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Particle swarmoptimization (PSO) is a heuristic global optimizationmethod, proposed originally byKennedy and Eberhart in 1995.
It is now one of themost commonly used optimization techniques.�is survey presented a comprehensive investigation of PSO. On
one hand, we provided advances with PSO, including its modi	cations (including quantum-behaved PSO, bare-bones PSO, chaotic
PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic
algorithm, simulated annealing, Tabu search, arti	cial immune system, ant colony algorithm, arti	cial bee colony, di
erential
evolution, harmonic search, and biogeography-based optimization), extensions (tomultiobjective, constrained, discrete, and binary
optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in
multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we o
ered a survey on applications of PSO
to the following eight 	elds: electrical and electronic engineering, automation control systems, communication theory, operations
research,mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be bene	cial
for the researchers studying PSO algorithms.

1. Introduction

Arti	cial intelligence (AI) is the intelligence exhibited by
machines. It is de	ned as “the study and design of intelligent
agents” [1], where an intelligent agent represents a system that
perceives its environment and takes action that maximizes
its success chance. AI research is highly technical and spe-
cialized and is deeply divided into sub	elds that o�en fail to
communicate with each other. Currently popular approaches
of AI include traditional statistical methods [2], traditional
symbolic AI, and computational intelligence (CI) [3]. CI is a
fairly new research area. It is a set of nature-inspired compu-
tational methodologies and approaches to address complex
real-world problems to which traditional approaches are
ine
ective or infeasible. CI includes arti	cial neural network
(ANN), fuzzy logic, and evolutionary computation (EC).

Swarm intelligence (SI) is a part of EC. It researches the
collective behavior of decentralized, self-organized systems,
natural or arti	cial. Typical SI systems consist of a population
of simple agents or boids interacting locally with one another

and with their environment. �e inspiration o�en comes
from nature, especially biological systems [4].

�e agents in a SI system follow very simple rules. �ere
is no centralized control structure dictating how individual
agents should behave.�e agents’ real behaviors are local, and
to a certain degree random; however, interactions between
such agents lead to the emergence of “intelligent” global
behavior, which is unknown to the individual agents. Well-
known examples of SI include ant colonies, bird ocking,
animal herding, bacterial growth, and 	sh schooling.

Dorigo [5] proposed an ant colony optimization (ACO)
method based on ant colony. Kennedy and Eberhart [6]
proposed a particle swarm optimization (PSO)method based
on bird ocking. �ose are two most famous SI-based
optimization algorithms. In addition to them, scholars have
shown great interest in proposing new intelligent approaches.
Storn and Price [7] proposed a di
erential evolution (DE).
Müller et al. [8] and Passino [9] proposed the bacterial
foraging optimization (BFO), inspired by the group foraging
behavior of bacteria such as E. coli andM. xanthus. Karaboga
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Figure 1: Number of all publications w.r.t. SI-based algorithms.

and Basturk [10] proposed arti	cial bee colony (ABC), which
simulates the foraging behavior of honey bees. Krishnanand
and Ghose [11] proposed glowworm swarm optimization
(GSO) method, the agents in which are thought of as glow-
worms that carry a luminescence quantity called luciferin
along with them. Yang [12] proposed a bat algorithm (BA),
inspired by the echolocation behavior of microbats.

�e distribution of all publications and publication per
year w.r.t. SI-based algorithms is presented in Figures 1 and
2, respectively. As seen from the 	gures, the number of total
publications related to PSO is even higher than the sum
of six other algorithms, and the number of publication per
year related to PSO is the highest among all seven SI-based
algorithms. �is suggests PSO is the most prevalent SI-based
optimization algorithms. �erefore, we center this review on
PSO.

Several public websites related to PSO (Table 1) were
set up [13], dedicated to share the codes, ideas, and latest
advances on PSO. �ere are several types of source codes,
written in di
erent programming languages, in those web-
sites. In addition, many publications about PSO and its
applications were presented.

�is work 	rst checked the coherency of PSO with
principles required by SI. Second, we reviewed the studies
on advances of PSO. �ird, various applications of PSO is
given. Finally, we conclude the paper by summarizing the
improvements and analyzing potential research directions.
�is survey was carried out mainly by examining the “Web
of Science Core Collection” database. In addition, IEEE
Explorer and Google Scholar were also used.

2. Particle Swarm Optimization:
PSO Approach

2.1. Features of Self-Organization. Self-organization is a key
feature of SI system. It is a process where global order or
coordination arises out of the local interactions between the
components of an initially disordered system. �is process is
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Figure 2: Publication per year (2010–2014) w.r.t. SI-based algo-
rithms.

spontaneous; that is, it is not controlled by any agent inside
or outside of the system. Bonabeau et al. [14] interpreted the
self-organization in swarms through three basic ingredients
as follows.

(1) Strong dynamical nonlinearity (o�en involving pos-
itive and negative feedback): positive feedback helps
promote the creation of convenient structures, while
negative feedback counterbalances positive feedback
and helps to stabilize the collective pattern.

(2) Balance of exploitation and exploration: SI identi	es
a suitable balance to provide a valuablemean arti	cial
creativity approach.

(3) Multiple interactions: agents in the swarm use infor-
mation coming from neighbor agents so that the
information spreads throughout the network.

2.2. Features of SI. In addition, Millonas [15] in Santa Fe
Institute proposed 	ve principles that SI must satisfy. �ey
are proximity principle, quality principle, diverse response
principle, stability principle, and adaptability principle. �eir
meanings are listed in Table 2.

2.3. Algorithmic Structure of Standard PSO. PSO performs
searching via a swarm of particles that updates from iteration
to iteration. To seek the optimal solution, each particle moves
in the direction to its previously best (pbest) position and the
global best (gbest) position in the swarm [16]. One has

����� (�, �) = arg min
�=1,...,�

[	 (�� (�))] , � ∈ {1, 2, . . . , ��} ,

����� (�) = arg min
�=1,...,��
�=1,...,�

[	 (�� (�))] ,
(1)

where � denotes the particle index, �� the total number
of particles, � the current iteration number, 	 the 	tness
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Table 1: Public websites of PSO.

Website name URL

Particle swarm optimization http://www.swarmintelligence.org/

Particle swarm optimization http://www.scholarpedia.org/article/Particle swarm optimization

Particle swarm central http://www.particleswarm.info/

PSO toolbox http://psotoolbox.sourceforge.net/

PSO visualization http://www.projectcomputing.com/resources/psovis/

Particle swarm optimization toolbox http://atoms.scilab.org/toolboxes/PSO

Table 2: Five basic principles of SI.

Principle De	nition

Proximity principle �e swarm should be able to do simple space and time computations

Quality principle �e swarm should be able to respond to quality factors in the environment

Diverse response principle �e swarm should not commit its activities along excessively narrow channels

Stability principle �e swarm should not change its mode of behavior every time the environment changes

Adaptability principle �e swarm should be able to change its behavior mode when it is worth the computational price

function, and � the position. �e velocity � and position �
of particles are updated by the following equations:

�� (� + 1) = ��� (�) + �1�1 (����� (�, �) − �� (�))

+ �2�2 (����� (�) − �� (�)) ,
(2)

�� (� + 1) = �� (�) + �� (� + 1) , (3)

where � denotes the velocity, � is the inertia weight used to
balance the global exploration and local exploitation, �1 and
�2 are uniformly distributed random variables within range
[0, 1], and �1 and �2 are positive constant parameters called
“acceleration coe�cients.”

It is common to set an upper bound for the velocity
parameter. “Velocity clamping” [17] was used as a way to
limit particles ying out of the search space. Another method
is the “constriction coe�cient” strategy, proposed by Clerc
and Kennedy [18], as an outcome of a theoretical analysis of
swarm dynamic, in which the velocities are constricted too.

�e 	rst part of formula (2), known as “inertia,” rep-
resents the previous velocity, which provides the necessary
momentum for particles to roam across the search space.�e
second part, known as the “cognitive” component, represents
the individual particle thinking of each particle. It encourages
the particles to move toward their own best positions found
so far. �e third part, the “cooperation” component, repre-
sents the collaborative e
ect of the particles to 	nd the global
optimal solution [19].

2.4. Pseudocode of PSO. Let 	 : R
� → R be the cost

function to be minimized. �e function takes a candidate
solution of a vector of �� real numbers and produces a real
number as output that indicates the cost function value. �e
gradient of 	 is either unknown or hard to calculate.�e goal
is to 	nd the global minimal �∗ (Pseudocode 1).

3. Studies on PSO

In this review, we center in reporting the advances on PSO
in the form of formal publications. We divide advances into
following six aspects:

(i) modi	cations of PSO, including quantum-behaved
PSO, bare-bones PSO, chaotic PSO, fuzzy PSO, PSOT-
VAC, opposition-based PSO, topology, and other
slight modi	cations,

(ii) hybridization of PSO with other metaheuristic meth-
ods, including genetic algorithm (GA), arti	cial
immune system (AIS), Tabu search (TS), ACO, simu-
lated annealing (SA), ABC, DE, biogeography-based
optimization (BBO), and harmonic search (HS),

(iii) extensions of PSO to other optimization 	elds,
including multiobjective, constrained, discrete, and
binary optimization,

(iv) theoretical analysis of PSO, parameter selection and
convergence analysis.

(v) parallel implementation of PSO, including multicore,
GPU computing, and cloud computing.

3.1. Modi�cations

3.1.1. QPSO. Some researchers proposed quantum-behaved
PSO (QPSO), which was motivated by concepts from quan-
tum mechanics. For example, Jau et al. [20] proposed a
modi	ed QPSO, which used a high breakdown regression
estimator and a least-trimmed-squares method to eliminate
the inuence caused by observations containing outliers.
Besides, elitist crossover of GA and adaptive decay of SA
are used for conquering premature and controlling search
policy. Jamalipour et al. [21] presentedQPSOwith di
erential
mutation operator (QPSO-DM) for optimizing WWER-1000
core fuel management. �e results showed that QPSO-
DM performs better than the others. Bagheri et al. [22]
used QPSO to forecast 	nancial time series, especially for
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Step 1. Initialization
For each particle � = 1, . . . , ��, do

(a) Initialize the particle’s position with a uniformly distribution as ��(0)∼U(LB, UB), where LB and UB represent the lower
and upper bounds of the search space

(b) Initialize ����� to its initial position: �����(�, 0) = ��(0).
(c) Initialize ����� to the minimal value of the swarm: �����(0) = argmin	[��(0)].
(d) Initialize velocity: �� ∼ �(−|UB − LB|, |UB − LB|).

Step 2. Repeat until a termination criteria is met
For each particle � = 1, . . . , ��, do

(a) Pick random numbers: �1, �2 ∼ �(0, 1).
(b) Update particle’s velocity. See formula (2).
(c) Update particle’s position. See formula (3).
(d) If 	[��(�)] < 	[�����(�, �)], do

(i) Update the best known position of particle �: �����(�, �) = ��(�).
(ii) If 	[��(�)] < 	[�����(�)], update the swarm’s best known position: �����(�) = ��(�).

(e) � ← (� + 1);
Step 3. Output �����(�) that holds the best found solution.

Pseudocode 1: A standard PSO.

the foreign exchange market. Tang et al. [23] proposed an
improved QPSO algorithm for continuous nonlinear large-
scale problems based on memetic algorithm and memory
mechanism. �e memetic algorithm was used to make all
particles gain some experience through a local search before
being involved in the evolutionary process, and the memory
mechanism was used to introduce a “bird kingdom” with
memory capacity, both of which can improve the global
search ability of the algorithm. Davoodi et al. [24] proposed
a new approach, based on a hybrid algorithm combining
of improved QPSO and simplex algorithms. QPSO was the
main optimizer of algorithm, which can give a good direction
to the optimal global region. Nelder-Mead simplex method
was used as a local search to 	ne-tune the obtained solution
fromQPSO. Li andXiao [25] proposed an encoding approach
based on qubits described on the Bloch sphere. Each particle
contained three groups of Bloch coordinates of qubits, and
all three groups of coordinates were regarded as approximate
solutions describing the optimization result. Particles were
updated using the rotation of qubits about an axis on the
Bloch sphere. Yumin and Li [26] integrated arti	cial 	sh
swarm to QPSO and used adaptive parameters to avoid
premature. Jia et al. [27] proposed an enhanced QPSO based
on GA to realize a synchronous optimization of sensor
array and classi	er. Gholizadeh andMoghadas [28] proposed
an improved QPSO metaheuristic algorithm to implement
performance-based optimum design process. Two numerical
examples were presented to illustrate the e�ciency of the
presented method.

3.1.2. BBPSO. �ebare-bones PSO (BBPSO) [29] is a version
of the PSO algorithm in which the velocity and position
update rules are substituted by a procedure that samples a
parametric probability density function. Zhang et al. [30]
used both mutation and crossover operators of DE algorithm
tomodify original BBPSO in order to update certain particles
in the population.�eperformance of the resulting algorithm

was tested on 10 benchmark functions and applied to 16
vapor-liquid equilibrium problems. Zhang et al. [31] analyzed
the sampling distribution in BBPSO, based on which they
propose an adaptive version inspired by the cloud model,
which adaptively produced a di
erent standard deviation
of the Gaussian sampling for each particle according to
the evolutionary state in the swarm, which provided an
adaptive balance between exploitation and exploration on
di
erent objective functions. Zhang et al. [32] proposed
three global optimization algorithms for phase and chemical
equilibrium calculations, which played a signi	cant role
in the simulation, design, and optimization of separation
processes in chemical engineering. �e proposed algorithms
were uni	ed BBPSO (UBBPSO), integrated DE (IDE), and
IDE without Tabu list and radius (IDE N). Zhang et al.
[33] proposed a new bare-bones multiobjective PSO algo-
rithm to solve the environmental/EDPs. �e algorithm had
three distinctive features: a particle updating strategy that
did not require tuning up control parameters, a mutation
operator with action range varying over time to expand
the search capability, and an approach based on particle
diversity to update the global particle leaders. Blackwell [34]
formulated the dynamic update rule of PSO as a second-
order stochastic di
erence equation. General relations were
derived for search focus, search spread, and swarm stability
at stagnation. �e relations were applied to three particular
PSO implementations: the standard PSO, a PSOwith discrete
recombination, and the BBPSO. Wang et al. [35] proposed
a novel hybrid algorithm, called SM-MBBPSO, based on
the Nelder-Mead simplex method (SM) and a modi	ed
BBPSO (MBBPSO). A new strategy based on �-means
clustering was proposed to combine the powerful global
search capability of MBBPSO and the high accurate local
search capability of SM. �is made the proposed algorithm
achieve a nice balance between exploitation and exploration
capability. Meanwhile, an adaptive reinitialization strategy
on inactive particles was proposed to help the swarm get
away from local optimal positions. Jiang and Wang [36] used
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cooperative coevolution (CC) to improve the performance
of PSO on clustering high-dimensional datasets. Based on
CC framework, the original partitional clustering problem
was 	rst decomposed to several subproblems, each of which
was then evolved by an optimizer independently. BBPSO
was employed as the optimizer to solve each subproblem
cooperatively. In addition, a new centroid-based encoding
schema was designed for each particle, and the Cherno

bounds were applied to decide a proper population size. Liu
et al. [37] proposed a novel disruption strategy, originating
from astrophysics, to shi� the abilities between exploration
and exploitation during the search process, with the aim of
enhancing population diversity and speeding up convergence
rate of BBPSO.�ey researched the distribution and diversity
on the proposed disruption operator and illustrated the
position relationship between the original and disrupted
position. Campos et al. [38] proposed a variant of BBPSO
with scale matrix adaptation (SMA), SMA-BBPSO for short
reference, to address the drawback of premature convergence
and improve the performance of the BBPSO. �e position
of a particle was selected from a multivariate �-distribution
with a rule for adaptation of its scale matrix.�emultivariate
�-distribution was used in its hierarchical form, as a scale
mixture of normal distributions. In addition, the approach
included the normal distribution as a particular case. As
a consequence, the �-distribution could be applied during
the optimization process by maintaining the proper balance
between exploration and exploitation. Zhang et al. [39] pro-
posed a binary BBPSO to 	nd optimal feature subset, which
was a useful preprocessing technique for solving classi	cation
problems. In this algorithm, a reinforced memory strategy
was designed to update the local leaders of particles for avoid-
ing the degradation of outstanding genes in the particles, and
a uniform combination was proposed to balance the local
exploitation and the global exploration of algorithm.

3.1.3. CPSO. Concepts related to chaos theory have been
integrated with PSO to improve its performance. �is type
of PSO variant is called chaotic PSO (CPSO). Chuang et
al. [40] introduced chaotic maps into cat	sh particle swarm
optimization. �e proposed method increased the search
capability via the chaos approach. Zhang and Wu [41] pro-
posed adaptive CPSO (ACPSO) to train the weights/biases
of two-hidden-layer forward neural network in order to
develop a hybrid crop classi	er for polarimetric synthetic
aperture radar images. Dai et al. [42] proposed a novel
adaptive chaotic embedded PSO (ACEPSO) and applied
it in wavelet parameters estimation. ACEPSO embedded
chaotic variables in standard PSO and adjusted parameters
nonlinearly and adaptively. It also estimated particleswhether
being focusing or discrete by judging the population 	tness
variance of particle swarm and average distance amongst
points; then chaotic researching was applied to escaping
from premature convergence. Li et al. [43] proposed a novel
chaotic particle swarm fuzzy clustering (CPSFC) algorithm
based on a new CPSO and gradient method. �e new
CPSO algorithm is the combination of adaptive inertia
weight factor (AIWF) and iterative chaotic map with in	nite

collapses (ICMIC) based chaotic local search. �e CPSFC
algorithmutilizedCPSO to search the fuzzy clusteringmodel,
exploiting the searching capability of fuzzy c-means (FCM)
and avoiding its major limitation of getting stuck at locally
optimal values. Meanwhile, gradient operator is adopted to
accelerate convergence of the proposed algorithm. Wu et al.
[44] proposed a novel support vector regression machine
(SVRM) and then developed aCPSO to estimate its unknown
parameters. �e results of two experiments demonstrate the
feasibility of this approach. Zhang et al. [45] proposed a
	tness-scaling adaptive chaotic PSO (FAC-PSO) approach
as a fast and robust approach for the task of path planning
of unmanned combat aerial vehicle (UCAV). �e FAC-PSO
employed the 	tness-scaling method, the adaptive parameter
mechanism, and the chaotic theory. Experiments showed
that the FAC-PSO was more robust and cost less time than
elite GA with migration, SA, and chaotic ABC. Zhang et al.
[46] combined CPSO with K2 algorithm and applied the
method to Bayesian network structure learning. Yang et al.
[47] applied PSO with double-bottom chaotic maps (DBM-
PSO) in order to assist statistical methods in the analysis
of associated variations to disease susceptibility. Analysis
results supported that the proposedDBM-PSO could identify
good models and provided higher chi-square values than
conventional PSO. Son [48] used CPSO to optimize munic-
ipal solid waste collection in GIS based environments and
took Danang city, Vietnam, as a case study. He et al. [49]
proposed a novel hybrid model combining ANN and CPSO
to improve forecast accuracy.�e proposedmodel was found
to perform better for 	ne particles than for coarse particles.
Zeng and Sun [50] combined classical PSO with a chaotic
mechanism, time-variant acceleration coe�cients, and a self-
adaptive mutation scheme to prevent premature convergence
and improve solution quality. Multiple e�cient constraint
handling strategies were employed to deal with complex
constraints. Pluhacek et al. [51] utilized di
erent chaotic
systems as pseudorandom number generators (PRNGs) for
velocity calculation in the PSO algorithm. Two chaos-based
PRNGs were used alternately within one run of the PSO
algorithm and dynamically switched over when a certain
criterion was met.

3.1.4. FPSO. In order to make PSO more powerful, it was
combined with fuzzy sets theory. �is type of PSO variant
is called fuzzy PSO (FPSO). Juang et al. [52] proposed an
adaptive FPSO (AFPSO) algorithm. �e proposed AFPSO
utilized fuzzy set theory to adjust PSO acceleration coe�-
cients adaptively and was thereby able to improve the accu-
racy and e�ciency of searches. Incorporating this algorithm
with quadratic interpolation and crossover operator further
enhanced the global searching capability to form a new
variant called AFPSO-Q1. Al	 and Fateh [53] presented a
novel improved FPSO (IFPSO) algorithm to the intelligent
identi	cation and control of a dynamic system.�e proposed
algorithm estimated optimally the parameters of system and
controller by minimizing the mean of squared errors. �e
PSO was enhanced intelligently by using a fuzzy inertia
weight to rationally balance the global and local exploitation
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abilities. Every particle dynamically adjusted inertia weight
according to particles best memories using a nonlinear fuzzy
model. Yang et al. [54] proposed a novel FPSO algorithm
based on fuzzy velocity updating strategy in order to optimize
the machining parameters. �e proposed FPSO algorithm
achieved good results on few benchmark problems and
obtained signi	cant improvements on two illustrative case
studies of multipass face milling. Norouzzadeh et al. [55]
proposed a light adaptive PSO, which was a novel method
that used a fuzzy control system to conduct the standard
algorithm.�e suggestedmethod used two adjunct operators
along with the fuzzy system in order to improve the base
algorithm on global optimization problems. Robati et al.
[56] studied an extension of PSO algorithm, the balanced
fuzzy PSO algorithm, which was used for fundamental opti-
mization problem entitled traveling salesman problem (TSP).
Khan and Engelbrecht [57] presented amultiobjective PSO to
e�ciently solve the distributed local area networks (DLAN)
topology design problem. Fuzzy logic was incorporated in
the PSO algorithm to handle the multiobjective nature of the
problem. Uni	ed “And-Or” operator was used to aggregate
the objectives. Results suggest that the fuzzy PSO is a suitable
algorithm for solving the DLAN topology design problem.
Galzina et al. [58] described the application of a hybrid of
fuzzy logic and PSO in order to achieve suboptimal solutions
for ow-shop scheduling problem.�ey named the proposed
method adaptive fuzzy PSO. Nafar et al. [59] proposed a
combination of FPSO and ACO method to estimate the
parameters of Metal Oxide Surge Arrester (MOSA) models.
�e proposed method was named modi	ed FPSO (MFPSO).

�e inertia weight was tuned by using fuzzy rules. Aminian
and Teshnehlab [60] introduced a novel FPSO method
in which the inertia weight as well as the cognitive and
social coe�cients was adjusted for each particle separately
according to the information coming from a fuzzy logic
controller. Chai et al. [61] used Hilbert-Huang transform for
the features extractor and FPSO with cross mutated-based
ANN (FPSOCM-ANN), for the classi	cation of a three-class
mental task-based brain-computer interface (BCI).

3.1.5. PSOTVAC. PSO with time-varying acceleration coef-
	cients (TVAC) was proposed to further improve the per-
formance of standard PSO. �e new variant was termed
PSOTVAC. Cai et al. [62] considered linear automation
strategy may not work well in many cases. �erefore, a
new variant, predicted modi	ed PSO with time-varying
accelerator coe�cients, was proposed, in which the social
and cognitive learning factors were adjusted according to
a prede	ned predicted velocity index. �e mechanism lied
in that the large cognitive coe�cient provided a large local
search capability, whereas the small one employed a large
global search capability. Chaturvedi et al. [63] employed
PSOTVAC to solve the practical economic dispatch problem
(EDP). TVAC here was to e�ciently control the local and
global search so that premature convergence was avoided
and global solutions were achieved. Boonyaritdachochai et al.
[64] proposed an optimal congestion management approach
in a deregulated electricity market using PSOTVAC. Initially,

the values of generator sensitivity were used to select redis-
patched generators. PSOTVAC was used to determine the
minimum redispatch cost. Sun et al. [65] presented a com-
parative analysis of PSO, self-organizing hierarchical PSO
(HPSO), and self-organizing hierarchical PSO with time-
varying acceleration coe�cients (HPSO-TVAC) for data
clustering. �ey found that the HPSO and the HPSO-TVAC
algorithms had better performance than the PSO algorithm
inmost cases, and all the clustering algorithms using PSOhad
good performance for large-scale data and high-dimensional
data, over six well-known benchmarks. Abedinia et al. [66]
presented an e�cient approach for solving economic load
dispatch (ELD) problems in di
erent test power systems
using PSOTVAC. Accordingly, for practical operation, many
realistic constraints as ramp rate limits, generation limitation,
prohibited operating zone, transmission loss, and nonlinear
cost functions were considered. Mohammadi-Ivatloo et al.
[67] presented a novel heuristic algorithm for solving EDP
by employing iteration PSO with time-varying acceleration
coe�cients (IPSO-TVAC) method. EDP may even be more
complicated if transmission losses were taken into account.
Numerical results showed that the IPSO-TVAC method had
a good convergence property. Mohammadi-Ivatloo et al. [68]
implemented a novel time-varying acceleration coe�cients
PSO (TVAC-PSO) algorithm to solve combined heat and
power ED (CHPED). �e acceleration coe�cients in PSO
algorithmwere varied adaptively during iterations to improve
solution quality of original PSO and avoid premature conver-
gence. Pookpunt and Ongsakul [69] proposed a binary PSO
(BPSO) with TVAC for solving optimal placement of wind
turbines within a wind farm. �e objective was to extract
the maximum turbine power output in a minimum invest-
ment cost within a wind farm. �e BPSO-TVAC algorithm
was applied to 100-square-cell test site considering uniform
wind and nonuniform wind speed with variable direction
characteristics. Linear wake model was used to calculate
downstream wind speed. Abedinia et al. [70] presented
a hybrid PSO with time-varying acceleration coe�cients
(HPSOTVAC) and bacteria foraging algorithm (BFA) for
solving a complex ELD problem. �e e
ectiveness of the
proposed HPSOTVAC/BFA was tested in 6-, 15-, and 40-
unit generating systems. Abdullah et al. [71] proposed a
modi	ed PSO with TVAC (MPSO-TVAC) for solving ELD
problem. To improve the solution quality and robustness of
PSO algorithm, a new best neighbor particle called “rbest”
was proposed. �e rbest provided extra information for each
particle that was randomly selected from other best particles
in order to diversify the movement of particle and avoid
premature convergence. Chih et al. [72] adapted standard
PSO and proposed two novel PSO algorithms, namely, the
binary PSOwith TVAC (BPSOTVAC) and the chaotic binary
PSO with TVAC (CBPSOTVAC), to solve the multidimen-
sional knapsack problem (MKP). �e results showed that the
proposed algorithms were superior over the other methods
according to success rate, mean absolute deviation, mean
absolute percentage error, least error, and standard deviation.
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3.1.6. OPSO. Opposition-based learning (OBL) theory was
integrated with PSO, and the new variant was dubbed
opposition-based PSO (OPSO). Dhahri and Alimi [73] pro-
posed the OPSO using the concept of opposite number
to create a new population during the learning process.
�ey combined OPSO with BBFNN. �e results showed
that the OPSO-BBFNN produced a better generalization
performance. Wang et al. [74] presented an enhanced PSO
algorithm called GOPSO, which employed generalized OBL
(GOBL) and Cauchy mutation. GOBL provided a faster
convergence and the Cauchy mutation with a long tail
helped trapped particles escape from local optima. Dong et
al. [75] proposed an evolutionary circle detection method
based on a novel chaotic hybrid algorithm (CHA). �e
method combined the strengths of PSO, GA, and chaotic
dynamics and involved the standard velocity and position
update rules of PSOs, with the ideas of selection, crossover,
and mutation from GA. �e OBL was employed in CHA
for population initialization. In addition, the notion of
species was introduced into the proposed CHA to enhance
its performance in solving multimodal problems. Gao et
al. [76] proposed a novel PSO called CSPSO to improve
the performance of PSO on complex multimodal problems.
Speci	cally, a stochastic search technique was used to execute
the exploration in PSO. In addition, to enhance the global
convergence, when producing the initial population, both
opposition-based learning method and chaotic maps were
employed. �e numerical simulation and comparisons with
some typical existing algorithms demonstrated the superior-
ity of the proposed algorithm. Khan et al. [77] presented a
newdiscrete PSOapproach to induce rules fromdiscrete data.
�e proposed algorithm, called Opposition-Based Natural
Discrete PSO (ONDPSO), initialized its population by taking
into account the discrete nature of the data. Particles were
encoded using a Natural Encoding scheme. Each member
of the population updated its position iteratively based on
a newly designed position update rule. OBL was imple-
mented in the optimization process. �e encoding scheme
and position update rule used by the algorithm allowed
individual terms corresponding to di
erent attributes within
the rule’s antecedent to be a disjunction of the values of those
attributes. Kaucic [78] presented a multistart PSO algorithm
for the global optimization of a function subject to bound
constraints. �e procedure consisted of three main steps. In
the initialization phase, an OBL strategy was performed to
improve the search e�ciency. �en a variant of the adaptive
velocity based on the di
erential operator enhanced the
optimization ability of the particles. Finally, a reinitialization
strategy based on two diversity measures for the swarm was
acted in order to avoid premature convergence and stagna-
tion. Dai et al. [79] established amathematicalmodel to study
themotions of ships in order to control them e
ectively.�ey
proposed an algorithm based on PSO and the OBL theory,
known as the opposition-based particle swarm optimization
(OPSO). Muñoz et al. [80] described how adequate hardware
implementations of the PSO algorithm can be useful for real-
time adaptation of mobile robot controllers. For achieving
this goal, they proposed a new architecture, which was based
on an FPGA implementation of the OBL approach applied

to the PSO and which explored the intrinsic parallelism of
this algorithm in order to adjust the weights of a neural robot
controller in real time according to desired behaviors.

3.1.7. SPSO. In contrast, some researchers objected to those
researches that made PSO more and more complex, and
they tended to simplify standard PSO without impairing its
performance, with the aim of reducing computation time,
improving convergence performance, or making it easier to
implement. For example, Guochu [81] divided the swarm into
three categories denoted as better particles, ordinary parti-
cles, and the worst particles, according to the 	tness values.
�ese three types of particles evolved dynamically according
to three corresponding kinds of simpli	ed algorithmmodels.
�e results showed that simpli	ed PSO (SPSO) had better
optimization performance than other improved PSOs. Peder-
sen and Chipper	eld [82] simpli	ed PSO method in order to
increase its adaptability and used an overlaid metaoptimizer
for e�ciently tuning behavior parameters. �e simpli	ed
version was dubbed Many Optimizing Liaisons (MOL).
Experiments showed that MOL had comparable perfor-
mance with PSO. Martins et al. [83] proposed a simpli	ed
PSO, which allowed saving some computational e
ort and
obtained a considerable performance in the optimization of
nonlinear functions.�emethodwas tested by four nonlinear
benchmark functions: Sphere, Schwefel, Scha
er, and Ackley.
Panda et al. [84] presented the design and performance
analysis of proportional-integral derivate (PID) controller
for an automatic voltage regulator system using MOL. �e
superiority of MOL was shown by comparing the results
with ABC, PSO, and DE. Vastrakar and Padhy [85] proposed
a simpli	ed PSO with proportional-integral proportional-
derivative (PI-PD) controller for unstable processes. Com-
plete search space was divided into small subsearch spaces. In
each subspace, they calculated the global minima and local
minima and took the minimum of all, that is, minimum of
complete search space. Yeh [86] proposed a parameter-free
simpli	ed swarmoptimization to adjust theweights inANNs.

3.1.8. Topology. �e premature of PSO can be avoided by
not using the entire swarm’s best known position gbest but
just the best position of the local area around the particle
that is moved. In such case, the PSO variant is said to be
local best lbest. Further, suppose there is an information link
between each particle and its neighbors, and the set of those
links builds a graph, which is called the topology of PSO
variant. Scholars have carried out numerous researches in this
	eld. Wang and Watada [87] proposed a hybrid mutation-
neighborhood-based PSO (MN-PSO) which comprised the
approximation algorithm to search for the approximate opti-
mal solution. Jiang et al. [88] proposed PSO with age-group
topology (PSOAG), a novel age-based PSO. �ey presented
a new concept of age to measure the search ability of each
particle in local area. To keep population diversity during
searching, particles were separated to di
erent age-groups
by their age. Particles in each age-group could only select
the ones in younger groups or their own groups as their
neighborhoods. To allow search escape from local optima,
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the aging particles were regularly replaced by new and
randomly generated ones. In addition, an age-group based
parameter setting method was designed, where particles in
di
erent age-groups had di
erent parameters to accelerate
convergence. Marinakis and Marinaki [89] introduced a new
algorithmic nature-inspired approach that used PSO with
di
erent neighborhood topologies, for successfully solving
one of the most computationally complex problems, the
permutation ow-shop scheduling problem (PFSP). �e
proposed algorithm combined a PSO algorithm, the vari-
able neighborhood search strategy, and a path relinking
strategy. Rada-Vilela et al. [90] presented a performance
study on the e
ect of synchronicity in communications
and neighborhood size in PSO on large-scale optimization
problems. �e algorithms under study were the Synchronous
PSO (S-PSO), the Asynchronous PSO (A-PSO), and the
recently proposed Random Asynchronous PSO (RA-PSO).
Wang et al. [91] proposed a hybrid PSO algorithm called
DNSPSO, which employed a diversity enhancing mechanism
and neighborhood search strategies to achieve a trade-o

between exploration and exploitation abilities. Comparison
results showed that DNSPSO obtained a promising per-
formance on the majority of the test problems. Fu et al.
[92] proposed a new QPSO algorithm called NQPSO,
in which one local and one global neighborhood search
strategies were utilized to balance exploitation and explo-
ration. Moreover, a concept of opposition-based learning
was employed for population initialization. Computational
results showed that the proposed approach outperformed
some similar QPSO algorithms and 	ve other state-of-the-
art PSO variants. Ni and Deng [93] proposed to use random
topology and analyzed its performance. �e relationship
between population topology and the performance of PSO
was also explored from the perspective of graph theory
characteristics in population topologies. Further, in logistic
dynamic particle optimization, an extensive simulation study
was presented to discuss the e
ectiveness of the random
topology and the design strategies of population topology.
Beheshti et al. [94] proposed an improved PSO scheme
called fusion global-local-topology PSO (FGLT-PSO). �e
algorithm employed both global and local topologies in
PSO to jump out of the local optima. �e experimental
results showed that the proposed method improved the
performance of PSO algorithm in terms of solution accuracy
and convergence speed. Lim and Isa [95] proposed PSO
with increasing topology connectivity (PSO-ITC) to solve
unconstrained single-objective optimization problems with
continuous search space. An ITC module was developed to
achieve better control of exploration/exploitation searches
by linearly increasing the particle’s topology connectivity
with time as well as performing the shu�ing mechanism.
Furthermore, they introduced a new learning framework
that consisted of a new velocity update mechanism and a
new neighborhood search operator that aimed at enhancing
the algorithm’s searching performance. Kalayci and Gupta
[96] proposed a new approach based on the PSO algorithm
with a neighborhood-based mutation operator to solve the
sequence-dependent disassembly line balancing problem.

3.1.9. Other Modi�cations. Some researchers make tentative
research on improving the optimization performance of PSO
by other e�cient strategies. For example, Chuang et al. [97]
proposed a novel cat	sh PSO, the mechanism of which is
dependent on the incorporation of a cat	sh particle into
the linearly decreasing weight particle swarm optimization.
Unlike other ordinary particles, the cat	sh particles initial-
ized a new search from the extreme points of the search
space when the gbest 	tness value had not been changed for
a given time, which resulted in further opportunities to 	nd
better solutions for the swarm by guiding the whole swarm to
promising new regions of the search space and accelerating
convergence. Shi and Liu [98] proposed a hybrid improved
PSO, in which chaos initialization was introduced to improve
the population diversity, and adaptive parameters’ control
strategy was employed to make it independent from speci	c
problem. Besides, novel acceptance policy based onMetropo-
lis rule was taken to guarantee the convergence of the algo-
rithm.Zhang et al. [99] proposed a new adaptive PSO (APSO)
that could dynamically follow the frequently changingmarket
demand and supply in each trading interval. A numerical
example served to illustrate the essential features of the
approach. Liu et al. [100] proposed an improved cooperative
PSO to solve both the local extrema and the pseudominimum
problem, with the aim of solving production schedulingmore
e�ciently. �e results showed that the convergent speed and
solution quality of the improved cooperative PSO preceded
the other two e�cient algorithms. Shen et al. [101] presented
a correlation PSOmodel in which a novel correlative strategy
was used to process the personal experience and sharing
experience.�e relational expression between the correlation
coe�cient and population diversity was developed through
theoretical analysis. �ey found that the processing strategy
with positive linear correlation was helpful to maintain the
population diversity. Lin et al. [102] introduced a jumping-out
strategy named crown jewel defense (CJD). CJD was used to
relocate the gbest position and reinitialized all particles’ pbest
positionwhen the swarmwas trapped in local optima. Taking
the advantage of CJD strategy, the swarm could jump out of
the local optimal region without being dragged back and the
performance of PSObecamemore robust to the initialization.
Experimental results on benchmark functions showed that
the CJD-based PSOs were comparable to or better than
the other representative state-of-the-art PSOs. Wang and
Watada [103] studied a facility location model with fuzzy
random parameters and its swarm intelligence approach. A
Value-at-Risk (VaR) based fuzzy random facility location
model (VaR-FRFLM) was built in which both the costs
and demands were assumed to be fuzzy random variables,
and the capacity of each facility was un	xed but a decision
variable assuming continuous values. A hybridmodi	ed PSO
approach was proposed to solve the VaR-FRFLM. Li et al.
[104] developed a knowledge-based heuristic PSO approach
with the adjustment strategy (KHPSOA), inspired by the No
Free Lunch �eorem to solve the weighted circle packing
problem. �e numerical experiments showed that KHPSOA
was superior to the existing algorithms in the performances.
Inspired by the ecological behavior, Lu et al. [105] developed
an augmented PSO (AugPSO) algorithm using two new
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strategies, boundary shi�ing and particle position resetting,
with the aim of optimizing the design of truss structures. �e
boundary shi�ing approach forced particles to move to the
boundary between feasible and infeasible regions in order to
increase the convergence rate in searching. �e particle posi-
tion resetting approach was motivated by mutation scheme
in GA to increase the diversity of particles and to prevent the
solution of particles from falling into local minima. Mattos
et al. [106] presented a constrained hybrid PSO algorithm
in order to 	nd feasible solutions to the resource allocation
problem. Wu et al. [107] integrated some problem-oriented
knowledge into the design of a certain PSO variant. �ey
investigated the inner variable learning (IVL) strategy which
could help the particle to inspect the relation among its
inner variables, determine the exemplar variable for all other
variables, and then make each variable learn from the exem-
plar variable in terms of their quantitative relations. Hence,
a novel PSO algorithm with an IVL strategy was proposed
and found particularly e�cient for optimizing functions with
symmetric variables. In addition, they designed a new trap
detection and jumping-out strategy to help particles escape
from local optima. Lim and Mat Isa [108] presented an
adaptive two-layer PSO algorithm with elitist learning strat-
egy (ATLPSO-ELS), which had better search capability than
classical PSO. In ATLPSO-ELS, they performed evolution on
both the current swarm and the memory swarm, motivated
by the tendency of the latter swarm to distribute around
the problem’s optima. �ey proposed two adaptive division-
of-labor modules to self-adaptively divide the swarms into
exploration and exploitation sections. An elitist learning
strategy module was introduced in the proposed algorithm
to enhance the search e�ciency of swarms and to mitigate
premature convergence. Shimizu et al. [109] developed a
novel algorithm of PSO associated with binary decision vari-
ables. It was quite e
ective for 	nding the optimum opening
distribution centers in three-echelon logistic network by
parallel computing. Eventually, they had implemented the
procedure in the parallel algorithm deployed as a multi-
population based approach using multithread programming
technique. Fister Jr. et al. [110] presented a simple PSO, which
allowed automatic creation of complex two-dimensional
graphic characters. �e method involved constructing the
base characters, optimizing the modi	cations of the base
characters with the PSO algorithm, and 	nally generating
the graphic characters from the solution. �ey demonstrated
the e
ectiveness of the approach with the creation of simple
snowman.

3.2. Hybridization. PSOwas combined with some traditional
and evolutionary optimization algorithms in order to take the
advantages of both methods and compensate the weaknesses
of each other. �is type of PSO is called hybridized PSO.

3.2.1. With GA. Kuo and Hong [111] presented a two-stage
method of investment portfolio based on so� computing
techniques. �e 	rst stage used data envelopment analysis
to select most pro	table funds, while hybrid of GA and
PSO was proposed to conduct asset allocation in the second
stage. Chen and Kurniawan [112] presented a two-stage

optimization system to 	nd optimal process parameters of
multiple quality characteristics in plastic injection molding.
Taguchi method, BPNN, GA, and combination of PSO and
GA (PSO-GA) were used in this study to 	nd optimum
parameter settings. Nazir et al. [113] extracted facial local
features using local binary pattern (LBP) and then fused
these features with clothing features, which enhanced the
classi	cation accuracy rate remarkably. In the following step,
PSO and GA were combined to select the most important
features’ set thatmore clearly represented the gender and thus
the data size dimensionwas reduced. Vidhya andKumar [114]
proposed a hybrid technique that included PSO and GA for
channel estimation in MIMO-orthogonal frequency division
multiplexing (MIMO-OFDM) systems. �e result showed
the performance of the proposed method was better than
LS and MMSE methods in all the mutation and crossover
values and in all the iterations computed. Xiao et al. [115]
constructed three di
erent types of neural network based
models, that is, Elman network, generalized regression neu-
ral network (GRNN), and wavelet neural network (WNN)
constructed by three nonoverlapping training sets. �eir
empirical results suggested the ensemble ANNs-PSO-GA
approach signi	cantly improved the prediction performance
over other individualmodels and linear combinationmodels.
Ghamisi and Benediktsson [116] proposed a new feature
selection approach based on the integration of a GA and
PSO. �e overall accuracy of a support vector machine
(SVM) classi	er on validation samples was used as a 	tness
value. �e new approach was carried out on the well-known
Indian Pines hyperspectral dataset. Results con	rmed that
the new approach was able to select automatically the most
informative features in terms of classi	cation accuracy within
an acceptable processing time without requiring the number
of desired features to be set a priori by users.

3.2.2. With AIS. Tang et al. [117] presented a novel dynamic
PSO algorithmbased on improved arti	cial immune network
(IAINPSO). Based on the variance of the population’s 	tness,
a kind of convergence factor was adopted in order to adjust
the ability of search.�e experimental results showed that not
only did the new algorithm satisfy convergence precision, but
also the number of iterations was much less than traditional
scheme and hadmuch faster convergent speed, with excellent
performance in the search of optimal solution tomultidimen-
sional function. Zhang et al. [118] proposed amore pragmatic
model for stochastic networks, which considered not only
determinist variables but also the mean and variances of
random variables. In order to accelerate the solution of
the model, they integrated PSO with chaos operator and
AIS. Ibrahim et al. [119] developed a power quality moni-
tor positioning algorithm to 	nd the optimal number and
placement of PQMs in both transmission and distribution
systems. First, the concept of topological monitor reach area
was introduced. �en the binary PSO hybridized with AIS
was used to solve multiobjective function in 	nding the
optimal placement of PQMs. Kuo et al. [120] intended to
propose a hybrid of AIS and PSO-based SVM (HIP-SVM)
for optimizing SVM parameters and applied it to radio
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frequency identi	cation (RFID) based positioning system.
�e computational results showed that HIP-SVM had better
performance than AIS-based SVM and PSO-based SVM.
Liu et al. [121] proposed a coevolutionary PSO algorithm
associating with the arti	cial immune principle. In the pro-
posed algorithm, the whole population was divided into two
kinds of subpopulations consisting of one elite subpopulation
and several normal subpopulations. �e best individual of
each normal subpopulation will be memorized into the elite
subpopulation during the evolution process. Darzi et al.
[122] incorporated PSO, dynamic mutated AIS (DM-AIS),
and gravitational search algorithm (GSA) into the existing
LCMV technique in order to improve the weights of LCMV.
�e simulation result demonstrated that received signal to
interference and noise ratio (SINR) of target user can be
signi	cantly improved by the integration of PSO, DM-AIS,
and GSA in LCMV through the suppression of interference
in undesired direction.

3.2.3. With TS. Li et al. [123] integrated nonlinear simplex
method (NSM) into PSO in order to increase its convergence
speed. �ey also integrated TS into PSO to assign Tabu
attribute to local solution regions. �e hybrid PSO algorithm
was an organic composition of the PSO, NSM, and TS
algorithms. Nakano et al. [124] presented a new form of PSO
based on the concept of TS. �e proposed Tabu list PSO (TL-
PSO) was a method for combining the strong points of PSO
and TS. �is method stored the history of pbest in a Tabu list.
When a particle had a reduced searching ability, it selected a
pbest of the past from the historical values, whichwas used for
the update. �is made each particle active, and the searching
ability of the swarm made progress. Zhang et al. [125]
presented the production planningmanagement architecture
for iron-steel manufacturing factories based on make-to-
order andmake-to-stockmanagement ideas. In order to solve
this nonlinear integer program, the authors designed a hybrid
PSO and TS algorithm, in which new heuristic rules were
proposed to repair infeasible solutions. Ktari and Chabchoub
[126] proposed a new heuristic approach such that various
features inspired from the TSwere incorporated in the Essen-
tial Particle Swarm Optimization queen (EPSOq) algorithm
in order to obtain another improved discrete PSO version.
Wang et al. [127] focused on long-term distribution system
maintenance scheduling aided by available operation infor-
mation. A combined algorithm that consisted of PSO and
TS was designed and applied to the optimization problem.
Numerical result veri	ed that the proposed method could
schedule long-term maintenance of distribution systems in
smart grid economically and e
ectively.

3.2.4. With ACO. Chen and Chien [128] presented a new
method, called the genetic simulated annealing ant colony
system with particle swarm optimization techniques, for
solving the TSP. �e experimental results showed that both
the average solution and the percentage deviation of the
average solution to the best known solution of the proposed
method were better than existing methods. Xiao et al. [129]
considered the features of the MRCMPSP problem. �ey

employed ant colony’s labor division to establish a task
priority-scheduling model 	rstly. �en, they used improved
PSO to 	nd out the optimum scheduling scheme. �e
approach integrating the above two algorithms had abilities
of both local search and global search. Kiran et al. [130] pro-
posed a new hybrid method for estimating energy demand
of Turkey using PSO and ACO. PSO was developed for
solving continuous optimization problems; ACO was used
for discrete optimizations. Hybrid method based PSO and
ACO was developed to estimate energy demand using gross
domestic product, population, import, and export. Huang
et al. [131] incorporated ACOR with PSO to improve the
search ability, investigating four types of hybridization as
follows: (1) sequence approach, (2) parallel approach, (3)
sequence approach with an enlarged pheromone-particle
table, and (4) global best exchange. Among the four strategies
of hybridization, the sequence approach with the enlarged
pheromone table was superior to the other approaches
because the enlarged pheromone table diversi	ed the gener-
ation of new solutions of ACOR and PSO, which prevented
traps into the local optimum. Rahmani et al. [132] used a
new hybrid swarm technique (HAP) to forecast the energy
output of a real wind farm located in Binaloud, Iran. �e
technique consisted of the hybridization of the ACO and
PSO, which were two metaheuristic techniques under the
category of swarm intelligence. �e hybridization of the two
algorithms to optimize the forecasting model led to a higher
quality result with a faster convergence pro	le. Elloumi et
al. [133] illustrated a novel optimization approach based on
multiobjective PSO (MOPSO) and Fuzzy ACO (FACO). �e
basic idea was to combine these two techniques using the
best particle of the Fuzzy Ant algorithm and integrate it as
the best local PSO to formulate a new approach called hybrid
MOPSOwith FACO (H-MOPSO-FACO).�is hybridization
solved the multiobjective problem, which relied on both time
performance criteria and the shortest path.

3.2.5. With SA. Sait et al. [134] proposed a hybrid of PSO
and SA for solving the cell assignment in Cnnos\nano-
wire\MOLecular Hybrid (CMOL). Results showed that the
proposed hybrid algorithm achieved better solution in terms
of bu
er count in reasonable time. Jiang and Zou [135] pro-
posed an improved parameter optimizationmethod based on
traditional PSO algorithm by changing the 	tness function
in the traditional evolution process of SVMs. �en, this PSO
method was combined with SA global searching algorithm
to avoid local convergence that traditional PSO algorithms
usually run into. �is method achieved better results that
reected in the ROC curves in medical images classi	cation
and gained considerable identi	cation accuracy in clinical
disease detection. Niknam et al. [136] proposed a hybrid
PSO and SA (PSO-SA) method to solve the dynamic optimal
power ow (DOPF) problem while the prohibited zones,
valve-point e
ects, and ramp rate constraints were taken into
account. �e hybrid PSO-SA algorithm could do an e�cient
search and explore solution space, while it pro	ted from priv-
ileges of both PSO and SA algorithms. Khoshahval et al. [137]
developed a new parallel optimization algorithm, P-PSOSA,
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for performing the fuel management optimization; they
de	ned two di
erent 	tness function considering the mul-
tiplication factor maximizing and power peaking factor
minimizing objectives simultaneously. Numerical results of
P-PSOSA con	rmed that the proposed algorithm had a great
strength to obtain a near global core pattern with respect
to considered objective functions during suitable consuming
runtime. Du et al. [138] presented a hybrid algorithm based
on improved PSO and SA (IPSOSA) algorithm to solve
the resource constrained multiproject scheduling problem.
Aimed at overcoming the shortcomings of premature con-
vergence of standard PSO, adaptive inertia weight with
cyclical attenuation strategy and SA were employed in the
hybrid algorithm. Zhang et al. [139] proposed an improved
approach to decompose structuring elements of an arbitrary
shape. �ey introduced in the restarted simulated annealing
PSO method, which was the combination of restarted SA
and PSO. Geng et al. [140] introduced robust v-support
vector regression (RSVR) model to forecast port through-
put. In order to search the more appropriate parameters
combination for the RSVR model, they presented a chaotic
simulated annealing PSO (CSAPSO) algorithm to determine
the parameter combination.

3.2.6. With ABC. El-Abd [141] tested a hybrid PSO and ABC
algorithm on the CEC13 testbed.�e hybridization technique
was a component-based one, where the PSO algorithm was
augmented with an ABC component to improve the personal
best of the particles. Sharma et al. [142] proposed a variant
called Local Global variant ABC (LGABC) to balance the
exploration and exploitation in ABC.�e proposal harnessed
the local and global variant of PSO into ABC. �e proposed
variant was investigated on a set of thirteen well-known
constrained benchmarks problems and three chemical engi-
neering problems, which showed that the variant can get
high-quality solutions e�ciently. Kiran and Gündüz [143]
presented a hybridization of PSO and ABC approaches,
based on recombination procedure. �e global best solutions
obtained by the PSO and ABC were used for recombination,
and the solution obtained from this recombination was given
to the populations of the PSO and ABC as the global best
and neighbor food source for onlooker bees, respectively.
Information ow, between particle swarm and bee colony,
helped increase global and local search abilities of the hybrid
approach. Vitorino et al. [144] put forward a mechanism
based on the ABC to generate diversity when all particles
of the PSO converged to a single point of the search space.
�en, the swarm entities switched between two prede	ned
behaviors by using fuzzy rules depending on the diversity of
the whole swarm.

3.2.7. With DE. Maione and Punzi [145] proposed a two-step
design approach. First, DE determined the fractional integral
and derivative actions satisfying the required time-domain
performance speci	cations. Second, PSO determined ratio-
nal approximations of the irrational fractional operators as
low-order, stable, minimum-phase transfer functions with
poles interlacing zeros. Extensive time- and frequency-
domain simulations validated the e�ciency of the proposed

approach. Fu et al. [146] presented a hybrid DE with QPSO
for the unmanned aerial vehicle (UAV) route planning
on the sea. It combined DE algorithm with the QPSO
algorithm in an attempt to enhance the performance of
both algorithms. Experimental results demonstrated that the
proposed method was capable of generating higher quality
paths e�ciently for UAV than any other tested optimization
algorithms. Vasundhara et al. [147] presented an e�cient way
of designing linear-phase 	nite impulse response (FIR) low-
pass and high-pass 	lters using a novel algorithm ADEPSO,
which was hybrid of 	tness based adaptive DE and PSO.
ADEPSO overcame the above individual disadvantages faced
by both algorithms and was used for the design of linear-
phase low-pass and high-pass FIR 	lters. �e simulation
results showed that the ADEPSO outperformed PSO, ADE,
and DE in combination with PSO not only in magnitude
response but also in the convergence speed and thus proved
itself to be a promising candidate for designing the FIR 	lters.
Yu et al. [148] formulated a novel adaptive hybrid algorithm
based on PSO and DE (HPSO-DE) by developing a balanced
parameter between PSO and DE. Adaptive mutation was
carried out on current population when the population
clustered around local optima. �e HPSO-DE enjoyed the
advantages of PSO and DE and maintained diversity of the
population. Compared with PSO, DE, and their variants,
the performance of HPSO-DE was competitive. Wang et al.
[149] proposed a robust hybrid metaheuristic optimization
approach by adding DE mutation operator to the accelerated
PSO (APSO) algorithm to solve numerical optimization
problems. Yadav and Deep [150] proposed a new co-swarm
PSO (CSHPSO) for constrained optimization problems,
which was obtained by hybridizing shrinking hypersphere
PSO (SHPSO) with the DE approach. �e total swarm was
subdivided into two subswarms in such a way that the 	rst
subswarms used SHPSO and second subswarms used DE.
Experiments showed that CSHPSO was a promising new co-
swarmPSOwhich could be used to solve any real constrained
optimization problem.

3.2.8. With Other Approaches. Xu et al. [151] proposed a
hybrid PSO integrated with trust region method. �e sim-
ulation results on some multimodal global optimizations
showed that the algorithm was far more e
ective than linear
decreasing weight PSO (LDWPSO) and sequential quadratic
programming (SQP) to search the global optimum.Mohanty
et al. [152] presented a study on frequency regulation in
isolated hybrid DG system. H-in	nite loop shaping based on
PSO as well as hybrid PSO and HS (PSOHS) controller was
proposed to minimize the frequency deviation. Guo et al.
[153] employed PSO and BBO to propose a hybrid algorithm
termed biogeography-based PSO (BPSO), which could make
a large number of elites e
ective in searching optima. �e
whole population was split into several subgroups; BBO was
employed to search within each subgroup and PSO for the
global search.

3.3. Extensions. �e success of the PSO algorithm as a
single-objective optimizer within continuous search space
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has motivated researchers to extend its use to other areas,
which consist of but not limited to multiobjective optimiza-
tion, constrained optimization, binary optimization, discrete
optimization, combinatorial optimization, and so forth.

3.3.1. Multiobjective Optimization. Multiple objective PSO
(MOPSO) has been proposed to deal with multiobjective
optimization problems, in which the objective function took
Pareto dominance into account when moving the PSO parti-
cles and nondominated solutions were stored so as to approx-
imate the Pareto front. Qiu et al. [154] proposed a MOPSO
with a new gbest selection strategy. �ey used �-means
algorithm and proportional distribution based approach to
select gbest from the archive for each particle of the popu-
lation. A symmetric mutation operator was incorporated to
enhance the exploratory capabilities. �e simulation results
indicated that the proposed algorithmwas highly competitive
in terms of convergence and diversity in comparison with
several state-of-the-art algorithms. Chen et al. [155] presented
an ironless permanent magnet linear brushless motor with
three objective functions: maximal thrust force, minimal
temperature, and minimal volume. An elitist hybrid QPSO
algorithmwithmutationwas used to solve thismultiobjective
optimization problem. Elitist mechanism with crowding dis-
tance sorting was used to improve the number and diversity
of the solutions. Ghanei et al. [156] presented application of
thermal-economic multiobjective optimization of shell and
tube heat exchanger (STHE) using MOPSO to obtain the
maximum e
ectiveness (heat recovery) and the minimum
total cost as two objective functions. Duan et al. [157]
developed a mathematical model based on thermodynamic
analysis of Stirling engine considering regenerative losses and
internal irreversibilities. Power output, thermal e�ciency,
and the cycle irreversibility parameter of Stirling engine
were optimized simultaneously using MOPSO. Amiryouse	
et al. [158] performed a multiobjective optimization for
deep-fat frying of ostrich meat plates. MOPSO was used
to obtain the best solutions. �is problem had three objec-
tive functions that must be satis	ed simultaneously. Results
showed a Pareto where all the points on this Pareto were
the best possible solutions. Ganguly [159] presented a PSO-
based multiobjective planning algorithm for reactive power
compensation of radial distribution networks with uni	ed
power quality conditioner (UPQC) allocation. �e optimal
location, the optimal reactive power compensation required
at the location, and the optimal design parameters of UPQC
were determined by minimizing three objective functions:
the rating of UPQC, network power loss, and percentage
of nodes with undervoltage problem. �ese objectives were
simultaneously minimized to obtain a set of nondominated
solutions usingMOPSO. Zhang et al. [160] combined BBPSO
and sensitivity-based clustering for solving multiobjective
reliability redundancy allocation problems (RAPs). A two-
stage process was performed to identify promising solutions.
A new bare-bones MOPSO (BBMOPSO) was developed
and applied in the 	rst stage to identify a Pareto-optimal
set. �is algorithm mainly di
ered from other MOPSO
algorithms in the parameter-free particle updating strategy,

which was especially suitable for handling the complexity
and nonlinearity of RAPs. Perera et al. [161] applied MOPSO
to identify intermediate debonding damage in the problem
of 	ber-reinforced-polymer-composites- (FRP-) plated RC
beams. �e use of permanently installed 	ber Bragg grating
sensors embedded into the FRP concrete interface or bonded
onto the FRP strip together with the proposed methodology
resulted in an automated method able to operate in an
unsupervisedmode. Cheng et al. [162] proposed an improved
MOPSO with preference strategy (IMPSO-PS) and applied it
to the optimal integration of distributed generation (DG) into
the distribution system. Preference factors were introduced
to quantify the degree of preference for certain attributes in
the constraint-space. In addition to the application of a pop-
ular nondominated sorting technique for identifying Pareto
solutions, the performance of IMPSO-PS was strengthened
via the inclusion of a dynamic selection of the global best,
a novel circular nondominated selection of particles, and a
special mutation operation.

3.3.2. Constrained Optimization. Scholars have proposed
several solutions to constrained optimization problem. For
example, Daneshyari and Yen [163] proposed a cultural-
based constrained PSO to incorporate the information of the
objective function and constraint violation into four sections
of the belief space, speci	cally normative knowledge, spatial
knowledge, situational knowledge, and temporal knowledge.
�e archived information facilitated communication among
swarms in the population space and assisted in selecting the
leading particles in three di
erent levels: personal, swarm,
and global levels. Afshar [164] presented three constrained
versions of PSO algorithm for the e�cient optimal operation
of multireservoir systems using storage/release volumes as
decision variables of the problem. Proposed algorithms were
based on identifying and excluding the infeasible region of
the search space before and during the search. Koulinas et al.
[165] proposed a PSO-based hyperheuristic algorithm for
solving the resource constrained project scheduling problem.
�e hyperheuristic worked as an upper-level algorithm that
controlled several low-level heuristics which operated to
the solution space. �e solution representation was based
on random keys. Active schedules were constructed by the
serial scheduling generation scheme using the priorities of
the activities which were modi	ed by the low-level heuris-
tics of the algorithm. Shan and Ren [166] combined PSO
with direct approach and applied the method to low-thrust
trajectory optimization problems. A double-loop trajectory
optimization algorithmwas developed.�e outer loop of this
algorithm was a modi	ed PSO optimizer, which dealt with
constrained optimization problems and avoided premature

convergence.�e direct approach (fourth-order Runge-Kutta
shooting/parallel shooting method) was adopted as the inner
loop algorithm, whose main task was to correct the particles
provided by the outer loop and ensure that all the constraints
were satis	ed. Yeh andChien [167] proposed an e�cient algo-
rithm for solving a class of constrainedminimal spanning tree
(MST) problems. �e proposed PSO-like strategy for solving
constrained MST problems identi	ed optimal MSTs under
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degree and delay constraints. Singh et al. [168] presented
a novel approach to detect a salient object which involved
two phases. In the 	rst phase, three features such as multi-
scale contrast, center-surround histogram, and color spatial
distribution were obtained. Constrained PSO was used in
the second phase to determine an optimal weight vector to
combine these features to obtain saliencymap to distinguish a
salient object from the image background. Paliwal et al. [169]
presented a systematic approach for determination of opti-
mal mix of resources. �e considered constituent resources
comprised of diesel, photovoltaic (PV), wind, and battery
storage. A technosocioeconomic criterion was formulated in
order to determine optimum combination of resources. PSO
was used to determine optimal component sizing for each
of the con	guration. Cui et al. [170] developed a multitarget
PSO (mPSO) to solve the parallel model of independent-
component-analysis constrained by a 5-parameter Reference
Curve. Shou et al. [171] proposed a hybrid PSO procedure to
solve the preemptive resource constrained project scheduling
problem in which a maximum of one interruption per
activity was allowed. Four types of particle representations
were designed and two schedule generation schemes were
adopted to decode the particle representations. Particle-
updating mechanisms based on the peak crossover operator
were designed for all particle representations.

3.3.3. Discrete Optimization. Discrete PSO (DPSO) was pro-
posed and harnessed to address discrete optimization/integer
programming problems. Chen and Ludwig [172] devised a
PSO-based discrete implementation with a local search strat-
egy (DPSO-LS).�e local search strategy helped to overcome
local optima in order to improve the solution quality. �e
DPSO-LS used the Pittsburgh approach whereby a rule base
was used to represent a particle. �is rule base evolved over
time as to 	nding the best possible classi	cation model. Shen
et al. [173] proposed a novel bivelocity DPSO (BVDPSO)
approach and extended its application to the nondetermin-
istic polynomial complete multicast routing problem (MRP).
First, a novel bivelocity strategy was developed to represent
the possibilities of each dimension being 1 and 0. Second,
BVDPSO updated the velocity and position according to the
learning mechanism of the original PSO in the continuous
domain. Experiments showed BVDPSO outperformed not
only several state-of-the-art and recent heuristic algorithms
for the MRP problems, but also algorithms based on GA,
ACO, and PSO. Chen et al. [174] proposed a revised DPSO
(RDPSO) to solve the permutation ow-shop scheduling
problem with the objective of minimizing makespan (PFSP-
makespan). RDPSO proposed new particle swarm learning
strategies to thoroughly study how to properly apply the
gbest solution and the pbest solution to guide the search
of RDPSO. A new 	ltered local search was developed to
	lter the solution regions that had been reviewed and guided
the search to new solution regions in order to keep the
search from premature convergence. Cai et al. [175] suggested
using a novel DPSO for identifying community structures
in signed networks. Particles’ status had been redesigned
in discrete form so as to make PSO proper for discrete

scenarios. Particles’ updating rules had been reformulated by
making use of the topology of the signed network. Kashan
et al. [176] presented a novel DPSO, which used group-based
operators, in place of arithmetic operators, in the body of
the updating equations analogous to those of the classical
PSO equations. All operators in the new algorithm worked
with constructed cells (groups) rather than parts/machines
(objects). Xu et al. [177] employed a DPSO approach to solve
the requirements contradiction between high transparency
in pass band and high reectance in stop band. Garg and
Singh [178] used �-fuzzy dominance sort based DPSO (-
FDPSO) approach to solve the workow scheduling problem
in the grid. �e metric, fuzzy dominance which quanti	ed
the relative 	tness of solutions in multiobjective domain was
used to generate the Pareto optimal solutions. In addition,
the scheme also incorporated a fuzzy-based mechanism
to determine the best compromised solution. Zong et al.
[179] proposed a DPSO with neighborhood learning factor
algorithm to solve the temporal-spatial conict and conges-
tion for pedestrian-vehicle mixed evacuation. �e proposed
algorithm introduced a neighborhood learning factor to
simulate the subgroup phenomenon among evacuees and
to accelerate the evacuation process. Ezzeldin et al. [180]
used integer DPSO as an optimization technique for the
design of water distribution networks in order to minimize
its total cost. Because the particle swarm was highly sensitive
to its parameters and boundary conditions, the available
restricted boundary conditions were applied. Also, a new
boundary condition called the billiard boundary condition
was introduced, which did not depend on the velocity
clamping that mainly depended on human assumptions.

3.3.4. Binary Integer Programing. 0-1 integer programming
or binary integer programming (BIP) is the special case of
integer programming where variables are required to be 0
or 1. Binary PSO (BPSO) was used to solve this type of
problems. Zhai and He [181] proposed a new immune BPSO
(IBPSO) to solve the problem of instance selection for time
series classi	cation, whose objective was to 	nd out the
smallest instance combination with maximal classi	cation
accuracy. �e proposed IBPSO was based on the BPSO
algorithm. Its immune mechanism included vaccination and
immune selection. Sarath and Ravi [182] developed a BPSO
based association ruleminer, which generated the association
rules from the transactional database by formulating a com-
binatorial global optimization problem, without specifying
the minimum support and minimum con	dence unlike the
a priori algorithm. �e quality of the rule was measured
by a 	tness function de	ned as the product of support
and con	dence. Taha and Abu Al Nadi [183] presented a
maximum likelihood estimate (MLE) to detect the number of
vacant channels in the spectrum. �e resulting MLE needed
exhaustive search to be determined accurately. BPSO was
proposed to solve the problem. Simulation results had shown
signi	cant improvement of the MLE-BPSO estimated over
the conventional techniques by 3–5 dB. El-Maleh et al. [184]
proposed an improved BPSO algorithm and demonstrated
its e
ectiveness in solving the state assignment problem
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in sequential circuit synthesis targeting area optimization.
Experimental results demonstrated the e
ectiveness of the
proposed BPSO algorithm in comparison to other BPSO
variants and in comparison to GA, SimE, and deterministic
algorithms like Jedi and Nova. Erturk et al. [185] proposed
a novel spatial resolution enhancement method using fully
constrained least squares (FCLS) spectral unmixing and spa-
tial regularization based onmodi	ed BPSO to achieve spatial
resolution enhancement in hyperspectral images, without
using an additional image with higher spatial resolution. �e
proposed method had a highly parallel nature with respect
to its counterparts in the literature and was 	t to be adapted
to 	eld-programmable gate array architecture. Zhang et al.
[186] proposed a novel spam detection method that focused
on reducing the false positive error ofmislabeling nonspamas
spam. BPSOwithmutation operator (MBPSO)was employed
as the subset search strategy. �e results showed that the
MBPSO performed better than sequential forward selection
(SFS) and sequential backward selection (SBS). Yin et al. [187]
used a feature selection algorithm according to the separabil-
ity criterion to preselect the discrete cosine transform (DCT)
coe�cients and then employed search algorithm based on
BPSO and SVM to 	nd an optimal combination of the DCT
coe�cients. Yang et al. [188] proposed a modi	ed version of
BPSO (MBPSO), which adopted a di
erent transfer function
and a new position updating procedure with mutation, for
the task allocation problem to obtain the best solution. Each
particle in MBPSO was encoded to represent a complete
potential solution for task allocation. �e task workload and
connectivity were ensured by taking them as constraints for
the problem.Multiple metrics, including task execution time,
energy consumption, and network lifetime, were considered
a whole by designing a hybrid 	tness function to achieve
the best overall performance. Ganesh et al. [189] proposed
entropic BPSO (EBPSO), which generated an entropy map,
the highest value of which was used to localize the ear in
a face image. Experimental results showed the promising
performance of EBPSO for ear detection on four benchmark
face databases: CMU PIE, Pointing Head Pose, Color FERET,
and UMIST.

3.4. eoretical Analysis

3.4.1. Parameter Choice. �e choice of parameters of PSO
has a large impact on its optimization performance [190].
�erefore, how to select or tune the parameters yielding good
results had been the hot topic. Kumar and Chaturvedi [191]
developed a FPSO, in which inertia weight was adaptively
adjusted using fuzzy logic controller (FLC) during the search
process. �e FLC presented had one input and one output
into PSO. Zhang et al. [192] proposed a simple way to
estimate the nonnegative real parameter tuple (omega, �1,
and �2) of standard PSO algorithm using control theory. �e
distribution of complex characteristic roots on the conver-
gence region of particles was studied by means of linear
discrete-time system analysis method. Yang [193] proposed
an improved PSO variant, called PSO with modi	ed velocity
strategy (MVPSO), in which each particle was attracted

by the global best particle and a random particle chosen
from a set of good particles. Simulation results showed that
MVPSO obtained better performance than standard PSO
and two other improved PSO variants. Sun et al. [194]
presented a comprehensive analysis of the QPSO algorithm.
�ey analyzed the behavior of a single particle in QPSO in
terms of probabilitymeasure. Since the particle’s behaviorwas
inuenced by the contraction-expansion (CE) coe�cient, the
goal of the theoretical analysis was to 	nd out the upper
bound of the CE coe�cient, within which the value of the
CE coe�cient selected could guarantee the convergence or
boundedness of the particle’s position. Yassin et al. [195]
found that BPSO algorithmwas subject to several parameters:
swarm size, maximum iterations, and initial positions. �ey
investigated the e
ect of the swarm size parameter on the
convergence of BPSO. �e results over DC motor dataset
indicated that the optimal swarm size for convergence was
between 20 and 30 particles. Wang et al. [196] compared
and analyzed the optimization performance of PSO under
di
erent parameters, in order to guarantee the convergence
of PSO applied to the inverting of ellipsometry. �e result
showed that the range of inertia weight omega from 0.5 to
0.8, the sum of learning parameters �1 and �2 preferably no
more than 3, and a smaller �1 and a bigger �2 ensured the
better optimization performance of PSO. Hao et al. [197]
proposed molecular force model based PSO (MFMPSO).
Two parameters were introduced in theMFMPSO algorithm.
�e orthogonal test design method was applied to optimize
the parameter combinations of three levels and four factors,
which included �(1) and �(ℎ), the population size, and the
iteration number. Xu [198] proposed an adaptive parameter
tuning of PSObased on velocity information (APSO-VI).�is
algorithm introduced the velocity information de	ned as the
average absolute value of velocity of all the particles. A new
strategy presented that the inertia weight was dynamically
adjusted according to average absolute value of velocity,
which followed a given nonlinear ideal velocity by feedback
control. Under the guide of the nonlinear ideal velocity,
APSO-VImaintained appropriate swarm diversity and allevi-
ated the premature convergence validly. Chauhan et al. [199]
proposed three new nonlinear strategies for selecting inertia
weight which played a signi	cant role in particle’s foraging
behavior. �e PSO variants implying these strategies were
named 	ne grained inertia weight PSO (FGIWPSO), double
exponential self-adaptive IWPSO (DESIWPSO), and double
exponential dynamic IWPSO (DEDIWPSO). In FGIWPSO,
inertia weight was obtained adaptively, depending on parti-
cle’s iteration wise performance, and decreased exponentially.
DESIWPSO and DEDIWPSO employed Gompertz function,
a double exponential function for selecting inertia weight.
In DESIWPSO the particles’ iteration wise performance
was fed as input to the Gompertz function. On the other
hand, DEDIWPSO evaluated the inertia weight for whole
swarm iteratively using Gompertz function where relative
iteration was fed as input. Zhang et al. [200] found that
engineering experience could be used to determine the
parameters of an optimization algorithm. �ey analyzed
the dynamic characteristics of PSO through a large num-
ber of experiments and constructed a relationship between
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the dynamic process of PSO and the transition process of
a control system. A novel parameter strategy for PSO was
proven using the overshoot and the peak time of a transition
process. �is strategy provided not only a series of exible
parameters for PSO but also a new way to analyze particle
trajectories that incorporated engineering practices. �e
experimental results showed that the proposed strategy was
e
ective and easy to implement. Kanemasa and Aiyoshi [201]
combined a feedback element as an algorithm tuner with
an original algorithm; the resulting algorithm was applied
to the optimization problem in question. �ey used genetic
programming (GP) to generate tuning rules to automatically
tune the PSO algorithm, namely, augmented PSO by using
GP as a meta-algorithm to solve the learning problem of
automatically generating tuning rules for the parameters in
the PSO algorithm.

3.4.2. Convergence Analysis. PSO may converge to global
optimal or local optimal positions. �e latter is unexpected
for PSO-users. Attempts at mathematically analyzing PSO
convergence exist in literatures. �ese analyses o
er guides
for selection parameters of PSO in another way that guar-
antees global convergence and avoid premature. Wang and
Shen [202] gave the general mathematical description of
PSO. A�erwards, they proved that the solution space of PSO
in normed space and the iterative relations of PSO were
contraction mapping. Using the theorem of Banach space
and contractionmapping principle, they proved the existence
and uniqueness of the convergence position. Sun et al.
[203] presented a convergence analysis and performance
evaluation of QPSO algorithm. �ey investigated in detail
the convergence of the QPSO algorithm on a probabilistic
metric space and proved that the QPSO algorithm was a
form of contraction mapping and converged to the global
optimum. It was the 	rst time that the theory of probabilistic
metric spaces had been employed to analyze a stochastic
optimization algorithm. �ey provided a new de	nition for
the convergence rate of a stochastic algorithm as well as
de	nitions for three types of convergence according to the
correlations between the convergence rate and the objective
function values. Kurihara and Jin’no [204] analyzed the
convergence property of the PSO and its application to the
nonlinear blind source separation system. �e interparticle
communication of the PSO was realized by the past history
of the neighbors and depended on the network structure of
the swarm. Lin [205] considered the router node placement
of wireless mesh networks in a dynamic network scenario.
�ey 	rst modelled a mathematical form for the concerned
problem, then proposed a PSO approach, and, from a theo-
retical aspect, provided the convergence and stability analysis
of the PSO with constriction coe�cient, which was much
simpler than the previous analysis. Zhang et al. [206] studied
an improved BBPSO algorithm with adaptive disturbance
(ABPSO). �ey used stochastic process theory to analyze the
convergence of ABPSO, by regarding each particle’s position
as a stochastic vector. Lin et al. [207] thought the PSO had
a tendency to get stuck in a near-optimal solution especially
for middle and large size problems, and it was di�cult to

improve solution accuracy by 	ne-tuning parameters. Hence,
they proposed a local and global search combined PSO
(LGSCPSOA), analyzed its convergence, and obtained its
convergence quali	cation. Kim and Li [208] suggested the
conventional derivative-based estimation approach was o�en
terminated earlier without converging due to the singularity
if a model was statistically nonidenti	able. To circumvent
this di�culty, a derivative-free global optimization algorithm
was developed by combining PSOwith a derivative-free local
optimization algorithm to improve the rate of convergence of
PSO. �ey further checked the convergence of the proposed
method.

3.5. Parallel Implementation. Parallel computing is a com-
putational form, in which computations are carried out
simultaneously. On one hand, computers using multicore,
multiprocessor, and graphics processing unit (GPU) contain
multiple processing elements within a single machine. On
the other hand, clusters, grids, and clouds employed multiple
computers to work on the same task.

3.5.1. Multicore. PSO can be implemented on multicore
(multiprocessor) conditions. Waintraub et al. [209] used
parallel computation to overcome the huge computational
costs required by PSO. �ey investigated the master-slave
approaches and developed several di
erent PPSO algorithms
exploring the advantages of enhanced neighborhood topolo-
gies implemented by communication strategies in multipro-
cessor architectures. Yu [210] proposed the incorporation of
a local search heuristic into the basic PSO algorithm. �e
new, hybrid metaheuristic was called twin PSO (TPSO). �e
proposed metaheuristic scheme was applied to a ow shop
with multiprocessors scheduling problem.

3.5.2. GPU Computing. GPU is a specialized electronic
circuit designed to rapidly manipulate and alter memory
to accelerate the creation of images in a frame bu
er
intended for output to a display. Modern GPUs are very
e�cient at manipulating computation of PSO. Hung and
Wang [211] focused on the acceleration of PSO for solving
box-constrained, load-balanced optimization problems by
parallelization on a GPU. �ey proposed a GPU-accelerated
PSO (GPSO) algorithm by using a thread pool model and
implement GPSO on a GPU. Numerical results showed
that the GPU architecture 	tted the PSO framework well
by reducing computational timing, achieving high parallel
e�ciency, and 	nding better optimal solutions by using a
large number of particles. Rymut et al. [212] discussed how
to combine particle 	lter (PF) with PSO to achieve better
object tracking. �ey also proposed a parallel resampling
scheme for particle 	ltering running on GPU. �ey showed
the e�ciency of the parallel PF-PSO algorithm on 3D model
based humanmotion tracking. Kumar et al. [213] thought the
applications requiringmassive computations got bene	t from
the GPU with compute uni	ed device architecture (CUDA)
by reducing the execution time. Hence, they presented a
detailed study of parallel implementation of the cooperative
PSO (CPSO). �ey also presented a comparative study on
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CPSO implemented in C and C-CUDA. Awwad et al. [214]
applied GPU computing solution based on CUDA to solve
the topology control problem in hybrid radio frequency
and free space optics wireless mesh networks by adapting
and adjusting the transmission power and the beam-width
of individual nodes according to QoS requirements. �eir
approach was based on a PSO and was implemented on
the NVIDIA GeForce GTX 285 GPU. �e implementation
achieved a performance speedup factor of 392 over a CPU-
only implementation. Chen et al. [215] proposed a PSO-based
algorithm to e�ciently 	nd optimal uniform designs with
respect to the central composite discrepancy (CCD) criterion.
Parallel computation techniques based on state-of-the-art
GPU were employed to accelerate the computations. �ey
further demonstrated that the proposed algorithm could be
extended to incorporate desirable space-	lling properties,
such as the noncollapsing property.

3.5.3. Cloud Computing. Cloud computing is a computing
form in which large groups of remote servers are networked
to allow centralized data storage and online access to com-
puter services or resources. Scholars studied the performance
of PSO implemented in cloud computing. Liu et al. [216]
established a job scheduling model based on the PSO algo-
rithm for cloud computing to reduce the energy consumption
and improve the pro	t. Based on open source cloud com-
puting simulation platform CloudSim, compared to GA and
random scheduling algorithms, the results showed that the
proposed algorithm obtained a better solution concerning
the energy cost and pro	t. Xu and You [217] minimized the
thermal residual stresses (TRS) of the unidirectional ceramic
matrix composites (CMC) with multilayered interphases by
controlling the interphases thicknesses. �e MapReduce was
extended to a new iterativeMapReduce, which was combined
with classical PSO algorithm to develop an iterative MapRe-
duce guided PSO (IMPSO) algorithm.�e IMPSO algorithm
was interfaced with 	nite element code to 	nd an optimal
design for minimizing the TRS within CMCs. Ramezani et
al. [218] developed a comprehensivemultiobjectivemodel for
optimizing task scheduling to minimize task execution time,
task transferring time, and task execution cost.�ey designed
a multiobjective algorithm based on MOPSO method to
provide an optimal solution for the proposed model. To
implement and evaluate the proposed model, they extended
Jswarm package to multiobjective Jswarm (MO-Jswarm)
package. �ey also extended CloudSim toolkit applyingMO-
Jswarm as its task scheduling algorithm. Govindarajan et
al. [219] captured the data from students and analyzed and
clustered the data based on their individual performances
in terms of accuracy, e�ciency, and quality. �e clustering
process was carried out by employing PSO. �e proposed
PSO-based clustering was compared with existing �-means
algorithm for analyzing the performance of intercluster and
intracluster distances. Finally, the processed data was e
ec-
tively stored in the Cloud resources usingHadoop distributed
	le system (HDFS). Ramezani et al. [220] proposed a task-
based system load balancing method using PSO (TBSLB-
PSO) that achieved system load balancing by only transfer-
ring extra tasks from an overloaded VM instead of migrating

the entire overloaded VM. �ey designed an optimization
model to migrate these extra tasks to the new host VMs by
applying PSO. To evaluate, they extended the cloud simulator
(CloudSim) package and used PSO as its task scheduling
model.

4. Applications of PSO

PSO has been used in many applications in various aca-
demic and industrial 	elds so far. Using the analytical tool
provided by “Web of Science Core Collection,” the hottest
application categories are “electrical and electronic engineer-
ing,” “automation control systems,” “communication theory,”
“operations research,” “mechanical engineering,” “fuel and
energy,” “medicine,” “chemistry,” “biology,” and so forth.

4.1. Electrical and Electronic Engineering. PSO was used by
researchers to solve the optimization problems encountered
in electrical and electronic engineering. Ganguly et al. [221]
presented a multiobjective planning approach for electrical
distribution systems under uncertainty in load demand
incorporating DG. �e optimization tool was a MOPSO
variant that used heuristic selection and assignment of
leaders or guides for e�cient identi	cation of nondominated
solutions. Komsiyah [222] used Gaussian PSO and Lagrange
multiplier to solve the EDP of electric power generation,
scheduling the committed generating units outputs so as to
meet the required load demand at minimum operating cost,
while satisfying all units and system equality and inequality
constraint. Feng et al. [223] employed orthogonal signal
correction and PSO in order to detect wound infection by
and improve the performance of electronic nose. Pekşen et
al. [224] proposed a PSO method for estimating the model
parameters of a layered anisotropic earth model such as
horizontal and vertical resistivities and thickness. �e result
was promising and the proposed method could be used for
evaluating one-dimensional direct current data in anisotropic
media. Yang et al. [225] proposed a novel electric vehicle
(EV) charging model. A PSO algorithm was proposed for
the model optimization. Simulation results showed that the
proposed strategy could reduce the operational cost of the
power grid considerately, while meeting the EV owner’s
driving requirement. de Mendonça [226] used PSO and
heuristic information to 	nd the minimum expansion cost
of the electrical energy transmission system. �e proposed
methodology was applied to the Garver system and to two
real equivalent systems for the south and southeast of Brazil.
Liu et al. [227] employed DPSO to systematically investigate
the structural stability and features of tetrahexahedral Pt-
based bimetallic nanoparticles with high-index facets. Aich
and Banerjee [228] applied SVM for developing the model
of electrical discharge machining process, with the aim of
predicting the output with reasonable accuracy. PSO was
employed for the purpose of optimizing SVM parameter
combinations. Chou et al. [229] surveyed defects of reservoir
grounding system, considering the performance of lightning
protection and improved design, based on soil drilling data
and the PSO technique. �ey showed PSO was indeed
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better than conventional planning and design method. Lee
et al. [230] applied an electrical resistance tomography tech-
nique combining the PSO algorithm with the Gauss-Newton
method, to the visualization of two-phase ows. �akral and
Bakhshi [231] employed PSO with negative factor counting
technique and inverse iteration method, for designing novel
binary and ternary copolymers based on thiophene, pyrrole,
and furan skeletons. Fister et al. [232] tried to use the semantic
tools such as resource de	nition framework (RDF) and RDF
query language (SPARQL) for the optimization purpose.
�ese tools were combined with PSO and the selection of
the best solutions depends on its 	tness. Aghaei et al. [233]
presented a multiobjective optimization algorithm for the
multistage distribution expansion planning (MDEP) in the
presence of DGs using nonlinear formulations. �e objective
functions of the MDEP consisted of minimization of costs,
energy-not-distributed, active power losses, and voltage sta-
bility index based on short circuit capacity. A modi	ed PSO
algorithm was developed and used for this multiobjective
MDEP optimization. Selakov et al. [234] proposed a practical
new hybrid model for short-term electrical load forecasting
based on PSO and SVM. Proposed PSO-SVM model was
targeted for forecast load during periodswith signi	cant tem-
perature variations. �e proposed model detected periods
when temperature signi	cantly changed based on weather
(temperature) forecast and decided whether the model could
be trained just on recent history. Shirvany et al. [235] used
a modi	ed PSO to solve the electroencephalography (EEG)
source localization problem.�emethod was applied to non-
invasive EEG recording of somatosensory evoked potentials
for a healthy subject. Tungadio et al. [236] discussed the
application of PSO to solve the state estimation problem,
that is, to estimate the state variables of the power system by
minimizing all measurement errors available at the control
center. PSO was shown to be more e
ective than GA.

4.2. Automatic Control System. PSO has found several appli-
cations in automatic control systems. Cai and Yang [237]
proposed an improved PSO-based approach for a team of
mobile robots to cooperatively search for targets in complex
unknown environments. �e improved cooperation rules
for a multirobot system were applied in the potential 	eld
function, which acted as the 	tness function of the PSO.
Kolomvatsos and Hadjie�ymiades [238] held a negotiation
between intelligence agents, which undertook the respon-
sibility of representing buyers and sellers and negotiated
over the conclusion of purchases. �ey studied concurrent
negotiations between a buyer and a set of sellers. �e PSO
algorithm was adopted by each thread, which followed a
speci	c strategy and adopted swarm intelligence techniques
for achieving the optimal agreement. Pandey et al. [239]
presented the load frequency control (LFC) problem using
di
erent optimization algorithms for two types of power
system con	gurations. �e control scheme proposed was
based on linear matrix inequalities with its parameters tuned
by PSO. Štimac et al. [240] applied PSO to tune PID
controller, using active magnetic bearing that suspended the
rotating sha� and maintained it in levitated position by

applying controlled electromagnetic forces on the rotor in
radial and axial directions. Nedic et al. [241] proposed a
new cascade load force control design for a parallel robot
platform. A parameter search based on PSO was suggested
to e
ectively search the parameters of the cascade controller.
Simulation results showed the advantages of the proposed
optimal tuned cascade controller to solve the formulated
tracking problem in relation to the classical proportional-
integral controller. Chang and Chen [242] aimed at the PID
control system design for multivariable input and multi-
variable output (MIMO) processes. An improved version
of PSO algorithm was utilized to design PID control gains
in MIMO control systems. �e velocity updating formula
of the developed algorithm included a new factor, that is,
the best particle of each subpopulation, to enhance the
search capacity. Xiang et al. [243] proposed a new sensor-
less control scheme without the use of a position feedback
sensor. With the help of the system identi	cation technique
and PSO, the control scheme showed a satisfactory command
tracking performance for the conducting polymer actuator’s
step and dynamic displacement responses, especially under
a disturbance, without needing a physical feedback loop,
but using a simulated feedback loop. Danapalasingam [244]
presented an autonomous helicopter stabilization in the
presence of a wind disturbance. A controller was designed
based on the nonlinear adaptive output regulation and robust
stabilization of a chain of integrators by a saturated feedback
to stabilize the position and velocity of a helicopter. PSO
was applied to automate the tuning process. Mahmoodabadi
et al. [245] presented a novel MOPSO called Ingenious-
MOPSO and compared its capability with three well-known
multiobjective optimization algorithms. �ey applied the
proposedmethod to an intellectual challenge in robotics, that
is, a biped robot walking in the lateral plane on slope. Zhong
et al. [246] presented an improved PID intelligent control
algorithm, which was applied to the electric gas pressure
regulator. �e algorithm used the improved radial basis
function (RBF) neural network based on PSO algorithm to
make online adjustment on PID parameters. Both theoretical
analysis and simulation result showed that the algorithm
shortened the step response time and improved tracking
performance. Perng et al. [247] proposed a combination of
PSO and RBFNN to determine the optimal operating point
for the PID controller of a wind turbine and to identify
the stability regions in the parameter space. Huang and Li
[248] utilized an improved PSO with bounded constraints
technique on velocity and positioning for adjusting the gains
of a PID and iterative learning control (MC) controllers.
Simulations and experiment results showed that the proposed
controller could reduce the error signi	cantly a�er two
learning iterations. �e developed method using bounded
constraints technique provided valuable programming tools
to practicing engineers. Nisha and Pillai [249] demonstrated
control accuracy and computational e�ciency of nonlinear
model predictive control (NMPC) strategy, which utilized
a probabilistic sparse kernel learning technique called rel-
evance vector regression (RVR) and PSO with controllable
random exploration velocity (PSO-CREV).
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4.3. Communication eory. An interesting application area
of PSO is communication theory. Youse	 et al. [250] pre-
sented the design procedure and implementation of a dual
band planar quadrature hybrid with enhanced bandwidth.
Small dual frequency transformers in two sections were
used to modify conventional broad band hybrid coupler
for having arbitrary dual band operation frequencies. By
merging compilers and full-wave simulators, PSO was used
to achieve proper values to have desired goals. Sun et al. [251]
applied PSO algorithm to design ultrawideband (UWB) pulse
waveform, which was converted into a constraint problem
with multiband chirp signals. Yongqiang et al. [252] inves-
tigated the receive antenna selection problem to maximize
capacity in wireless MIMO communication system, which
could be formulated as an integer programming optimization
problem and could not be directly solved because of its
nonconvex characteristics caused by the discrete binary
antenna selection factor. Hence, they introduced PSO, in
which the particle was de	ned as the discrete binary antenna
selection factor and the objective function was associated
with the capacity corresponding to the speci	ed antenna
subsection represented by the particle. Chiu et al. [253]
presented a method for determining the required number
and locations of transmitting antennas (TXs) to optimize
wireless propagation coverage in an indoor UWB commu-
nication system. �ey used the 3D ray-tracing technique
associated with a PSO and Asynchronous PSO (APSO) for
optimizing the TXs location in an indoor environment.
Minasian and Bird [254] applied PSO as a design tool for a
parasitically coupled microstrip antenna array. �e antenna
was characterized by a unique nonintuitive design which
resulted from an application of PSO with no constraints
implemented on the shape of the array during optimization
apart from the maximum dimensions. Zubair and Moinud-
din [255] used PSO for joint optimization of three di
erent
shape-printed monopole antennas, namely, printed square
monopole antenna, printed circular monopole antenna, and
printed hexagonal monopole antenna, for UWB applica-
tions. Kim and Lee [256] applied metaheuristic to solve the
optimum scheduling of multiple channels and time slots in
multihop networks. SA and PSO were adopted to schedule
the resources. �e simulation results demonstrated that
PSO-based scheduling outperformed SA-based scheduling in
terms of end-to-end delay. Yazgan and Hakki Cavdar [257]
comparatively studied PSO and least mean square (LMS)
algorithms to estimate the optical communication channel
parameters for radio over 	ber systems. PSO reached better
mean square error values, when selecting high noisy 	ber
optical channels or free space optical channels. Rabady and
Ababneh [258] employed PSO to reach a global optimal
design for optical interference 	lters, which were widely
used in modern optical communication systems, biomedical
applications, astronomy, and many others. Das et al. [259]
applied ANN training with PSO for the problem of channel
equalization. Existing applications of PSO to ANN training
had only been used to 	nd optimal weights of the network.
Novelty in this paper was that it also took care of appropriate
network topology and transfer functions of the neuron.
�e PSO algorithm optimized all the variables, including

network weights and network parameters. Scott-Hayward
and Garcia-Palacios [260] introduced a resource allocation
solution capable of handlingmixedmedia applicationswithin
the constraints of a 60 GHz wireless network. A new channel
time allocation PSO (CTA-PSO) was proposed to solve the
network utility maximization resource allocation problem.
CTA-PSO optimized the time allocated to each device in the
network in order to maximize the quality of service expe-
rienced by each user. Omidvar and Mohammadi [261] used
PSO in intelligent choosing of number of message copies.
Regardingmessage delivery ratio and network overhead, PSO
greatly helped in 	nding the suitable number of copies. Kuila
and Jana [262] presented linear/nonlinear programming for-
mulations of energy e�cient clustering and routing problems
for wireless sensor networks. �ey proposed two PSO-based
algorithms to solve the optimization problem.

4.4. Operations Research. PSOs have been employed to
solve problems in operations research. Liu and Wang [263]
proposed a new task scheduling model. In the model, the
task execution time was optimized in view of both the
task running time and the system resource utilization. �ey
improved the standard PSO and introduced a simple muta-
tion mechanism and a self-adapting inertia weight method
by classifying the 	tness values. Che et al. [264] proposed
a novel method based on the analytic network process and
turbo PSO to evaluate partners and to determine an optimal
supply chain network pattern and production-distribution
mode. Hajipour and Pasandideh [265] focused on deter-
mination of the number of required facilities along with
the relevant allocation process. �ey 	rst proposed a novel
biobjective facility location problem within batch arrival
queuing framework under capacity, budget, and nearest-
facility constraint. �en, PSO algorithm with considering
a speci	c representation process was proposed to solve the
biobjective problem. Cabrerizo et al. [266] used PSO to
solve the granulation of the linguistic terms problem. A
performance index was maximized by a suitable mapping of
the linguistic terms on information granules. Prescilla and
Selvakumar [267] applied a modi	ed BPSO algorithm and a
novel BPSO algorithm to solve the real-time task assignment
in heterogeneous multiprocessor. �e problem consisted of a
set of independent periodic tasks, which had to be assigned
to a heterogeneous multiprocessor without exceeding the
utilization bound. �e objective was to schedule maximum
number of tasks with minimum energy consumption. Duan
et al. [268] developed a multiple UCAVs cooperative air
combat simulation platform, which was based on PSO,
ACO, and game theory. �e Matlab program was used as
the developing tool. �e practitioners could investigate the
inherent mechanism by applying game theory to solve the
mission decision-making problem of multiple UCAVs in
attacking multiple objects. Belmecheri et al. [269] proposed
a PSO with a local search to solve the vehicle routing
problem (VRP) with heterogeneous eet, mixed backhauls,
and time windows. Hu et al. [270] proposed a hybrid chaos
PSO (HPSO) to solve VRP with time window. �e chaos
algorithm was employed to reinitialize the particle swarm.
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An e�cient insertion heuristic algorithm was also proposed
to build the valid vehicle route in the particle decoding
process. A premature convergence judgment mechanismwas
formulated and combined with the chaos algorithm and
Gaussian mutation into HPSO when the particle swarm fell
into the local convergence. Al Badawi and Shatnawi [271]
developed an e�cient method based on PSO to solve the
multiprocessor task scheduling problem, which determined
the assignment of tasks to the processors in a multiproces-
sor environment. Goksal et al. [272] presented a heuristic
solution approach based on PSO, in which a local search
was performed by variable neighborhood descent algorithm
to solve the VRP with simultaneous pickup and delivery.
Zhang et al. [273] 	rst formulated and described the energy-
aware real-time task scheduling problem in heterogeneous
multiprocessors.�en they proposed a PSO-based algorithm,
which could successfully reduce the energy cost and the
time for searching feasible solutions. Kechagiopoulos and
Beligiannis [274] designed a PSO-based algorithm, aiming
at the e�cient solution of urban transit routing problem,
which comprised an NP-hard problem that dealt with the
construction of route networks for public transit networks.

4.5. Mechanical Engineering. A few applications of PSO are
related to mechanical engineering. Ming et al. [275] inves-
tigated the implicit relationship between the compositions
and mechanical properties of as-cast Mg-Li-Al alloys. A
momentum back-propagation (BP) neural network with a
single hidden layer was established. PSO was applied to
optimize the BP model. Chen et al. [276] aimed to develop
a method for reliability-based optimum design of composite
structures. A procedure combining PSO and 	nite element
analysis (FEA) was proposed. Examples showed that the pro-
posed method had good stability and was e�cient in dealing
with the probabilistic optimal design of composite structures.
Mohan et al. [277] evaluated the use of frequency response
function (FRF) with the help of PSO technique, for structural
damage detection and quanti	cation. It was observed that
the use of FRF as response of damaged structure had led
to better accuracy, since it contained data related to mode
shape in addition to natural frequencies. Chen et al. [278]
applied a surrogate based PSO algorithm, which combined
the surrogate modeling technique and PSO, to the reliability-
based robust design (RBRD) of composite pressure vessels.
An optimization problem for maximizing the performance
factor was formulated by choosing the winding orientation
of the helical plies in the cylindrical portion, the thickness
of metal liner, and the drop-o
 region size as the design
variables. Strength constraints for composite layers and the
metal liner were constructed by using Tsai-Wu failure cri-
terion and Mises failure criterion, respectively. Zhang et al.
[279] presented a methodology for the identi	cation of
parameter values in the Barcelona basic model (BBM) by
inverse analysis of the experimental cavity pressure-cavity
strain curve from pressure-meter tests in unsaturated soils.
A novel parallel PSO algorithm was utilized to minimize
the di
erence between measured and computed values on
the cavity pressure-cavity strain curve. Wang et al. [280]

proposed a decomposition-based multiobjective di
erential
evolution PSO (DMDEPSO) algorithm for the design of
a tubular permanent magnet linear synchronous motor
(TPMLSM), which took into account multiple conicting
objectives. DMDEPSO hybridized DE and PSO together, 	rst
decomposed the multiobjective optimization problem into a
number of single-objective optimization subproblems, each
of which was associated with a Pareto optimal solution, and
then optimized these subproblems simultaneously. Lazrag et
al. [281] aimed to identify all the hydraulic parameters of
sand by using a unique column test, which was a gravity
drainage test where only the ow-rate temporal evolution
was measured. �ey used several tensiometers installed in
di
erent positions along the column to measure the pressure
head inside the soil sample. Inverse analysis was performed
thanks to the PSO algorithm and the 	nite element modeling
of the column test. Lee et al. [282] 	rst developed 3D
numerical models of a fractured femur with the locking
compression plates (LCP). �en, the best screw position and
number of LCPs were determined by using a simulation-
based PSO algorithm, in order to discover the best number
and positions of LCP screws to achieve acceptable 	xa-
tion stability. Lake et al. [283] used PSO to optimize the
geometry of a slotted MEMS resonator, in order to reduce
energy dissipation from thermoelastic dissipation (TED).�e
optimization technique combined fundamental physics with
PSO to navigate the complicated design space that arises
from multiphysical problems. Vosoughi and Gerist [284]
proposed a hybrid optimization technique that combines
FEA, continuous GA, and PSO, for damage detection of lam-
inated composite beams. Ribeiro et al. [285] investigated the
geometric e
ects (thickness, width, and internal cell angle) of
auxetic structures made of recycled rubber composites based
on experimental and numerical data. �e response surface
models integrated with the PSO and FEA were proposed
in order to obtain a range of solutions that provided useful
information to the user during the selection of geometric
parameters for reentrant cells. Kitak et al. [286] presented
a method for determination of heat transfer coe�cients for
	nite-element method housing model of medium-voltage
switchgear cell. Suggested method was based on the PSO
algorithm.A real testmodel of partitionwall had been created
as well as an equivalent numerical 	nite-element model.
Kalatehjari et al. [287] applied PSO in 3D slope stability
problem to determine the critical slip surface of soil slopes.
In the contrast, past publications were limited to 2D slope
stability analysis.

4.6. Civil Engineering. PSO was widely used to solve the
optimization problems existing in civil engineering. Ashuri
and Tavakolan [288] presented a hybrid GA-PSO approach
to solve complex time-cost-resource optimization problem
in construction project planning. �e proposed method also
used the fuzzy set theory to characterize uncertainty about
the input data (i.e., time, cost, and resources required to
perform an activity). Experiments showed that the proposed
fuzzy enabled hybrid GA-PSO approach was superior to
existing optimization algorithms at 	nding better project
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schedule solutionswith less total project cost, less total project
duration, and less total variation in resource allocation.
Bozorgi-Amiri et al. [289] investigated a relief chain design
problem where not only demands but also supplies and the
cost of procurement and transportation were considered as
the uncertain parameters. An e�cient solution approach
based on PSO was developed in order to solve the proposed
mathematical model. Sadoghi Yazdi et al. [290] used a
neurofuzzy model in conjunction with PSO for calibration
of soil parameters used within a linear elastic-hardening
plastic constitutive model with the Drucker-Prager yield
criterion. �e neurofuzzy system was used to provide a
nonlinear regression between the deviatoric stress and axial
strain obtained from a consolidated drained triaxial test on
samples of poorly graded sand. �e soil model parameters
were determined in an iterative optimization loop with PSO
and an adaptive network based on a fuzzy inference system
such that the equations of the linear elastic model and (where
appropriate) the hardening Drucker-Prager yielded criterion
are simultaneously satis	ed. Bolat et al. [291] developed a
particle swarm optimization (PSO) algorithm to deal with
car-call allocation problem. In vertical transportation, when
a passenger makes a hall call by pressing a landing call
button installed at the oor and located near the cars
of the elevator group, the complex-elevator-group-control
system must allocate one of the cars of the group to the
hall call. Babu and Vijayalakshmi [292] presented a hybrid
model PSO-GA, aimed at e
ectively utilizing local and global
search capabilities of PSO and GA, respectively, to reduce
the computational burden. �eir analyses on di
erent water
distribution networks uncovered that the proposed hybrid
model was capable of exploring the optimal combination of
pipe diameters with minimal computational e
ort. Mohan
et al. [293] showcased the e�cacy of PSO and GA in
damage assessment of structures, for early detection of cracks,
corrosion, and structural failure in aging structures. �e
results showed the e
ectiveness of PSO in crack identi	cation
and the possibility of implementing it in a real-time structural
health monitoring system for aircra� and civil structures.
Asadnia et al. [294] presented the application of an improved
PSO technique for training an ANN to predict water levels
for the Heshui Watershed, China. �e results indicated that
the LM-NN model performed poorly in predicting the low
and peakwater levels in comparison to the PSO-basedANNs.
Moreover, the IPSONN model was superior to CPSONN
in predicting extreme water levels. Lastly, IPSONN had a
quicker convergence rate compared to CPSONN. Yan et al.
[295] presented a new imaging-based intelligent method for
quantitatively rating the corrosion states of weathering steel
bridges. To enhance the performance of a SVM in corrosion
state classi	cation, a PSOwas developed to obtain the optimal
parameters of the SVM. �eir comparative study indicated
that PSO-SVM could achieve better classi	cation accuracy
rates than ANN did. Wang and Li [296] advanced PSO and
applied it to 	nd e
ectively near-optimal solutions to the
redundancy allocation problem of multistate systems with
bridge topology, which was a commonly used structure for
load balancing and control in applications such as electric

power generation and transmission, transportation and com-
puter networks, and electronic circuits. Sadeghi et al. [297]
used an improved PSO to optimize a hybrid vendor-managed
inventory and transportation problem with fuzzy demand.
�e parameters of both algorithms were calibrated using the
Taguchi method to have better quality solutions. Kanović
et al. [298] presented the comparison of some well-known
global optimization techniques in optimization of an expert
system controlling a ship locking process. �e purpose was
to 	nd the best algorithm for optimization of membership
function parameters of fuzzy expert system for the ship-
lock control. �e results con	rmed that all these procedures
showed similar results and provided overall improvement of
ship-lock operation performance.

4.7. Fuel and Energy. PSO had been introduced for the fuel
and energy area. Mandal et al. [299] described the problem
of short-term wind power production forecasting based on
meteorological information. Aggregated wind power fore-
casts were produced for multiple wind farms using a hybrid
intelligent algorithm that used a data 	ltering technique
based on wavelet transform (WT) and a so� computing
model based on neural network, which was optimized by
using PSO algorithm. Chao [300] presented an adaptive
maximum power point (MPP) tracking approach for PV
power generation system. An optimization approach was
proposed on the basis of a PSO algorithm for the complexity
reduction in the determination of weighting values. Chen
et al. [301] proposed chaotic improved PSO-based mul-
tiobjective optimization (MOCIPSO) and improved PSO-
based multiobjective optimization (MOIPSO) approaches,
for solving complex multiobjective, mixed integer nonlinear
problems such as minimization of power losses and L index
in power systems simultaneously. Hu et al. [302] presented
a data-driven method for estimating the capacity of Li-ion
battery based on the charge voltage and current curves. An
adaptation of PSO was proposed to 	nd the optimal combi-
nation of feature weights for creating a kNN regressionmodel
thatminimizes the cross validation (CV) error in the capacity
estimation. Tabet et al. [303] used a mathematical model
to determine the solar radiation incident on an inclined
surface and the optimumslope angles for eachmonth, season,
and year are calculated for solar hybrid collectors. PSO
method was applied to obtain the tilt angle setting of the
tilt angle of photovoltaic thermal (PVT) hybrid collector.
�e objective was to improve the e�ciency of PVT collector.
Bahrami et al. [304] thought STLF (short-term electric load
forecasting) played an important role in the operation of
power systems. A new model based on combination of the
WT and grey model (GM) was presented for STLF and was
improved by PSO algorithm. Askarzadeh [305] studied the
performance of di
erent PSO variants for estimating Iran’s
electricity demand. Seven PSO variants, namely, original
PSO, PSO-w (PSO with weighting factor), PSO-cf (PSO with
constriction factor), PSO-rf (PSO with repulsion factor),
PSO-vc (PSO with velocity control), CLPSO (comprehensive
learning PSO), and a MPSO (modi	ed PSO), were used
to 	nd the unknown weighting factors based on the data



Mathematical Problems in Engineering 21

from 1982 to 2003. Shara	 and ElMekkawy [306] proposed
a novel approach for optimal design of hybrid renewable
energy systems (HRES) including various generators and
storage devices. �e epsilon-constraint method was applied
to minimize simultaneously the total cost of the system,
unmet load, and fuel emission. A PSO-simulation based
approach was used to tackle the multiobjective optimization
problem. Garćıa-Triviño et al. [307] presented and evaluated
three energy management systems (EMSs) based on PSO
for long-term operation optimization of a grid-connected
hybrid system. It was composed of wind turbine (WT) and
PV panels as primary energy sources and hydrogen system
(fuel cell, electrolyzer and hydrogen storage tank) and battery
as energy storage system (ESS). Biao et al. [308] proposed
and established an electricitymarket based joint optimization
scheduling model of thermal power plants, from the per-
spective of economics and environmental science. Mutation
PSO (MPSO) was proposed to solve the model. Using an
authentication instance, they compared and analyzed the
performances of the MPSO method and the mixed integer
programmingmethod in solving the model. Chen et al. [309]
proposed a slidingmode extremum seeking control (SMESC)
of chaos embedded PSO (CEPSO) algorithm, applied to the
design of MPP tracking in wind power systems. Its features
were that the control parameters in SMESC were optimized
byCEPSO,making it unnecessary to change the output power
of di
erent wind turbines, the designed in-repetition rate
was reduced, and the system control e�ciency was increased.
Seyedmahmoudian et al. [310] aimed to employ PSO in MPP
detection, while most conventional MPP tracking methods
developed errors under certain circumstances and reduced
the e�ciency of PV systems even further. Aman et al. [311]
presented a new approach for optimum simultaneous multi-
DG placement and sizing based on maximization of system
loadability without violating the system constraints. DG
penetration level, line limit, and voltage magnitudes were
considered as system constraints. Hybrid PSO algorithm was
also proposed to 	nd the optimum solution considering
maximization of system loadability and the corresponding
minimum power losses. Xiao and Huang [312] proposed an
optimization method combining PSO with FEA to design
the heating system for rapid thermal cycling molding mold,
aiming at high heating e�ciency and uniform cavity surface
temperature distribution. Lian et al. [313] proposed a MPP
tracking method based on PSO in order to track the global
maximum point. �e proposed method was better than
conventional MPP tracking methods such as perturb-and-
observemethod that could only track the 	rst localmaximum
point and stop progressing to the next maximum point.

4.8. Medical Engineering. Inmedicine, Qasem and Shamsud-
din [314] introduced a time variant MOPSO (TVMOPSO)
of RBF network for diagnosing the medical diseases. �e
approach was tested on three standard datasets from UCI
machine learning repository. Zhang et al. [315] developed an
adaptiveCPSO to train the parameters of feed-forward neural
network, with the aim of accurate classi	cation of magnetic
resonance (MR) brain images. �eir results on 160 images

showed the classi	cation accuracy of the proposed method
was 98.75%. Guo et al. [316] proposed an adaptive PSO with
neighborhood search to obtain the position and orientation
of the medical microdevices. Experimental results showed
that the tracking method was valid and the modi	ed algo-
rithm succeeded in dealing with the nonlinear system of
equations in localization. Chang et al. [317] applied a PSO
model to construct a decision-making system for diseases
identi	cation. �e average forecasting accuracy for breast
cancer was 97.4% and for liver disorders was 76.8%. Chen
et al. [318] proposed an analytical approach by integrating
PSO and the 1-NN method. �e proposed approach was
applied to an actual case on the diagnosis of obstructive
sleep apnea (OSA). Sung and Chiang [319] examined wireless
sensor networkwith real-time remote identi	cation using the
Android study of things (HCIOT) platform in community
healthcare. An improved PSO method was proposed to
e�ciently enhance physiological multisensors data fusion
measurement precision in the Internet of �ings (IOT)
system. Cruz-Aceves et al. [320] presented a novel image seg-
mentation method based on multiple active contours driven
by PSO (MACPSO), which was used to segment the human
heart and the human le� ventricle from datasets of sequential
computed tomography and MR images, respectively. Subasi
[321] proposed a novel PSO-SVM model that hybridized the
PSO and SVM in order to improve the electromyography
(EMG) signal classi	cation accuracy. Zhang et al. [322]
proposed a novel hybrid system to classify a given MR brain
image as either normal or abnormal. �ey used PSO to
optimize the parameters ! and sigma, which were the key
parameters of kernel SVM (KSVM). �e results showed that
the PSO was more e
ective to build optimal KSVM than
random selection method. Mangat and Vig [323] discussed
a rule mining classi	er called DA-AC (dynamic adaptive-
associative classi	er), which was based on a dynamic particle
swarm optimizer. It could avoid premature convergence and
provided a better value in every dimension. �e method
was then applied to predict life expectancy of postoperative
thoracic surgery patients. Mandal et al. [324] formulated
the 	tting energy minimization problem to be solved using
PSO technique. �e algorithm was developed for two-phase
level set implementation of the Chan and Vese model and it
was successfully utilized for both scalar-valued and vector-
valued medical images. Hsieh et al. [325] proposed a class
of hyperrectangular composite neural networks (HRCNNs)
of which synaptic weights could be interpreted as a set of
crisp If-�en rules and proposed a PSO-based fuzzy hyper-
rectangular composite neural network (PFHRCNN) which
applied PSO to trim the rules generated by a trainedHRCNN
while the recognition performance would not be degraded
or even be improved. Ganapathy et al. [326] proposed a
new pattern classi	cation system by combining temporal
features with fuzzy min-max (TFMM) neural network based
classi	er for e
ective decision support in medical diagnosis.
A PSO algorithm based rule extractor was also proposed for
improving the detection accuracy.

4.9. Chemical Engineering. In chemistry, �akral et al. [327]
adopted PSO along with negative factor counting technique
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and inverse iteration method (IIM) for investigating the elec-
tronic properties of a model binary copolymer, of Type I class
of quasi one-dimensional polymeric superlattices. Parastar
et al. [328] proposed a multivariate curve resolution-PSO
(MCR-PSO) algorithm to exploit pure chromatographic and
spectroscopic information from multicomponent hyphen-
ated chromatographic signals. Khajeh et al. [329] developed a
simple and fast method for preconcentration and determina-
tion of trace amount ofmethylene blue fromwater samples by
silver nanoparticles based solid-phase extractionmethod and
UV-Vis spectrophotometry. Response surface methodology
and hybrid of ANN-PSO were used to develop predic-
tive models for simulation and optimization of solid-phase
extractionmethod.Wu et al. [330] predictedCO2 solubility in
polymers by RBF-ANN, based on a chaotic self-adaptive PSO
(CSPSO) and fuzzy clusteringmethod.�e proposedmethod
was also used to investigate solubility of CO2 in polystyrene,
polypropylene, poly(butylene succinate), and poly(butylene
succinate-co-adipate), respectively. Khajeh and Dasta!an
[331] proposed a hybrid of ANN and PSO to develop
predictive models for simulation and optimization of solid-
phase extractionmethod, with the aim of developing a simple
and fast method for preconcentration and determination
of trace amount of molybdenum from water samples by
silver nanoparticles based solid-phase extractionmethod and
UV-Vis spectrophotometry. �akral et al. [332] investigated
the electronic properties of the novel binary and ternary
copolymers using PSO in combination with simple negative
factor counting and inverse iteration method, using the ab
initio Hartree Fock crystal orbital band structure results
of the homopolymers, namely, polypyrrolo[3, 4-C]pyrrole,
polythieno[3, 4-C]thiophene, and polyfurano[3, 4-C]furan.
Sun and Li [333] provided two improved mathematical
expressions of attenuation function to quantify the e
ect
of water in the process of methanol transformed to ole	ns
on SAPO-34. Double PSO was employed to minimize the
error objective function and the calculated values agree well
with the experimental data. Skvortsov [334] researched on
the rotation ambiguity (RA) in multivariate curve resolution
(MCR), which was an undesirable case when the physico-
chemical constraints were not su�ciently strong to provide
a unique resolution of the data matrix of the mixtures into
spectra and concentration pro	les of individual chemical
components. �ey proposed a method to estimate RA with
charged PSO (cPSO). cPSO-MCR was shown to be capable
of estimating the strength of the constraints and of revealing
RA in noisy data. Khansary and Sani [335] aimed for the
prediction of liquid-liquid equilibria (LLE),Wilson, universal
quasi chemical (UNIQUAC) and nonrandom two liquid
(NRTL) models were used. Evolutionary algorithms such as
GA and PSO were used for estimation of binary interaction
parameters of these models. �e reliability of GA and PSO
in LLE applications was successfully approved. Nasimi and
Irani [336] combined PSOwith a BP algorithm to form a new
learning algorithm for training arti	cial neural networks.
�is strategy was applied to model a highly nonlinear system
of yeast fermentation bioreactor. Based on the results com-
parison, the PSO-BP model was found to be superior to the
BP-ANN model in identi	cation of nonlinear systems.

4.10. Biological Engineering. Saraswathi et al. [337] used a
combination of integer-coded GA and PSO, coupled with
the neural-network-based extreme learning machine (ELM),
for gene selection and cancer classi	cation. �e proposed
algorithm could handle sparse data and sample imbalance.
Mansour et al. [338] presented a PSO-based algorithm for
predicting protein structures in the 3D hydrophobic polar
model. Starting from a small set of candidate solutions, their
algorithm e�ciently explored the search space and returns
3D protein structures with minimal energy. Karabulut and
Ibrikci [339] proposed a PSO-based motif-	nding method
that utilized a proven Bayesian scoring scheme as the 	tness
function to identify transcription factor binding sites, which
was a vital task in contemporary biology, since it helped
researchers to comprehend the regulatorymechanismof gene
expression. Liu et al. [340] established a classi	er based
on the two-layer PSO (TLPSO) algorithm and uncertain
training sample sets. Samples of di
use large B cell lymphoma
(DLBLC) gene expression data were used for training and
validating. �e classi	cation stability and accuracy by the
proposedTLPSO algorithm increased signi	cantly compared
with the results obtained by using algorithms known as PSO
and �-means. Salahi et al. [341] applied a variant of PSO
with linear decreasing inertia weight to solve the problem of
	nding the globalminimumofmultifunnel-shaped functions
with many local minima, which was a well-known and
interesting problem in computational biology. Du et al. [342]
presented construction of gene network using combined
QPSO and K2 algorithm. Results showed QPSO-K2 algo-
rithmperformed better than stand-aloneK2 andQPSO for all
datasets. Chuang et al. [343] compared patients with high and
low facial emotion perception (FEP) performances (" = 89
and 93, resp.). A PSO algorithm was used to identify the

best single-nucleotide polymorphisms (SNP) barcodes, that

is, the SNP combinations and genotypes that revealed the

largest di
erences between the high and low FEP groups.
Mandal and Mukhopadhyay [344] organized the feature
selection problem as a graph-theoretic problem where a
feature-dissimilarity graph was shaped from the data matrix.
�ey proposed amultiobjective BPSO that optimized average
node-weight and average edge-weight of the candidate sub-
graph simultaneously. �e proposed algorithm was applied
for identifying relevant and nonredundant disease-related
genes from microarray gene expression data. Chen et al.
[345] developed a novel method utilizing PSO combined
with a decision tree as the classi	er to achieve e�cient
gene selection from thousands of candidate genes that could
contribute in identifying cancers. Based on statistical analysis,
the proposed method outperformed other popular classi	ers
for all test datasets and was compatible to SVM for certain
speci	c datasets. GarćıaNieto et al. [346] focused on turbidity
parameter and how it was inuenced by other water quality
parameters in order to simplify water quality controls since
they were expensive and time consuming. Turbidity values
were predicted here by using the hybrid PSO-SVM-based
model from the remaining measured water quality param-
eters (input variables) in the Nalon River basin (Northern
Spain) with success.
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Table 3: Adherence to SI principles.

Principle Adherence of PSO

Proximity principle Particle swarm carried out N-dimensional space calculation over a series of time steps.

Quality principle Particle swarm responds to quality factors pbest & gbest.

Diverse response principle Particle swarm responses allocated between pbest and gbest.

Stability principle Particle swarm changes state only when gbest changes.

Adaptability principle Particle swarm changes state every time gbest changes.

5. Discussion and Conclusion

5.1. Adherence to SI Principles. Revisiting Section 2, we can
	nd close adherence of PSO to the 	ve SI principles by
Millonas [15]. �ey can be expressed in Table 3. When the
behavior of particle swarm explained below is reexamined,
it is clear that the four principles of self-organization de	ned
by Bonabeau et al. [14] are also fully satis	ed.

5.2. Drawback, Improvement, and Innovation. Like all other
SI-based optimization approaches, PSO has some drawbacks
like premature, high computational complexity, slow conver-
gence, sensitivity to parameters, and so forth. �e reasons
behind the problems are complicated. One potential reason is
that PSO does not utilize the crossover operator as employed
in GA or DE; hence the distribution of good information
between candidates is not at a required level. Another reason
may fall within the fact that PSO does not appropriately
handle the relationship between exploitation (local search)
and exploration (global search), so it usually converges to a
local minimum quickly.

To address abovementioned problems, scholars have
proposed many solutions listed in Section 3 (summarized in
Table 4), which can be divided into following three types.

(i) Major modi	cations, including quantum-behaved
PSO, bare-bones PSO, chaotic PSO, fuzzy PSO, PSOT-
VAC, OPSO, SPSO, and topology.

(ii) Minor modi	cations, including constriction coef-
	cient, velocity clamping, trap detection, adaptive
parameter, 	tness-scaling, surrogate modeling, coop-
erativemechanism, boundary shi�ing, position reset-
ting, entropy map, ecological behavior, jumping-out
strategy, preference strategy, neighborhood learning,
and local search.

(iii) Hybridization, PSO being hybridized with GA, SA,
TS, AIS, ACO, HS, ABC, DE, and so forth.

Now there are over hundreds of both various PSO
variants and test functions at present. It is impossible for
each newly proposed PSO variant to compare with all other
variants and to go through all test functions. �erefore, it is
di�cult to proclaim which type of modi	cation is better or
promising. In our opinion, it is important and essential to
create a platform, to which the authors who proposed PSO
variants can submit their programs. A�er the comprehensive
and fair comparison, we then can conclude which PSO
variant is the winner. Particularly, the design of PSO without
parameters is worth studying.

Success of PSO as a single-objective optimizer for pro-
cessing continuous optimization problem has motivated
researchers to extend the use of PSO to other optimization
	elds, like multiobjective optimization, constrained opti-
mization, and discrete optimization (binary optimization and
combinatorial optimization).

(i) For multiobjective optimization, the optimizer needs
to consider Pareto dominance every time it updates
particles and store nondominated solutions to appro-
ximate the Pareto front.

(ii) For constrained optimization, both infeasible and
feasible solutions should be generated at the search
stage, and constraints are dealt with when evaluating
solutions using penalty factor

(iii) For discrete optimization, a commonly used method
is to map the discrete space to a continuous domain
and apply standard PSO, followed by demapping the
results. However, that method is not e�cient and
costs high computational resources. Particular PSO-
based methods have been developed as discrete PSO,
binary PSO, and their variants.

Study of PSO in those 	elds had impressive achievements;
however, lack of in-depth research on theoretical aspects
impaired its application potentials. We believe it should be
interesting to perform a more comprehensive theoretical
study of both the run-time and convergence properties of
PSO and its variants. Other aspects such as 	tness landscapes
and dynamics of PSO are also very attractive theoretical
research directions.

For the programmers, writing parallel programs aremore
di�cult than to write sequential programs, since they need to
take into consideration the communication and synchroniza-
tion between di
erent subtasks. �erefore, there are merely
a few publications related to PSO implemented in parallel.
Some new computational forms are worth investigating
within the next years, such as performing PSO in computer
clusters, in grid computing, and in MPP (massively paral-
lel processor).In addition to them, di
erent computational
levels of parallel computing are also interesting: bit-level,
instruction-level, data-level, and task-level.

5.3. Trends of Applications. �e 	rst practical application of
PSO was in the 	eld of ANN training and was reported
together with the algorithm itself [6]. Many areas of appli-
cation were explored ever since. In addition to what we
discussed in Section 4 (see Table 5), there are thousands of
publications reporting application of PSO to other 	elds. Due
to the page limit, we cannot list all of them.
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Table 4: Di
erent modi	cations of PSO algorithm.

Contributions Studies

QPSO
Jau et al. [20], Jamalipour et al. [21], Bagheri et al. [22], Tang et al. [23], Davoodi et al. [24], Li and Xiao [25],
Yumin and Li [26], Jia et al. [27], and Gholizadeh and Moghadas [28]

BBPSO
Zhang et al. [30], Zhang et al. [31], Zhang et al. [32], Zhang et al. [33], Blackwell [34], Wang et al. [35], Jiang and
Wang [36], Liu et al. [37], Campos et al. [38], and Zhang et al. [39]

CPSO
Chuang et al. [40], Zhang and Wu [41], Dai et al. [42], Li et al. [43], Wu et al. [44], Zhang et al. [45], Zhang et al.
[46], Yang et al. [47], Son [48], He et al. [49], Zeng and Sun [50], and Pluhacek et al. [51]

FPSO
Juang et al. [52], Al	 and Fateh [53], Yang et al. [54], Norouzzadeh et al. [55], Robati et al. [56], Khan and
Engelbrecht [57], Galzina et al. [58], Nafar et al. [59], Aminian and Teshnehlab [60], and Chai et al. [61]

PSOTVAC
Cai et al. [62], Chaturvedi et al. [63], Boonyaritdachochai et al. [64], Sun et al. [65], Abedinia et al. [66],
Mohammadi-Ivatloo et al. [67], Mohammadi-Ivatloo et al. [68], Pookpunt and Ongsakul [69], Abedinia et al.
[70], Abdullah et al. [71], and Chih et al. [72]

OPSO
Dhahri and Alimi [73], Wang et al. [74], Dong et al. [75], Gao et al. [76], Khan et al. [77], Kaucic [78], Dai et al.
[79], and Muñoz et al. [80]

SPSO
Guochu [81], Pedersen and Chipper	eld [82], Martins et al. [83], Panda et al. [84], Vastrakar and Padhy [85],
and Yeh [86]

Population
topology

Wang and Watada [87], Jiang et al. [88], Marinakis and Marinaki [89], Rada-Vilela et al. [90], Wang et al. [91],
Fu et al. [92], Ni and Deng [93], Beheshti et al. [94], Lim and Isa [95], and Kalayci and Gupta [96]

Other
modi	cations

Chuang et al. [97], Shi and Liu [98], Zhang et al. [99], Liu et al. [100], Shen et al. [101], Lin et al. [102], Wang and
Watada [103], Li et al. [104], Lu et al. [105], Mattos et al. [106], Wu et al. [107], Lim and Mat Isa [108], Shimizu et
al. [109], and Fister Jr. et al. [110]

PSO-GA
Kuo and Hong [111], Chen and Kurniawan [112], Nazir et al. [113], Vidhya and Kumar [114], Xiao et al. [115], and
Ghamisi and Benediktsson [116]

PSO-AIS Tang et al. [117], Zhang et al. [118], Ibrahim et al. [119], Kuo et al. [120], Liu et al. [121], and Darzi et al. [122]

PSO-TS Li et al. [123], Nakano et al. [124], Zhang et al. [125], Ktari and Chabchoub [126], and Wang et al. [127]

PSO-ACO
Chen and Chien [128], Xiao et al. [129], Kiran et al. [130], Huang et al. [131], Rahmani et al. [132], and Elloumi
[133]

PSO-SA
Sait et al. [134], Jiang and Zou [135], Niknam et al. [136], Khoshahval et al. [137], Du et al. [138], Zhang et al.
[139], and Geng et al. [140]

PSO-ABC El-Abd [141], Sharma et al. [142], Kiran and Gündüz [143], and Vitorino et al. [144]

PSO-DE
Maione and Punzi [145], Fu et al. [146], Vasundhara et al. [147], Yu et al. [148], Wang et al. [149], and Yadav and
Deep [150]

Other
hybridization

Xu et al. [151], Mohanty et al. [152], and Guo et al. [153]

Multiple objective
Qiu et al. [154], Chen et al. [155], Ghanei et al. [156], Duan et al. [157], Amiryouse	 et al. [158], Ganguly [159],
Zhang et al. [160], Perera et al. [161], and Cheng et al. [162]

Constrained
optimization

Daneshyari and Yen [163], Afshar [164], Koulinas et al. [165], Shan and Ren [166], Yeh and Chien [167], Singh et
al. [168], Paliwal et al. [169], Cui et al. [170], and Shou et al. [171]

Discrete
optimization

Chen and Ludwig [172], Shen et al. [173], Chen et al. [174], Cai et al. [175], Kashan et al. [176], Xu et al. [177],
Garg and Singh [178], Zong et al. [179], and Ezzeldin et al. [180]

Binary
optimization

Zhai and He [181], Sarath and Ravi [182], Taha and Abu Al Nadi [183], El-Maleh et al. [184], Erturk et al. [185],
Zhang et al. [186], Yin et al. [187], Yang et al. [188], and Ganesh et al. [189]

Parameter choice
Kumar and Chaturvedi [191], Zhang et al. [192], Yang [193], Sun et al. [194], Yassin et al. [195], Wang et al. [196],
Hao et al. [197], Xu [198], Chauhan et al. [199], Zhang et al. [200], and Kanemasa and Aiyoshi [201]

Convergence
analysis

Wang and Shen [202], Sun et al. [203], Kurihara and Jin’no [204], Lin [205], Zhang et al. [206], Lin et al. [207],
and Kim and Li [208]

Multicore Waintraub et al. [209] and Yu [210]

GPU Hung and Wang [211], Rymut et al. [212], Kumar et al. [213], Awwad et al. [214], and Chen et al. [215]

Cloud Liu et al. [216], Xu and You [217], Ramezani et al. [218], Govindarajan et al. [219], and Ramezani et al. [220]
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Table 5: Application areas of PSO algorithm.

Area Publication

Electrical and
electronic
engineering

Ganguly et al. [221], Komsiyah [222], Feng et al. [223], Pekşen et al. [224], Yang et al. [225], de Mendonça et
al. [226], Liu et al. [227], Aich and Banerjee [228], Chou et al. [229], Lee et al. [230], �akral and Bakhshi
[231], Fister et al. [232], Aghaei et al. [233], Selakov et al. [234], Shirvany et al. [235], and Tungadio et al. [236]

Automatic control
Cai and Yang [237], Kolomvatsos and Hadjie�ymiades [238], Pandey et al. [239], Štimac et al. [240], Nedic et
al. [241], Chang and Chen [242], Xiang et al. [243], Danapalasingam [244], Mahmoodabadi et al. [245],
Zhong et al. [246], Perng et al. [247], Huang and Li [248], and Nisha and Pillai [249]

Communication
Youse	 et al. [250], Sun et al. [251], Yongqiang et al. [252], Chiu et al. [253], Zubair and Moinuddin [255],
Kim and Lee [256], Yazgan and Hakki Cavdar [257], Rabady and Ababneh [258], Das et al. [259],
Scott-Hayward and Garcia-Palacios [260], Omidvar and Mohammadi [261], and Kuila and Jana [262]

Operations
Liu and Wang [263], Che et al. [264], Hajipour and Pasandideh [265], Cabrerizo et al. [266], Prescilla and
Selvakumar [267], Duan et al. [268], Belmecheri et al. [269], Hu et al. [270], Al Badawia and Shatnawi [271],
Goksal et al. [272], Zhang et al. [273], and Kechagiopoulos and Beligiannis [274]

Mechanical
engineering

Ming et al. [275], Chen et al. [276], Mohan et al. [277], Chen et al. [278], Zhang et al. [279], Wang et al. [280],
Lazrag et al. [281], Lee et al. [282], Lake et al. [283], Vosoughi and Gerist [284], Ribeiro et al. [285], Kitak et
al. [286], and Kalatehjari et al. [287]

Civil engineering
Ashuri and Tavakolan [288], Bozorgi-Amiri et al. [289], Sadoghi Yazdi et al. [290], Bolat et al. [291], Babu and
Vijayalakshmi [292], Mohan et al. [293], Asadnia et al. [294], Yan et al. [295], Wang and Li [296], Sadeghi et
al. [297], and Kanović et al. [298]

Fuel and energy
Mandal et al. [299], Chao [300], Chen et al. [301], Hu et al. [302], Tabet et al. [303], Bahrami et al. [304],
Askarzadeh [305], Shara	 and Elmekkawy [306], Garćıa-Triviño et al. [307], Biao et al. [308], Chen et al.
[309], Seyedmahmoudian et al. [310], Aman et al. [311], Xiao and Huang [312], and Lian et al. [313]

Medicine engineering
Qasem and Shamsuddin [314], Zhang et al. [315], Guo et al. [316], Chang et al. [317], Chen et al. [318], Sung
and Chiang [319], Cruz-Aceves et al. [320], Subasi [321], Zhang et al. [322], Mangat and Vig [323], Mandal et
al. [324], Hsieh et al. [325], and Ganapathy et al. [326]

Chemical engineering
�akral et al. [327], Parastar et al. [328], Khajeh et al. [329], Wu et al. [330], Khajeh and Dasta!an [331],
�akral et al. [332], Sun and Li [333], Skvortsova [334], Khansary and Sani [335], and Nasimi and Irani [336]

Biological
engineering

Saraswathi et al. [337], Mansour et al. [338], Karabulut and Ibrikci [339], Liu et al. [340], Salahi et al. [341],
Du et al. [342], Chuang et al. [343], Mandal and Mukhopadhyay [344], Chen et al. [345], and Garćıa Nieto et
al. [346]

From the table, it is clear that the distribution of PSO
exceeded our expectations. It is now applied to nearly
every discipline that comes across optimization problems.
Generally, PSO can be applied for optimization in dynamic
and uncertain environments. �e engineers need to 	rst
transform the problem to an optimization problem and then
apply PSO to solve it.

Several research topics need to be fully investigated
in future, since there are so far either no or merely few
publications applying PSO to the optimization problem in
those 	elds including what follows.

(i) Symbolic regression, which is a type of regression
analysis that searches the space of mathematical
expressions to 	nd the model that best 	ts a given
dataset, both in terms of accuracy and simplicity, is a
crucially important theoretical and practical problem.

(ii) Floorplanning is to design the layout of equipment in
a factory or components on a computer chip to reduce
manufacturing time.

(iii) Weapon target assignment problem is to 	nd an
optimal assignment of a set of weapons of various
types to a set of targets in order to maximize the
expected damage done to the opponent.

(iv) Supply chain management is the systemic, strategic
coordination of the traditional business functions and
the tactics across these business functions within a
particular company and across businesses within the
supply chain, for the purposes of improving the long-
term performance of the individual companies and
the supply chain as a whole [347].

(v) Nurse scheduling problem [348] is to 	nd an optimal
way to assign nurses to shi�s, typically with a set
of hard constraints in which all valid solutions must
follow and a set of so� constraints which de	ne the
relative quality of valid solutions.

(vi) Queuing theory is the mathematical study of waiting
lines. In queueing theory a model is constructed so
that queue lengths and waiting times can be pre-
dicted tomake business decisions about the resources
needed [349].

5.4. Publication Analysis. Figure 3 demonstrated the number
of publications related to PSO against year. It is clearly
observed that the number of publications increases exponen-
tially from 2000 to 2006, and then it uctuates constantly and
continually around about 1,000 publications per year from
2007 to 2013. We can conclude that the research in PSO has
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Figure 3: Publication number against year.

arrived at mature stage, and we expect a lot of more results
within the coming few years.

Acronyms

ABC: Arti	cial bee colony
ACO: Ant colony optimization
AI: Arti	cial intelligence
AIS: Arti	cial immune system
ANN: Arti	cial neural network
BA: Bat algorithm
BBO: Biogeography-based optimization
BBPSO: Bare-bones PSO
BCI: Brain-computer interface
BFO: Bacterial foraging optimization
BP: Back-propagation
BPSO: Binary PSO
CI: Computational intelligence
CPSO: Chaotic PSO
CUDA: Compute uni	ed device architecture
DCT: Discrete cosine transform
DE: Di
erential evolution
DG: Distributed generation
DPSO: Discrete PSO
EC: Evolutionary computation
EDP: Economic dispatch problem
EEG: Electroencephalography
ELD: Economic load dispatch
EMG: Electromyography
FCM: Fuzzy c-means
FEA: Finite element analysis
FPSO: Fuzzy PSO
GA: Genetic algorithm
GP: Genetic programming
GPU: Graphics processing unit
GSA: Gravitational search algorithm
GSO: Glowworm swarm optimization
HS: Harmonic search
HDFS: Hadoop distributed 	le system
KSVM: Kernel SVM
MIMO: Multivariable input and multivariable output
MLE: Maximum likelihood estimate
MOL: Many Optimizing Liaisons

MOPSO: Multiple objective PSO
MPP: Maximum power point
MR: Magnetic resonance
MRP: Multicast routing problem
MST: Minimal spanning tree
OBL: Opposition-based learning
OPSO: Opposition-based PSO
PID: Proportional-integral derivate
PSO: Particle swarm optimization
PSOTVAC: PSO with TVAC
PV: Photovoltaic
QPSO: Quantum-behaved PSO
RBF: Radial basis function
SA: Simulated annealing
SBS: Sequential backward selection
SFS: Sequential forward selection
SI: Swarm intelligence
SPSO: Simpli	ed PSO
SQP: Sequential quadratic programming
SVM: Support vector machine
SVRM: Support vector regression machine
TS: Tabu search
TSP: Traveling salesman problem
TVAC: Time-varying acceleration coe�cients
UAV: Unmanned aerial vehicle
UCAV: Unmanned combat aerial vehicle
UWB: Ultrawideband
VRP: Vehicle routing problem
WT: Wavelet transform.
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[307] P. Garćıa-Triviño, F. Llorens-Iborra, C. A. Garćıa-Vázquez, A.
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