus, the one-class classifier

learns the behavior of the dominant class, and dissimilar

traffic patterns are then flagged as an anomaly. Results of

the evaluation can be found in Table 22.

The majority of works in anomaly-based IDS employed

a hybrid of supervised/unsupervised learning techniques.

Panda et al. [345] evaluate several hybrid approaches to

identify the best combination of supervised and unsu-

pervised data filtering and base classifiers for detecting

anomalies. The authors evaluate DT, PCA, stochastic pri-

mal estimated sub-gradient solver for SVM (SPegasos),

ensembles of balanced nested dichotomies (END), Grad-

ing, and RF. They show that RF with nested dichotomies

(ND) and END achieve the best results, with a detection

rate of 99.5% and a FP of 0.1%. It is also the fastest in terms

of performance, requiring 18.13 s to build and provides F-

measure, precision , and recall of 99.7%, 99.9, and 99.9%,

respectively. Enhanced SVM [411] combines a supervised

version of SVM: soft-margin SVM with an unsupervised
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version: one-class SVM. The intuition here is that this

combination will allow to get the best of both worlds: low

FP with ability to detect zero-day attacks. Enhanced SVM

consists of 4 phases:

– Create a profile of normal packets using Self-organized

Feature Map.

– Packet filtering scheme, using p0f [491], based on

passive TCP/IP fingerprinting to reject incorrectly

formed TPC/IP packets.

– GA to perform feature selection

– Temporal correlation of packets during packet pro-

cessing

Enhanced-SVM is only trained with normal traffic. The

normal to abnormal ration in the data set consists of 98.5-

99 to 1-1.5%. Compared to two commercial IDSs, Bro and

Snort, the Enhanced-SVM slightly improves in anomaly

detection accuracy on a real dataset with unknown traffic

traces. However, for known attacks, Snort and Bro sig-

nificantly outperform Enhanced-SVM.Wagner et al. [456]

also leverage a hybrid supervised and unsupervised single-

class SVM to detect anomalies in IP NetFlow records.

A new kernel function is proposed to measure the sim-

ilarity between two windows of IP flow records of n

seconds. The hybrid SVM is evaluated on a normal dataset

obtained from an ISP, with synthetically generated attacks

using Flame [74], and with n = 5 s. Results show that

the hybrid SVM can achieve an ADR of 92%, FP in the

range [0-0.033], and TN in the range [0.967-1]. Finally,

Muniyandi et al. [327] propose a hybrid anomaly detection

mechanism that combines k-Means with C4.5 DT. They

build k clusters using k-Means and employ DT for each

cluster. DT overcomes the forced assignment problem in

k-Means, where k is too small and a class dominates due

to skewed dataset. The authors evaluate the hybrid detec-

tion on the KDD dataset and show that it outperforms

k-Means, ID3, NB, k-NN, SVM, and TCM-KNN, over 6

different metrics, including TP, FP, precision, accuracy, F-

measure, and ROC. However, TCM-KNN achieves better

results in terms of TPR and FPR.

10.2.2 Payload-based anomaly detection

Payload-based anomaly detection systems learn patterns

of normality from packet payload. This provides the ability

to detect attacks injected inside the payload that can easily

evade flow feature-based IDSs. In this subsection, we dis-

cuss ML techniques that have been employed to detect

anomalies using packet payload alone or in conjunction

with flow features.

PAYL [459] use the 1-gram method to model packet

payloads. n-gram is widely used for text analysis. It con-

sists of a sliding window of size n that scans the payload

while counting the occurrence/frequency of each n-gram.

In addition to counting the frequency of each byte in the

payload, the mean and the standard deviation is com-

puted. As the payload exhibits different characteristics

for different services, PAYL generates a payload model

for each service, port, direction of payload, and payload

length range. Once the models are generated, Maha-

lanobis distance is used to measure the deviation between

incoming packets and the payload models. The larger the

distance, the higher the likelihood that the newly arrived

packet is abnormal. The authors leverage incremental

learning to keep the model up to date, by updating the

Mahalanobis distance to include new information gath-

ered from new packets. PAYL’s ability to detect attacks

on TCP connections is evaluated using the KDD dataset

and data traces collected from Columbia University Com-

puter Science (CUCS) web server. PAYL is able to detect

60% of the attacks on ports 21 and 80 with a FP of 1%.

However, it performs poorly when the attacks target appli-

cations running on ports 23 and 25. This is due to the

fact that attacks on ports 21 and 80 exhibit distinctive pat-

terns in the format of the payload, making them easier to

detect than attacks on ports 23 and 25. PAYL can be used

as an unsupervised learning technique under the assump-

tion that malicious payloads are a minority, and will have a

large distance to the profile than the average normal sam-

ples. Hence, by running the learned model on the training

set, malicious packets in the set can be detected, omitted,

and then the models are retrained on the new training set.

Perdisci et al. [356] design Multiple-Classifier Payload-

based Anomaly Detector (McPAD) to infer shell and

polymorphic shell code attacks. Shell code attacks inject

malicious executable code in the packet payload. As

opposed to 1-gram analysis performed by PAYL, McPAD

runs a 2v-gram analysis technique to model the payload

(v =[ 0 − 10] ). It measures the occurrence of a pair of

bytes that are v positions apart. By varying v and apply-

ing feature reduction, different compact representations

of the payload are obtained. Each of these representations

is then fed to a 1-class classifier model and majority vote

is used to make the final prediction. For evaluation, nor-

mal traffic is extracted from two datasets: the 1st week of

KDD dataset and 7 weeks of HTTP traffic collected from

College of Computing School at the Georgia Tech (GAT-

ECH). Attack traffic is collected from a generic dataset in

[204], in addition to synthetically generated polymorphic

attacks [117] and Polymorphic Blending Attacks (PBAs).

In comparison to PAYL, McPAD achieves a DR of 60,

80 and 90% for generic, polymorphic CLET, and shell-

code attacks, respectively, with an FP of 10−5 for all

attacks. While, PAYL reports very low DRs for the same

FP. However, the computational overhead of McPAD is

much higher than that of PAYL with an average pro-

cessing time of 10.92 ms over KDD and 17.11 ms over

GATECH whereas PAYL runs in 0.039 ms and 0.032 ms,

respectively.
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Zanero et al. [493] propose a two-tier architecture for

anomaly detection. The first tier consists of an unsu-

pervised outliers detection algorithm that classifies each

packet. This tier provides a form of feature reduction as

the result of the classification “compresses” each packet

into a single byte of information. The results from the

first tier are fed into the second tier anomaly detec-

tion algorithm. In the first tier, both packet header and

payload are used for outliers detection. The authors com-

pare three different techniques, including SOM, Principal

Direction Divisive Partitioning (PDDP) algorithm and k-

Means, with SOM outperforming PDDP and k-Means in

terms of classification accuracy with a reasonable com-

putational cost. A preliminary prototype that combines a

first tier SOM with a second tier SOM is evaluated over

the Nessus [44] vulnerabilities scans. The results show a

75% improvement in DR over an IDS that does not include

the first tier.

Gornitz et al. [171] leverage semi-supervised Support

Vector Data Description (SVDD) and active learning to

build the active SVDD (ActiveSVDD) model for payload-

based anomaly detection. It is first trained with unlabeled

examples, and subsequently refined by incorporating

labeled data that has been queried by active learning

rules. The empirical evaluation consists of comparing

an unsupervised SVDD with random sampling against

ActiveSVDD. The dataset used for the evaluation is HTTP

traffic recorded within 10 days at Fraunhofer Institute.

Attack data is generated using Metasploit [307] frame-

work. In addition, mimicry attacks are added in the form

of cloaked data to evaluate the ability to detect adversar-

ial attacks. Themodel achieve high accuracy, with random

sampling for online applications with cloaked data, 96%

DR with a very low FP and 64% DR for ActiveSVDD and

SVDD, respectively.

10.3 Deep and reinforcement learning for intrusion

detection

As we contemplate the applications of ML for misuse

and anomaly detection, we observe that all applications of

NN were restricted to networks with at most 2 hidden-

layers. DNNs are attractive for the ability to train large

NNs with several hidden-layers. As we survey the litera-

ture on DL for intrusion detection, we will observe much

larger and deeper NNs in terms of number of nodes in

each layer, and the number of hidden layers. Conceptually,

the results of DNNs get better with more data and larger

models.

10.3.1 Deep learning for anomaly detection

Over the past decade, anomaly detection has particu-

larly benefited from self-taught learning (STL) [213], DBN

[14, 273], and RNN [245]. Once more, all these works

have been evaluated using KDD dataset, and its enhanced

version NSL-KDD [438] dataset. Their results are summa-

rized in Table 24.

In 2007, STL [378] emerged as an improvement over

semi-supervised learning. STL uses unlabeled data from

other, but relevant, object class to enhance a supervised

classification task e.g. using random unlabeled images

from the Internet to enhance the accuracy of a super-

vised classification task for cat images. This is achieved by

learning a good feature representation from the unlabeled

data and then applying this representation to the super-

vised classifier. The potential benefit of STL for anomaly

detection is clear: intrusion detection suffers from the

lack of sufficient amount of labeled data, more specifically

for attacks. To this extent, the work in [213] explore the

application of STL for anomaly detection. Their proposed

model consists of two stages, an Unsupervised Feature

Learning (UFL) stage using sparse auto encoder, followed

by a classification stage that uses the learned features with

soft-max regression (SMR). They evaluate their solution

using the NSL-KDD Cup dataset for 2-class and 5-class

classifications, and compare against a SMR technique that

is not preceded by a UFL stage. The 2-class classification

achieves a higher accuracy of 88.39% compared to 78.06%

of SMR, and outperforms SMR with respect to recall and

F-measure. However, SMR outperforms STL in precision.

Li et al. [273] and Alom et al. [14] explore the use of

DBN for anomaly detection. DBN is an interesting class of

NN, when trained using unlabeled data it works as a fea-

tures selector, and when trained with labeled data it acts

as a classifier. In [273] DBN is used to perform both of

these two tasks. More specifically, an auto-encoder is first

used for dimensionality reduction. The proposed DBN

is composed of multi-layers of RBM and a layer of BP

NN. Unsupervised training is performed on every layer

of RBM and the final output is fed to the BP NN for

classification. Pre-training and pre-tuning the DBN with

auto-encoder over 10 iterations, result in an accuracy of

92.10%, FP of 1.58% and TP of 92.20%. DBN without auto-

encoder achieves an accuracy, FP, and TP of 91.4, 9.02, and

95.34%, respectively.

In [14], the authors perform a compare analysis to eval-

uate the performance of DBN (composed of two-layers

RBM) against against SVM, and a hybrid DBN-SVM. This

comparative analysis was performed using the NSL-KDD

dataset. The results show that DBN runs in 0.32 s, and

achieves an accuracy of 97.5% when trained with only

40% of the NSL-KDD dataset, outperforming SVM and

DBN-SVM. This exceeds the performance, with respect

to training time of similar existing work [400]. In con-

trast, Tang et al. [436] use DNN for a flow-based anomaly

detection in SDNs. They extract six features from the SDN

switches and evaluate the accuracy of anomaly detection

using the NSL-KDD Cup dataset. As the learning rate is

varied, the DNN achieves an accuracy, precision, recall,
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and F-measure in the range [72.05-75.75%], [79-83%],

[72-76%], and [72-75%] , respectively. It is important to

note that for the highest learning rate, DNN achieves

the highest accuracy on the training dataset. However, its

accuracy, recall and F-measure on the test datasets drops.

The authors note that such an accuracy drop occurs with

a high learning rate since the model becomes trained “too

accurately”, i.e. over-fitting. Nevertheless, the accuracy of

the DNN is lower than the winner of the KDD Cup, RF,

which has an accuracy of 81.59%.

10.3.2 Reinforcement learning for intrusion detection (RL)

MARL [407] is a Multi-Agent Reinforcement Learning

system for the detection of DoS and DDoS attacks. MARL

is based on Q-learning, and the system consists of a set of

heterogeneous sensor agents (SA) and a hierarchy of deci-

sion agents (DA). In the proposed setup three SAs and 1

DA are used. Each SA is responsible of collecting either

congestion, delay, or flow-based network metrics. These

collected metrics represent the local state of every SA.

Every SA runs a local RL mechanism to match its local

state to a particular communication action-signal. These

signals are received by the DA, which given a global view

of the state of the network triggers a final action signal

that is forwarded to a human in the loop. If the DA (or the

higher-layer agent in case of a hierarchy of DAs)makes the

appropriate call, all the agents in the system are rewarded.

Otherwise, they will all be penalized. MARL is evaluated

on NS-2 with 7 nodes, where two nodes generate normal

FTP and UDP traffic and one generates the UDP attacks.

The remaining four nodes constitute the SA agents and a

single DA agent. There is a single baseline run and seven

tests are conducted, where each test differs in the normal

traffic, attack patterns, or both. The corresponding accu-

racy, recall, and FPR for each test is presented in Table 24.

MARL is also tested on a dataset that contains mimicry

attacks, it achieved a recall and accuracy of ∼ 30% and

∼ 70%. When little change is inflicted in the traffic pat-

tern, MARL can achieve high 99% accuracy and recall

with 0 FP.

A less conventional application of RL is [85], which

consists of an online IDS based on adaptive NNwithmod-

ified RL. Here RL consists of a feedback mechanism. The

focus is to detect DoS attacks using Cerebellar Model

Articulation Controller (CMAC) NN. The learning algo-

rithm incorporates feedback from the protected system

in the form of system state (i.e. response rate, heartbeat).

The objective is to leverage the system state to assist in

detecting the attacks earlier since the responsiveness of

the system reduces under attack. The authors evaluate

CMAC NN using a prototype application that simulates

ping flooding and UDP packet storm attacks. First, they

assess the system’s ability to autonomously learn attacks.

They find that when the system is trained with gradual

ping flood attack vectors, the error rate is 2.199%, which

reduces to 1.94−7% as the training progresses. The authors

also evaluate the system’s ability to learn new attacks and

recognize learned attacks. The error rate results are pre-

sented in Table 24. Finally, the benefit of the system’s

feedback mechanism illustrates that as attacks progress,

the system state’s responsiveness approaches 0 and the

error rate reaches 8.53−14%.

10.4 Hybrid intrusion detection

We conclude our survey of ML for intrusion detection

by looking at hybrid IDSs that apply both misuse and

anomaly-based intrusion detection. Such a hybrid sys-

tem can make the best of both worlds i.e. high accuracy

in detecting patterns of known attacks, along with the

ability to detect new attacks. Every time a new attack is

detected, it can then be fed to the misuse-detection sys-

tem to enhance the comprehensiveness of its database.We

start off our discussion by looking at the work of Depren

et al. [116] that leverages J.48 DT and SOM for misuse and

anomaly detection, respectively. Three SOM modules are

trained, one for each of the TCP, UDP and ICMP traffic.

The output of the misuse and anomaly detection mod-

ules are combined using a simple decision support system,

that raises an alarm if either one of the modules detect

an attack. The authors evaluate their work over the KDD

Cup dataset and find that their hybrid IDS achieves a DR

of 99.9% with a missed rate of 0.1% and a FP of 1.25%.

Similarly, Mukkamala et al. [325] compare a SVM-based

with an NN-based hybrid misuse and anomaly detection

models. Their models are trained with normal and attack

data and evaluated using the KDDCup dataset. The SVM-

based hybrid model achieves 99.5% accuracy with training

and testing times of 17.77 s and 1.63 s, respectively. While,

three different NNs are trained and tested, each with a dif-

ferent structure of hidden layers. The three NNs achieve

an accuracy of 99.05, 99.25, and 99%, respectively, with a

training time of 18min. Therefore, SVM outperforms NN,

slightly in accuracy and significantly in runtime.

Zhang et al. [494] develop a hierarchical IDS frame-

work based on RBF to detect both misuse and anomaly

attacks, in real-time. Their hierarchical approach is mod-

ular and decreases the complexity of the system. It enables

different modules to be retrained separately, instead of

retraining the entire system. This is particularly useful

in the event of a change that only affects a subset of

the modules. Serial hierarchical IDS (SHIDS) is com-

pared against a parallel hierarchical IDS (PHIDS). SHIDS

begins by training a classifier with only normal data and

as the classifier detects abnormal packets, it logs them in

a database. c-Means clustering [58] groups the data based

on their statistical distributions, and as the number of

attack records in the largest group exceeds a pre-defined

threshold, a new classifier is trained with that specific
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attack data and appended to the end of the SHIDS. PHIDS

on the other hand consists of three layers. The anomaly

and misuse classifiers are in the first two layers, while the

third layer is dedicated to different attack categories. Over

time, the data in each attack category is updated as new

attacks are identified. The performance of RBF is evalu-

ated using the KDD dataset against a Back-Propagation

learning algorithm (BPL). Though, BPL achieves a higher

DR for misuse detection, RBF has a smaller training time

of 5 min compared to 2 h for BPL. Training time is critical

for online IDSs. Further, when training themodel with just

normal data for anomaly detection, RBF outperforms BPL

for each attack category, with respect to DR and FP. Over-

all, RBF achieves a DR of 99.2% and FP of 1.2%, compared

to BPL with a DR of 93.7% and FP of 7.2%. The evaluation

of SHIDS and PHIDS are in Table 25.

10.5 Summary

Our survey on the application of ML for network secu-

rity focused on network-based intrusion detection. We

grouped the work into misuse, anomaly, and hybrid net-

work IDSs. In each category, we expose the different ML

techniques that were applied, including recent applica-

tions of DL and RL. One clear take-away message is the

significant benefit that ML has brought to misuse-based

intrusion detection. It has really improved on the rule-

based systems, and allowed the extraction of more com-

plex patterns of attacks from audit data. It even allowed

the ability to detect variants of known attacks. In the field

of misuse-detection, a preference is given to white-box

models (e.g. DT) as their decision rules can be extracted,

as opposed to black-box models (e.g. NN). Ensemble-

based methods were also heavily employed by training

ML models on different subsets of the dataset or with dif-

ferent feature sets. Ensemble-based methods have been

particularly useful in achieving very fast training time.

While the benefits of ML for IDS is clear, there is a

lot of speculation on the application of ML for anomaly

detection. Despite the extensive literature on ML-based

anomaly detection, it has not received the same traction in

real deployments [415]. Indeed, the most widely deployed

IDS (Snort [45]) is in fact misuse-based [101]. The main

culprit for this aversion is not only the susceptibility of

anomaly detection to high FPs, but also the high-cost of

misclassification in the event of FNs. Compared to the

cost of misclassification in an ads recommender system,

a missed malicious activity can bring down the system or

cause a massive data breach. Another main weakness that

we observe in the literature is that most works consist of

raising an alarm if an anomaly is detected without giv-

ing any hints or leads on the observed malicious behavior

(e.g. the attack target). Providing such semantics can be

extremely valuable to network analysts [415], and even in

reducing FP.

The dataset of choice in the majority of the surveyed lit-

erature has been based on KDD’99, an out-dated dataset.

On one hand, this has provided the community with the

ability to compare and contrast different methods and

techniques. On the other hand, it does not reflect the

recent more relevant types of attacks. Moreover, even

the normal connection traces represent basic applications

(e.g. email and file-transfer) without any inclusion tomore

recent day-to-day applications that swarms the network

(e.g. social media and video streaming). This is further

aggravated by the several limitations and flaws reported

about this dataset [438]. Indeed, there is a dire need for a

new dataset for intrusion detection.

To conclude, most works on the application of ML for

intrusion detection are offline, and amongst the few real-

time IDSs, there is no consideration for early detection

(i.e. detecting a threat from the first few packets of a

flow). Moreover, there is a gap in the ML for intrusion

detection literature with regards to intrusion detection for

persistent threats, or correlating among isolated anomaly

instances over time. Finally, only a handful of works have

actually evaluated the robustness of their algorithm in

the event of mimicry attacks, an aspect of critical impor-

tance as attackers are constantly looking for ways to evade

detection.

11 Lessons learned, insights and research
opportunities

We have discussed the existing efforts in employing

ML techniques to address various challenges and prob-

lems in networking. The success of ML primarily lies

in the availability of data, compounded with improved

and resilient ML algorithms to solve complex problems.

Future networks are envisaged to support an explosive

growth in traffic volume and connected devices with

unprecedented access to information. In addition, these

capabilities will have to be achieved without significantly

increasing CAPEX, OPEX or customer tariffs.

In order to be sustainable in a competitive environ-

ment, network operators must adopt efficient and afford-

able deployment, operations and management. Enabling

technologies for future networks include SDN, network

slicing, NFV, and multi-tenancy, which reduce CAPEX,

increase resource utilization and sharing. Similarly, auto-

nomic network management frameworks coupled with

SDN is envisioned to reduce OPEX. The aforementioned

technologies will allow future networks to host a wide

variety of applications and services, and a richer set of use

cases, including massive broadband, ultra low latency and

highly reliable services, machine to machine communica-

tions, tactile Internet, industrial applications, autonomous

vehicles, real-time monitoring and control.

In this subsection, we describe and delineate prominent

challenges and open research opportunities pertaining to



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 85 of 99

the application of ML in current and future networks,

from the network, system and knowledge acquisition

perspectives.

11.1 Network perspective

11.1.1 Cost of predictions

The accuracy of network monitoring data comes at

the cost of increased monitoring overhead (e.g. con-

sumed network bandwidth and switch memory). This

raises the need for network monitoring schemes that

are both accurate and cost-effective. Monitoring appli-

cations in traditional networks rely on a predefined set

of monitoring probes built into the hardware/firmware,

which limits their flexibility. With SDN customizable

software-based monitoring probes can be deployed on-

demand to collect more diverse monitoring data. How-

ever, in many instances, e.g. monitoring traffic volume

over a given switch interface, these probes need to

operate at line rate, which is very expensive over very

high speed links and difficult to achieve in software.

This makes TSF-based approaches for traffic prediction

prohibitive.

Recently, two solutions have been investigated in order

to overcome this issue, (i) traffic sampling and interpo-

lation [274], and (ii) leveraging features other than traf-

fic volume for traffic prediction [365]. Indeed, various

flow sampling techniques (stochastic/deterministic, spa-

cial/temporal, etc.) to reduce monitoring overhead have

been proposed in the literature. Unfortunately, the cur-

rent ML-based solution proposed in [274], is not conclu-

sive and shows contradicting prediction accuracy results.

Instead, Poupart et al. [365] use classifiers to identify ele-

phant flows. Indeed, classifiers operate at a coarser gran-

ularity. Therefore, their accuracy can not be compared to

the accuracy of regression model operating on the same

set of features. Using features other than traffic volumes

for accurate traffic prediction remains an open research

direction.

11.1.2 Cost of errors and detailed reports

ML for anomaly detection has received significant interest

in the literature, without gaining traction in the industry.

This is primarily due to the high FPR [27, 415], making

them inapplicable in an operational setting. FPRs waste

expensive analyst time to investigate the false alarms, and

reduce the trust and confidence in the IDS. Another major

concern with anomaly detection techniques is the lack

of detailed reports on detected anomalies [415]. Typi-

cally, a flag is raised and an alarm is triggered when-

ever there is a deviation from the norm. An efficient

IDS is not only responsible for detecting attacks and

intrusions in the network, it must provide a detailed

log of anomalies for historical data collection and model

retraining.

11.1.3 Complexitymatters

When performing traffic prediction, classification, rout-

ing and congestion control on intermediate nodes in the

network, it is crucial that they consume less time and

computing resources to avoid degradation in network

performance. This requirement is non-trivial, especially,

in resource-constrained networks, such as WANETs and

IoT. Though, performance metrics for ML evaluation are

well-defined, it is difficult to evaluate the complexity of

ML-based approaches a priori. Unlike traditional algo-

rithms, the complexity of ML algorithms also rely on the

size and quality of data, and the performance objectives.

The issue is further exacerbated, if the model is adaptive

and relearning is intermittently triggered due to varying

network conditions over time. The traditional complexity

metrics fail to cover these aspects. Therefore, it is impor-

tant to identify well-rounded evaluation metrics that will

help in assessing the complexity of given ML techniques,

to strike a trade-off between performance improvement

and computational cost.

11.1.4 ML in the face of the newWeb

In an effort to improve security and QoE for end-

users, new application protocols (e.g. HTTP/2 [48], SPDY

[47], QUIC [211]) have emerged that overcome var-

ious limitations of HTTP/1.1. For instance, HTTP/2

offers payload encryption, multiplexing and concurrency,

resource prioritization, and server push. Though, the

WEB applications over HTTP/2 enjoy the benefits of

these enhancements, it further complicates traffic clas-

sification by introducing unpredictability in the data

used for ML. For example, if we employ flow feature-

based traffic classification, the feature statistics can be

skewed, as several requests can be initiated over the

same TCP connection and responses can be received

out of order. Therefore, the challenge lies in exploring

the behavior and performance of ML techniques when

confronted with such unpredictability in a single TCP

connection and even parallel TCP connections [293]

in HTTP/2. Similarly, prioritization requested by differ-

ent WEB clients diminish the applicability of a generic

ML-based classification technique for identifying WEB

applications.

11.1.5 Rethinking evaluation baseline

Often, proposed ML-based networking solutions are

assessed and evaluated against existing non-ML frame-

works. These latter act as baseline and are used to

demonstrate the benefits, if any, of using ML. Unfor-

tunately, these baseline solutions are often deprecated

and outdated. For instance, ML-based congestion con-

trol mechanisms are often compared against default TCP

implementations, e.g. CTCP, CUBIC, or BIC with typi-

cal loss recovery mechanisms, such as Reno, NewReno,
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or SACK. However, Yang et al. [486] applied supervised

learning techniques to identify the precise TCP protocol

used in Web traffic and uncovered that though major-

ity of the servers employ the default, there is a small

amount of web traffic that employs non-default TCP

implementation for congestion control and loss recov-

ery. Therefore, it is critical to consider TCP variants as

comparison baselines that have taken the lead, and are

prominently employed for congestion control and loss

recovery.

ML-based congestion control mechanisms should be

designed and evaluated under the consideration that the

standard TCP is no longer the de facto protocol, and cur-

rent networks implement heterogeneous TCP protocols

that are TCP-friendly. Furthermore, it is a good practice to

consider TCP variants, particularly enhanced for specific

network technologies, such as TCP-FeW for WANETs

and Hybla for satellite networks. ML-based approaches,

such as Learning-TCP [29] and PCC [122], have already

taken these considerations into account and provide an

enhanced evaluation of their proposed solutions. There-

fore, it is imperative to design a standardized set of per-

formance metrics for enabling a fair comparison between

various ML-based approaches to different problems in

networking.

11.1.6 RL in face of network (in)stability and QoS

There are various challenges in finding the right bal-

ance between exploration of and exploitation in RL.

When in comes to traffic routing, various routes must

be explored before the system can converge to the opti-

mal routing policy. However, exploring new routes can

lead to performance instability and fluctuation in net-

work delay, throughput and other parameters that impact

QoS. On the other hand, exploiting the same “opti-

mal” route to forward all the traffic may lead to con-

gestion and performance degradation, which would also

impact the QoS. Different avenues can be explored to

overcome these challenges. For example, increasing the

learning rate can help detect early signs of performance

degradation. While, load balancing can be achieved

with selective routing, which can be implemented by

assigning different reward functions to different types

of flows (elephant vs. mice, ToS, etc.). Furthermore,

instability-awareness at exploration time can be imple-

mented by limiting the scope of the routes to explore

those with highest rewards. Indeed, this requires an in-

depth study to gauge the impact of such solutions on net-

work performance and their convergence time to optimal

routing.

Another direction worth pursuing is to correlate the

reward function of an RL-based routing to a desired level

of QoS. This involves finding ways to answer questions,

such as, which reward function can guarantee that the

delay in the network does not exceed a given threshold?

or, given a reward function, what would be the expected

delay in the network?

11.1.7 Practicality and applicability of ML

Benchmarks used in the literature for the training and

validation of proposed ML-based networking solutions

are often far from being realistic. For instance, ML-based

admission control mechanisms, are based on simulations

that consider traffic from only a small set of applica-

tions or services. Furthermore, they disregard diversity

of QoS parameters when performing admission control.

However, in practice, networks carry traffic from hetero-

geneous applications and services, each having its own

QoS requirements, with respect to throughput, loss rate,

latency, jitter, reliability, availability, and so on. Hence, the

optimal decision in the context of a simulated admission

control mechanism may not be the optimal for a practical

network. Furthermore, often synthetic network datasets

are used in training and validation. Although, ML mod-

els perform well in such settings, their applicability in

practical settings remains questionable. Therefore, more

research is needed to develop practicalML-based network

solutions.

11.1.8 SDNmeets ML

Though, there has been a growing interest in leverag-

ing ML to realize autonomic networks, there is little

evidence of its application to date. Prohibiting factors

include the distributed control and vendor-specific nature

of legacy network devices. Several technological advances

have been made in the last decade to overcome these lim-

itations. The advent of network softwarization and pro-

grammability through SDN and NFV offers centralized

control and alleviates vendor lock-in.

SDN can facilitate adaptive and intelligent network

probing. Probes are test transactions that are used tomon-

itor network behavior and obtain measurements from

network elements. Finding the optimal probe rate will

be prohibitively expensive in future networks, due to the

large number of devices, the variety of parameters to

measure, and the small time intervals to log data. Aggres-

sive probing can exponentially increase the amount of

traffic overhead resulting in network performance degra-

dation. In contrast, conservative probing may have the

risk of missing some significant anomalies or critical net-

work events. Hence, it is imperative to adapt probing rates

that keep traffic overhead within a target value, while

minimizing performance degradation. SDN can leverage

ML techniques to offer the perfect platform to realize

adaptive probing. For example, upon predicting a fault or

detecting an anomaly, the SDN controller can probe sus-

pected devices at a faster rate. Similarly, during network

overload, the controller may reduce the probing rate and
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rely on regression to predict the value of the measured

parameters.

11.1.9 VirtualizationmeetsML

Due to the anticipated rise in the number of devices and

expansion in network coverage, future networks will be

exposed to a higher number of network faults and secu-

rity threats. If not promptly addressed, such failures and,

or attacks can be detrimental, as a single instance may

affect many users and violate the QoS requirements of

a number of applications and services. Thus, there is

a dire need for an intelligent and responsive fault and

security management framework. This framework will

have to deal with new faults and attacks across differ-

ent administrative and technological domains within a

single network, introduced by concepts of network slic-

ing, NFV, and multi-tenancy. For instance, any failure in

the underlying physical resource can propagate to the

hosted virtual resources, though the reverse is not always

true. Hence, it will be nearly impossible for traditional

approaches to locate the root cause or compromised ele-

ments of the fault or an attack, in such a complex network

setting.

On the other hand, ML-based approaches on fault

and security management focus mostly on single ten-

ant in single layer networks. To develop the fault and

security management framework for future networks,

existing ML-based approaches need to be extended or

re-engineered to take into account the notion of multi-

tenancy in multi-layer networks. Due to the versatility of

the problem, DNN can be explored to model complex

multi-dimensional state spaces.

11.1.10 ML for smart network policies

The unprecedented scale and degree of uncertainty in

future networks will amplify the complexity of traffic

engineering tasks, such as congestion control, traffic

prediction, classification, and routing. Although ML-

based solutions have shown promising results to address

many traffic engineering challenges, their time complex-

ity needs to be evaluated with the envisioned dynamics,

volume of data, number of devices and stringent appli-

cations requirements in future networks. To address this,

smart policy-based traffic engineering approaches can

be adopted where operators can efficiently and quickly

apply adaptive traffic engineering policies. Policy-based

traffic classification using SDN has shown promising

results in the treatment of QoS requirements based

on operator-engineered policies [334]. Incorporating ML

to assist in developing and extracting adaptive policies

for policy-based traffic engineering solutions, remains

rather unexplored. One possible avenue is to apply RL

for generating policies for traffic engineering in future

networks.

11.1.11 ML in support of autonomy

Networks are experiencing a massive growth in traffic,

and will continue to grow even faster with the advent

of IoT devices, tactile Internet, virtual/augmented real-

ity, high definitionmedia delivery, etc. Furthermore, Cisco

reports that there is a substantial difference between busy

hour and average Internet traffic, such that in 2016, the

busy hour Internet traffic increased by 51% in compar-

ison to the 32% growth in average Internet traffic [99].

Such difference is expected to grow further in the next

half a decade, where Cisco predicts that the growth rate of

busy hour traffic will be almost 1.5 times that of average

Internet traffic.

To accommodate such dynamic traffic, network opera-

tors can no longer afford the CAPEX for static resource

provisioning as per the peak traffic requirements. There-

fore, network operators must employ dynamic resource

allocation that can scale based on the varying traffic

demand. ML is an integral part of dynamic resource allo-

cation that enables demand prediction, facilitates proac-

tive provisioning and release of network resources. In

addition, contextual information can be leveraged by ML

to anticipate exceptional resource demand and reserve

emergency resource in highly volatile environments.

Networks are also experiencing an exponential growth

in terms of the number and diversity of supported appli-

cations and services. These have stringent and hetero-

geneous QoS requirements, in terms of latency, jitter,

reliability, availability andmobility. It is likely that network

operators may not only be unaware of all the devices in

their network but also unconscious of all the applications

and their QoS requirements. Therefore, it is challenging

to devise efficient admission control and resource man-

agement mechanisms with limited knowledge. Existing

works have demonstrated that both admission control

and resource management can be formulated as learn-

ing problems, where ML can help improve performance

and increase efficiency. A further step would be to explore

if admission control and resource management strategies

can be learned directly from network operation expe-

rience. Considering the intricate relationship between

network experience and management strategies, DL can

be leveraged to characterize the inherent relationship

between inputs and outputs of a network.

11.2 System perspective

11.2.1 Support for adaptive, incremental learning in

dynamic network environments

Networks are dynamic in nature. Traffic volume, network

topology, and security attack signatures, are some of the

many aspects that may change, often in an unexpected

and previously unobserved way. Thus, it is fundamental

to constantly retrain the ML model to account for these

changes. Most ML models are trained offline. Retraining



Boutaba et al. Journal of Internet Services and Applications  (2018) 9:16 Page 88 of 99

a model from scratch can be computationally intensive,

time consuming, and prohibitive. The ability to retrain the

model as new data is generated is fundamental to achieve

fast incremental learning, which remains an open research

direction. Indeed incremental learning comes with special

system needs. In the particular case of RL applied to rout-

ing in SDN, a number of simulations are required before

the model can converge to the optimal observation-to-

action mapping policy. Every time a new flow is injected

in the network, the SDN controller is required to find

the optimal routing policy for that flow, and a number

of simulations are performed as changes are observed in

the link status. This calls for a system that fully exploits

data and model parallelism to provide millisecond-level

training convergence time.

11.2.2 Support for secure learning

ML is prone to adversarial attacks [39], also known

as mimicry attacks, that aim to confuse learning. For

instance, when employing ML for intrusion detection, an

adversarial attack can trick the model into misclassifying

malicious events as benign by poisoning the training data.

Hence, it is fundamental to train robust ML models that

are capable of detecting mimicry attacks. An interesting

initiative worth mentioning is Cleverhans [346], a useful

library that allows to craft adversarial examples. It pro-

vides training datasets that can be used to build robust

ML models, capable of distinguishing legitimate datasets

from poisoned ones, in the particular area of image recog-

nition. There is indeed an urgent need for a system

capable of generating adversarial use cases to be used

in training robust models. Secure learning also demands

a system that protects the training data from leakage

and tampering, enforces privacy, data confidentiality and

integrity, and support the secure sharing of data across

domains.

11.2.3 Architectures for ML-driven networking

Modern networks generate massive volumes of different

types of data (e.g. logs, traffic flow records, network per-

formance metrics, etc.). At 100’s of Gbps, even with high

sampling rates, a single large network infrastructure ele-

ment can easily generate hundreds of millions of flow

records per day. Recently, the availability of massive data

drove rapid advancement in computer hardware and soft-

ware systems, for storage, processing and analytics. This

is evidenced by the emergence of massive-scale datacen-

ters, with tens of thousands of servers and EB storage

capacity, the widespread deployment of large-scale soft-

ware systems like HadoopMapReduce and Apache Spark,

and the increasing number of ML and in particular deep

learning libraries built on top of these systems, such as

Tensor-Flow, Torch, Caffe, Chainer, Nvidia’s CUDA and

MXNet. Mostly open-source, these libraries are capable

of scaling out their workloads on CPU clusters enabled by

specialized hardware, such as GPUs and TPUs.

GPUs are anticipated to be a key enabler for the next

generation SDN [166, 465]. GPU-accelerated SDN routers

are reported to have a much improved packet process-

ing capability. Furthermore, the GPUs on SDN controllers

may be particularly useful for executing ML and DL algo-

rithms for learning various networking scenarios, and

acting according to the acquired knowledge. On the other

hand, smaller, resource constrained, smart networked

devices, are more likely to benefit from a cloud-edge ML

system. A cloud-edge ML system would leverage the large

processing and memory resources, robust networks, and

massive storage capabilities of the cloud for training com-

putationally intensive models and sharing these with edge

devices. Data collection and analytics that require imme-

diate or near-immediate response time would be handled

by edge devices. Light-weight ML software systems, such

as Caffe2Go and TensorFlowLite, would eventually enable

edge devices to by-pass the cloud and build leaner models

locally.

11.3 Knowledge perspective

11.3.1 Lack of real-world data

As we surveyed the literature, we observed that numer-

ous works relied on synthetic data, particularly in resource

and fault management, network security, and QoE/QoS

correlation. Synthetic datasets are usually simplistic and

do not truly reflect the complexity of real-world settings.

This is not surprising, since obtaining real-world data

traces is difficult due to the critical and private nature

of network traffic, especially the payload. Furthermore,

establishing the ground truth is particularly challenging,

given the voluminous amount of traffic making any man-

ual inspection intractable. Although injecting faults and,

or attacks in the network can help produce the required

data as adopted by [285], it is unrealistic to jeopardize

a production network for the sake of generating train-

ing data. Such limitations increase the probability of

ML techniques being ill-trained and inapplicable in real-

world network settings. Thus, it remains unclear how the

numerous works in the literature would perform over

real data traces. Therefore, a combined effort from both

academia and industry is needed, to create public repos-

itories of data traces annotated with ground truth from

various real networks.

11.3.2 The need for standard evaluationmetrics

As we survey existing works, it became apparent that

comparing them within each networking domain is

not possible. This is due to the adoption of non-

standardized performance metrics, evaluation environ-

ments, or datasets [109]. Furthermore, even when the

same dataset is adopted, different portions of the data are
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used for training and testing, thereby inhibiting any possi-

bility for comparative analysis. Standardization of metrics,

data, and environment for evaluating similar approaches

is fundamental to provide the ability to contrast and com-

pare the different techniques, and evaluate their suitability

for different networking tasks. To fulfill this need, stan-

dard bodies such as the Internet Engineering Task Force

(IETF), can play a pivotal role by promoting standardiza-

tion of evaluation procedures, performance metrics, and

data formats through Requests for Comments (RFCs).

11.3.3 Theory andML techniques for networking

As the compute and data storage barriers that thwarted

the application of ML in networking are no longer an

issue, what is now preventing an ML-for-networking suc-

cess story as in games, vision and speech recognition? Lack

of a theoretical model is one obstacle that ML faces in

networking. This concern was raised by David Meyer

during his talk at IETF97 on machine intelligence and net-

working [308]. Without a unified theory, each network

has to be learned separately. This could truly hinder the

speed of adoption of ML in networking. Furthermore, the

currently employed ML techniques in networking have

been designed with other applications in mind. An open

research direction in this realm is to designML algorithms

tailored for networks [306]. Another key issue is the lack

of expertise, that is, ML and networking are two different

fields, and there is currently a scarcity in the number of

people that are experts in both domains. This mandates

more cross-domain collaborations involving experts from

both networking and ML communities.

12 Conclusion
Over the past two decades, ML has been successfully

applied in various areas of networking. This survey pro-

vides a comprehensive body of knowledge on the applica-

bility of ML techniques in support of network operation

and management, with a focus on traffic engineering, per-

formance optimization and network security. We review

representative literature works, explore and discuss the

feasibility and practicality of the proposedML solutions in

addressing challenges pertaining to the autonomic opera-

tion and management of future networks.

Clearly, future networks will have to support an explo-

sive growth in traffic volume and connected devices, to

provide exceptional capabilities for accessing and shar-

ing information. The unprecedented scale and degree of

uncertainty will amplify the complexity of traffic engi-

neering tasks, such as congestion control, traffic predic-

tion, classification, and routing, as well as the exposure

to faults and security attacks. Although ML-based solu-

tions have shown promising results to address many traf-

fic engineering challenges, their scalability needs to be

evaluated with the envisioned volume of data, number

of devices and applications. On the other hand, existing

ML-based approaches for fault and security management

focus mostly on single-tenant and single-layer networks.

To develop the fault and security management framework

for future networks, existing ML approaches should be

extended or re-architected to take into account the notion

of multi tenancy in multi layer networks.

In this survey, we discuss the above issues along with

several other challenges and opportunities. Our find-

ings motivate the need for more research to advance the

state-of-the-art, and finally realize the long-time vision of

autonomic networking.
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