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Abstract: Visible light communication (VLC) has contributed new unused spectrum in addition to the
traditional radio frequency communication and can play a significant role in wireless communication.
The adaptation of VLC technology enhances wireless connectivity both in indoor and outdoor envi-
ronments. Multiple-input multiple-output (MIMO) communication has been an efficient technique
for increasing wireless communications system capacity and performance. With the advantages of
MIMO techniques, VLC can achieve an additional degree of freedom. In this paper, we systematically
perform a survey of the existing work based on MIMO VLC. We categorize the types of different
MIMO techniques, and a brief description is given. Different problem-solving approaches are given
in the subsequent sections. In addition, machine learning approaches are also discussed in sufficient
detail. Finally, we identify the future study direction for MIMO-based communication in VLC.

Keywords: MIMO; machine learning; VLC; wireless communication; optical communication

1. Introduction

Wireless communication is now changing at a rapid pace to achieve the design goal of
fifth-generation (5G) and beyond 5G (B5G) [1]. The 5G communication network require-
ments are enhanced mobile broadband, ultra-low latency communication, and massive
connectivity [2]. The demand for the increasing number of devices is a great challenge in the
current capacity of radio frequency (RF) communication. The previous studies suggested
that the majority of the data traffic is generated by indoor users [3]. Thus, the wireless
service will be required in indoor environments more as compared to outdoor, considering
bandwidth usage in both industrial and general households. In the upcoming days, the
demand for internet access will have exponential growth as two-thirds of the world’s
population will be connected to the internet [4]. Thus, new communication technologies
and bandwidth are required to enhance the user experience and ensure connectivity.

Visible light communication (VLC) is a technology for wireless communication that
uses light signals to transfer data to the receiving device [5]. VLC exhibits a great feature
of illumination and communication at the same time. The visible light spectrum has a
large bandwidth which can be an additional solution for radio frequency (RF) commu-
nication. The visible light spectrum ranges from 380 nm to 750 nm, corresponding to a
frequency spectrum in the range of 430 THz to 790 THz [6]. The spectrum scarcity in RF
can impose limitations on device connectivities of the internet of things (IoT) where VLC
can provide a promising solution [7–9]. In addition, VLC provides high bandwidth density
(b/s/m2) stemming from the optical signal and broad adaptation of lighting infrastructure
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indoors [10]. VLC has the advantages like unlicensed and large unused bandwidth, and
security is high because the light signal cannot pass through walls. The transmitter and
receiver are cheap, so the implementation cost is less. Light emitting diodes (LEDs) are used
as transmitters, and photodiodes or complementary metal–oxide–semiconductor (CMOS)
cameras can utilize as receivers [11,12]. LEDs contain some advantages like long life, cheap
manufacturing cost, and wide adaptation in indoor illumination [13,14]. VLC has a lot of
research attention in scientific communities. Some of the striking features of VLC can be
listed as [15]:

• Large bandwidth is unlicensed and free to use.
• VLC does not interfere with existing RF communication.
• No additional setup is required that the existing illumination system can be used

for communication.
• The cost of implementing a VLC-based transmitter and receiver is less compared to

the RF system.
• Illumination and Communication are possible at the same time.
• The health risk does not exist for humans apart from the flickering effect, which can

be mitigated by using a modulation frequency of more than 200 Hz.
• As the receiver size is small, multipath fading can be mitigated.

Multiple-input multiple-output (MIMO) uses multiple antennas in the transmitters
and receivers instead of one single antenna. MIMO communication helps to increase
channel capacity substantially and can ensure higher data throughput [16]. Other benefits
of MIMO are the use of inexpensive low-power components, reduced latency, simplified
medium access control (MAC) layer, and robustness against jamming [17]. In addition, mul-
tiple users can be supported in an efficient way. A promising solution to boost the data rate
without any bandwidth or power expansion is achieved by using MIMO techniques [18].
MIMO communication in VLC has also been studied in a comprehensive manner. Both
simulation and experimental studies were performed to demonstrate the advantage of
MIMO communication. An overview of application scenarios is given in Figure 1 utilizing
the MIMO VLC system. Different examples can be made by using MIMO and VLC to
enhance communication performance.

Figure 1. Overview of the VLC-based MIMO communication applications.
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However, there are several challenges that exist in MIMO VLC, and the scientific
community is actively researching to find perfect solutions. Rising co-channel interference
(CCI) noise brought on by many LEDs at the transmitters and receivers, respectively, is one
of the difficulties in adopting MIMO systems [19]. Crosstalk between the LED transmitters
is the reason for CCI occurrence. The constant modulus algorithm (CMA) application
might be used to resolve this problem. CMA is referred to as blind adaptive equalization
that makes use of the signal’s underlying constant modulus feature [20]. Compared to the
simplified constant modulus algorithm (SCMA) and modified constant modulus algorithm
(MCMA), which both employ restricted phase information, the CMA for the MIMO setup
is more robust to phase noise [21]. Even though CMA may be employed to lower CCI [22],
the carrier frequency offset is a problem. The kHz range of MCMA and SCMA can be
used to correct this offset. Recently, ref. [23] proposed a constrained field-of-view angular
diversity receiver (CFOV-ADR) which successfully reduces the CCI. The NLOS signal,
however, was regarded as an interfering signal in the investigation.

1.1. Related Literature

In the previous literature, a good amount of survey papers have been published fo-
cusing on VLC. We describe the related works in chronological order of the papers for
VLC. Smart lighting and free space optical (FSO) were surveyed in [24] published in 2013.
The study investigated the application of the FSO model and VLC with smart lighting
technology. In FSO, two scenarios have been highlighted as stationary scenarios and
mobile scenarios. Stationary scenarios are considered as the heaviest usages of FSO as
they can provide longer communication ranges and higher data speeds. FSO provides
limited mobility, so more investigation needs to be carried out to enhance service for mobile
users. Apart from that, future challenges have also been discussed, like upper layer design,
solid-state design, mobility, and line-of-sight (LOS) communication. The authors in [13]
provided a survey on the VLC system and characteristics, physical layer properties of VLC,
medium access techniques, system design and programmable platform, and VLC sensing
and applications. The authors also described some of the future implementation issues
in building high-capacity mobile VLC networks. Another survey paper was done in [25]
and was focused on the advantages of VLC technology over traditional techniques, details
of modulation techniques, and methods for improving VLC system performance such as
filtering, equalization compensation, and beamforming. The authors also pointed out some
of the outstanding limitations of VLC, including uplink connection, interference, shading,
lights off mode, effects of LED junction temperature, and challenges in commercialization.
Wireless communication can send alternative data traffic using the VLC spectrum, and this
opportunity was surveyed in [26]. The authors described VLC advantages, standardization,
channel model, VLC receiver types, MAC and network layer description, and multiplexing
techniques. The paper also focused on some future potential applications of VLC, like
intelligent homes, shopping malls, hospitals, outdoor environments, and underwater com-
munication. Indoor positioning is a challenging task as the global positioning system (GPS)
can not provide accurate locations of people or packages. VLC-based technology can be
used for tracking or finding locations indoors [27,28]. Indoor positioning application was
investigated in [29]. The paper described each related study based on positing algorithms,
types of receivers, and multiplexing techniques. Environmental adaptive VLC receivers
were focused in [30] for vehicular communication in dynamic traffic situations and in
unfriendly atmospheric conditions. The hardware architecture of the VLC receiver was
described in the first place for camera-based and photodiode-based receivers. Next, the
issues of outdoor communication using VLC and the ways to mitigate those issues were
discussed. Finally, the authors proposed a series of adaptive solutions for robust communi-
cations. The paper in [7] is a brief description of application scenarios for VLC, architecture,
standardization, modulation techniques, and open research issues. The authors in [31]
presented different research directions for effective automotive communication using VLC.
VLC can be considered for vehicular communication, and challenges regarding VLC usage
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and future directions were presented in the survey. Again [32] presented an extended
study of indoor positioning techniques using VLC. The study categorized positioning
algorithms as mathematical methods, sensor-assisted methods, and optimization methods
and analyzed the accuracy of the algorithms in experiment and simulation environments.
As time progresses, more studies have been added to VLC. In [14], the authors focused on
VLC main concepts and research challenges. A description of communication architecture,
physical and MAC layers, applications, and challenges were provided. Rehman et al. [33]
also surveyed the prospects and challenges at the same time for VLC. The focus was to inte-
grate VLC with RF towards a hybrid communication system for stable communication. The
authors in [34] studied the different security threats and vulnerabilities that existed in VLC
communication. The authors in [35] covered a survey of the theory of illumination, VLC
system receivers, architecture, and ongoing developments. The existing VLC technology
can be a potential candidate for 5G, B5G, 6G, and other emerging technologies. To describe
the different channel modeling techniques for VLC, a survey was conducted by [36]. The
study considered four different channel conditions, including indoor, outdoor, underwater,
and underground. Different channel modeling techniques include recursive, iterative, ray-
tracing, ceiling bounce, geometric-based stochastic models, Monte Carlo, modified Monte
Carlo, LOS channels, geometry-based, measured channels, Beer–Lambert, Random-based,
and radiative transfer equations. The advantage and disadvantages were of each channel
model technique are also presented. In more recent times, the authors in [37] presented
work on integrating VLC technology with the internet of things (IoT), including communica-
tion scenarios for machine-to-machine, vehicle-to-infrastructure, infrastructure-to-vehicle,
chip-to-chip, and device-to-device. The authors in [38] described key technologies in VLC
and application scenarios in VLC, including machine learning approaches. Power line
communication can be used as the backbone technology for VLC, and a survey in [39]
was conducted.

1.2. Motivation and Contributions

MIMO can contribute to additional advantages for VLC in terms of data rate and
multiple-user service. However, there is a gap in the literature in conducting a complete
survey for the MIMO VLC study. Refs. [13,40] included MIMO as a subsection but were not
been extensively studied. A massive MIMO communication survey was performed in [41],
which covered both RF and VLC-related studies. Muti-user VLC-based communication
was discussed in [42], which included precoding, multiple access, resource allocation, and
mobility management. The paper focused on a comprehensive overview of single-user
VLC systems, multi-user VLC systems, and future directions. MIMO technology was
not discussed in great detail; only user-based MIMO studies were considered. Again,
ref. [43] provided a survey on MIMO-orthogonal frequency division multiplexing (OFDM)-
based studies in VLC, but, the study did not provide an in-depth analysis of MIMO
techniques. Thus, to fill this research gap, we have been motivated to survey MIMO VLC
in a comprehensive way. A comparison of different MIMO VLC studies is listed in Table 1.
Our contributions can be listed as follows:

• A complete systematic survey is provided for MIMO VLC-based studies available in
the literature. We first describe the VLC working principle, different techniques of
MIMO, and the channel model.

• We describe the existing works by grouping related works into a category and describ-
ing working methods and results.

• Machine learning approaches are also described for MIMO VLC approaches, and
future directions are provided.

The rest of the paper is organized as follows. Section 2 describes the basics of the
VLC technique, channel model, and MIMO communication model. Section 3 describes the
different techniques available in MIMO communication. Section 4 describes the different
studies conducted in the previous literature regarding MIMO VLC by problem category.
Machine learning approaches that have been deployed in MIMO VLC are described in
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Section 5. Future directions are described in Section 6, and conclusions are given in
Section 7.

Table 1. Comparison with related studies MIMO VLC.

Ref.
MIMO
Types

Description

MIMO
Theoretical

Analysis

MIMO Ex-
perimental
Analysis

Machine
Learning

Approaches
in MIMO

Future
Challenges

MIMO

[13] X × × × X

[40] X X × × X

[41] X × × × ×

[42] X × × X X

[43] X × × × X

This study X X X X X

2. MIMO Communication Theory for VLC

MIMO communication has been extensively studied in RF communication as com-
pared to VLC. However, in the past 10 years, MIMO VLC has also been studied in a com-
prehensive way. Table 2 shows the gradual improvement of data rate using MIMO VLC.

Table 2. A list of studies with significant data rates for MIMO VLC.

Ref. Antenna Data Rate Distance Year Contributions

[44] 4× 9 1 Gbps 1.2 m 2013 Indoor communication with LEDs

[45] 8× 8 100 Gbps 5 m 2014 Mutiuser MIMO communication
with 8 channels

[46] 2× 2 1.5 and 1.25 Gbps 0.75 cm 2014 imaging MIMO system with
RGB LEDs

[47] 2× 2 500 Mbps 40 cm 2014 non-imaging 4-QAM with
Nyquist single carrier

[48] 2× 2 1.8 Gbps 1.65 m 2015 equal gain combining
method applied

[49] 4× 4 1.2 Gbps 1 m 2015 Rectangular and linear receiver
arrangement applied

[50] 2× 2 1.4 Gbps 2.5 m 2016 space balance coding with
RGB LEDs

[51] 3× 3 1 Gbps 1 m 2016 imaging MIMO with OFDM

[52] 2× 2 1 Gbps 0.6 m 2016 pre-equalizer to
extend bandwidth

[53] 9× 9 7.48 Gbps 0.5–1 m 2017 imaging MIMO

[54] 2× 2 6.34 Gbps 1–3 m 2017 RGB-LED based wavelength
division multiplexing

[55] 2× 1 1.5 Gbps 1.3 m 2018

detection algorithm using the
successive interference

cancellation (SIC) and the
look-up table

[56] 4× 4 249 Mbps 4.5 m 2018 multi-band carrierless amplitude
and phase modulation

[57] 2× 2 1.6 Gbps 1 m 2019 BER improvement
[58] 2× 2 5 Gbps 2 m 2019 64QAM-DMT modulation

[59] 4× 4 2.3–1.7 Gbps 1–4 m 2019 color-polarization
multiplexing method

[60] 4× 4 1 Gbps indoor 2019 Multi-color MIMO VLC

[61] 14,400 × 400 4 Gbps 2 m 2020
Massive MIMO using space
division multiple access for
supporting multiple users
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Table 2. Cont.

Ref. Antenna Data Rate Distance Year Contributions

[62] 2× 1 2.1 Gbps 1.2 m 2020 single receiver MIMO VLC with
neural network

[63] 2× 2 1.8484 Gbps up to 5 m 2020 Probabilistic shaping
bitloading MIMO

[64] 2× 2 750 Mbps 1.3 m 2020 machine learning based MIMO
detection scheme

[65] 2× 2
3.08 Gbps, 336 Mbps

(daytime) and 362 Mbps
(nighttime)

2 m and 100 m 2021 MIMO vehicular communication
using VLC

[66] 2× 4 5.4 Gbps 1.5 m 2022
CAP-16 QAM system based on a

Si-substrate golden
light LED array

2.1. VLC Working

VLC-based communication is a promising solution for next-generation wireless con-
nectivity with data security [67]. The communication system and elements for a typical
VLC are shown in Figure 2. In the beginning, binary data which are needed to be trans-
mitted were prepared from data sources or sensors [68]. Next, any of the modulation
techniques can be chosen for communication. The common modulation technique includes
on-off keying (OOK), pulse position modulation (PPM), multiple pulse position modula-
tion (MPPM), pulse amplitude modulation (PAM), and pulse width modulation [6]. Other
complex modulations are also available for VLC, and readers are encouraged to read the
referenced paper for more details [69]. Next, the modulated signals are transmitted through
an LED transmitter. All the transmitted signals are positive and real in nature, as LEDs
can not transmit imaginary values. The LEDs now work as a data transmitting device that
simultaneously illuminates and transmits. After passing through the VLC channel, the
light signals are received by photodiodes which are typically placed directly toward the
LEDs as shown in Figure 2. Next, the receiver circuit amplifies the signal, and then it is
transmitted to the receiving microprocessor unit (MCU). At this stage, demodulation is
performed, and the original bits are reproduced at the receiver end. The transmitter and
receiver should use the same frequency for modulation and demodulation. As the distance
between the transmitter and receiver increases, the error in the channel increases due to a
reduction in illumination [70]. The VLC communication framework is shown in Figure 3.
The physical layer contains photodiodes and LEDs. In this layer, data is converted into the
optical domain and again converted into the electrical domain. The upper layer is the MAC
layer, which controls the communication of the channel. Modulation and demodulation
are performed in this layer, and also network control commands are given from this layer.
The application layer is the access layer for users. Here the transmitted or received data
can be accessed from the outside world.

Figure 2. Visible light communication system and elements.
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Figure 3. Visible light communication framework.

2.2. VLC Channel Model

LED illumination is the key factor in VLC-based communication. The luminous
intensity can be expressed as follows [15]:

i =
dφ

dω
, (1)

where φ is the spatial angle and ω is the luminous flux. The luminous intensity for an angle
δ can be defined as follows [71]:

i(δ) = i(0) cosm(δ), (2)

where i(0) is the center illuminance and m is the Lambertian emission. The horizontal
illumination can be expressed as follows [71]:

ehor =
i(0) cosm(δ)

d2 cos ψ
, (3)

where δ is the transmitted signal angle or irradiance angle, ψ is the receiver angle or inci-
dence angle and d is the distance between LED and receiver photodiode. The Lambertian
emission can be defined as follows:

m =
− ln 2

ln(cos(0.5α))
, (4)

where α is the LED illumination angle at half power. The optical power calculation of
the received data is crucial. The received DC gain can be expressed at the photodiode
as follows:

h =

{
(m+1)A

2πd2 cosm(δ)T(ψ)g(ψ) cos(ψ), 0 < ψ < φc

0, ψ > ψc,
(5)

where A is the area of the photodiode, ψc is the field of view of the receiver, d is the distance
between LED and PD, T(ψ) is the gain of the optical filter, and g(φ) is the gain of the optical
concentrator. The optical concentrator gain can be expressed as follows:

g(ψ) =

{
n2

sin ψc
, 0 ≤ ψ ≤ ψc

0, 0 ≥ ψc
(6)

where n is the refractive index. The received optical power pr can be obtained as follows:

pr = H.pt, (7)
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where pt is the transmitted power.

2.3. MIMO VLC

A narrowband MIMO point-to-point channel model as shown in Figure 4 with At
transmitters and Ar receivers can be expressed as follows [72]:

y1
y2
...

yAr

 =

 h11 . . . h1At
...

. . .
...

hAr1 . . . hAr At




x1
x2
...

xAt

+


n1
n2
...

nAr

, (8)

where y = y1, . . . , yAr is the Ar number of receiver, x = x1, . . . , xAt is the At number of
transmitter, H = Ar × At is matrix of channel gain and n = n1, . . . nAr is the noise vector.
Thus, (8) can be written as follows:

y = Hx + n, (9)

where y is the received signal, H is the channel matrix, x is the transmitted signal and
n is the noise occurring in communication channel usually considered as additive white
Gaussian noise. The sum of the ambient light and thermal noise is n, which is considered
as zero mean and variance as follows:

σ2 = σ2
shot + σ2

thermal , (10)

where, σshot is the shot noise and σthermal is the thermal noise occurring in VLC channel.

Figure 4. MIMO Communication Channel.

Apart from conventional RF communication, VLC data transmission is different
as it depends on intensity modulation direct detection. VLC has two different receiver
architectures of imaging and non-imaging for receiving MIMO signals [73]. In imaging
receiver architecture, an array of photodiodes are employed to capture the incoming signal.
The imaging receiver has advantages that all photodiodes share a common concentrator
which makes the receiver size small, and all photodiodes are laid in a single array which
increases the receiver elements [74]. It can increase the optical gain for communication.
On the other hand, non-imaging receivers are made of individual circuit components that
precise alignment is not required [75]. The channel matrix element for the MIMO VLC
setup can be expressed as follows:

hij =

∑K
k=1

(m+1)Aj

2πd2
ijk

cosm(δ) cos(ψij) 0 ≤ ψij ≤ ψc

0 0 ≥ ψc,
(11)
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where Aj is the area of the jth receiver, dijk is the distance between the kth LED of the ith
transmitter and jth receiver. Thus, the channel matrix can be formed as follows:

H =


h11 h1j . . . h1At

hi1 hij . . . h2At

. . . . . . . . . . . .
hAr1 hi2 . . . hAr ,At

 (12)

3. MIMO Communication Types

Several MIMO communication techniques are developed for data transmission. In this
section, we describe each technique in detail and the works associated with each technique.

3.1. Repetition Coding

In repetition coding (RC), the same data stream or signal is transmitted through
multiple antennas [76]. RC is the simplest form of MIMO communication and achieves
good performance in free space optical communication because of transmit diversity. RC
mechanism is demonstrated in Figure 5, where each transmitter sends the same data signal.

Figure 5. RC MIMO that each of the transmitters sends same data signal.

The authors in [77] showed that RC could perform better than orthogonal space-time
block codes (OSTBCs) like the Alamuouti scheme and single-input-multiple-output (SIMO)
configurations. RC was investigated in [78] with angular diversity receiver (ADR) based
MIMO VLC for imperfect channel state information (CSI). The results showed that ADR-
based MIMO VLC has better error performance as compared to MISO VLC. Adaptive bit
and power loading for OFDM VLC MIMO system was proposed in [79]. An adaptive
algorithm was proposed to enhance spectral efficiency by selecting modulation order,
power level, and MIMO antenna mode. The authors in [80] studied the effect of RC in VLC
in a 5 m × 5 m × 3 m room with 4 transmitters. Simulation studies represented that RC can
only have better bit error rate (BER) performance with low spectral efficiency requirements
as compared to SMP. The theoretical BER for RC can be obtained from (13) [76], where L
is the modulation level of PAM, Q is the Q-function, E is the emitted electrical energy, n0
is the noise power spectral density, Nt is the number of transmitters, Nr is the number of
receivers, and hnrnt is the channel gain of a transmitter–receiver pair.

RCBER ≥
2(L− 1)
L log2(L)

Q
(

1
L− 1

√√√√ E
n0Nt

Nr

∑
nr=1

( Nt

∑
nt=1

hnrnt

)2)
(13)

SMBER ≤
1

LNt log2(LNt)

L

∑
l(1)=1

Nt

∑
n(1)

t =1

L

∑
l(2)=1

Nr

∑
n(1)

r =1

dH
(
b

l(1)n(1)
t

, b
l(2)n(2)

t

)
.

Q
(√

r2Ts

4 n0

Nr

∑
nr=1
|ISM

l(2)hnrn(2)
t
− ISM

l(1)hnrn(1)
t
|2
)

(14)

3.2. Spatial Modulation

Spatial Modulation (SM) is a combined technique of both MIMO and digital mod-
ulation proposed in [81]. SM works by mapping the information bits in two steps [82].
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First, the information bits are mapped into a constellation point. Second, an antenna is
chosen for transmitting a particular bit pattern from a set of antennas. An example of
SM is shown in Figure 6. Four constellation points and four antennas are shown for data
transmission. Three input bit patterns are transmitted through the channel, and each
transmission constellation and antenna are selected on the right side after the SM mapper.
Here {T1, T2, T3, T4} represents four antenna indices and {C1, C2, C3, C4} represents four
constellation points. Optical SM was studied in [83] that multiple transmitters are spatially
separated in a room environment, and at one instance, only one transmitter is activated.
Depending upon the input bit sequence, the transmitter is selected. The performance of the
optical SM is compared with OOK, 4-PPM and 4-PAM modulations, and then simulation
results show that optical SM has a similar BER performance to OOK. The BER of SM can
be calculated from (14), where L is the number of levels in PAM modulation, Nt is the
number of transmitters, Nr is the number of receivers, b

l(1)n(1)
t

is the bit assignment when

the transmitter intensity is ISM
l(1), b

l(2)n(2)
t

is the bit assignment when the transmitter intensity

is ISM
l(2), dH is the Hamming distance between the two parameters, r is the optical to electrical

conversion coefficient, Ts is the symbol duration, and h
nrn(1/2)

t
is the channel gain.

Figure 6. SM example for MIMO communication for each of the transmitters.

3.2.1. Adaptive Spatial Modulation

One of the limitations of SM is the transmitter diversity gain, and to combat this
issue, adaptive spatial modulation (ASM) is proposed for BER improvement. The authors
in [84] proposed ASM for achieving better performance under a fixed data rate. The main
idea is that the modulation orders are assigned to the transmit antennas selected by the
switching unit. In a slowly varying channel, the adaptive unit in the receiver computes the
optimum candidate for transmission and sends this information to the transmitter through
a low-bandwidth feedback path. Based on the feedback information, the transmitter’s
corresponding modulation order for the next data transmission is determined. Different
forms of adaptive generalized spatial modulation (GSM) have been studied in previous
studies. Chromaticity-adaptive (CA) GSM method for MIMO VLC was proposed in [85].
The optimal QLED combination is selected by CA-GSM based on a multi-color constellation
designed by Taylor approximation. Another approach called channel-adaptive bit mapping
(CABM) was proposed in [86].
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3.2.2. Generalized Spatial Modulation

In GSM, more than one transmit antenna sends the same complex symbol [87]. Infor-
mation is transmitted by activating a combination of antennas and symbols from the signal
constellation. It increases the spectral efficiency as compared to SM. At each transmission,
the number of possible active antennas is Nc = (Nt

Nu
), where Nt is the total number of

antennas and Nu is the number of active antennas for transmitting data. To fit the binary
data, the number of transmitter antenna combinations should be at the power of 2. Thus,

Nc = 2ca , where ca =

⌊
log2 (

Nt
Nu
)

⌋
and

⌊
.
⌋

is the floor operation. Thus, Ca bits can be

mapped to the antenna combinations and let us consider ct bits are modulated by using
M-quadrature amplitude modulation (QAM), and then total bits can be transmitted:

cb = ca + ct =

⌊
log2

(
Nt

Nu

)⌋
+ log2 M. (15)

The performance of GSM in indoor VLC scenario was investigated in [88]. Four differ-
ent MIMO schemes are considered as SMP, SM, space shift keying (SSK), and generalized
space shift keying (GSSK). An analytical upper bound on BER for GSM with maximum
likelihood detection is derived. The simulated BER shows that GSM can achieve favorable
performance as compared to other MIMO schemes. Another study focused on power
efficiency using collaborative constellation (CC) GSM proposed was proposed in [89]. The
key idea is to find a set of constellations with active space CC with minimum power as
an optimization problem. The simulation results show average pairwise error probabil-
ity is less for the proposed scheme as compared to conventional GSM. A support vector
machine (SVM) based GSM detector was proposed in [90]. The optimization problem of
quadratic convex programming is solved by training the parameters of SVM and providing
comprehensive results.

SMPBER ≤
1

LNt log2(LNt )

LNt

∑
m(1)=1

LNr

∑
m(1)=1

dH
(
bm(1) , bm(2)

)
.Q
(√

r2Ts

4 n0
||H(sm(1) − sm(2) )||2F

)
(16)

3.3. Spatial Multiplexing

In spatial multiplexing (SMP), each of the transmitting antenna LEDs transmits differ-
ent data streams (i.e., independent of others) simultaneously [91]. Thus, SMP has higher
spectral efficiency as compared to RC and SM [92]. Figure 7 shows the SMP technique
with four antenna configurations. From the left side, the data stream is inserted into the
SMP mapping system, and two bits are selected for transmitting through one antenna.
So, for 2n, antennas can transmit n bits at one time. The spectral efficiency of SMP is
N log2(M) bits/s/Hz, where N is the number of transmitting antennas. In SMP, multiple
data streams are transmitted, so there is a high probability of multi-channel interference,
which can cause performance degradation. In [76], the authors showed that SMP could
provide superior performance enhancement for SMP configurations in optical communi-
cation. In addition, imaging receivers can achieve better performance gain for SMP [93].
The BER expression for SMP is shown in (16), where L is the number of levels in PAM
modulation, Nt is the number of transmitters, Nr is the number of receivers, bm(1) is the
bit assignment from signal vector sm(1) , bm(2) is the bit assignment from signal vector sm(2) ,
dH is the Hamming distance between the two parameters, r is the optical to electrical
conversion coefficient, Ts is the symbol duration, and H is the given knowledge of the
channel matrix. The study in [92] presented a comparison in terms of BER between SMP
and optical spatial modulation (OSM) in indoor environments. The BER results illustrate
that SMP outperforms OSM in terms of both the size of the region in which a receiver can
achieve low BER and the BER at typical receiver positions. The authors in [94] proposed
a superimposed odd-order 32QAM constellation scheme in 2 × 2 MIMO VLC systems to
achieve multiplexing gain in highly correlated channels. Two independent signals from
4QAM and 8QAM are superposed to make a 32QAM constellation signal combined with
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SMP. An SMP point-to-point VLC was considered in [95], with M-level PAM and SMP.
By utilizing an SVD-based low complexity scheme, analytical expression was derived for
power and bit allocation subject to maximizing the lower bound capacity. Another 64QAM
constellation scheme in [96] was proposed for 2× 2 MIMO configuration for SMP. The
experimental results show that the proposed scheme achieves better BER performance than
the traditional superposed 64QAM constellation schemes. The SMP can give additional
bandwidth as compared to RC and SM, and, thus, most research studies have focused on
performance improvement.

Figure 7. SMP example for MIMO communication four antenna configurations .

4. MIMO Communication Study Categories

In this section, we categorize the VLC MIMO studies based on different problems and
provide a brief description of each category.

4.1. Precoder Design

Precoder design is a technique to reduce interference among co-channels through
spatial processing by improving spectral efficiency. In [97], the authors proposed a linear
precoder matrix design in the transmitter and linear equalizer at the receiver to reduce
mean-square error in transmitted data and received data. Simulation results show the
effectiveness of the proposed technique for known CSI and unknown CSI. Moreover, the
proposed system can combat the uncertainties case by the channel estimation imperfection.
A joint precoder and equalizer design were proposed in [98] for multi-user multi-cell MIMO
communication. An optimization approach was formulated by minimizing mean-squared
error (MSE) under unique optical power constraints when real-valued and non-negative
signals are transmitted. The authors in [99] proposed decision feedback equalization based
on point-to-point MIMO communication. Geometric mean decomposition, which decom-
poses multiple parallel channels with equal gain and uniform decomposition, improves
the capacity by incorporating optimized power allocation. Block bi-diagonalization (BBD)
enabled communication was proposed in [100] for mitigating interference in MIMO VLC.
The proposed BBD scheme can mitigate different noises, including thermal, shot, and phase
noise. QAM modulation was used to transmit data and BER results were presented for
three different scenarios that have different dimensions and SNR ranges.

4.2. Channel Estimation

The performance of the wireless channel largely depends on the channel estimation.
In the case of MIMO communication, the transmitting and receiving antennas are multi-
ple. Thus, accurate channel estimation is necessary for superior performance. Different
methods have been proposed in the literature for estimating the VLC MIMO channel. The
most common techniques for estimating channels are the least square (LS) and minimum-
mean-squared-error (MMSE) [101,102]. Compressive sensing-based channel estimation
was proposed in [103]. Due to the sparse characteristics in the VLC channel, compressed
sensing-based channel estimation was considered for 2× 2 MIMO-OFDM. The experi-
ment results show that the proposed channel estimation can improve BER with reduced
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pilot tones. Another study in [23] proposed a channel estimation scheme for mitigating
interference for the angular receivers. In the first stage, pilot symbols are transmitted to
determine the transmitter’s identity. Next LS scheme is used for channel estimation and
maximum likelihood is used for detection in the receiver. Optimal code with short length
for estimation of MIMO VLC channel was proposed in [104]. A recursive algorithm is used
to generate optimal pilot matrices depending on the number of LEDs. In [105], authors
used a generalized LED (GLIM-OFDM) VLC system for channel estimation.

4.3. Multi-User Massive MIMO

Multi-user communication is desirable for serving many users at the same time. The
greater challenge is to separate the received data bit streams for different users. The study
in [106] proposed a block diagonalization precoding algorithm for minimizing multi-user
interference. BER performance of user mobility was investigated by using the proposed
method with a 100 Mbps data rate. Multi-user communication by employing OFDM-based
VLC communication was proposed in [107]. For every OFDM subcarrier, the precoding
matrix is calculated in the frequency domain to eliminate multi-user interference. The
authors in [108] used different pilot arrangements in spatial, frequency, and time domains
to obtain a global channel matrix taking advantage of the indoor environment geometry
and layout of luminaries. OFDM was employed to determine the maximum uplink and
downlink data rate of the proposed system to support muli-user communication. Hybrid
three-dimensional multiple access (3DMA), including frequency, space, and power, was
proposed in [109], for multi-user MIMO VLC. To leverage 3-dimensional multiple access,
the first different user group is created, and each user group is divided into multiple user
pairs. The sum rate maximization was derived by power-domain superposition coding and
the corresponding optimal power allocation strategy for each user pair. In [61], single-user
and multi-user VLC was studied in an indoor environment. For the demodulation of
data in single-user, maximum ratio combining (MRC) was used, and for multi-user spatial
multiplexing, MRC and transmitter/receiver diversity were used. The data rate achieved
for a single user is 4 Gbps, and for a multi-user, 1.5 Gbps. Again in [110], authors proposed
optical OFDM photodiode selection assisted multi-user MIMO communication which can
reduce VLC channel correlations between different photodiode receivers and, thus, provide
a reliable link. The simulation results show that the proposed system can achieve good BER
in low SNR values. DenseVLC was proposed in [111] for a cell-free approach by employing
densely distributed LEDs in the service area. A power budget optimization problem
was also formulated to efficiently control and design the transmitter and receiver (i.e.,
hardware design). Three experimental scenarios were presented interference-free and no-
dominating transmitter communication with interference and no dominating transmitter,
and finally with interference and dominating transmitter. The experimental results show
good performance of the proposed system in three different scenarios. The authors in [112]
studied the secrecy performance of multi-user MIMO VLC with broadcast channels using
confidential messages. The transmitting user message is sent by considering only one valid
user, and other users are eavesdroppers. Different secrecy performance measures were
investigated, including the max-min fairness, the harmonic mean, the proportional fairness,
and the weighted fairness (WF). The proposed system can achieve a good performance in
comparison to the zero forcing algorithm.

4.4. Angle Diversity of Receiver

Multiple receivers can be placed at different angles to increase the overall gain in the
MIMO VLC system. The authors in [113] proposed a receiver structure utilizing angular
and spatial diversity to achieve full mobility and protection from signal blocking. The
recipient has an array of photodiodes with transimpedance amplifiers connected to a
decision device that generates binary address depending upon the received signal strength
indicator (RSSI) signal. The multiplexer connected to the decision device generates the
original bits upon receiving the address of the highest RSSI signal. Nuwanpriya et al. [114]
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proposed diversity receivers for MIMO named pyramid receiver and hemispheric receiver
to achieve high-rank MIMO channel. Simulation results show that both receivers have
good performance in channel capacity and BER. A mobile receiver has angular diversity
detectors for the MIMO channel considered in [115]. Channel throughput was improved by
considering RC, SM, and SMP in a small room scenario. The proposed detector can provide
capacity improvement as compared to vertically oriented receivers. Another study in [23]
proposed an adaptive diversity receiver with the least square channel estimation with a
maximum-likelihood equalizer for performance enhancement. Pyramid shape receiver was
considered for receiving signals from different directions and distances.

4.5. NOMA-Based MIMO

Non-orthogonal multiple access (NOMA) is an efficient technique for serving multiple
users [116]. NOMA enables multiple users to share time and frequency resources in the
same spatial layer via power domain or code domain [117]. VLC-based communication has
also adopted the NOMA strategy for enhancing performance. Power domain (PD) NOMA
has the advantages like user fairness, improved spectral efficiency, low transmission latency,
and higher cell-edge throughput. The study in [118] experimentally demonstrated NOMA-
based MIMO communication with single carrier transmission and frequency domain
successive interference cancellation. In [119], the authors proposed offset quadrature
amplitude modulation (OQAM)-OFDM based MIMO-NOMA for multi-user VLC, and
the data rate of 3.2 Gbps was achieved. To reduce the computational complexity, the
study in [120] proposed normalized logarithmic gain ratio power allocation (NL-GRPA),
which is effective for more than five users in the service area. Simulation results verify
the effectiveness of the proposed scheme in terms of achievable sum rate as compared
to GRPA. Again in [121], normalized gain difference power allocation was proposed for
efficient and low complexity power allocation in the MIMO-NOMA-VLC system. The sum
rate performance for the 2 × 2 system was evaluated via a simulation study. Another study
conducted in [122] evaluated sum rate gain for LOS and LOS+NLOS in a single reflection
environment. Numerical results show that NOMA with NGDPA attains a 16.71% refined
sum rate than NOMA with GRPA in the LOS environment and 18.22% in the combined LOS
and NLOS single reflection environment at the edge of the room when the standardized
offset is 1. In [123], authors analyzed the total capacity of 2 × 2 MIMO VLC system
using GRPA and NGDPA algorithms. The performance comparison was taken by system
coverage, user location, and the number of users. For increasing coverage, the capacity of
NGDPA outperforms GRPA; for less than 1.2 m distance, GRPA performs well as compared
to NGPDA, and for increasing the number of users, NGPDA is better than GRPA. The
authors in [124] used zero forcing equalizer with successive interference cancellation (ZF-
SIC) and minimum mean square error equalizer with successive interference cancellation
(MMSE-SIC) to improve the BER performance of the NOMA MIMO system. It is concluded
that MMSE-SIC improved the BER by 3 dB as compared to ZF-SIC. A multi-user NOMA
transmission scheme was proposed in [125], where the users having high correlation among
their channel gain vector are grouped into a single cluster. The simulation result shows
that the proposed method can provide better performance as compared to ZF and BD in
terms of spectral efficiency. L-PPM modulated NOMA-VLC was proposed in [126], for
determining the error probability of two-user and three-user scenarios. L-PPM modulation
can outperform OOK modulation and can offer optimal performance at a power allocation
coefficient of 0.3.

4.6. Optical Camera Communication Using MIMO

Optical camera communication (OCC) is also an associated technology of VLC where
the receiver is used as a camera device [127,128]. A MIMO optical camera communication
scenario is shown in Figure 8, where the receiver is an array of photodiodes. As the
number of smartphones has increased dramatically, this technology can provide additional
advantages to users. The authors in [129] proposed a MIMO communication system with
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RGB-LEDs as transmitters and a single camera as a receiver. Two different colors of red
and blue are used for data and anchor transmission. Hadamard matrix was chosen in LED
detection for recovering the bit from image processing. The authors in [130] presented a
VLC MIMO study by OCC using an adaptive target detection algorithm at the receiver
end. The number of LEDs in the transmitter is considered 8 × 8, and the number of
photodiodes in the receiver is 8. Each of the links in the transmitter and receiver transmits
different data streams in parallel. The transmission distance can be achieved from 6 m
to 14 m. Han et al. [131] proposed fixed-scale pixelated MIMO VLC system. The data are
transmitted by space-to-angle mapping, and data are transmitted in the angular domain
rather than space. This can achieve constant focus on the receiver, and, thus, re-focusing
is not necessary. The study in [132] used an array of 8 × 8 LEDs as a transmitter and a
Raspberry Pi camera module as a receiver. To transmit data, 64 LEDs are used as camera
pixels, and each represents one data bit. The receiver camera processes the image and
recovers the bits, and the modulation technique used in the experiment is OOK. However,
as the distance increases, the number of captured bits is reduced.

Figure 8. 4× 4 MIMO optical camera communication.

4.7. Constellation Design

Constellation is a representation of signal after modulation by any digital modulation
technique. To enhance the bit transfer rate, the constellation can be designed in a new way. A
collaborative constellation design was presented in [133]. Unipolar r-levels pulse amplitude
modulation (r-PAM) symbols of the transmitters are designed for data transmission. The
constellation design achieves optimal power-efficient subject to a fixed minimum Euclidean
distance jointly. Guo et al. in [94] proposed a superposed odd-order 32QAM constellation
scheme for 2 × 2 MIMO VLC. Two transmitters transmit 4QAM and 8QAM signals to
combine a 32QAM signal in the receiver. Three types of geometric representations were
chosen for 8QAM, square-shaped, rectangular-shaped, and circle shaped. The experimental
study shows that under different peak-to-peak voltage conditions, the BER rate can be
improved as compared to traditional constellations. Another study in [96] extended the
previous study to 64QAM by employing 8QAM signals, and each constellation is shifted by
90°. Forward error correction BER threshold 3.8 ×10−3 was achieved with a peak-to-peak
LED voltage improvement 0.06 to 4 V. 2n order 4QAM signal is proposed in [134] with a
maximum rate of 3 Gbps.

4.8. Underwater Communication

Underwater communication has also attracted significant research attention among
researchers for many potential applications. Optical communication has been considered
as a potential candidate for implementing communication in underwater environments
due to high-speed communication [135]. The underwater communication experiment
setup with 2 × 2 settings is shown in Figure 9. An experimental study was performed
in [136] using MIMO-OFDM for underwater communication. 2 × 2 MIMO configuration
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was used for achieving a 2 m distance with a 33.691 Mbps data rate. In addition, turbid
water was used to compare RC OFDM, Alamouti-OFDM, and MISO-OFDM, and among
these techniques, Alamouti-OFDM is more resistant. In [137], the authors presented work
on MIMO link over a vertical turbulence channel model. The outage probability of the
MIMO VLC link over cascaded log-normal channels and diversity gain was derived in
terms of the number of transmitters and receivers. The performance was considered for
different transmitter/receiver apertures for plane and spherical waves, and the number of
transmitter/receiver pairs can increase the performance in seawater. The authors in [138]
presented an imaging MIMO system for underwater communication to combat absorption
and scattering by using spatial correlation. Simulation results show a 12 dB gain as com-
pared to non-imaging MIMO in BER performance. The study in [139] experimented with
different modulation schemes in MIMO communication in coastal water. A comprehensive
study was performed by Jamali et al. [140] for VLC MIMO communication considering
channel degrading effects, including absorption, scattering, and turbulence-included fad-
ing. The authors in [141] analyzed the BER performance of Log-normal, gamma, and
Weibull distribution channels for underwater MIMO communication.

Figure 9. 2× 2 underwater MIMO VLC communication.

4.9. Vehicle-to-Vehicle Communication

To establish wireless communication between vehicles, VLC can be a promising can-
didate as light sources are already embedded in vehicles. The high presence of LEDs in
outdoor and on-vehicle environments makes the use of VLC a natural opportunity for V2V
and V2I communications for ITS systems [142]. A typical example of vehicle-to-vehicle is
shown in Figure 10, where the two headlights are used as transmitters, and the receivers
are situated in the brake lights. The opposite can also be possible when the brake lights can
transmit data, and the receiver can be situated in the front headlight. The study in [143]
reported point-to-point and decode-and-forward relaying-based cooperative VLC. RC and
SM with DC-biased optical (DCO)-OFDM different modulation orders were investigated,
including 8QAM, 16QAM, 64QAM, and 256QAM. RC-based direct communication outper-
forms SM-based communication, and in higher modulation order, SM outperforms RC in
longer distance communication. The study in [144] proposed MIMO VLC-based vehicular
communication using frequency diversity. In the receiver, a filtering process is employed
for receiving specific frequency range data, and other data elements are canceled out. It
helps to receive specific LED frequency data for demodulation. Li et al. in [65] extensively
experimented with vehicle-to-vehicle communication in long-distance and high data rate
applications. Different scenarios were considered, and corresponding BER was reported in
the study. Bit loading algorithm and nonlinear equalization were utilized to improve the
performance of the proposed system. Another study in [145] conducted different MIMO
configurations 2 × 2, 2 × 3, and 2 × 4 channel modeling study. Increasing the receiver
number can reduce the amount of BER for V2V scenarios.
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Figure 10. 2× 2 vehicle-to-vehicle MIMO VLC communication.

4.10. Other MIMO VLC Studies

Different studies are also conducted which do not fall in the above-mentioned category.
To increase the field of view (FOV) and diversity gain, a hemispherical lens was proposed
in [146]. Simulation results were obtained for the receiver, and for a typical indoor scenario,
FOV increased as large as 70 degrees for the angle of the incident. MIMO VLC multipath
reflection effect was studied in [147]. Space division multiple access (SDMA) for indoor
spatial multiplexing-based MIMO-VLC was proposed by Chen et al. [148]. SDMA can
support multiple users in an indoor single-cell multiuser MIMO VLC by dividing them
into user groups. The study in [149] examined MIMO communication in an industrial
environment. A manufacturing cell of the production facility was used for the experiment
with 8 × 6 MIMO configuration. The experiment result shows that the channel significantly
varies in the spatial domain with abrupt changes in SNR ranging from 10–20 dB. Another
industrial experiment environment was considered in [150] that developed a MAC protocol
based on space division multiple access. The system was designed to have one central
transmitting unit, which is connected to other optical-fronted devices covering a large area.
A pixelated transmission system was proposed in [131], which transmits time-varying
image code to the receiver. The receiver is used as a commercial camera to receive and
decode the transmitted data along with the location information of the transmitter. The
experiment was conducted using an LCD display and a high-speed CMOS camera, and
data can be transmitted at a 1 m distance. Singular value decomposition (SVD) for MIMO
VLC was studied in [151]. This proposed system maximizes the data rate while maintaining
the target illumination and allowing the channel matrix to vary to support indoor VLC
deployment mobility. Another study in [47] proposed non-imaging 2 × 2 MIMO Nyquist
single carrier for indoor VLC. For demultiplexing and post-equalization simultaneously
of the received signal, a frequency domain equalization method was proposed. In [152],
the authors implemented camera on-off keying for MIMO communication. Two LEDs
transmit data and the demodulation was performed by determining the region of interest
by image processing. An effective receiver design was proposed in [153]. An optimization
method was proposed to maximize the minimum Euclidean distance of the received signal.
A compressive sensing channel estimation approach was proposed in [105]. Higher-order
statistics correntropy was suggested for generalized LED index modulation of the OFDM
system. An efficient modulation technique for MIMO named extended spatial index LED
was proposed in [154]. Variable power allocation is used by different transmitter LEDs to
transmit information to the receiver. To detect the signal, a maximum a posteriori estimator
was proposed to cope with the variation in the channel paths (LEDs) number and the
real part power allocation. To increase the illumination distribution and improve BER for
indoor VLC, a scheme called LEDs inclined MIMO (LIM) was proposed in [155]. Integer-
forcing (IF) lattice decoding-based transceiver design was proposed in [156]. The design
considered the creation of an integer matrix that can be invertible over a one-dimensional
lattice; next, a method was used to obtain a new integer matrix that performs better than
the previous one. In addition, transmit and receive matrices were designed by the gradient
method or projected gradient method. Finally, a jointly optimized integer matrix was
formed by an iterative approach. The aforementioned studies are simulation studies or
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mathematical analyses. However, there are plenty of studies that have been conducted
in practical experiments. A list of experimental studies is given in Table 3. The antenna
configuration used by each study, modulation technique, and achieved distance are listed.
From Table 3, we can observe a variety of antenna configurations and distances are used
for testing MIMO VLC in experimental scenarios.

Table 3. Experimental Study on MIMO VLC Communication.

Ref. Antenna Modulation Distance

[152] 2 × 1 COOK 20 m
[157] 4 × 4 OFDM 0.1 m
[50] 2 × 2 QAM-OFDM 2.5 m

[158] 2 × 2 OOK 2 m
[118] 2 × 2 4-QAM 0.35 m
[56] 4 × 4 M-QAM 2.5 m

[159] 2 × 2 and 4 × 4 PPM, OOK, PWM &
MPPM 1–21 m

[44] 4 × 9 OFDM 1 m
[160] 2 × 2 OOK 0.1m
[130] 2 × 2 and 2 × 1 OOK 6–14 m
[118] 2 × 2 NOMA (QAM) 0.15–0.35 m
[161] 3 × 3 DCO-OFDM 0.1 m
[94] 2 × 2 4-QAM and 8-QAM 1.1 m

[162] 3 × 3 4-QAM and 2-PSK 20 m
[163] 3 × 3 WDM 2 m
[164] 2 × 2 OOK and MPPM 15 m
[56] 4 × 4 M-QAM 4.5 m

[165] 2 × 2 OOK 6 m
[166] 2 × 2 OFDM 0.8 m
[167] 4 × 4 OOK 10 m
[168] 3 × 3 OFDM 1 m
[51] 3 × 3 OFDM 1 m
[58] 2 × 2 64-QAM 2 m

[169] 4 × 6 TDMA and SDMA variable distance
[114] 4 × 4 2-PAM 3 m
[149] 8 × 6 16-QAM 5 m
[170] 3 × 3 OOK-NRZ 0.75 m
[171] 2 × 2 OOK 0.25 m
[64] 2 × 2 QPSK and 16-QAM 1.3 m
[66] 2 × 2 16-QAM 1.5 m

[148] 2 × 2 BPSK 1.2 m

5. Machine Learning Based MIMO VLC

Machine learning (ML) algorithms are emerging as an inevitable part of enhancing
communication performance. Data mining, classification, prediction, and pattern recogni-
tion are all areas where ML has been successfully used [172]. To enhance the performance of
signal demodulation, modulation format, and bit-rate identification, many ML techniques,
including support vector machine (SVM), K-means, and density-based spatial clustering
of applications with noise (DBSCAN), have been demonstrated and used [173–177]. By
leveraging spatial diversity, optical multiple-input multiple-output (MIMO) can aid in
achieving high data rates [18]. Recently, the field of VLC has been advancing MIMO
technology, especially for the ML-based VLC system. The general structure of the MIMO
VLC system based on ML is shown in Figure 11.
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Figure 11. Machine Learning based VLC MIMO communication scenario.

To resolve spatial multiplexing issues in VLC MIMO systems and improve spectral
efficiency (SE), researchers have presented an ML-based technique called joint IQ indepen-
dent component analysis (ICA) in [64]. In [64], the authors proposed a VLC based 2× 2
MIMO system. The generated signals of this system are superposed signals. At the Tx1, the
transmitted signals are based on 16-quadrature amplitude modulation (16-QAM), whereas
at the Tx2, the transmitted signals are based on quadrature phase-shift keying (QPSK). Two
optical signals can be split into two separate parallel signals using the proposed machine
learning approach. MIMO-VLC receivers often utilize the MIMO decoding technique
and compensator-like decision feedback equalization (DFE) to reduce spatial cross-talk
and remove the inter-symbol interference step by step. Taking into account MIMO-VLC
systems with inherently nonlinear nature, in [178], authors proposed an artificial neural
network (ANN)-based joint spatial and temporal equalization for a MIMO-VLC system.
The proposed system outperforms the joint equalization using typical decision feedback
as ANN was able to reduce the non-linear transfer function as well as cross-talk using a
real imaging/non-imaging optical MIMO communication channel. The joint spatial and
temporal ANN equalizers were comparable to a matrix DFE. The predicted signal vector
with a feedback delay line and the received signal vector with a feedforward delay line
are both contained in the data structure feeding the ANN. The combination of ANN and
MIMO-LMS with an adaptable parameter was proposed using two adaptive ANN (AANN)
equalizers [179]. Less than 10% of MIMO-multi-branch hybrid neural network (MBNN)
spatial complexity may be achieved with AANN. With carrier-less amplitude-phase (CAP)
single-receiver MIMO (SR-MIMO) VLC technology and AANN equalized 16-QAM super-
position coding modulation (SCM), the proposed system was able to get 2.1Gbps data rate.
To address LED non-linearity and cross-LED interference in LED MIMO communications,
in [180], authors proposed extreme learning machine (ELM)-based receivers. For the pro-
posed ELM-based receiver, a circulant input weight matrix was designed, which results in a
low-complexity fast Fourier transform (FFT) implementation. In [180], the authors took into
account the structure of feedforward NN with a single hidden layer, and 2× 2 array LEDs
were aligned with inter LEDs spacing of 0.75 m. In addition, PD was designed with an 8× 8
array with spacing 0.2 m on x and y-axis, respectively. In [181], the authors proposed a deep
learning network that may be used to intelligently construct MIMO-OFDM transceivers
for lower symbol error probability and improved energy efficiency. To realize the signal
constellation and transceivers suitable to dimmable MIMO asymmetric limiting optical-
OFDM VLC systems as an end-to-end model, the concept of stacked autoencoder (SAE)
was presented. The numerical outcomes demonstrate that the SAE technique outperforms
the state-of-the-art zero forcing and least mean squared error algorithm in terms of bit error
rate (BER) reduction. The massive MIMO-based VLC ML system was investigated in [182],
where the augmented SM (ASM) was used and the complexity of ASM was examined.
To demonstrate the performance, three ML model, such as SVM, logistic regression (LR),
and a neural network (NN), was adopted. In this work, the identification accuracy of the
transmitter, processing time, and BER were investigated. In [62], the authors proposed a hy-
brid ML-based VLC system that the model is called MIMO-branch hybrid neural network
(MIMO-MBNN). In the single receiver-MIMO pulse amplitude magnitude eight levels VLC



Sensors 2023, 23, 739 20 of 28

system, the proposed model was used as a post-equalizer. The performance comparison
with others, such as single-input-single-output least mean square equalizer (SISO-LMS)
and SISO deep NN showed that the proposed model gained a 3.35 dB Q factor than others.
The authors in [90] proposed SVM-based detection of VLC signal in a generalized SM
system, where the communication of transmitter LED and receiver PD was done by MIMO
mode. The proposed system exhibited low computational complexity and optimal signal
detection precision. The authors in [183] compared three MIMO schemes of RC, space-time
block codes (STBCs), and SMP for indoor VLC. The results demonstrate that RC exhibits
significant diversity gains as compared to the other two schemes. However, STBC and SMP
can increase capacity and reliability with a slightly reduced range. Table 4 shows some of
the ML-based studies, including developed models and achieved data rates.

Table 4. Overview of ML based MIMO VLC Communication.

Ref. System ML Model Distance Achievable Rate

[64] 2 × 2 joint IQ ICA 1.3 m 750 Mbps
[180] 2 × 2 LED, 8×8 PD ELM-NN 1.75 m -
[181] 4 × 4 SAE-ANN 2.65 m 92.31 Mbps to 676.26 Mbps
[178] 2 × 2 ANN 1 m 1975 Mbps
[62] 2 × 2 MBNN 1.2 m 2.1 Gbps

[179] 2 × 2 AANN 1.2 m 2.1 Gbps
[90] 4 × 4, 8 × 4 SVM 2.15 m -

6. Future Trends in VLC MIMO Communication

Different techniques and problem-solving approaches have been discussed in the
previous sections. In recent years, research has been more involved in machine learning
techniques and deep learning techniques. Some of the points which can be future research
prospects for MIMO VLC are:

• Machine learning-based algorithms are needed to be investigated on a large scale in
different MIMO scenarios.

• LOS communication is very important in VLC as the direct signal can provide
high data rate communication. Reflecting intelligent surfaces [184,185] can help to
reach the user with a direct signal. The channel model is very complex and needs
further investigation.

• To increase connectivity in IoT device, VLC MIMO [164] can help to increase band-
width. However, new protocols need to be investigated for margins RF and VLC to
use interchangeably.

• As different levels of illumination are required in indoor environments, more efficient
techniques can be investigated for dimming control without compromising data rate.

• More efficient channel estimation techniques for NLOS communication can be investigated.
• Interference is a key issue in VLC, as multiple signals can cancel out each other.

Efficient power allocation in the transmitter, beamforming, or time synchronization
approach can be used to investigate the reduction of interference.

• High-speed communication is still a challenge in OCC. As mobile phone is widely
used, high-speed camera communication is still a challenge to overcome.

• MIMO VLC can be a research topic in implementing metaverse.
• Blockchain is a cryptocurrency system that is popular nowadays. However, the

features of blockchain can be utilized in wireless networking. Research can be done to
integrate blockchain into MIMO VLC.

• MIMO VLC can support the enhancement of different near-user cloud-like services
like cloud computing and EDGE computing.

• As VLC can be applied in different scenarios and the number of users can be varied,
different protocols can be investigated for ease of operation.
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7. Conclusions

VLC-based communication has lots of desirable advantages which can be used to
enhance future wireless communication systems. In addition, MIMO communication has
played an important role in RF-based communication for a long time. Thus, MIMO VLC
together can achieve the communication standard for 5G and B5G. In this paper, we have
surveyed the VLC technology in the MIMO communication settings in-depth. We described
VLC and the MIMO communication types available in the literature. Next, we identified
different problems and categorized them, which are addressed in different studies. Machine
learning approaches for MIMO VLC are also taken into account. Finally, we provided some
future directions which can be investigated further.
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