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Abstract

Capillary non-perfusion (CNP) in the retina is a characteristic feature used in the management of a wide range of retinal
diseases. There is no well-established computation tool for assessing the extent of CNP. We propose a novel texture
segmentation framework to address this problem. This framework comprises three major steps: pre-processing,
unsupervised total variation texture segmentation, and supervised segmentation. It employs a state-of-the-art multiphase
total variation texture segmentation model which is enhanced by new kernel based region terms. The model can be applied
to texture and intensity-based multiphase problems. A supervised segmentation step allows the framework to take expert
knowledge into account, an AdaBoost classifier with weighted cost coefficient is chosen to tackle imbalanced data
classification problems. To demonstrate its effectiveness, we applied this framework to 48 images from malarial retinopathy
and 10 images from ischemic diabetic maculopathy. The performance of segmentation is satisfactory when compared to a
reference standard of manual delineations: accuracy, sensitivity and specificity are 89.0%, 73.0%, and 90.8% respectively for
the malarial retinopathy dataset and 80.8%, 70.6%, and 82.1% respectively for the diabetic maculopathy dataset. In terms of
region-wise analysis, this method achieved an accuracy of 76.3% (45 out of 59 regions) for the malarial retinopathy dataset
and 73.9% (17 out of 26 regions) for the diabetic maculopathy dataset. This comprehensive segmentation framework can
quantify capillary non-perfusion in retinopathy from two distinct etiologies, and has the potential to be adopted for wider
applications.
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Introduction

The vascular network supplying the inner retina is visible to

examination and imaging, and consists of branches from the

central retinal artery and vein. The retinal vasculature is finely

tuned to meet high physiological demands, and dysfunction can

result from several diseases. In diabetic retinopathy vascular

damage leads to capillary non-perfusion (CNP), focal inner retinal

ischemia, and neovascularization [1,2]. Diabetic retinopathy is the

commonest complication of diabetes, and the commonest cause of

blindness in people of working age [2]. CNP also occurs in

cerebral malaria [3], and in this disease impaired retinal perfusion

is thought to be caused by sequestration of parasitized erythrocytes

in retinal vessels [4]. Retinopathy is highly clinically significant in

both diabetes and cerebral malaria. Malarial retinopathy is the

best clinical diagnostic indicator of cerebral malaria in children,

which is a common cause of death and disability in developing

countries [5]. CNP is also seen in other occlusive and/or

inflammatory conditions including central and branch retinal vein

occlusion [6], sickle retinopathy [7] and Eales disease (tuberculosis)

[8]. More subtle reductions in peri-foveal capillary density have

been observed in association with hypertension [9].

The capillary network of the inner retina can be observed using

fundus fluorescein angiogram (FFA), which provides information

about microvessel structure and function, and is a standard

investigation for many eye diseases. Abnormalities may include

vascular blockage (arteriolar or venular occlusion, or CNP) or

leakage of fluorescein from vessels indicating breakdown of the

blood-retina barrier [6]. The spectrum of CNP includes subtle

changes making accurate measurement difficult. It is however

important as it may provide a useful marker and quantification of

retinal ischaemic damage. Insofar as retinal vascular injury reflects

systemic pathology, quantification of retinal changes may provide

surrogate information about other microvasculatures, none of

which are as accessible to examination and imaging [10].

Automated CNP segmentation therefore has several potential

clinical uses in common sight-threatening and life-threatening

diseases. Automated detection of CNP regions, however, is

relatively undeveloped as yet [11,12,13]. Due to loss of capillaries,

CNP is characterized by a change in texture rather than intensity

compared to adjacent retinal tissue. This means that a texture

segmentation framework, as described in Section 2, is an ideal

method to address this problem.
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Texture (or repeated patterns of intensities) has long been used

in image processing and computer vision tasks since it is present in

most objects of interest, and entails statistical or contextual

information of image pixels which are best characterized by

randomness, regularity (or periodicity), directionality and orienta-

tion [14,15]. An interpretation of texture as the variation of data at

scales smaller than the scale of interest [10,16] allows extraction of

pixel features within the context of surrounding pixels, and

provides a powerful global representation of complex images.

However, segmentation of texture images is intrinsically more

challenging than intensity, since it depends on pixel patterns that

are difficult to capture or define.

Existing texture segmentation strategies can be grouped into

two categories: supervised and unsupervised. The former normally

involve feature selection and/or extraction, along with acquisition

of a training dataset to generate and train the classifier to perform

segmentation on new unseen images [17]. Unsupervised segmen-

tation can be achieved by different approaches

[18,19,20,21,22,23,24,25]. In spite of significant efforts unsuper-

vised strategies have not yet been successfully employed for real

world applications, since it is difficult to be application specific

without considering domain knowledge. Medical images pose

particular challenges since segmentation has to be highly accurate

and the images are often noisy. In addition segmentation accuracy

must be evaluated in the context of clinical practice, since adjacent

structures may appear to be similar but arise from different

pathologies and have highly contrasting clinical significance. The

essential need for domain knowledge can be met by employing a

supervised segmentation strategy where expert knowledge is used

to refine segmentation and achieve good performance.

In this paper we describe and evaluate a comprehensive texture

segmentation framework for the segmentation of CNP in FFA

images. This novel framework combines unsupervised approaches

highlighted by the state-of-the-art total variation segmentation

models with supervised ensemble classification techniques. The

remainder of this paper is organized as follows. In Section

Methodology, the proposed texture-based segmentation frame-

work will be described in detail, especially highlighting a new

region term formula employing kernel techniques. The dataset

and the evaluation strategies will be introduced in Section

Experimental Methods. Experimental results are presented in

Section Results. Section Discussion and Conclusions concludes the

paper.

Methodology

In this section we will describe the proposed texture segmen-

tation framework in detail. Our framework uses a novel

unsupervised texture segmentation technique that employs a total

variation energy minimization algorithm. The segmentation

results of this algorithm then become candidate regions for further

refinement by a supervised ensemble classifier, which is trained

with a set of textural features. Therefore the framework consists of

three major steps, pre-processing and the two segmentation steps,

as is demonstrated by the diagram in Fig. 1.

A. Pre-processing/Pre-segmentation
In most image processing applications, pre-processing is a

standard step to improve the image quality and/or to determine

the region of interest. It generally involves one or more of the three

main approaches: image denoising, deblurring, and enhancement.

Image enhancement is the most widely used [26,27]. In clinical

retinal photography for instance, uneven illumination during

fundus photography often leads to variations in image intensity

that must be corrected by image processing. These operations

usually begin with detecting regions of interest, which is the

camera aperture, also known as the field of view (FOV) of the

fundus image. In this work we propose two major pre-processing

steps for CNP segmentation: FOV detection and uneven

illumination correction.

In a typical FFA image (e.g. Fig. 2A) the retinal FOV is

surrounded by a black background. This background is removed

using a mask, generated by thresholding and morphological

operations on the image [26]. Thresholding distinguishes the dark

background outside the camera aperture (or FOV) where the value

of optimal threshold is determined by the Otsu approach. An

opening operation is used to remove some isolated small regions in

the background due to noise while a closing operation is necessary

to remove any artifacts of the mask in the FOV. These can result

from hemorrhages since their dark appearance on FFA is similar

to the aperture background. A mask of Fig. 2A is shown in Fig. 2B.

The quality of fundus images may vary, due to factors such as

eye movement, media opacity, small pupil size, camera misalign-

ment and poor focus. Image enhancement is therefore essential

[28]. Low frequency artifact, uneven illumination, poor contrast

and blurring are common problems [29,30,31]. After the mask

generation a top hat filter (structural element size: 50) is used to

reduce low frequency noise. The following Fig. 2C demonstrates

the resulting enhanced image.

B. Texture-based Segmentation
This section is dedicated to providing mathematical details of

the variational texture segmentation models which is the central

piece of our segmentation framework. In recent years total

variational models have become popular in dealing with many

different image analysis problems and image segmentation in

particular. Image segmentation can be formulated as an energy

minimization problem that can be optimized using efficient

solvers. We have previously published a general multiphase model

that can deal with both texture and non-texture segmentation

problems [32]. This model can deal with multiphase segmentation

problems, that is, in an image where there are more than two

categories of patterns or regions. Conventional segmentation is a

special case of this model. We will first describe the multiphase

modes in general in Subsection Multiphase Model and then briefly

describe how this can be simplified for two-phase model in

Subsection Two-phase Model. Finally, important extensions of

region term to the original model that allow neighborhood

information to be incorporated during the segmentation are

described in Subsection Region Terms.

1) Multiphase Model. Let V be a bounded open subset of

R2 and I : V?R be a given two-dimensional (2D) grayscale

image. The aim of segmentation is to partition V into N regions

Vi, 1ƒiƒN where Vi\Vj~0, and V~|N
i~1Vi. After segmen-

tation, boundaries of all the phases LV~|N
i~1LVi where LVi is

the boundary for region Vi, 1ƒiƒN.

According to [24,25], a general multiphase segmentation model

for both texture and non-texture segmentation problems can be

formulated to minimize the following energy,

E LV,rið Þ~
XN

i~1

ð

LVi

ds

0

B

@

1

C

A
z

XN

i~1
li

ð

Vi

ridx

0

B

@

1

C

A
ð1Þ

The first term concerns the smoothness of region boundaries. The

second term is known as the region term which enforces the

similarity measurement between different regions by ri and ri can
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vary depending on the problem domain and will be discussed in

detail later this section. (1) can be reformulated as a total variation

framework as the following

E U ,Rð Þ~
XN

i~1

ð

V

+uij jdxzli

ð

V

uiridx

0

@

1

A

: ð2Þ

Subject to
PN

i~1 ui~1 and 0ƒuiƒ1, i~1,2,:::,N . Where

U~ u1,u2,:::,uNð Þ and R~ r1,r2,:::,rNð Þ. ui is the fuzzy member-

ship values of phase i for each pixel while ri is the region term for

phase i. li is the regularization weighting factor, by using different

li values for different phases, one can specify the relative influence

of each individual phase. Here for simplicity we limit our

discussion to the case where li~l. However, it would be

straightforward to adapt the current formulation to cases with

different values of li.

In order to achieve a fast solution, an auxiliary variable

V~ v1,v2,:::,vNð Þ was introduced, resulting

E U ,V ,Rð Þ~

XN

i~1

ð

V

+vij jdxz
1

2h

ð

V

vi{uið Þ2dxzl

ð

V

uiridx

0

@

1

A

:

ð3Þ

Here the convex form 1
2h

Ð

V

vi{uið Þ2dx is adopted to force ui and vi

to be as close to each other as possible, where h is a small positive

number. Following the principle of Euler-Lagrangian optimiza-

tion, the constraint
PN

i~1 ui~1 was explicitly included in (3) as

E U ,V ,Rð Þ~
XN

i~1

ð

V

+vij jdx

0

@ z
1

2h

ð

V

vi{uið Þ2dxz

1

2c

ð

V

XN

i~1
ui{1

� �2

dxzl

ð

V

uiridx

1

A

:

ð4Þ

(4) can be elegantly minimized by Chambolle’s classic algorithm

[33], more specifically, this can be done by alternately minimizing

two energies, shown as follows,

Step 1: Solve V

First, we consider the energy minimization problem below as

solving U with fixed V and R.

E1 U ,V ,Rð Þ~

ð

V

+vij jdxz
1

2h

ð

V

vi{uið Þ2dx ð5Þ

This energy is tractable under Chambolle’s fast projection

program as follows,

vi~ui{hdivpi xð Þ: ð6Þ

Here pi xð Þ can be solved by a fixed point method by initializing

p0~0

Figure 1. Flow diagram of the proposed segmentation framework for the retinal capillary non-perfusion segmentation on a fundus
fluorescein angiogram image.
doi:10.1371/journal.pone.0093624.g001

Figure 2. Preprocessing: (from left to right) Original image (A), field of view mask (B) and enhanced image after uneven
illumination correction (C).
doi:10.1371/journal.pone.0093624.g002
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pnz1
i ~

pni zdt+ divpni {
ui
h

� �

1zdt divpni {
ui
h

�

�

�

�

ð7Þ

where dtƒ 1
8
is the time step. See [33] for more details.

Step 2: Update U

Secondly, by fixing V and R we solve U through considering

the energy minimization problem below

E U ,V ,Rð Þ~
XN

i~1

1

2h

ð

V

vi{uið Þ2dxz

0

@

1

2c

ð

V

XN

i~1
ui{1

� �2

dxzl

ð

V

uiridx

1

A

:

ð8Þ

ui can be directly derived as follows,

~uui~vi{hlri{

PN
j~1 vj{hlrj

� �

N
z

1

N
ð9Þ

After projection ~uui onto 0,1½ �, the solution for ui is obtained by the

following,

ui~max min ~uui,1f g,0f g ð10Þ

Step 3: Computation of Region Term R

As we remarked above, the model described here has the

flexibility to tackle both texture and non-texture problems. In the

above formulation ri is a generalized expression of difference

between two region terms, which should be specified for a

particular segmentation problem. Several popular region terms as

well as our new one will be detailed in Subsection Region Terms.

In summary the algorithm for multiphase segmentation can be

stated in the following steps:

1. Initialization of U and R.

2. Iteration

a) Update V by (6);

b) Update U by (10);

c) Estimate R according to the specific region term chosen;

3. Terminate when unew{uoldk kƒe, where � � �k k denotes the

Euclidean distance and e is a small positive number.

2) Two-phase Model. For the sake of simplicity we

considered the segmentation of CNP as a two-phase problem

N~2ð Þ. Compared to the multiphase case, now u1~u and

u2~1{u, which explicitly enforces the constraint u1zu2~1.

This can reduce the computational cost required by multiphase

formulations. For completeness we give the major steps below.

Step 1: Initialization of u and r.

Step 2: Iteration

a) Update v by v xð Þ~u xð Þ{hdivp xð Þ, where pnz1
~

pnzdt+ divpn{ u
h

� �

1zdt divpn{ u
h

�

�

�

�

.

b) Update u by u xð Þ~max min v xð Þ{hlr,1f g,0f g

c) Compute r~r1{r2, r1 and r2 can be derived according to

region term formulae as appropriate (see the next Subsec-

tion).

Step 3: Terminate when unew{uoldk kƒe.
3) Region Terms. In this section three well-known region

terms are described first followed by description of our new kernel-

based region term for texture segmentation. Notably, other

variants of region term definitions (i.e. [24]) can also be adopted

by this model, reflecting the flexibility of the proposed multiphase

model.

If ri~ I xð Þ{cið Þ2, ci is the mean intensity of region Vi. This

model is the multiphase implementation of the celebrated Chan-

Vese (CV) [34]. This is very effective in dealing with piecewise

constant intensity segmentation problems.

If we consider the mutual information based region term as

ri~{logPi, then the model can be used for texture segmenta-

tion. In this formulation Pi is the probability distribution function

of the intensity of region Vi. In [20], Pi is assumed to be a

Gaussian distribution for ease of computation. In real world

problems a parametric model does not always hold, thus a non-

parametric strategy was proposed by Kim et al [21] where the

probability distribution Pi can be estimated by the Parzen window

technique [35]. That is, if x1,x2,:::,xnð Þ is an independent and

identically distributed sample with an unknown density f, its kernel

density estimator is

f̂fh xð Þ~
1

n

Xn

i~1
Kh x{xið Þ~

1

nh

Xn

i~1
K

x{xi

h

� �

ð11Þ

Here K is the kernel and the bandwidth hw0 is a smoothing

parameter. In our problem a Gaussian kernel with mean of zero

and variance of one is used. Readers are referred to [35] for

further details.

Ni et al. proposed a global convex minimization model that

employed Wasserstein distance as region term [22]. Wasserstein

distance is a metric used in optimal transport problems to measure

the optimal transport cost. The Wasserstein distance with

exponent 1 is defined as

W1 P1,P2ð Þ~

ð

L

0

F1 yð Þ{F2 yð Þj jdy, ð12Þ

Where 0ƒyƒL, P1 and P2 are histograms and their correspond-

ing cumulative distribution are F1 and F2 respectively.

The aforementioned region terms play essential roles in the

segmentation models and here we propose a new way to formulate

a region term for improved performance, based on the following

observations. When looked closely at the region term, each pixel x

has a contribution of ri xð Þ to the total error of the minimization

problem. If a pixel is corrupted with noise or other artifacts, as will

the contribution of ri xð Þ. Intuitively, this problem can be alleviated

by considering the information in its neighboring region

surrounding the pixel x. More specifically we propose the use of

kernels to take into account contribution of each pixel x with the

kernel window centered at itself.

Let K be a symmetrical positive and smooth window with

dimensions of D. So the error of each pixel becomes

e xð Þ~
Ð

K

K x{yð Þri yð Þdy, which is now dependent on the

position. This error can be seen as a weighted average of error

within the window centered at the point x. In many applications

Gaussian kernel G xð Þ has been widely used for scale analysis, as its

standard deviation can provide the model with an intrinsic spatial

scale. If the window size of the kernel becomes one, it will become

the conventional region term. In particular, the error

e xð Þ~
Ð

K

K x{yð Þlog Pi xð Þð Þdy can be further written as

e xð Þ~
Ð

K

log Pi xð Þð ÞK x{yð Þ
dy. Considering its discrete nature of
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the problem the error becomes e xð Þ~logPy[KPi xð ÞK x{yð Þ
,

which is the weighted average of log-likelihood function over the

window K . We observed that large window size will reduce the

error of misclassification since it allows more regional statistical

information to be considered, and to capture features at a larger

scale. The use of inappropriately large windows may lead to

inaccurate boundary detection, due to the smoothing nature of

any kernel in use. There is a trade-off between window size and

segmentation accuracy. In practice window size is expected to be

empirically chosen for specific problem application. Note that

Choy et al [24] has adopted an average window strategy for

similar purpose which can be seen as a special case of kernel

analysis here. Li et al has used the concept of kernel for intensity-

based segmentation problems [36].

In the numerical implementation, the final region term can be

computed as

r’i~{Ki � log Pið Þ: ð13Þ

* denotes convolution operation. Pi can be estimated from the

Parzen window approach as before. If the kernels for each phase

are the same, the above formulae can be further simplified.

Some examples of three and five phase problems individually

solved by the CV model, mutual information region term, local

histogram region term and kernel mutual information region term

are shown in Fig. 3 to demonstrate the abilities and limitations of

each model. The CV model fails to segment texture as it lacks a

region term that can describe contextual information. The local

histogram model performs best in the three phase problem

(Fig. 3A–E), while in the five phase problems (Fig. 3F–J, K–O) it

cannot segment boundaries correctly. The boundary effect of the

local histogram model is caused by the window required for

histogram information. Mutual information and kernel mutual

information presents little or no boundary effects. We tested our

model on a synthetic image, a natural scene, and three cropped

FFA images with CNP regions one from ischemic diabetic

maculopathy and two from malarial retinopathy. Each image is

processed with the CV model, Zhu’s mutual information model

and our texture-based model, presented from left to right in Fig. 4.

Values for l are chosen in each case for the most effective

segmentation results. Our texture-based model can distinguish

textures most effectively, demonstrated by these example images,

while the CV model fails as expected because of the lack of region

contextual information.

Use of local histograms was judged to be impractical in terms of

data storage and speed. We therefore adopted the new kernel

based region term r’i~{Ki � log Pið Þ for this work.

C. Supervised Segmentation
This multiphase texture segmentation model appears to be

robust and accurate [32]. Regardless of how powerful an

unsupervised classification method is, however, reference standard

classification is often subjective to the clinician and so correct

classification of every single pixel of clinical images is unrealistic.

Consider retinal CNP: the algorithm segments all regions with

similar textures as CNP. However, regional anatomy and image

characteristics are not uniform, and so this may not be correct for

all retinal regions. For example, the foveal avascular zone (FAZ) is

a normal anatomical feature, but looks the same as an area of

CNP, which represents pathology. Images of the retinal periphery

may magnify inter-vascular spaces, and suggest CNP where none

exists. Expert knowledge is needed to solve specific problems, and

can be incorporated using a supervised method, which provides

the flexibility to incorporate the domain knowledge specific to the

application.

A set of clinically defined rules (defined by IJCM & NAVB) is

used to eliminate CNP areas too small to be meaningful before the

supervised segmentation step. More specifically, regions with

major axis length ,50 pixels are removed; this dimension

approximates the diameter of a major vessel crossing the margin

of the optic disc (,125 mm). Conversion to pixels was estimated by

considering FOV size and resolution. The major axis length of a

region is the largest axis of the ellipse sharing the same normalized

second central moments (Definition from Matlab [Mathworks,

Natick, MA]). Secondly, morphological opening is performed to

‘tidy up’ elongated regions with width smaller than 125 mm such

as those due to border effect. Since few test images included the

FAZ this was removed manually when present. Automated FAZ

detection is possible and will be implemented in future work [37].

For supervised segmentation, various classification techniques

are currently available, such as artificial neural networks, support

vector machine, decision trees, and the choice of classifier is

dependent on the complexity of that specific application and the

nature of the data. We have adopted the AdaBoost classifier, and

used a set of FFA images for the training required in this

supervised technique. The adaptive boosting (Adaboost [38])

classifier was chosen for false positive removal. Adaboost works by

building a stronger and more powerful classifier from lots of

smaller weak classifiers. We used a decision tree as the weak

classifier [38]. The weak classifiers are generated sequentially in

order to decrease the estimation error of the previous weak

classifier [26]. Good sensitivity and specificity are achieved, despite

imbalanced data from false positive detection of CNP, by using

different weights for two classes. An ensemble classifier can be

trained and used for prediction on new images. Care must be

taken when generating the ensemble classifier to avoid overfitting

problems.

The Adaboost classifier is trained by a training dataset

consisting of manual annotations of CNP marked by a retinal

specialist for ‘‘ground truth’’ (described in the next section). For

each image a total of 23 features of each region detected in the

previous stages are extracted. Features can be split into two main

categories: intensity features, and texture features.

Intensity features (#1–11). Features 1–5 are overall inten-

sity (sum of all pixel intensities), mean, standard deviation,

minimum and maximum pixel intensity of each region. Features

6–10 consider edge intensity information of each region, including

overall edge intensity (sum of edge pixel intensities), edge mean

intensity, standard deviation of edge intensity, minimum edge

intensity and maximum edge intensity. The edge of each region is

firstly determined by obtaining the perimeter of each region. The

operations performed for features 1–5 are then applied to edge

pixels (instead of the entire image) in order to generate features 6–

10. The final intensity based feature, mass displacement, is defined

as the distance between the center of gravity of the gray level

intensities and the binary intensities of the region.

Texture features (#12–23). The well-known Haralick

features are used as texture based features, where the region

pixels are first transformed into the co-occurrence matrix, and

then 12 statistical features are calculated from it. These include:

angular second moment (sum of the co-occurrence matrix

squared), contrast (contrast weight), correlation (Pearson’s corre-

lation coefficient, covariance of horizontal and the vertical sum of

the co-occurrence matrix divided by the product of their standard

deviation), variance (square of standard deviation), inverse

difference moment (measures homogeneity, co-occurrence matrix

times by the inverse of contrast weight), entropy, sum of average of
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the co-occurrence matrix, sum of variance of the co-occurrence

matrix, sum of entropy of the co-occurrence matrix, variance

difference, entropy difference and two forms of information

measure of correlation. These features are described by Haralick

et al. [39].

Experimental Methods

In this section we will describe the dataset used, the evaluation

criteria, and the tests performed to evaluate the effects of various

parameters on segmentation.

A. Dataset
The proposed automated CNP segmentation framework was

evaluated using two datasets: images from malarial retinopathy

and ischemic diabetic maculopathy respectively.

The malarial retinopathy dataset comprises forty-eight FFA

image frames (one per sequence)that were collected from children

in Malawi. All images were taken with 50 degree FOV at a size of

300861960 pixel using a fundus camera (TRC-50 EX, Topcon,

Tokyo, Japan) and were graded by visual inspection to ensure the

image quality was adequate for image processing. One ophthal-

mologist (IJCM) manually selected images with CNP in an

appropriate FFA phase. Early phase images display normal

capillary filling, which may look like CNP, while late phase

images may have vessel leakage that obscures genuine CNP. The

ophthalmologist also manually annotated all CNP regions with

estimated maximal linear diameter of .125 mm and marked the

FAZ as a separate region. Manual annotation of CNP formed our

reference standard.

The diabetic maculopathy dataset comprises ten FFA image

frames collected from patients with diabetes. These images were

taken using an HRA2 scanning laser ophthalmoscope (Heidelberg

Engineering, Germany). These images were graded and manually

annotated following the procedures as above for the malarial

retinopathy images.

All the images were segmented using the framework proposed

and the results were compared and evaluated against the manual

delineation. The framework is implemented in Matlab 7.12.0

(R2011a) on a 32-bit operating system (Intel(R) Core(TM) i3-

2100).

Figure 3. Illustration of multiphase texture segmentations. Difference between the aforementioned total variation models only differs in their
region term. Top row: three-phase problem; Bottom row: five phase problem. Each row, in situ left to right: original image, segmentation results using
region terms from CV model, local histogram, mutual information, and the proposed mutual information kernel.
doi:10.1371/journal.pone.0093624.g003

Figure 4. Results of two-phase segmentation with different
region terms. Left: original image; middle left: results of CV model.
Middle right: results of mutual information model; right: results of our
new models. Images from top to bottom: synthetic, natural scene and
CNP images (image I) from diabetic retinopathy followed by 2 images
from malarial retinopathy (M and Q)).
doi:10.1371/journal.pone.0093624.g004
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B. Evaluation Metrics
Three commonly used metrics were used to evaluate perfor-

mance: sensitivity, specificity and accuracy in terms of pixels.

Sensitivity (resp. specificity) is a measure of the effectiveness in

identifying positive (resp. negative) pixels, while accuracy is a

metric to indicate the overall classification performance. These

metrics are defined as follows:

Sensitivity Seð Þ~

the number of pixels belonging to CNP regions classified as CNP pixels

the total number of pixels belonging to CNP regions

Specificity Spð Þ~

the number of pixels belonging to non CNP regions classified as non CNP pixels

the total number of pixels belonging to non CNP regions

Accuracy Accð Þ~
the number of pixels correctly classified

the total number of pixels

In addition, the overlapping ratio is used as an extra performance

measure to evaluate the segmentation. The overlapping ratio

marks the number of regions that coincide with reference standard

regions. It is possible for the regions segmented from the proposed

framework to overlap all regions identified by the expert without

sharing identical boundaries. For this reason a combination of

overlapping ratio and pixel-by-pixel performance measurement

can provide a more comprehensive understanding of the

segmentation performance. Following the method Buchannan

and Trucco et al.’s method [40], the region overlapping ratio was

interpreted as follows: region classified as a CNP and overlaps with

the expert’s annotation over the total number of regions in expert’s

annotation.

C. Parameter Sensitivity Test
In order to demonstrate robustness of the kernel mutual

information model to parameter variation, effects of region

weighting factor (l) in the energy minimization model were

evaluated. l controls the balance between smoothness of the

detected boundary and the uniformity of detected regions. A

smaller value of l provides a smoother region boundary, while a

larger l provides a more complex and more sensitive boundary. In

this test, a range of values are presented to show sensitivity of this

framework with different values for l. In addition, the elapsed time

of each computation is measured using the MATLAB ‘tic toc’

function for comparing the relative speed of the algorithm.

In the case of supervised region-wise refinement, the cost

coefficient and number of learners are the two parameters that are

optimized. The cost coefficient controls the weight for penalizing

false positives, where the number of learners is the number of

decision trees used to build an ensemble classifier. Both parameters

were tested in combination to obtain the best classifier. The

classifier is evaluated through a five-fold cross validation where the

dataset was divided into five folds, and each fold will in turn be

kept for testing while the other four folds were used for training the

AdaBoost classifier. In order to test the robustness of classifiers,

five-fold cross-validation was repeated five times - each time with

random permutation to divide the data.

Results

A. Results from Images of Malarial Retinopathy
1) Results from Unsupervised Segmentation. The varia-

tional texture segmentation algorithm that we have developed will

stop when either the number of iterations reaches a maximum of

2000 or the difference between two consecutive iterations is less

than 10{6. Table 1 reports how a range of the parameter l can

affect segmentation in terms of pixel by pixel accuracy, sensitivity

and specificity, and time efficiency. From this table, it can be seen

that segmentation performances are consistent, but computational

time varies. For this unsupervised step l~0:5 was chosen for our

analysis, as it yields the best sensitivity. Fig. 5 illustrates the

segmentation of some example images results pre and post

refinement. After unsupervised segmentation, across the collection,

we obtained on average a pixel by pixel accuracy of 87.1%,

sensitivity of 74.9% and specificity of 88.7%. Using the

aforementioned region overlap agreement, we report an average

ischemic region detection of 79.7% (47/59) (number of regions in

reference standard detected/number of regions in reference

standard) and median false positive of 164 with range of 19–264.

2) Final Results after Region-wise Refinement. The effect

of varying number of trees and cost coefficient values were tested

as described above, five-fold cross validation was performed with

different partitions. The range tested include 500, 1000, 2000,

5000 and 10,000 trees, in combination with cost coefficients of 5 to

9. The 5000 tree learner with a cost coefficient of 8 was found to

be the most effective combination (Fig. 6). With this set of

parameters for the supervised step we were able to achieve a pixel

by pixel accuracy of 89.0%, sensitivity of 73.0% and specificity of

90.8%. The average region overlapping ratio after refinement is

76.3% (45/59). The median number of false positives is 86 (range:

17 to 166). See Table 2 for the summary of results from step 2 and

3.

B. Results from Images of Diabetic Retinopathy
The segmentation framework was applied to the ten diabetic

retinopathy images following the same evaluation strategy as

above for the malarial retinopathy images. l~0:5 was chosen for

the unsupervised segmentation step. The effect of varying number

of trees and cost coefficient values were tested as described above,

five-fold cross validation was performed with different partitions.

The range tested included 500, 1000, 2000, 5000 and 10,000 trees,

in combination with cost coefficients of 1 to 19 with an interval of

2. The 500 tree learner with a cost coefficient of 19 was found to

be the most effective combination. With this setting for the

supervised step we were able to achieve a pixel by pixel accuracy

of 80.8%, sensitivity of 72.6% and specificity of 82.1%. The

average region overlapping ratio after refinement is 73.9% (17/

26).

Discussion & Conclusions

We have designed a novel texture segmentation framework to

tackle the CNP segmentation problem in retinal angiography. The

framework comprises three major steps: pre-processing, total

variation texture segmentation, and supervised segmentation. The

first highlight of this framework is the state-of-the-art multiphase

total variation texture segmentation model and a new kernel based

region term, providing an elegant way to segment texture. The

second highlight is the use of supervised segmentation to

incorporate expert knowledge to guide refinement in order to

achieve a more application specific result. One significant

challenge in using supervised classification is dealing with
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imbalanced data. In the specific application of CNP, the number

of CNP and non-CNP are skewed. A weighted strategy appears

more appropriate to penalize misclassification errors for each class

differently. Weighted Adaboost was chosen for our specific

application for its simplicity and efficiency, but other methods

such as weighted-SVM [41] can be easily adapted to this

framework to extend its range of applications.

To demonstrate the functionality of the proposed framework,

we applied it to retinal images of CNP arising from two distinct

etiologies, which were acquired using different imaging modalities

– malarial retinopathy (conventional FFA) and diabetic retinop-

athy (scanning laser ophthalmoscope). The segmentation frame-

work demonstrated satisfactory performance: accuracy of 89.0%,

sensitivity of 73.0%, and specificity of 90.8% on forty-eight images

from malarial retinopathy, and accuracy of 80.8%, sensitivity of

70.6%, and specificity of 82.1% on ten diabetic maculopathy

images. In terms of region-wise analysis, the framework achieved

an accuracy of 76.3% (45/59) regions for the malarial retinopathy

images and 73.9% (17/26) for the diabetic maculopathy images,

respectively. To the best of our knowledge, this is the first study

that has used such a large collection of FFA images to address this

challenging problem. Our experimental results provide an original

insight to this medical imaging problem. Calculations of the

percentage of CNP and their distributions may have utility in

determining clinical progression of disease and associations with

systemic complications.

Automated analysis of retinal images is an important topic of

research [11,42]. The main emphasis has been on analysis of color

fundus photographs rather than FFA, and so the problem of

detecting CNP is relatively unexplored. Jasiobedzi et al. was the

first group to report non-perfusion detection in angiographic

retinal images [12,13]. This group stressed the importance of

utilizing texture data in FFA and captured them using extensive

morphological operations and region merging. They found that

merged regions yielded better results than smaller regions, but did

not report sensitivity, specificity or accuracy [12]. Sivaswamy et al.

reported an unsupervised CNP segmentation method using a

variance-based region growing technique [43]. They evaluated

their method on 40 FFA images and reported an area under curve

(AUC) of 0.842 using pixel by pixel evaluation. Their ROC

suggests a sensitivity of 0.9 and specificity of 0.36. Trucco et al.

used temporal and contextual information to classify ischemic

areas and capillary leakage in ultra-wide field of view (UWFV)

FFA sequences to maximize area of coverage [40,44]. Five FFA

sequences were analyzed in [44] and an accuracy of about 80%

Figure 5. Illustration of segmentation results of five malarial retinopathy images. Each row represents a case (left) and its manual
delineation (middle left), intermediate segmentation results after step 2 – unsupervised segmentation (middle right), and step 3 – supervised
segmentation (right).
doi:10.1371/journal.pone.0093624.g005

Table 1. Results of parameter sensitivity test for step 2 –
unsupervised segmentation for the malarial retinopathy
dataset.

l Accuracy Sensitivity Specificity
Elapsed Time
(seconds)

0.3 0.87160.048 0.74960.144 0.88860.063 371.26372.2

0.5 0.87160.048 0.74960.144 0.88760.063 266.36264.2

1 0.87160.048 0.74860.144 0.88860.063 199.4647.8

1.5 0.87160.048 0.74860.144 0.88860.063 192.6614.5

2 0.87160.048 0.74860.144 0.88860.063 190.167.6

Including overall mean6standard deviation of pixel by pixel accuracy,
sensitivity, specificity, and elapsed segmentation time from using various
regularization weighting factor l.
doi:10.1371/journal.pone.0093624.t001
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was reported in terms of pixel-wise measure. 16 sets of sequential

images were analyzed [40], and they evaluated their technique in

terms of region overlapping, which is significant to CNP

segmentation. This type of assessment is important because

ground-truth CNP boundaries are extremely subjective, and a

ROC statistics may not be an appropriate measure of accuracy.

From their evaluation 71.5% (93/130) of regions were correctly

located but with over 80 false positives (no maximal or mean value

of the number of false positive numbers is reported). Their method

is based on UWFV image sequences which have more frames and

each frame has much wider field than images of this study, hence it

is not possible to compare the performance directly. Nevertheless,

our segmentation framework will be applicable to UWFV images

after certain level of adaption and optimization.

It is a challenging task to achieve very high detection

performance for automatic segmentation of CNP in FFA images.

From our experience and others, there are many different factors

that could compromise the performance. First of all, there is a very

large variation in terms of appearance (e.g. brightness, contrast,

and artefact) across images, this makes it difficult to have universal

criteria to define CNP. That is, a region with similar appearance

may be CNP in one image but not in other images. Secondly,

there are many confounders within an image. For example,

hemorrhage often appears in images and has similar view to CNP

(see row 3 and 4, Fig. 5). Regions of hemorrhage will cause

problems in training the classifier and result in low accuracy (some

CNP will be misclassified as hemorrhage or hemorrhage as CNP).

It would be ideal to develop a program to remove them before

CNP detection in the future. The appearance of CNP in an image

may vary due to uneven illumination and other artefacts. For

example, CNPs in the center of an image often look different to

those at the edge of the FOV, and regions close to the edge of the

FOV may mimic as CNP due to poorer focusing problem as the

retina is a curved surface. Future development should take into

account of these issues. On the other hand, recently there is a

trend in development of interactive segmentation programs to

address challenging segmentation problems. An interactive

segmentation strategy may be adopted to address the CNP

segmentation problem for higher performance. For example,

following [45] we can use an unsupervised segmentation program

to first detect candidate CNP regions and leave potential users to

select areas of true CNP. The programs will report the quantitative

Figure 6. Region-wise evaluation of the supervised ensemble classifier used in 2nd segmentation. Parameters of the ensemble classifier:
number of trees and the weight value were tested in different combinations. Columns from left to right are c = 6, 7 & 8 of each ensemble classifiers
with 500, 5000 and 10,000 trees. This figure shows region-wise accuracy, sensitivity and specificity, obtained from the average of five tests with
different seed points for a five-fold cross-validation in each test.
doi:10.1371/journal.pone.0093624.g006

Table 2. Summary of results from step 2 and 3 (unsupervised and supervised respectively) segmentation on the malarial
retinopathy dataset, presented in region-wise and pixel-wise performance metrics.

Average Regions

Overlapped

Median Region False

Positives (Range) Pixel-wise Accuracy Pixel-wise Sensitivity Pixel-wise Specificity

Step 2 47/59 164 (19–264) 0.87160.048 0.74960.144 0.88760.063

Step 3 45/59 86 (17–166) 0.89060.047 0.73060.142 0.90860.059

doi:10.1371/journal.pone.0093624.t002
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information of CNPs after user selection, potentially providing

good performance with minimal human involvement.

Texture is an effective feature for CNP segmentation, however

manual grading involves the whole FA sequence, and therefore

incorporates additional contextual and temporal information. As

reported by Trucco et al. [40,44] it is important to exploit the

evolution of intensities over time and incorporate contextual

knowledge of pathology into automated segmentation. Texture

has proved to be a useful feature, but in isolation is not

comprehensive enough. Therefore in future studies, data between

the early venous and late venous phases of FFA will be included as

temporal and contextual features. In addition the FOV can be

enlarged by overlapping different FOV to create a montage, with

the aim of gathering data from the peripheral retina as well as the

posterior pole. Computational time is reasonable (approx. 5 to

6 minutes for 300861960 pixels), but can be increased by using

C++ or graphic processor unit (GPU) techniques. In this study we

have used a single expert as the reference standard, and plan to

improve on this by evaluating the inter- and intra-observer

variation of manual CNP segmentation prior to future clinical

application.

Development of this framework is motivated by medical

demands for a tool to measure regions of retinal CNP in FFA

images of the eye. Although designed with retinal imaging in

mind, this framework can be applied to images from diverse

imaging modalities in healthcare, including ultrasound, CT, and

MRI. It can also be applied to other more general image

segmentation problems. Moreover, the flexibility of this framework

also extends to addressing multiphase intensity and texture

problems. This can be done by simply modifying the region term

in the second step of the framework and by using multi-class

classification in final step. Therefore we expect this framework to

have wide clinical applications.

In conclusion, we report and evaluate a newly developed

comprehensive segmentation framework to address to the problem

of CNP region segmentation, and our experimental results

demonstrate its effectiveness. The proposed framework combines

the strength of unsupervised and supervised segmentation

techniques. This framework has the potential to be further

developed as a useful tool for fast, accurate and objective

assessment of a wide range of retinal diseases. The flexibility of

this framework will certainly make it applicable and valuable in

other real world applications.
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